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Let A be the modular algebra in which a large class of extended cyclic codes is examined. We 

characterize the set of A-codes which are the results of the peculiar sums of principal A- 
codes. The set described contains extended cyclic codes that we specify. Some of them are 
Reed-Solomon codes. 

Soit A I’algbbre modulaire dans laquelle est Btudite une classe importante de codes cycliques 

Ctendus. Nous caracttrisons un ensemble de codes de A obtenus par des sommes particulikes 

de codes principaux de A. L’ensemble dCcrit contient des codes cycliques Ctendus que nous 

dtterminons. Parmi ceux-ci certains sont des codes de Reed-Solomon. 

1. Introduction 

Let p be a prime; m and r are two positive numbers; K and G are respectively 

the Galois fields GF(p’) and Gf(p”). We denote by A the modular algebra K[G]; 

A is the polynomial algebra 

We denote by R the quotient algebra K[X]/(X” - 1) with r~ = pm - 1. By 

convention an A-code is an ideal in A and an R-code is a cyclic code of length n 

over K. 
An R-code, the extension of which is invariant under the affine permutation 

group on G, is characterized by Kasami in [9]. Such a code is an A-code. For 
example the extended BCH codes, the generalized Reed-Muller codes, the 
extended Reed-Solomon codes are A-codes. So we study the algebraic properties 
of A-codes, in the same way we study a large class of cyclic codes. 

We have described in [7] the R-codes, and particularly the Reed-Solomon 
codes, the extension of which is a principal ideal of A. We give here a more 
general presentation: the A-codes in question are particular sums of principal 
A-codes; they are defined in Section 2. In Section 3 all R-codes, the extensions of 
which are A-codes, are explicitly characterized. So, in Section 4, we can point out 
for an extended Reed-Solomon code, the relation between its minimum distance 
and its representation in the modular algebra. 
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The proofs of Sections 2, 3 and 4 require a theory which is developed in [4]. 

Here we only give the useful definitions and properties. 

When we say distance we always mean the Hamming distance. 

2. Definition of an A-code set 

Let P be the set of all nilpotent elements of A, called the radical of the algebra 

PI; 

The jth power of the radical P is denoted Pi ; the ideals Pi are described in [4, 

11, 121. 

Particularly we have shown in [8] that they are the generalized Reed-Muller 

codes. Each element and therefore each ideal of A has a position in the 

decreasing sequence {P’ 1 j G m(p - 1)) which is called its depth by Poli [ 121. 

Definition 1. je[l, m(p-l)]; xgA; I is an A-code. 

(1) x has the depth j if and only if x E P’ and x6 Pi+‘; 

(2) I has the depth j if and only if I c P’ and I$ Pi+‘. 

Notations. The principal ideals of A generated by an element x: is denoted by 

(x). Let {II, . . . . , Ik} be k ideals of A ; their sum is 

(3) i Ii = {f ai ( ai 6 I,]. 
i=l i=l 

Theorem 1. Let I be an A-code 
equivalent: 

with depth j. The two following propositions are 

(i) There are {x1, . . . , x,}, k elements of A such that: 

i~~Ai~.P’\P’+l with (hi)i E Kk -{0} 

and 

I = i (Xi), 
i=l 

(ii) PI = Pi+’ 13 I and dim PI = dim I - k. 

Remark. In (i), the first condition involves that the I-expression is minimal. 

Proof. (1) We suppose that I verifies (i). Clearly PI c Pjrl f-11. Let y E Pi+’ r7 I; 

by (i) we have y = Cfsc=, aiq with ai E P; SO y E PI. We have proved that Pi+’ n I = 
PI. 
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Let h=dimPI, {yi,..., yh} a basis of PI and y E I. We recall that A = K63P. 
We have 

y= i ai%, a,EA; 
i=l 

y = ~ AiXi + ~ bixi, hi E K, bi E P, hi + bi = ai ; 
i=l i=l 

Ai E K, c~i E K. 
i=l i=l 

So the set {x,, . . . , xk, yl,. . . , yh} is a generator system of the K-vector space I; it 

is a maximal generator system because we cannot have 

~ Aixi = - ~ CLiyi with FiyiEPIandAixiEPi\Pi+‘. 
i=l i=l 

So dim I = dim PI+ k ; (ii) is proved. 

