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Abstract. Functions which map n-bits to m-bits are important cryptographic sub-primitives in the
design of additive stream ciphers. We construct highly nonlinear t-resilient such functions ((n,m, t) func-
tions) by using a class of binary disjoint codes, a construction which was introduced in IEEE Trans.
Inform. Theory, Vol. IT-49 (2) (2003). Our main contribution concerns the generation of suitable sets of
such disjoint codes. We propose a deterministic method for finding disjoint codes of length νm by con-
sidering the points of PG(v − 1, F2m ). We then obtain some lower bounds on the number of disjoint
codes, by fixing some parameters. Through these sets, we deduce in certain cases the existence of resil-
ient functions with very high nonlinearity values. We show how, thanks to our method, the degree and
the differential properties of (n,m, t) functions can be improved.
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1. Introduction

A classical method for constructing key-stream generators is to combine a set of
linear feedback shift registers with a nonlinear Boolean function, say f . Then
f must fulfill certain properties in order to increase the time/space complex-
ity of different attacks. Common attacks are Siegenthaler correlation attack [29],
Berlekamp–Massey linearity synthesis attack [20] and different linear approxima-
tion attacks [10]. The main criteria that f should fulfill are: high-nonlinearity,
high-algebraic degree, and resiliency of sufficient order. Also the propagation char-
acteristics of f have to be considered.

In a modern design of a stream cipher, functions mapping to a block of output
bits appear in many situations. These functions are of the form F : F

n
2 �→ F

m
2 and
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are called n-input m-output functions. In block cipher design such functions are
referred to as S-boxes. S-boxes is a well-studied subject, and different important
criteria have been considered. Since any such function F can be studied by means
of its coordinates, which are Boolean functions, these criteria generalize those of
Boolean functions.

For the case of Boolean functions (m = 1), there is a simple method of
generating functions with some fixed resiliency and high nonlinearity, using the
so-called Maiorana–McFarland construction [3]. This construction was developed
or has been used as a basis for further improvements in e.g. [7, 26, 27]. We now
have quite a lot of results for the case m=1 [5, 26].

When 1 <m<n the situation is different. A few papers [8, 15, 16, 22, 32] have
appeared before, providing nonlinear functions with some resiliency. Here we fur-
ther develop the approach originally proposed in [15], where a set of disjoint codes
has been used for construction of nonlinear resilient functions. However, the major
problem with the construction in [15] was the fact that such a set is available
through computer search (which becomes infeasible for a moderate cardinality of
this set). Using the basic theory of projective spaces, we describe a set of disjoint
codes which contains a large number of codes, for some fixed resiliency, and which
is easy to handle. In many cases our design will generate resilient functions with
much better nonlinearity compared to previous methods.

The paper is organized as follows. Section 2 provides basic definitions and nota-
tions both for 1-output and m-output functions, m > 1. In Section 3, we recall
the known constructions; we explain the method for constructing highly nonlin-
ear n-input m-output t-resilient functions by using disjoint linear codes introduced
in [15]. In Section 4, we show how the points of some projective spaces can be
fruitfully used in such a construction. We consider (n,m, t) functions. Fixing m

and t , we obtain some bounds on the number of disjoint codes (Theorems 5–7).
We finally present some numerical values for constructed functions and a com-
parison with previous constructions [16, 32]. In the last section we explain pre-
cisely how algebraic degree and differential properties of (n,m, t) functions can be
improved.

Notation

– F2m is the finite field of order 2m,

– β is a primitive root of F2m ,

– Bn is the set of Boolean functions of n variables,

– Mm
n is the set of functions from F

n
2 to F

m
2 ,

– card E is the cardinal of some set E,

– E∗ =E \ {0},
– |�| is the absolute value of any real value �,

– # [,] is defined before Table 1.
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2. Preliminaries

In this paper, we study the cryptographic properties of functions from F
n
2 to F

m
2

where 1 <m<n. We will denote by Mm
n the set of such functions. We denote by

Bn the set of Boolean functions of n variables, i.e., the functions from F
n
2 to F2.

Any F ∈Mm
n can be regarded as composed of m Boolean functions, its m-output

coordinate functions. More generally, a component function of F is a nonzero linear
combination of its coordinate functions. Thus we will often set F = (f1, . . . , fm)

where fi ∈ Bn. A Boolean function f can be expressed in algebraic normal form
(ANF), i.e., there are unique binary constants λ0, λ1, . . . , λ12, . . . , λ12 . . .n such
that:

f (x1, . . . , xn)=λ0 +λ1x1 +· · ·+λnxn +λ12x1x2
+λ13x1x3 +· · ·+λ12 . . . nx1x2 · · ·xn, (1)

where addition and multiplication are in F2.

Definition 1. The algebraic degree of f , denoted deg(f ), is defined to be the max-
imum degree appearing in its ANF.
Many properties for Boolean functions are studied through the Walsh transform.

Definition 2. The Walsh transform of f ∈ Bn is defined to be the real-valued
function F :

ω∈F
n
2 �→F(ω)=

∑

x∈F
n
2

(−1)f (x)+ω·x, (2)

where the dot product of vectors x and ω is defined as x ·ω=x1ω1 +· · ·+xnwn.

We say that the Boolean function f is balanced if the probability of f (x) = 1 is
the same as the probability of f (x)=0. Alternatively, using the Walsh transform,
f is balanced if and only if F(0)= 0. For two functions of Bn, say f and g, the
Hamming distance between them is defined as

dH (f, g)=card{x|f (x) �=g(x), x ∈F
n
2}. (3)

Definition 3. The nonlinearity of f ∈Bn, denoted by N (f ), is defined as

N (f )= min
g∈An

dH (f, g), (4)

where An is the set of all affine functions of n variables,

An =
{

a0 +
n∑

i=1

aixi |ai ∈F2,0≤ i ≤n

}
.
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The nonlinearity of f can be obtained through the Walsh transform as follows:

N (f )=2n−1 − 1
2

max
ω∈F

n
2

|F(ω)|. (5)

Finding Boolean functions with maximal nonlinearity is an important and well
studied problem. For n even, maximal nonlinearity is obtained by the bent func-
tions [19, 25]. For n odd, maximal nonlinearity is only known for n<9, and deter-
mining it for n≥9 looks as very hard challenge [23, 24]. Since bent functions are
not balanced, another hard open problem is to find the maximum nonlinearity for
balanced functions when n is even [11].

Now the next definition concerns the function’s ability not to leak information
to the output when a subset of the input variables is kept fixed. The so-called resil-
iency was characterized in the Walsh transform domain by Xiao and Massey [33].

Definition 4. A function f ∈Bn is resilient of order t (t-resilient) if and only if

F(ω)=0 for allω∈F
n
2 such that 0≤wt(w)≤ t, (6)

where wt(ω) denotes the Hamming weight of ω, i.e., the number of ones in ω.

This paper will be directed towards the study of trade-offs between resiliency
and nonlinearity for functions of Mm

n . As any F ∈Mm
n is fully defined through its

component functions, we are going to state the cryptographic properties of such F ,
generalizing the previous properties. We start with a formal definition of resilient
functions.

Definition 5. Let F ∈Mm
n ; let t be a positive integer such that t ≤n−m. The vec-

tor x, describing F
n
2, is x = (x1, x2, . . . , xn) where xi ∈F2.

1. Let T ={j1, . . . , jt } be any subset of {1, . . . , n} and {i1, . . . , in−t }= {1, . . . , n}−
T , where T has cardinality t . Then F is said to be unbiased with respect to
(w.r.t.) T if for every (a1, . . . , at )∈F

t
2

F(x1, x2, . . . , xn)|xj1=a1,... ,xjt=at

runs through all the vectors in F
m
2 , each 2n−m−t times, when (xi1 , . . . , xin−t ) runs

through F
n−t
2 . The function F is said to be unbiased when F(x) takes all values

in F
m
2 , each 2n−m when x runs through F

n
2.

