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Abstract. We deal with the minimum distances ofq-ary cyclic codes of lengthqm − 1 generated by products of
two distinct minimal polynomials, give a necessary and sufficient condition for the case that the minimum distance
is two, show that the minimum distance is at most three ifq > 3, and consider also the caseq = 3.
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1. Introduction

Denote the finite field of orderq by Fq. Letm be a positive integer,γ a primitive element of
Fqm andms(x) the minimal polynomial ofγ s overFq. We assume that 0≤ i < j ≤ qm−2
and thati and j are not in the sameq-cyclotomic coset modulon := qm−1 and denote the
q-ary cyclic code of lengthn with generatormi (x)mj (x) by Ci, j . The minimum distance
of Ci, j is denoted bydi, j . As usual, we identify the vectorc = (c0, . . . , cn−1) ∈ Fn

q and
the polynomial

c(x) =
n−1∑
l=0

cl x
l ∈ Fq[x]/(xn − 1).

Thusc(x) is an element ofCi, j if and only if

c(γ i ) = c(γ j ) = 0. (1)

In the binary caseq = 2 there are many results concerningdi, j (see, e.g., [3], [2] and [1]
and the references there). In this casedi, j may be any number in the set{2,3,4,5} (and
even 7 whenm= 3). It is known [1] thatdi, j = 2 if and only if gcd(i, j,2m−1) > 1. In [1]
we also found sufficient conditions for the equalitydi, j = 3 and in the case(i, j ) = (1, t)
wheret = 2u ± (2v − 1) also for the inequalitydi, j ≥ 4.
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This paper is a natural continuation of [1]. Here we considerq-ary cyclic codesCi, j .
In the caseq > 2 the necessary and sufficient condition fordi, j = 2 (Theorem 1) looks
a little more complicated than in the binary case. In the caseq > 3 di, j is either 2 or 3
(Theorem 3). The caseq = 3 is exceptional. In this casedi, j , if it is not 2, is in some cases
3 and in some other cases 4. We give examples for both these possible values but in this
case we have not been able to give any necessary and sufficient condition fordi, j = 3.

2. Results and Proofs

First we characterize the codesCi, j with minimum distance two.

THEOREM1 di, j = 2 if and only if at least one of the following two conditions is satisfied:

(i) gcd(i, j,qm − 1) > 1
(ii) gcd( j − i,q − 1) > 1

}
(2)

Proof. If there is an element ofCi, j of weight two then (sinceCi, j is cyclic) there is an
element ofCi, j of the formc(x) = −α + xk where

α = γ qm−1
q−1 a ∈ Fq

and

0≤ a < q − 1, 0< k < qm − 1. (3)

By (1), c(x) is an element ofCi, j if and only if

−α + γ ik = 0, −α + γ jk = 0.

Thusdi, j = 2 if and only if the congruences

ik ≡ jk ≡ qm − 1

q − 1
a (modqm − 1) (4)

have a solution(k,a) which satisfies the conditions (3). Hence we have to prove that for
the solvability of the congruences (4) in the set defined by (3) it is necessary and sufficient
that at least one of the conditions (2) is satisfied.

Sufficiency: (i) If gcd(i, j,qm − 1) =: d > 1 thenk = (qm − 1)/d, a = 0 is a solution
of (4).

(ii) Let gcd( j − i,q− 1) =: δ > 1. Sincei ≡ j (modδ), the congruencesik ′ ≡ a′ (mod
δ) and jk ′ ≡ a′ (modδ) have a common solution(k′,a′) where 0< k′ < δ, 0 ≤ a′ < δ.
Then the congruences (4) have the solution

k = qm − 1

δ
· k′, a = q − 1

δ
· a′.
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Necessity: Assume that the congruences (4) have a solution(k,a) in the set defined by
(3) and that gcd(i, j,qm − 1) = 1. We have to prove that gcd( j − i,q − 1) > 1. Assume
the contrary: gcd( j − i,q − 1) = 1. The congruences (4) imply

j (qm − 1)a

q − 1
≡ jik = ijk ≡ i (qm − 1)a

q − 1
(modqm − 1)

and so
( j − i )(qm − 1)a

q − 1
≡ 0 (modqm − 1);

i.e.,( j − i )a ≡ 0 (modq−1). Since gcd( j −1,q−1) = 1, we thus havea = 0. Therefore,
by (4),

ik ≡ 0, jk ≡ 0 (modqm − 1).

This is impossible because, by the condition gcd(i, j,qm − 1) = 1, these congruences do
not have any common solutionk in the interval 0< k < qm − 1.