(2) We suppose that I verifies (ii). Let {yl, . . . , yh} be a basis of PI; it is 

completed in order to obtain a basis of 1:(x,, . . . , xk, yl,. . . , yh}. Let x be a 

K-linear combination of the vectors xi. From (ii) x has the depth j. Each yi, 

1 G i s h, is an elements of PI. From the definition of the ideal product, we have 

Yi = i x5x.s + i YiYs7 YfEP, XfEP 
s=l s=l 

and we deduce the system 

Yl 

Yh II = -k 

c X,‘XS 
s=1 

i 1:, 

.s=l 

Let M be the representative matrix of the system. Its determinant is a unit of 

the algebra because the only terms of M that are units of A are the principal 

diagonal terms. So each yi is a P-linear combination of Xi, therefore every element 

of PI too. (i) is proved. 0 

From Theorem 1 we get a necessary and sufficient condition for the A-code to 

be principal. It is the particular case k = 1; in this case we note that 

dim I = dim PI+ 1 + PI = Pi+’ fl I. 

Corollary 1. An A-code is principal if and only if dim PI = dim I- 1. 

We give a notation for the A-codes characterized by Theorem 1: 

% = {I c A 1 I is an A-code, I verifies (i) or (ii)}. (4) 
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3. Extended cyclic codes and % elements 

Let n=pm- 1. Let (Y be a primitive element of G and let C be an R-code with 
generator polynomial, 

g(X) = n (X-o?, T c IO, n], g E NXI. (5) 
tET 

We denote by C’ the extended code C, C’ is defined usually as in van Lint [ 131. 

a E C, a = a,+a,X+* . .+an_iXn-‘, 
n-1 

a’ E C’, a’= - C ai XO+a,X”‘+. * *+an_lXa”-‘. 
( ) i=O 

The code C’ is therefore a linear code contained in P. Its definition in A is 

]4,91, 

with 
C’ = {x E A ( t E T 3 &(x) = 0) (6) 

T’ = TU{O} and 4*(x) = c qg’. 
gtG 

(7) 

The 4,, t E [0, n], are K-linear applications from A to an overfield of K and G. 
We say that T is the definition set of C and T’ is the definition set of C’. Recall that 

dimC=dimC’=n-T. (8) 

Let s E [0, n], the p-weight of the integer s, where s is written in the p-ary number 
system, is 

m-1 m-1 

W*(S) = C si with s = 1 Sipi, si E [0, p- 11. 
i=O i=O 

(9) 

A relation of partial order, denoted S, is defined over [0, n]: u E [O, n], s E 

LO, nl, 

u<.s e qGssi, iE[O,m-1] (10) 

(where u and s are here exprimed in the p-ary number system). 
When (10) is verified, we say that s is an ascendant of v or that u is a 

descendant of s. 
The code C’ is an A-code if and only if it verifies the Kasami theorem 

hypothesis. We write this condition with our notation: 

C’isanA-code e tET’ands<t j SET’. (11) 

The condition (11) is obtained for the following formula which will be used 
further on: 

(12) 
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We suppose now that C is such that C’ is an A-code. Let j be the depth of C, 

we recall that the defining set of P’ is 

q={s~[O,n]Iw,(s)<j}. (13) 

Lemma 1. The code PC’ is an extended R-code and its definition set is 

F={tE[O,n])s<t,s#t j SET’}. (14) 

Proof. From (6) and (7) it is clear that an extended cyclic code is a linear code 

invariant under the A-automorphism: 

The codes P and C’ and therefore the product PC’ are invariant under the 

automorphism u. So, the code PC’ is an extended R-code. Let T” be the defining 

set of PC’. From the definition of the ideal product we have: 

T”={tE[O,n](4,(xy)=O,xEP,yEC’}. 

Let x E P, y E C’ and t E [0, n], T is defined by (14). If t E T, we have 

s<t and sft 3 SET’ 3 4s(y)=0. 