2. F is said to be an (n,m, t)-resilient function if F is unbiased w.r.t. every subset T of
{1, . . . , n} of cardinality t . The parameter t is called the resiliency of the function.

The next theorem gives the relationship between a resilient function and its com-
ponent functions. This comes from the next lemma, which is well-known and
called the XOR Lemma [32]. The proof of this lemma can be found in a more gen-
eral context in [17, Theorem 7.37]. In order to replace Definition 5 in this context,
we recall a basic property.
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Let F ∈ Mm
n ,F = (f1, f2, . . . , fm) and 1 ≤ m ≤ n, where each fi is in Bn. Then

f1, f2, . . . , fm is said to be an orthogonal system of polynomials if for each
(a1, a2, . . . , am) in F

m
2

f1(x1, . . . , xn)=a1, . . . , fm(x1, . . . , xn)=am

has exactly 2n−m solutions in F
n
2 (Definition 7.35, [17]). According to Definition

5, F is unbiased if it runs through all the vectors in F
m
2 , each 2n−m times, when

(x1, . . . , xn) runs through F
n
2. Thus F is unbiased if and only if f1, f2, . . . , fm is

an orthogonal system of Boolean functions.

Lemma 1. A function F = (f1, f2, . . . , fm), where fi ∈ Bn,1 ≤ i ≤ m, is unbiased if
and only if all nonzero linear combinations of the functions f1, . . . , fm are balanced.

Hence, an immediate consequence of the previous lemma is the following.

Theorem 1. Let t, m such that t +m≤n. A function F = (f1, f2, . . . , fm) is an (n,
m, t)-resilient function if and only if all nonzero linear combinations of f1, f2, . . . , fm

are (n, 1, t)-resilient functions, i.e., are t-resilient functions of Bn.

Proof. By definition, F is an (n,m, t)-resilient function if and only if, by fixing
any set of t variables, F becomes a function F ′ such that:

F ′ : F
n−t
2 �→ F

m
2 and F ′ is unbiased.

From Lemma 1 this means that any component function of F ′ is balanced. From
Definition 4, this is equivalent to say that any component function of F is a
t-resilient Boolean function.

Nonlinearity of F ∈Mm
n , introduced in [21], follows in a similar manner.

Definition 6. The nonlinearity of F = (f1, f2, . . . , fm), denoted by N (F ), is
defined as the minimum among the nonlinearities of all its component functions:

N (F )= min
b∈F

m
2 ,b �=0

N (f (b)), f (b) =
m∑

i=1

bifi . (7)

Similarly, the algebraic degree of F = (f1, f2, . . . , fm) is defined as the minimum of
degrees of component functions of F , namely,

deg(F )= min
b∈F

m
2 ,b �=0

deg(f (b)), f (b) =
m∑

i=1

bifi . (8)

Remark 1. In accordance with (7) and (8), we get bounds on N (F ) and on
deg(F ) by means of known bounds on resilient Boolean functions. For instance,
recall the bound on the divisibility of f ∈Bn, which is t-resilient of degree r[4]:
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F(ω)≡0 (mod 2t+2+
 n−t−2
r

�), ∀ω∈F
n
2 .

Assume that F is an (n,m, t)-resilient function; we then deduce

N (F )≤2n−1 −2t+1+
 n−t−2
r

�, (9)

where r is obtained from (8). This bound is significant for t ≥ n/2 − 2 and then
m≤n/2+2; actually it is only significant for n/2−2≤ t ≤n/2 and then n/2≤m≤
n/2+2. Indeed, it is well-known1 that the resiliency t is upper bounded by

t ≤
⌊

2m−1n

2m −1

⌋
−1. (10)

This upper bound, which implies t ≤n/2, is tighter than the bound derived directly
from the definition of resiliency (t ≤n−m). For instance, for n=10,m=2 the equa-
tion (10) gives t ≤5, whereas the trivial bound only indicates that t ≤8.

3. Resilient Functions in MMMm
n and Linear Codes

The connection between linear resilient functions and linear codes was established
in [2, 9], and the equivalence between resilient functions and large set of orthogo-
nal arrays was considered in [30]. The most simple construction for resilient func-
tions of Mm

n uses linear error-correcting codes. Then any bound on binary linear
code leads to some bound on resiliency. According to this construction, it is conve-
nient to define linear resilient functions which are simply resilient functions whose
coordinates functions and any nonzero linear combination of these are linear.

Recall that any linear binary code C of length n is a subspace of F
n
2; thus it

is defined by any generating matrix whose rows form a basis of C. The minimum
distance of C is the smallest Hamming weight of its nonzero codewords. Such a
code C of length n, dimension m and minimum distance δ is said to be an [n,m, δ]
binary code.

Theorem 2 [1]. Let C be an [n, m, t + 1] binary code. Let G be an m×n generating
matrix of C. Define F ∈Mm

n by

F(x1, . . . , xn)=G




x1
...

xn



 .

Then F is an (n, m, t)-resilient function. Such a function F is said to be a linear resil-
ient function. In other words, there exists a linear (n, m, t)-resilient function if and
only if there exists a linear [n, m, t+1] code.

1 This has been proved in [12]; see another proof in [1].



HIGHLY NONLINEAR RESILIENT FUNCTIONS 325

Note that a class of functions reaching the upper bound in (10) is easily derived
by applying Theorem 2 to the Simplex code, which is a linear [2m − 1,m,2m−1]
code [22]. For clarity, we now explain Theorem 2 by an example using the [7, 3,
4] Simplex code.

Example 1. Let C be a [7,3,4] binary linear code with generating matrix

G =



1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1



 .

Thus we can define a (7, 3, 3)-resilient function F ∈M3
7 which is linear:

F(x1, . . . , x7)=






f1 =x1 +x4 +x5 +x6,

f2 =x2 +x4 +x5 +x7,

f3 =x3 +x4 +x6 +x7.

Any linear combination g of the fi is a linear function with at least four terms,
since the minimum distance of C is 4. Thus, any g is clearly 3-resilient. And the
bound (10) is reached since (7×4)/7−1=3= t .

3.1. Linear-like Resilient Functions

By applying any nonlinear permutation to any linear resilient function, one easily
generalizes the previous construction. This was exploited by Zhang and Zheng in
[32].

Let F be a linear (n,m, t)-resilient function and let P be any permutation on
F

m
2 . Then the function H =P ◦F is an (n,m, t)-resilient function which is nonlin-

ear. Indeed if F satisfies Definition 5, item 2, this holds for P ◦F , as soon as P

is a permutation on F
m
2 . Note that this holds even if F is not linear and indepen-

dently of the value of t ; indeed the value of t comes from the number of terms in
the linear component functions of F .

Set F = (f1, . . . , fm) and P = (p1, . . . , pm) where fi ∈Bn and pi ∈Bm. Since the
fi are linear and linearly independent, we obtain a basis of F

n
2 by taking for each

i,1≤ i ≤m,

ui = (fi(x), x = (x1, . . . , xn)∈F
n
2),

which we complete with um+1, . . . , un. Let us denote by V the m-dimensional sub-
space defined by the n−m equations um+1 =· · ·=un =0. Thus we get

H(x)= (p1(f1(x)), . . . , pm(fm(x)))=P(u1, . . . , um),

which is independent from um+1, . . . , un. This is to say that the restrictions of H

on V and on its cosets are equal to P . Note that H is linear if and only if P is
linear too. Thus the Theorem 3 of [32] can be stated more precisely:
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Theorem 3. Let H =P ◦F , where F is a linear (n, m, t)-resilient function and P is
any permutation on F

m
2 . Then we have:

• there is an m-dimensional subspace V of F
n
2 such that the restrictions of H on the

cosets of V are equal to P;

• the image of H, an m×2n matrix on F2, can be viewed as a concatenation of 2n−m

times F
m
2 , each part being equal to P(V);

• the degree of H equals the degree of P;

• the nonlinearity of H equals 2n−mN (P ).
We will say that H is a linear-like (n, m, t)-resilient function.

