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Abstract. We deal with the minimum distances @fary cyclic codes of length™ — 1 generated by products of
two distinct minimal polynomials, give a necessary and sufficient condition for the case that the minimum distance
is two, show that the minimum distance is at most threg:¥f 3, and consider also the cage= 3.
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1. Introduction

Denote the finite field of orderby Fy. Letm be a positive integey; a primitive element of
Fqm andms(x) the minimal polynomial of/® overF,. We assumethat8i < j <gq™—2
and thaf andj are not in the samg-cyclotomic coset modulo ;= g™ — 1 and denote the
g-ary cyclic code of lengtim with generatom; (x)m; (x) by C; ;. The minimum distance
of C; ; is denoted byd; ;. As usual, we identify the vect@r = (Co, ..., Ch-1) € FC’]1 and
the polynomial

n-1
cx) =Y _ax e Fy[x]/(x" = D).
1=0
Thusc(x) is an element o€ ; if and only if
cy") =cy)) =0. (1)

In the binary casg = 2 there are many results concernig (see, e.g., [3], [2] and [1]
and the references there). In this case may be any number in the sg, 3, 4, 5} (and
even 7 whem = 3). Itisknown [1] that; j = 2ifand only ifgedi, j,2™—1) > 1. In[1]
we also found sufficient conditions for the equalify = 3 and in the casé, j) = (1, 1)
wheret = 2" &+ (2" — 1) also for the inequalityl; ; > 4.
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This paper is a natural continuation of [1]. Here we consiglary cyclic code<; ;.
In the casey > 2 the necessary and sufficient condition @br = 2 (Theorem 1) looks
a little more complicated than in the binary case. In the ecpse 3 d, ; is either 2 or 3
(Theorem 3). The casp= 3 is exceptional. In this cask;, if itis not 2, is in some cases
3 and in some other cases 4. We give examples for both these possible values but in this
case we have not been able to give any necessary and sufficient conditipn fe13.

2. Results and Proofs
First we characterize the cod€g; with minimum distance two.

THEOREM1 d; ; = 2if and only if at least one of the following two conditions is satisfied:

(i) gcd(i,j,qm—l)>1} @

(i) gedj—-i,g—1)>1

Proof. If there is an element of; ; of weight two then (sinc€; j is cyclic) there is an
element ofC; ; of the formc(x) = —a + xX where

m

o= yﬁa € Fq
and
0<a<qg-1,0<k<g"-1 (3)
By (1), c(x) is an element o€; ; if and only if
—a+y*=0 —a+yk=0.
Thusd; j = 2 if and only if the congruences

ik=jk=2""22 (modq™— 1) 4)
= jk="—g q

have a solutiorik, a) which satisfies the conditions (3). Hence we have to prove that for
the solvability of the congruences (4) in the set defined by (3) it is necessary and sufficient
that at least one of the conditions (2) is satisfied.

Sufficiency (i) If ged(, j,q™ — 1) =: d > 1thenk = (g™ — 1)/d, a = O is a solution
of (4).

(i) Letged(j —i,q—1) =: § > 1. Sincel = j (mod§), the congruencda&’ = a’ (mod
8) and jk’ = & (modé) have a common solutiotk’, a’) where 0< k' < §,0 < a < 4.
Then the congruences (4) have the solution

m__
ke 1
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Necessity Assume that the congruences (4) have a solutioa) in the set defined by
(3) and that gcd, j,gq™ — 1) = 1. We have to prove that g¢d—i,q — 1) > 1. Assume
the contrary: gcdj —i,q — 1) = 1. The congruences (4) imply

Foam o Foam
J@-Da_ gy =197~ Da

m
m -1
q_1 q_1 (modq )

and so C M — 1
(J_Iq)(+)a =0 (modqm —1;
i.e.,,(j—i)a=0(modg—1). Sincegcdj —1,g—1) = 1, we thus hava = 0. Therefore,

by (4),
ik=0, jk=0 (modg™ — 1).