The codeC1,t has an element of weight three if and only if there are nonzero elementsa
andb of Fq and integersl andk such that 0< l < k < qm − 1, a + bγ l − γ k = 0 and
a+ bγ lt − γ kt = 0. Thus we have the following result.

PROPOSITION1 d1,t ≤ 3 if and only if there are nonzero elements a and b of Fq such that
the polynomial

Uq,t (x;a,b) := a+ bxt − (a+ bx)t

has at least one zero x in Fqm\{0,1}.
Consider now the caseq = 3. Since the number of elements in a sphere of radius 2 inFn

3 is
2n2+1 and the number of elements in any ternary codeCi, j is at least 3n−2m = 3n/(n+1)2,
the spheres of radius 2 with centres at the elements of a ternary codeCi, j cannot be disjoint.
Therefore in the ternary casedi, j < 5. Theorem 1 shows that sometimesdi, j = 2. In the
following we shall see that also the values 3 and 4 both occur.

PROPOSITION2 Assume that q= 3, t = 3s + 1 andv = 3m−1
gcd(3m−1,3s−1) . Then

d1,t =
{

3 if v is even
4 if v is odd.

In particular, d1,t = 4 for all s if m is odd.

Proof. Since neither of the conditions (2) is satisfied, we haved1,t ≥ 3. Let us use
Proposition 1 to find the conditions under whichd1,t ≤ 3. We shall study the polynomials
U3,3s+1(x;a,b) =: U (x;a,b) for all nonzero elementsa and b of F3. There are four
polynomials:

U1(x) := U (x;1,1) = 1+ x3s+1− (1+ x)(1+ x3s
) = −(x + x3s

);
U2(x) := U (x;2,2) = 2+ 2x3s+1− 23s+1(1+ x)(1+ x3s

)
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= 1− x − x3s + x3s+1 = (1− x)(1− x3s
);

U3(x) := U (x;1,2) = 1+ 2x3s+1− (1+ 2x)(1+ 2x3s
)

= x + x3s + x3s+1;
U4(x) := U (x;2,1) = 2+ x3s+1− (2+ x)(2+ x3s

)

= 1+ x + x3s
.

The only zero ofU2(x) in F3m is 1. Further,U3(x) = x3s+1U4(x−1) andU4(x + 1) =
−U1(x). So it is sufficient to examine the zeros ofU1(x) which are of the formγ k where
γ is a primitive element ofF3m. Thusd1,t = 3 if and only if the equationγ k(3s−1) = 2 has
a solutionk. Further, we may write this equation as the congruence

k(3s − 1) ≡ (3m − 1)/2 (mod 3m − 1).

Let g = gcd(3m − 1,3s − 1) and 3s − 1 = gu. Then 3m − 1 = gv, and the congruence
above gets the form

2ku≡ v (mod 2v).

Since gcd(u, v) = 1, this congruence is solvable if and only ifv is even.
If m is odd then 3m − 1 is not divisible by 4. Hencev is odd and therefored1,t = 4.

Thus we have the following result.

THEOREM2 Let q= 3. If neither of the conditions (2) is satisfied then di, j is either3 or 4
and both these values occur.

On the other hand, forq > 3 the minimum distancedi, j is always at most 3.

THEOREM3 Let q> 3. If neither of the conditions (2) is satisfied then di, j = 3.

Proof. By the assumption gcd(i, j,qm − 1) = gcd( j − i,q − 1) = 1. Letr ands be the
elements of{1,2, . . . ,q − 1} such thati ≡ r (modq − 1) and j ≡ s (modq − 1). Since
gcd( j − i,q − 1) = 1, we haver 6= s. Let us takeu = (qm − 1)/(q − 1) andβ = γ u.
Define

a(x) = (x − βr )(x − βs) = x2− (βr + βs)x + βr+s

and let
c(x) = a(xu).

Now we claim thatc(x) is an element ofCi, j . Indeed,

c(γ i ) = a(γ ui ) = a(β i ) = a(βr ) = 0,

and similarly we can see thatc(γ j ) = 0. Since the weight ofc(x) is equal to the weight
of a(x) and so equal to 3, we havedi, j ≤ 3. On the other hand, by Theorem 1 we have
di, j ≥ 3. Thusdi, j = 3.
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Conclusion

Now we have a necessary and sufficient condition for the case that the minimum distance
di, j is two. We also know thatdi, j is at most three ifq > 3. In the ternary caseq = 3 we
still have an interesting open problem: Find a simple necessary and sufficient condition for
di, j = 4.
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