From the previous construction, we get an (n,m, t)-resilient function H , which
is nonlinear but can be written, up to a linear permutation as (P, . . . , P ) (2n−m

times the chosen permutation P ). One can say that, in a certain sense, the period
of the sequence produced by H(x) could be short. Moreover the degree and the
nonlinearity are strongly bounded by the parameters of P . The authors of [32]
proposed the design of nonlinear (2m − 1,m,2m−1 − 1) resilient functions with a
nonlinearity of at least 22m−2 −22m−1−(m/2) and the algebraic degree m−1.

3.2. A Construction of Highly Nonlinear (n, m, t)-Resilient Functions

In [16], concatenation of resilient functions with bent functions was used in order
to obtain nonlinear resilient functions of Mm

n . Another approach has been taken
in [15] where disjoint linear codes has been used for the same purpose. The main
problem which is still unsolved is the way of finding such disjoint codes, relying
only on a computer search for such codes. In a recent work [22] the known con-
struction methods have been merged into a general construction technique that
uses the existence of a single linear code with certain parameters. This technique
has been later modified in [14] slightly improving the results in [22] by utilizing all
the 2k −1 nonzero codewords of a linear [u, k, t +1] code rather than only 2k−1.

In this section, we recall the construction of t-resilient functions F ∈ Mm
n with

high nonlinearity introduced in [15]. The next lemma enables us to use all the non-
zero codewords of a linear code.

Lemma 2. [15]. Let C be any binary [u,m, δ] linear code, with generating matrix
G. Let β be a primitive element in the field F2m providing the polynomial basis
(1, β, . . . , βm−1) of F2m . Define the linear bijection φ: F2m �→ C by

φ(a0 +a1β +· · ·+am−1β
m−1)= (a0 · · ·am−1)G

(simply by encoding (a0, . . . , am−1)). Consider the 2m −1×m matrix:
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A=





φ(1) φ(β) · · · φ(βm−1)

φ(β) φ(β2) · · · φ(βm)
...

...
. . .

...

φ(β2m−2) φ(1) · · · φ(βm−2)



.

Then, for any nonzero linear combination of columns of the matrix A, each nonzero
codeword of C appears exactly once.

According to the previous lemma, we can obtain nonlinear functions F and then
improve the construction of Theorem 2. We explain this, by an example.

Example 2. We extend the discussion presented in Example 1. The code C has seven
nonzero codewords. Then, using the matrix A. of Lemma 2, we can construct the
component functions, say fi, i = 1, . . . ,3, by concatenating the linear functions cor-
responding to the elements in the ith column of A.

This could give us an output of length 7 × 27. However we only use four rows
of A, since the input space is always a power of two. This enables a construction
of F , where F(y, x): F2

2 ×F
7
2· �→F

3
2.

Let us for 0 ≤ i ≤ 6 define the linear functions �i(x) = φ(βi) . x, where x =
(x1, . . . , x7) and “·” is the scalar product in F

7
2. Then, with the four first lines of

A, define F(y, x) by its coordinate functions:

f1 = (y1 +1)(y2 +1)�0(x)+ (y1 +1)y2�1(x)+y1(y2 +1)�2(x)+y1y2�3(x),

f2 = (y1 +1)(y2 +1)�1(x)+ (y1 +1)y2�2(x)+y1(y2 +1)�3(x)+y1y2�4(x),

f3 = (y1 +1)(y2 +1)�2(x)+ (y1 +1)y2�3(x)+y1(y2 +1)�4(x)+y1y2�5(x).

Due to the properties of A, any linear combination of the fi , say g, is a con-
catenation of four linear functions in B7; these functions have at least four terms
and are two by two different (from Lemma 2). Thus g is 3 resilient and as a conse-
quence of Theorem 1 F is 3-resilient too. Hence F is a (9, 3, 3) nonlinear function
with NF =28 −26 =192, which is readily checked.

Definition 7. [15]. Let {C1,C2, . . . ,Cs} be a set of linear binary codes with the
same parameters [u,m, δ]. It is called a set of disjoint codes if it is such that

Ci ∩Cj ={0}, 1≤ i <j ≤ s.

Definition 8. Let us consider the set of binary linear codes of length u, dimension
m and minimum distance δ. Let D be the set of sequences of disjoint codes, as
defined in Definition 7. Then we denote by M(u,m, δ) the maximal cardinality of
elements of D.
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In [15], two lower bounds on M(u,m, δ) were derived. However, these bounds only
state the existence of a set of disjoint codes of cardinality at least M(u,m, δ),
These results are only of theoretical importance since no deterministic method was
suggested for finding such codes. Our interest is for constructible sets of [u,m, δ]
disjoint codes with high cardinality and easy to handle. All the ideas of using
disjoint codes may be summarized by the following result due to Johansson and
Pasalic [15].

Theorem 4. [15]. If there exists a set of linear [u, m, t + 1] disjoint codes with car-
dinality [2n−u/(2m − 1)] then there exists an (n,m, t)-résilient function F with non-
linearity

N (F )=2n−1 −2u−1.

The proof of Theorem 4 is to be found in [15] but for convenience we briefly
recapture the main idea of this construction. Also, the next example will further
clarify the construction method based on disjoint codes. It concerns the construc-
tion of a (9, 2, 3) nonlinear resilient function based on the existence of sufficiently
many disjoint [6, 2, 4] linear codes.

Any linear [u,m, t +1] code provides 2m −1 nonzero codewords that can be used
by means of Lemma 2. Thus one concatenates t-resilient linear functions since the
minimum distance of the code is t + 1 and only nonzero codewords are used (see
Theorem 2). Then to construct a function F ∈Mm

n , we obviously need 2n−u such
codewords (since F (x) takes 2n values). Hence supplied with at least �2n−u/2m−1�
disjoint linear codes we will be able to concatenate these t-resilient linear func-
tions by means of Lemma 2 to obtain F . Remark that the nonlinearity value only
depends on the length of the codes used. Then having the set of disjoint codes at
our disposal the aim is to construct F with n as large as possible.

Example 3. Consider the construction of a 3-resilient function F ∈M2
9,

F : (y, x)∈F
3
2 ×F

6
2 �→F(y, x)∈F

2
2

based on the set of disjoint [6, 2, 4] linear codes. Using the sane notation as in Theo-
rem 4 we have n = 9, u = 6,m = 2and t = 3. Hence we need �23/(22 −1)�=3 disjoint
[6, 2, 4] linear codes. We take three such codes C1,C2,C3 whose generator matrices
are given by,

G1 =
(

1 1 1 1 0 0
0 0 1 1 1 1

)
, G2 =

(
0 1 1 1 1 0
1 0 0 1 1 1

)
, G3

(
0 1 0 1 1 1
1 0 1 1 0 1

)
.

Then we can form, from each Gi , its matrix Ai (of Lemma 2). Consider now the
concatenation of the three matrices Ai , since we need 2n−u = 8 lines only, we do
not take the last line of A3. Note that the first three rows of A are derived from
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C1 by means of Lemma 2, the next three rows of A are obtained from C2 and
finally the last two rows from C3.

A=





(111100) (001111)

(001111) (110011)

(110011) (111100)

(011110) (100111)

(100111) (111001)

(111001) (011110)

(010111) (101101)

(101101) (111010)





.

Then we define the function F = (f1, f2) as F(y, x)= (A1
y ·x,A2

y ·x). Here, for any
fixed y the entry Ai

y, i =1,2, corresponds to the [y]-th row and the i-th column of
A, where [y] is a decimal representation of y ∈F

n−u
2 .

The function F is a (9, 2, 3)-resilient function with nonlinearity NF =224. It is
easily verified that the linear combinations of the vectors in each row of A yield
new vectors all having the weight greater than or equal to four. Furthermore, none
of the vectors appears more than once in each column of A or in any linear com-
bination of A’s columns. Thus, F is. 3-resilient and the nonlinearity of F is given
by,

NF =2n−1 −2u−1 =224.

Obviously there is a room for extension of Theorem 4 by using a set of disjoint
linear codes of not necessarily same dimension.