This is impossible because, by the condition@c¢, g™ — 1) = 1, these congruences do
not have any common solutidnin the interval O< k < g™ — 1. ]

The codeC; ; has an element of weight three if and only if there are nonzero eleraents
andb of Fq and integer$ andk such thatO< | <k < g™ —1,a+by' —yX=0and
a+ by't — Xt = 0. Thus we have the following resuilt.

ProPosITIONL d;; < 3if and only if there are nonzero elements a and b @kEch that
the polynomial
Uqt(X; a,b) :=a+bx' — (a+bx)'
has at least one zero x i\ {0, 1}.
Consider now the cagsp= 3. Since the number of elements in a sphere of radiu$2 is
2n?+1 and the number of elements in any ternary i@dgis at least 3™ = 3"/(n+ 1),
the spheres of radius 2 with centres at the elements of a ternarggpdannot be disjoint.

Therefore in the ternary caskj < 5. Theorem 1 shows that someting = 2. In the
following we shall see that also the values 3 and 4 both occur.

PROPOSITION2 Assume that 6= 3, t = 3° + Landv = a5 Then

4 = 3if vis even
M= 14if vis odd

In particular, di; = 4 for all s if m is odd.

Proof. Since neither of the conditions (2) is satisfied, we hdye > 3. Let us use

Proposition 1 to find the conditions under whigh < 3. We shall study the polynomials
Usssp1(X;a,b) =: U(x; a, b) for all nonzero elementa andb of F3. There are four

polynomials:

Ui :=Ux: L1 = 1+ x5 - 1+ +x¥) = —(x + x¥);
Us(X) :i=U(x;2,2) = 242Xt 2% 11+ )1+ x%)
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1-x—xF+x¥1 = 1-x)1-x%),
14+ 2x5 — 1+ 2x) (1 + 2x%)

= x4+ x¥ + xFH;
Us(¥):i=Ux;2,1) = 24+ x5 — 2+ x@2+x%)

= 1+x+x%.

Us(X) :=U(x; 1,2

The only zero ofUx(x) in Fan is 1. FurtherUs(x) = x¥TUs(x~1) andUas(x + 1) =

—U1(x). So itis sufficient to examine the zeroslf(x) which are of the form ¥ where
y is a primitive element oFsn. Thusd;; = 3 if and only if the equatiop*® - = 2 has
a solutionk. Further, we may write this equation as the congruence

k3 —1) = (3" - 1)/2 (mod 3" — 1).

Letg=gcd3™ - 1,3 -1)and 3 — 1= gu. Then 3 — 1 = gv, and the congruence
above gets the form
2ku=v (mod 2).

Since gcdu, v) = 1, this congruence is solvable if and onlyifs even.
If mis odd then 3 — 1 is not divisible by 4. Hence is odd and thereford; ; = 4.
]

Thus we have the following result.
THEOREM2 Let g = 3. If neither of the conditions (2) is satisfied ther) ds either3 or 4

and both these values occur.

On the other hand, fay > 3 the minimum distance, j is always at most 3.

THEOREM3 Let g > 3. If neither of the conditions (2) is satisfied ther d- 3.

Proof. By the assumption gad j, g™ — 1) = gcd(j —i,q — 1) = 1. Letr ands be the
elements ofl,2,...,q — 1} such thai =r (modq — 1) andj = s(modq — 1). Since
gedj —i,g—1) = 1, we have # s. Letus takeu = (" —1)/(q — 1) andg = y".
Define

a(x) = (x = (X = B3 = x* = (B + pOx + p'*°

and let
c(X) = a(x").

Now we claim that(x) is an element o€; ;. Indeed,
cy) =a(y") =a(p") =a(g’) =0,

and similarly we can see thatfy ') = 0. Since the weight of(x) is equal to the weight
of a(x) and so equal to 3, we hadg; < 3. On the other hand, by Theorem 1 we have
di,j > 3. ThUSdi,j = 3. |
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Conclusion

Now we have a necessary and sufficient condition for the case that the minimum distance
d; j is two. We also know thad; ; is at most three iff > 3. In the ternary casg = 3 we

still have an interesting open problem: Find a simple necessary and sufficient condition for
di,j =4,
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