Corollary 1. If there exists a set C ={Ci |i ∈ I } of linear [u,mi, t +1] disjoint codes
such that

∑
i∈I (2

mi − 1)/2n−u ≥ 1, then there exists a t-resilient function F ∈ Mm
n ,

where m=mini∈I mi , with nonlinearity

N (F )=2n−1 −2u−1.

4. Disjoint Codes through Counting the Points in Projective Spaces

We first give a brief background on projective spaces in our context. Let F2m be
a finite field of order 2m, and let V be a ν-dimensional vector space over the field
F2m . Then, let us consider the following equivalence relation on the elements of
V ∗. For any pair (x, y)∈V ∗ ×V ∗:

x ∼y ⇐⇒ ∃λ∈F
∗
2m such that λx =y.

The relation ∼ divides the elements of V ∗ into the set of (2νm −1)/(2m −1)

equivalence classes, called points. This set of points is called the (ν −1) dimensional
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projective space over F2m , and is denoted by PG(ν −1,F2m). Note that any point in
PG(v −1,F2m), can be regarded as an m-dimensional vector subspace of F

νm
2 with

the all-zero vector discarded. This identification is obtained by introducing a nat-
ural isomorphism between F2m and F

m
2 .

In other words, we can consider any point as a linear code C of length ν over
F2m but also as a linear code C′ of length νm and dimension m over F2. For
instance, consider x = (x0, . . . , xν−1) in V ∗. Let β be a primitive root of F2m ; so
〈1, β, . . . , βm−1〉 is a basis of F2m . The class of x, a point, is here identified to a
[ν,m]-code C with generator matrix

G =





x0 . . . . . . xν−1
βx0 . . . . . . βxν−1
. . . . . . . . . . . .

βm−1x0 . . . . . . βm−1xν−1



 .

Since each entry of G is in F2m , it can be seen as a codeword of length m pro-
viding a [νm,m]-code C′, Note that in coding theory the code C′ is usually called
the binary image of the code C.2 By definition, the elements of PG(ν −1,F2m), and
therefore the codes derived from points, are two by two disjoint.

Thus the basic idea, when using projective spaces for our purpose of finding dis-
joint [u,m, t +1]-codes over F2, is to work in PG(ν −1,F2m), when u=νm. That is,
to count such disjoint codes is equivalent to counting the points in PG(ν −1,F2m)

such that the derived [νm,m]-code has minimum distance t +1.
We will see in the next developments that it is easy to characterize such points.

For instance, the points of weight t +1 are suitable. Note that, at the first sight, the
condition u≥ν(t +1) seems necessary. It is not the case, since there exist points of
weight t whose binary images have weight greater than t +1.

Recall that β is some primitive element of F2m , the finite field of order 2m,m>

2. Then each element βi of F
∗
2m will be represented by means of the basis

〈1, β, . . . , βm−1〉, providing the natural isomorphism between F2m and F
m
2 :

I : βj ∈F2m �→ (a0, . . . , am−1)∈F
m
2 , where βj =

m−1∑

i=0

aiβ
i . (11)

The vector (a0, . . . , am−1) is called the binary image of βj . Note that the Ham-
ming weight of βj equals 1 while the Hamming weight of its binary image equals∑m−1

i=0 ai . We need to define this more generally.

Definition 9. Let v = (v1, . . . , vr ) be a vector of F
r
2m . The binary image of v is

defined by expanding (11):

I(v)= (I(v1), . . . ,I(vr )).

2 See an elementary presentation in [18], Chapter 10, Section 5.
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We call binary Hamming weight of v, and denote by wt2(v), the Hamming weight
of the binary image of v:wt2(v)=wt(I(v)).

Let C be a linear [r,m]-code on F2m with basis 〈e0, . . . , em−1〉. The binary image
of C, denoted I(C), is the linear [rm,m]-code with basis 〈I(e0), . . . ,I(em−1)〉.

Lemma 3. Let β denotes a primitive element of F2m . Consider any point of
PG(1,F2m), identified to a [2, m]-code C, with representative (1, β�) for some � ∈
[1,2m −2].

Then the code I(C) is a [2m,m, δ] binary code such that δ ≥3 if and only if � is
such that m≤�≤2m −m−1, where m>2.

Proof. By fixing the polynomial basis of F
m
2 to be 〈1, β, . . . , βm−1〉, any βi ∈F2m

is such that wt2(β
i)= 1 if and only if i ∈ [0,m− 1]. By definition, C is the set of

the codewords (βi, βi+�, i ∈ [0,2m −2], where i +� is calculated modulo 2m −1.

Clearly, I(C) has minimum distance at least three if and only if at least one ele-
ment of the pair (i, i + �) is not in [0,m− 1], for all i. If �∈ [m,2m −m− 1] then
i +�∈ [m,2m −1], for all i ∈ [0,m−1]. Conversely, assume that

i ∈ [0,m−1] �⇒ m≤ i +� (mod 2m −1).

Setting i = 0, we get m ≤ �. On the other hand, if � > 2m − m − 1 then there is
i ∈ [1,m − 1] such that � + i = 2m − 1, i.e. � + i ≡ 0, a contradiction. Thus � ≤
2m −m−1.

4.1. Lower Bound on the Number of Disjoint [tm,m, t + 1] Codes

We first derive a bound on M(tm,m, t + 1), by counting some points of PG(t−1,
F2m).

Theorem 5. The number of disjoint binary [tm,m, t + 1]-codes derived from the
points of PG(t −1,F2m) is lower bounded by:

Mlb(tm,m, t +1)= (2m −2m)

t−2∑

i=0

(2m−1)i(2m −1)t−2−i .

This leads to a lower bound on the number ,M(tm,m, t +1), introduced in Definition 8.

Proof. Set I = [m,2m −m−1); note that I has cardinality 2m −2m. Now we want
to count many points of PG(t −1,F2m) which produce [tm,m, t +1]-codes. We con-
sider the points � whose representatives (λ1, . . . , λt ) satisfy:

1. λi �=0 for all i ∈ [1, t ],

2. there is at least one pair (λr , λs) with representative (1, β�), �∈ I .
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The first condition implies that �, as well as any element of its class, is such that
wt(�)= t . The second condition implies that each corresponding binary image has
weight at least t +1, according to Lemma 3.

The most convenient way to count such points is to fix, say λ1 =1, and consider
the points of the form (1, λ2, . . . , λt ). Clearly, any choice of (λ2, . . . , λt )∈ (F∗

2m)t−1

gives a distinct point, hence one disjoint code.
By choosing λ2 = βi for i ∈ I , we may take any (λ3, . . . , λt ) ∈ (F∗

2m)t−2 This
gives (2m − 2m)(2m − 1)t−2 points. When selecting λ2 = βj for j �∈ I , we have to
select λ3 = βi for i ∈ I and the remaining t − 3 coordinates are chosen arbitrary
from (F∗

2m)t−3. This gives a general recursion of the form (2m −2m)(2m−1)k(2m −
1)t−2−k, for k =1, . . . , t −2.

Summarizing this, we may write

Mlb(tm,m, t +1)= (2m −2m)(2m −1)t−2+(2m −2m)

t−2∑

k=1

(2m−1)k(2m −1)t−2−k,

which can be rewritten as stated.

Remark 2. By the previous theorem we proved implicitly that for t =2,Mlb(2m,m,

3), which is equal to 2m − 2m, is exactly the number of [2m,m,3] disjoint codes
derived from PG(2,F2m). For t = 3 then Mlb(3m,m,4) = (2m − 2m)(2m + 2m − 2)

and this property holds for m≤ 3 too. It is obvious for m= 2; for m= 3, see that
(0,1, β�) has binary weight 4 if and only if wt2(β

�)=3 but there is only one such
vector.

Moreover, a simple way for describing a large set of disjoint codes is indicated
by the proof of Theorem 5.

Example 4. We work in PG(2,F23) in order to construct a large set of disjoint [9, 3,
4] codes. According to Theorem 5, we get: Mlb(9,3,4)=2(7+5)=24. So we obtain
24 disjoint [9, 3, 4] codes. Now we are going to express precisely these 24 points in
PG(2,F23).

We proceed as in the proof of Theorem 5. Note that here I ={3,4}. We choose
those points � such that wt(�) = 3. Moreover, any element (λ1, λ2, λ3) of the
class of � must satisfy wt2(λ1, λ2, λ3)≥4, (with notation of Definition 9). Thus we
choose the points of the form �= (1, λ2, λ3) where at least one λj is equal to βi

for i ∈{3,4}, More precisely:

P ={(1, βi, β); i ∈ I, β ∈F
∗
23}∪ {(1, βj , βi); j �∈ I, i ∈ I }.

The set P contains 24 distinct points; therefore 24 disjoint [9, 3, 4] binary codes
can be derived. Now we apply Theorem 4 with u = 9,m = 3 and t = 3. We look
for the largest n satisfying [2n−u/(2m −1)]≤24. This gives n−u=7, that is n=16.
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Note that we can choose 19 arbitrary codes as 27 ≤ 19 ∗ 7. Finally we are able to
construct a (16=9+7,3,3) function F with nonlinearity 215 −28.

Remark 3. It can be verified that a (9, 3, 3) function F with nonlinearity 215 −28

cannot be constructed by any other known method. It is enough to consider the
currently best known method in [14]. Applying this method one uses a code of
shortest length, i.e. a [7, 3, 4] code, together with an highly nonlinear function
G∈M3

9. As given in [14, Theorem 8], the nonlinearity of the resulting (16, 3, 3)
function is

N (F )=2n−1 −2u−1 × effect,

where effect=2m+1 =24 for u=7, implying N (F )=215 −210.

4.2. Lower Bound on the Number of Disjoint [tm,m, t + r] Codes, r ≥2

In the previous section, we have considered a special case of constructing [tm,m,

t + 1] codes by selecting suitable points in PG(t − 1,F2m). Now we extend this
result to the case of disjoint [tm,m, t + r] codes where r ≥2. The main idea is that
we can also select the points � whose binary weight satisfies wt(�)< t provided
that the coordinates of � fulfill certain conditions. This means that even the spe-
cial case treated in the previous section is only a lower bound (tight for projective
spaces of relatively small dimension) since we may also consider the points � of
weight smaller than t .

Open Problem 1. In general, deriving the exact number of points for arbitrary
dimension ν of the projective space and for any t seems to be a hard combinatorial
problem. Note the connection with the determination of complete weight enumerators
of non binary linear codes [18, ch. 5, Section 6]. This is left as an important research
problem since any significant improvement over the bounds given in this paper has an
immediate consequence in getting functions with better cryptographic properties.

Hence in the sequel we only propose the lower bounds on the number of disjoint
codes leaving the derivation of an exact value of disjoint codes, based on counting
the suitable points in a projective space, as an open problem.

Theorem 6. Let t ≥ 4,m≥ 3 be given positive integers. Set t = 2r + �, for r ≥ 2 and
a nonnegative integer �. Then the number of disjoint [u= tm,m, t + r] codes is lower
bounded by

M(tm,m, t+r)≥Mlb(tm,m, t+r)=(2m −2m)r(2m−1)r−1
(

2r −1
r

)
(2m −1)�,

where M(tm,m, t + r) is introduced in Definition 8.
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Proof. To obtain disjoint [tm,m] linear codes we consider the points in PG(t −
1,F2m). Now set again I = [m,2m − m − 1] and denote J = [0,2m − 2]\I ; thus
card I = 2m − 2m and cardJ = 2m− 1. From Lemma 3, we know that a point (1,
βe) is such that all its representatives satisfy wt2((β

j , βi+j ))≥3 if and only if e∈I .
We consider points �= (λ1, . . . , λt ) which satisfy:

1. λi �= for all i ∈ [1, t ],

2. There are at least r disjoint pairs of coordinates, say (λi1 , λir+1), . . . , (λir , λi2r
),

with a representative (1, βe), e∈ I , for each (λij , λij+r
), j =1, . . . , r.

The first condition implies that wt((λ1, . . . , λt ))= t and this property holds for
any element of the class of �. The second condition implies that each correspond-
ing binary image has weight at least t + r. Indeed by item 2 we have:

wt2((λi1 , . . . , λir , λir+1 , . . . , λi2r
))≥3r, 1≤ i1 �= · · · �= ir ≤ t.

Then the total weight of the binary image is

wt2((λ1, . . . , λt ))=wt2((λi, . . . , λi2r
))+wt2((λi2r+1 , . . . , λit ))≥3r + t −2r = t + r.

According to Lemma 3, this holds for any representative. Now we are going to
count a subset of points �.

We consider the points of the form � = (1, λ2, . . . , λ2r , λ2r+1, . . . , λt ), where
the coordinates λ2r+1, . . . , λt may be chosen arbitrary from (F∗

2m
)� provided that

1, λ2, . . . , λ2r are such that they form r disjoint pairs of coordinates with a repre-
sentative (1, βe), e∈ I . Since λ1 =1 is fixed, we can choose r coordinates,

λk1 , λk2 , . . . , λkr , 2≤k1 �=k2 �= · · · �=kr ≤2r,

such that each pair (1, λk1), (λkr+2 , λk2), . . . , (λk2r
, λkr ) has a representative of the

form (1, βe) with e∈I . Here 1≤kr+i �=ki ≤2r for i =2, . . . , r. Note that fixing λ1 =
1 ensures that we choose distinct points � if the remaining t − 1 coordinates are
not all the same.

The r coordinates, λkl
, λk2 . . . , λkr , are chosen in

(2r−1
r

)
different ways, and for

any given placement their values are chosen in (2m − 2m) ways (cardinality of I ).
The remaining r −1 coordinates, λkr+2 , . . . , λk2r

, among the first 2r coordinates, are
then chosen from the alphabet of cardinality (2m−1) (cardinality of J ). Choosing
coordinates in such a way together with the fact that λ1 = 1 is kept fixed ensure
that we select distinct points satisfying items 1 and 2 above. Since the last � coor-
dinates are selected arbitrary from F

∗
2m , this gives a total number of choices:

Mlb(tm, t + r)= (2m −2m)r(2m−1)r−1
(

2r −1
r

)
(2m −1)�,

as stated.
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4.3. Disjoint Codes of Smaller Minimum Distance

We now utilize the results derived above in a more general framework. More pre-
cisely we now consider disjoint codes of length u=mv and minimum distance t +1
with v > t .

Theorem 7. Let u=mv, for some positive integers m,v. Let t such that 0≤ t ≤v−1.
Then the cardinality of a set of disjoint [u,m, t +1] linear codes is lower bounded by,

M(u,m, t +1)≥
v∑

i=t+1

(
v

i

)
(2m −1)i−1 +

(
v

t

)
Mlb(mt,m, t +1). (12)

Proof. We first estimate the cardinality of the set

�t+1 ={�∈PG(v −1,F2m)|wt(�)≥ t +1}

as any such point corresponds to one [vm,m, t + 1] code. Clearly, there are
(
v
i

)

choices of � for wt(�)= i, t + 1 ≤ i ≤ v. Now for any such choice, the number of
distinct points is (2m −1)i/(2m −1) and we obtain the first sum in (12).

It remains to estimate the number of points of weight t which produce a code of
minimum distance t +1. There are

(
v
t

)
v-tuples of weight t . Since v − t coordinates

are fixed to be zero the number of points resulting in codes of minimum distance
t + 1 is computed as in Theorem 5 by evaluating Mlb(mt,m, t + 1). This gives the
second term on the right in (12), which concludes the proof.

Example 5. Assume that we need to find as many as possible disjoint [12, 3, 4] lin-
ear codes in order to construct an (n, 3, 3)-resilient function by means of Theorem
4. From Theorem 7, putting m=3, v =4 and t =3, we have

M(12,3,4)≥73 +
(

4
3

)
M�b(9,3,4)=343+4 ·24=439.

Thus, with notation of Theorem 4, we need [2n−u/7] disjoint codes to construct
an (n, 3, 3)-resilient function F with u= 12. We have 7 × 439 = 3073 and 211 ≤
3073≤212. Thus we take n−u=11, that is n=23. Then we need 293 disjoint [12,
3, 4] linear codes only (among the 439 suitable codes), as 211 =292∗7+4. Finally
we are able to construct F , a (23, 3, 3)-resilient function with nonlinearity N (F )=
222 −211. Note that a Boolean function with nonlinearity 2n−1 −2(n−1)/2 is usually
said almost optimal and our function reach this value for m = 3 and t = 3. Actu-
ally it is the best nonlinearity for the functions obtained by Maiorana–McFarland
construction.
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Note that a trivial upper bound on the cardinality of the set of disjoint [u,2, t +
1] codes, denoted by Mub(u,2, t +1), is given by,

Mub(u,2, t +1)=



∑u
i=t+1

(
u

i

)

3

 . (13)

This bound is easily derived by counting all vectors in c∈F
u
2, such that wt(c)≥

t + 1. The lower bounds, given by Theorems, 5 and 7, seems to be very tight for
relatively small m and t , as shown in the following example.

Example 6. We illustrate the tightness of the bound derived in Theorem 7. Assume
v =3,m=2, t =1, i.e., we compare the lower and upper bound on the number of dis-
joint [6, 2, 2] linear codes. Then we obtain, from Theorem 7, M(6,2,2) ≥ 18 while
Mub(6,2,2)=19.

4.4. Further Extensions and a Nonlinearity Comparison

The method described above works fine when the length of codes u have a non-
trivial prime decomposition. Obviously, for prime u there will be no disjoint codes
through this technique. To circumvent this restriction we can utilize simple tech-
niques of combining two codes as follows. Let G1,G2 be generator matrices for
[u1,m, t1 +1] and [u2,m, t2 +1] codes, respectively. Then the code defined by a gen-
erator matrix

G
(G1 0

0 G2

)
(14)

is a [u1 + u2,2m,min{t1, t2} + 1] linear code. Then denoting by C1,C2 the sets of
disjoint [u1,m, t + 1] and [u2,m, t + 1] linear codes, respectively, we may construct
cardC1 ×cardC2 disjoint [u1 +u2,2m, t +1] linear codes.

To increase the minimum distance, one may consider the lengthening of the type
G = (G1|G2) which gives [u1 +u2,m, t ], where t ≥ t1 + t2 + 2. As above, this method
also generates cardC1 ×cardC2 disjoint [u1 +u2,m, t ] linear codes.

The following example will demonstrate that a careful use of these ideas may
give significant improvements upon some best known results even at the first sight
this is not possible by a straightforward application of Theorem 7 or Theorem 5.

Example 7. The construction of (36, 8, t) functions of high nonlinearity has been dis-
cussed a lot in the literature [14, 15, 22]. Here we only consider the case t =2. Since
m= 8 it seems that we must look for [24, 8, 3] which cannot give any improvement
upon the currently highest known nonlinearity 235 − (9/16) 220.

On the other hand, finding sufficiently many disjoint [20, 8, 3] codes will enable
us to construct a function with nonlinearity 235 −219. As any [20, 8, 3] linear code
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Table 1. Lower bound on the number of disjoint linear codes.

#[6,3,2]=7 #[6,3,3]=2 #[9,3,3]=55 #[9,3,4]=24
#[8,4,2]=15 #[8,4,3]=8 #[12,4,3]=249 #[16,4,3]=4323
#[10,5,3]=22 #[15,5,3]=1027 #[15,5,4]=880 #[12,6,3]=52

gives 28 − 1 nonzero codewords, we need at least [216/255] = 258 such codes. We
compute the number of [12, 4, 3] and [8, 4, 3] disjoint codes. Denoting these sets
by C1 and C2, respectively, we obtain,

cardC1 =249 andcardC2 =8.

This gives 249·8 disjoint [20, 8, 3] codes (using G as in (14)) which is more than
enough for the construction of (36, 8, 2) function with N (F ) = 235 − 219. Also
note that using 1029 such codes we can obtain a (38, 8, 2) function with the
nonlinearity NF =237 −219.

Table 1 gives some further examples on the lower bound on the number of dis-
joint linear codes of relatively small size. In this table, #[u,m, δ] is the number of
disjoint linear codes of length u, dimension m and minimal distance δ.

From these codes we construct in many cases the functions with best known non-
linearity for given inputs n,m, t . These codes are utilized in the same manner as in the
Examples 1–3. Some of these functions and the corresponding codes are listed in the
Table 2, where the nonlinearity of our functions is compared to those presented in [14].

We interpret the entries in the table as follows. The first item in the first row
specify the parameters of disjoint codes used (the cardinality is given in Table 1),
and n is the number of input variables. Then the comparison with [14] is made
using these parameters: for given parameters of the code [u,m, t + 1] we com-
pare in the second row the nonlinearities of (n,m, t) functions of our method and
the design proposed in [14]. The first entry in the second row is the nonlinearity
obtained by our method, whereas the second entry (separated by the comma) is
the nonlinearity of [14]. Note that the first and the third column make a compari-
son to different sizes of input space. For instance the values n=23[21] means that
we compare the nonlinearity of our (23, 4, 2) function with the nonlinearity of a
(21, 4, 2) function in [14].

5. Additional Properties of (n, m, t) Functions from Disjoint Codes

In accordance with Theorem 4, the existence of a set of disjoint [u,m, t +1] linear
codes of cardinality r ≥�2n−u/(2m − 1)� enables us to construct an (n,m, t) func-
tion F with nonlinearity 2n−1 − 2u−1. In this section, we assume that such a set

Table 2. Nonlinearity comparison with the results in [14].

[12,4,3]; n=23[21] [10,5,3]; n=19 [15,5,4]; n=29[25] [12,6,3]; n=23

(222 −211),(220 − 3
4 212) (218 −29),(218 − 5

8 212) (228 −214),(224 − 5
8 215) (222 −211),(222 − 19

32 214)
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C is available by counting the points in PG(u − 1,F2m), a construction which we
introduced in Section 4.

5.1. Definition of Functions

Let us denote by F any (n,m, t) function obtained trough the proof of Theorem
4, by using disjoint [u,m, t +1] linear codes. We implicitly suppose that

n≥4, 1≤ t ≤n−3, t ≤u≤n−1, 1≤m≤u.

According to the proof of Theorem 4 in [15], the function F is as follows defined:

F : (y, x)∈F
n−u
2 ×F

u
2 �−→






�1(y) ·x
···
�m(y) ·x,

(15)

where each �i,1≤ i ≤m, is a mapping from F
n−u
2 to F

u
2, each vector �i(y) (for any

fixed y) defining a linear Boolean functions of u variables by scalar product with
x. Thus each output-vector is in F

m
2 . Moreover, each �i(y) must be of weight at

least t +1 and this must hold for any linear combination of the vectors �i(y). One
then deduces that the order of resiliency is equal to t . The nonlinearity is equal
to 2n−1 −2u−1 if and only if for any such combination, any pair (y, y′) gives two
different codewords of weight at least t +1. All these conditions are satisfied when
we apply Lemma 2 to each code of any set

C ={C0, . . . ,Cr−1}

of r disjoint [u,m, t +1] linear codes, with r ≥ [2n−u/(2m −1)].
It is important to notice that the function F is such that all its components

are Maiorana–McFarland functions of Bn, as introduced in [3, Proposition 4.2].
Moreover, all have the same nonlinearity; more precisely, these functions all have
as Walsh spectrum the set {0,±2u}. Any such function produces a codeword, say
X, of length 2n which is a concatenation of 2n−u balanced codewords of length 2u

and weight 2u−1, say Xi , for i in the range [1,2n−u]. Each codeword corresponds
to a linear function with resiliency order ≥ t (see more explanations in [6, 7]).

These codewords Xi are arranged by means of Lemma 2. Since 2n−u/(2m −1) is
never an integer, set

2n−u = (r −1)(2m −1)+γ, 0<γ ≤2m −2. (16)

The codewords Xi(2m−1)+1, . . . ,X(i+1)(2m−1),0 ≤ i ≤ r − 2, are the nonzero code-
words of Ci . The codewords X(r−1)(2m−1)+1, . . . ,X(r−1)(2m−1)+γ are γ different
nonzero codewords of Cr−1.

Now we are going to express the algebraic form of the m-output coordinate
functions of F . Set F = (f1, . . . , fm). For any code Ci, i =0, . . . , r −1, we construct
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the corresponding matrix A(i), which is defined by Lemma 2 and denoted by A
there. Now, for a given y ∈F

n−u
2 we define its decimal representation:

[y]=k(2m −1)+ e, 0≤k ≤ r −1, 0≤ e≤2m −2. (17)

We put then an order C, since k corresponds to A(k). Moreover, A
(k)
e will denote the

eth row of A(k). More precisely we denote by A
(k)
e,j the entry corresponding to the eth

row and j th column, for e = 0, . . . ,2m − 2, j = 1, . . . ,m. Thus we express the �j (y)

of (15) as:

�j (y) ·x =A
(k)
e,j ·x, x ∈F

u
2 .

Then we easily derive the algebraic normal form of the functions fj ,1≤ j ≤m, by
summing over F

n−u
2 , that is

fj (y, x)=
∑

τ∈F
n−u
2

(
n−u∏

s=1

(ys + τs +1)

)
A

(kτ )
eτ ,j ·x, (18)

where for any τ = (τ1, . . . , τn−u)∈F
n−u
2 ,the indices kτ , eτ , are uniquely determined

through [τ ]=kτ (2m −1)+ eτ .

5.2. Algebraic Degree

Note that our construction completely coincides with the method in [15] except
that instead of computer search for disjoint codes we propose a deterministic
method. However, an exact value of algebraic degree has not been examined in
[15].

It is important to notice that the degree of any F ∈Mm
n , constructed by means

of concatenating codewords of a certain number disjoint [u,m, t + 1] linear codes
is always upper bounded by deg(F ) ≤ n − u + 1. This is easily verified by noting
that any restriction of F(y, x) obtained by fixing y ∈ F

n−u
2 is a linear function in

x ∈F
u
2. Our purpose is to obtain deg(F )=n−u+1. As already mentioned γ >0 in

(16). This means that we only use γ rows from A(r−1). The choice of these rows
will turn out to be of crucial importance when deriving results on algebraic degree.
However, for convenience of notation, we may always consider a permuted version
of A(r−1) such that these γ rows are listed in increasing order.

Remark 4. Actually, we may use any permutation of the rows of A(i) for i =
0, . . . , r −2 also including the permutation of the chosen γ rows of A(r−1). Hence
we may obtain a huge number of distinct functions having the same cryptographic
properties.

To prove the main result we need an easy technical result stated without proof.

Lemma 4. Let U any m-dimensional subspace of F
u
2,2≤m≤n. Then

∑
u∈U u=0. In

particular,
∑

c∈C c=0 for any linear code C of dimension m≥2.
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Theorem 8. Let C = {C0, . . . ,Cr−2,Cr−1} be a set of disjoint [u,m, t + 1] linear
codes and A(0), . . . ,A(r−2),A(r−1) its corresponding codeword matrices. Let r, γ be
positive integers satisfying (r − 1)(2m − 1)+ γ = 2n−u for γ ∈ [1,2m − 2]. Define F ∈
Mm

n ,F = (f1, . . . , fm) where the fj are given by (18). Then it is always possible to
choose the rows of A(i), i =0, . . . , r −1, such that deg(F )=n−u+1.

Proof. Consider the ANF of the functions fj given by (18). Then, looking at the
expansion of

∏n−u
s=1 (ys + τs + 1), we note that each term of maximum degree, say

y1y2 · · ·yn−ux� for some �∈ [1, u], is present in the algebraic normal form of fj if
and only if

∑

τ∈F
n−u
2

A(kτ )
eτ,j

�= (0, . . . ,0) in F
u
2, (19)

Moreover, according to the definition of deg(F ), (8), this property must hold when
any linear combination of the fj is considered. This means that we need to choose
the codes C0, . . . ,Cr−1 such that condition in (19) and its expansion are satisfied.

We take all the rows of A(0), . . . ,A(r−2) and some specific γ rows of A(r−1). By
Lemma 4,we have for any fixed k,0≤k ≤ r −2,

2m−2∑

e=0

A
(k)
e,j = (0, . . . ,0)

for any j , and this holds for any linear combination of the A
(k)
e,j (on j ). Indeed,

from Lemma 2, any nonzero linear combination of the columns of A(k) is a per-
mutation of the nonzero codewords of Ck, for any k. Then we need to choose γ

rows of matrix A(r−1) in such a manner that
γ∑

l=1

m∑

j=1

bjA
(r−1)
sl ,j

�= (0, . . . ,0), ∀b∈F
m
2 \{0}, (20)

where 0≤ s1 �= s2 �= · · · �= sγ ≤2m −2.
Let us denote by p(x) the primitive polynomial of degree m defining the field

F2m , and let β such that p(β)=0.
By Lemma 2, the rows of A(r−1) are constructed via multiplication shifts: any

sth row of A(r−1) is equal to (φ(βs), . . . , φ(βs+m−1)), where φ is a linear bijection
from F2m to Cr−1 satisfying φ(0)=0. Then instead of φ(βs) we may consider βs .
First we have to choose γ rows of A(r−1) (indices s1, . . . , sγ ) such that

(βs1 +βs2 +· · ·+βsγ )︸ ︷︷ ︸
g(β)

�=0.

We may simply choose

g(x)=1+x +· · ·+xγ−1 = 1+xγ

1+x
.
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Since p(x) is the minimal polynomial of β,g(β)=0 if and only if p divides g. But,
if p divides g then p(x) is a factor of 1 + xγ implying βγ = 1, which contradicts
the fact that β is a primitive root. Note that the choice of g does not depend of
the choice of p. Now the condition (20) is equivalent to

(b0 +b1β +· · ·+bm−1β
m−1)(1+β +· · ·+βγ−1) �=0 ∀b∈F

m
2 , b �=0

which is obviously satisfied.

We illustrate this method with a detailed example, using previous notation.

Example 8. Consider using a set C of disjoint [9, 3, 3] codes in construction of an
(n,m, t) function F with n= 17,m= 3 and t = 2. In Table 1, we find #[9,3,3] = 55.
Since 2n−u = 28 = 36 · 7 + 4 we need a subset of 37 codes of C, say {C0, . . . ,C36}.
We use fully the codes Ci,0 ≤ i ≤ 35, (that is all the rows of associated matrices
A(0), . . . ,A(35)), and only 4 rows of A(36). Now β is a root of the primitive polyno-
mial p(x)=x3 +x +1, used to define the field F23 , and g(x)=1+x +x2 +x3. Note
that g is of weight 4. Then one can check that choosing the first four rows of A(36)

will provide a function of degree n−u+1=9. These four rows of A(36) are given by

B(36) =





φ(1) φ(β) φ(β2)

φ(β) φ(β2) φ(β3)

φ(β2) φ(β3) φ(β4)

φ(β3) φ(β4) φ(β5)



=





c0 c1 c2
c1 c2 c0 + c1
c2 c0 + c1 c1 + c2

c0 + c1 c1 + c2 c0 + c1 + c2



 ,

where the ci form a basis of C36. Then we compute

3∑

i=0

B
(36)

i,1 ·x = c2 ·x,

3∑

i=0

B
(36)

i,2 ·x = (co + c1) ·x,

3∑

i=0

B
(36)

i,3 ·x = (c1 + c2) ·x,

corresponding to each function fj ,1≤j ≤3, which also gives
∑3

j=1 bj

∑3
i=0 B

(36)
i,j ·x �=

0 for any nonzero b∈F
3
2. Alternatively, it can be checked that (b01+b1β +b2β

2)(1+
β +β2 +β3) is not zero, for any choice of nonzero b. Hence, we have constructed a
(17, 3, 2) function F , with nonlinearity 216 −28, and whose degree is n−u+1=9.

5.3. A Comparison Related to Algebraic Degree

For a comparison we only concentrate on the class of functions of very high-
nonlinearity derived in [14]. In most of the cases a simple modification of the
Zhang and Zheng construction [32], as described in [14], will provide functions of
highest algebraic degree. For instance, referring back to Example 8, based on the
existence of a [17, 12, 3] linear code the Zhang and Zheng method will provide
a (17, 12, 2) function F ′ such that N (F ′) = 216 − 211 and deg(F ′) = m − 1 = 11.
Then discarding 9 output variables will yield a (17, 3, 2) function with nonlinearity
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216 −211. Thus, a higher-algebraic degree is traded-off against a lower nonlinearity
when compared to the function in Example 8.

A class of highly nonlinear functions has been derived in [14] using a direct
sum composition of the form H(x, y) = F(x) ⊕ G(y), where F : F

u
2 → F

m
2 is a lin-

ear (u,m, t) function derived from a [u,m, t +1] linear code. Again, for given m, t

the length u is chosen to be the smallest possible. The function G : Fn−u
2 → F

m
2 is

such that its nonlinearity is a highest known. Then clearly the algebraic degree of
H is determined by the degree of G. When G is bent (N (G)=2n−u−1 −2(n−u)/2−1),
which occurs for even n−u≥2m, this degree is upper bounded by (n−u)/2. Our
approach uses the concatenation of linear functions in u′-variables, where in gen-
eral u′ >u since we cannot find a set of disjoint codes of shortest length for given
m, t . However, a proper choice of the codes/codewords used will always result in
a function of degree n − u′ + 1. Hence in the case that G is bent, the method of
[14] will provide functions of degree ≤ (n − u)/2 compared to n − u′ + 1 in our
case.

It can be checked by computation that n−u′ +1>(n−u)/2 is always fulfilled for
the examples given in Table 2. Even in the case when G is not bent, having degree
(n−u)/2 <d ≤n−u, in certain cases when d is smaller than n−u our method is
still favorable.

5.4. Differential Properties

The differential properties (sometimes called autocorrelation properties) measure the
unbalancedness of the function’s derivative in direction a. More formally, for any
Boolean function f ∈Bn its derivative with respect to nonzero a ∈F

n
2 is defined as

Daf (x)=f (x)+f (x +a), a ∈F
n∗
2 . (21)

The worst case arises when Daf (x) is constant, that is Daf (x)=0 or 1, for some
nonzero a. Such an a is called a linear structure of f . This feature should be
avoided in a well-designed cipher and furthermore it is of interest to choose f such
that the absolute value of the differential spectra,

max
a∈F

n∗
2

∣∣∣∣∣∣

∑

x∈F
n
2

(−1)Daf (x)

∣∣∣∣∣∣

is minimized.
In the case of function F ∈Mm

n , the derivatives may be defined with respect to
the nonzero linear combination of its coordinates functions f1, . . . , fm. Hence, for
any b ∈ F

m∗
2 we consider the Boolean function f (b)(x) =∑m

j=1 bifi(x) and define
Daf

(b) as in (21). Then similarly to the Boolean case we may look for the maxi-
mum absolute value of the spectra,
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max
a∈F

n∗
2 ,b∈F

m∗
2

∣∣∣∣∣∣

∑

x∈F
n
2

(−1)Daf (b)(x)

∣∣∣∣∣∣
. (22)

To deduce the differential properties of the construction based on a set C of
disjoint codes we recall that for any fixed y ∈ F

n−u
2 each component function

f (b)(y, x) is a linear function in x, that is f (b)(y, x) = c · x for a fixed y and for
some c which is a codeword of some code in C. Furthermore, due to the construc-
tion method these linear functions are pairwise distinct since the codewords from
the set of disjoint codes are used in a non repeated manner, that is f (b)(y, x) �=
f (b)(y′′, x) for any y′ �= y′′. From now on we denote by f any such component
function; clearly our next results on f hold for any choice of b.

To avoid a cumbersome mathematical notation it is convenient to represent any
function f as a concatenation of linear functions. As before we use the set C =
{C0, . . . ,Cr−2,Cr−1} of disjoint [u,m, t +1] linear codes, using all the rows of the
associated matrices of C0, . . . ,Cr−2 and only γ rows of the matrix A(r−1) (see also
the proof of Theorem 8). Then we write

f = l0
0 || · · · ||l0

2m−2|| · · · ||lr−2
0 || · · · ||lr−2

2m−2||lr−1
0 || · · · ||lr−1

γ−1,

where the superscript i of l indicates that li0, . . . , li2m−2 are defined by means of
the nonzero codewords in Ci . More precisely, denoting the codewords of Ci as
c0, . . . , c2m−2, the set {li0, . . . , li2m−2} is equivalent to the set {cσ(o) ·x, . . . , cσ(2m−2) ·
x}, where σ is a permutation of indices that can be deduced from the matrix A(i).

Regarding the derivatives of f we note that De,af (y, x) = f (y + e, x + a) +
f (y, x) is a balanced function for any nonzero e. This is verified by noticing that
any e �=0 induces a permutation of the codewords such that for any fixed y

De,af (y, x)=f (y + e, x +a)+f (y, x)= ci · (x +a)+ cj ·x = (ci + cj ) ·x + ci ·a,

which is an affine function for ci, cj which are codewords each of some code of
C, ci �=cj . Hence for e �=0,De,af (y, x) is balanced for any fixed y and consequently∑

y,x(−1)De,af (y,x) =0.

The case e=0 is a little bit harder to analyze, thus we only give the upper bound
on the value

∑
y,x(−1)De,af (y,x). Note that e=0 means that codewords are not per-

muted which gives that for a fixed y we have

D0,af (y, x)=f (y, x +a)+f (y, x)= ci · (x +a)+ ci ·x = ci ·a.

Thus for fixed y the function D0,af (y, x) is constant. We deduce, taking
c1, . . . , cγ ∈C∗

r−1:

∑

y∈F
n−u
2

∑

x∈F
u
2

(−1)D0,af (y,x) =
r−2∑

j=0

∑

c∈C∗
j

∑

x∈F
u
2

(−1)c·a +
γ∑

i=1

∑

x∈F
u
2

(−1)ci ·a
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=
r−2∑

j=0

∑

x∈F
u
2

∑

c∈C∗
j

(−1)c·a +2u

γ∑

i=1

(−1)ci ·a

−(r −1)2u +2u

γ∑

i=1

(−1)ci ·a,

where we use that for any subspace V we have
∑

v∈V ∗(−1)v·a = −1 for any a �= 0.
Then considering the worst case for which we assume that ci ·a =1 for all i, we get

∣∣∣∣∣
∑

y,x

(−1)D0,af (x,y)

∣∣∣∣∣≤ (r −1+γ )2u.

Hence we have proved the following.

Theorem 9. For an (n,m, t) function F constructed by means of a set of r disjoint
[u,m, t +1] linear codes the derivatives of any component f of F satisfy,

∑

y,x

(−1)De,af (x,y) =0, f or all e �=0, (23)

max
a

∣∣∣∣∣
∑

y,x

(−1)D0,af (x,y)

∣∣∣∣∣≤ (r −1+γ )2u, a �=0, (24)

where 2n−u = (r −1)(2m −1)+γ .

Thus it turns out that the differential properties could be better if we use a set
of disjoint codes of small cardinality but of larger dimension. Also a small value
for γ seems better in this context. Actually to sharpen the above bound for e=0
seems possible for constructions with small parameters. In any case the exact upper
bound can be easily computed. Due to the conditions imposed by high algebraic
degree the rows of A(r−1) should be chosen with respect both to the algebraic
degree and to a minimum absolute value of derivatives.
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