So, according to the formula (12), 4,(xy)=4,(x)4,(y). But 4Jx)=O, therefore 

t E T”. Let x = Xg - 1 where g is any element of G. From (12), 

4AW- l)Y) = c (;)gt-‘4s(Y,_ 
s-C* 

sc[O,t[ 

If t E T”, we have Vg, 4,((Xg- l)y)= 0. 

We can deduce that 4,(y) = 0 for each s such that s i t and s # t. Then t E ‘?; 
we have proved that T = T” I2 

Lemma 2. Let j be the depth of C’. The code Pi+l II C’ is an extended R-code the 
defining set of which is: 

f’={tE[O,n]/tET’oro,(t)=j}. (1% 

Proof. The A-codes Pi+’ and C’ are both extended R-codes, so the code 

Pi+’ n C’ is an A-code and an extended R-code. We obtain its defining set by 

adding the defining set of Pi+’ with the defining set of C’. 0 

Theorem 2. Let C’ be an A-code with the depth j. So, C’ belongs to the set %, 
defined by (4), if and only if there are k elements 

Iti 1 iE[l, kl, G c[O, nl, w,(ti)=il, (1‘5) 
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which characterize T’: 

T’={tE[O,n]Itli,iE[l,k],tikt}. (17) 

Proof. (1) We suppose that C’ belongs to %. From Theorem 1 the codes PC’ and 

Pi+l n C’ are equal, therefore their defining sets are also equal. From (14) and 

(15) we have 

T”={t&7”Is<t,s#t j sET’}={t$T’(o,(t)=j}. 

We want to show that (17) characterizes the defining set T’ of C’. 

Let T” = {tl, . . . , tk} and s E T’. The ti elements do not belong to T’; then s 

cannot be an ascendant of ti because C’ as A-code, verifies (11). So: T’ c 

{s ) Vi, ti < s}. Inversely let s E [0, n] such that, for each ti, s is not an ascendant of 

6. Two cases may occur: 

(i) up(s) 6 j. The code C’ has the depth j and the code PC’ has the depth j + 1. 

To obtain the definition set of PC’, we add to T’ k elements which have a 

p-weight j. Then we conclude that s E T’. 

(ii) o,(s)> j. Suppose that up(s) = j + 1. Then each descendant of s is in T’ 

because W*(t) =Z j and t$ T”. From Lemma 1, s belongs to T and therefore s 

belongs to T’. By recurrence we can deduce: wp(s) > j 3 s E T’. 

(2) We suppose now that T’ is defined by (16) and (17). The code C is an 

A-code, which verifies (11). Let T = T’ U T” be the defining set of the code PC’. 

For each i we have 4 E ‘?\ T’ because, 

t# ti, t-c ti =, t e T’. 

On the other hand, if t E T” with tf ti for each i, then t E T’ or t is an ascendant 

of a 4. So T”= {q, . . . , tk}. We know from (15) the defining set of the code 

P”+n C’; this set is also equal to T’U T” from (16) and (17). Then 

Pi+’ fl C’ = PC’ and dim PC’ = dim C’ - 1 T”] = dim C’ - k. 

From Theorem 1, C’ E %. 0 

4. Application to Reed-Solomon codes 

We suppose from now on that K = G. The Reed-Solomon code, here denoted 

by RS, of length n and minimum distance d over K is the R-code with the 

following generator polynomial: 

d-l 

m=k~lw-ak) (18) 

We note RS’ the extension of the code RS: 

RS’= {x E A ( t E [0, d[ j r&(x) = 0). (19) 

The code RS’ is an A-code because obviously the interval [0, d [ verifies (11). 
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Theorem 3. Let M = m (p - l), j E [0, M] and, 

dj = max{k E [0, n] ) w,(k) = j}. 

So the A-code RS’ has the depth j, j>O, if and only if d ~]dj_~, dj]. 

123 

(20) 

The proof of Theorem 3 is given in [5]. We have also shown that an extended 

Reed-Solomon code is a principal ideal of A if and only if its minimal distance is 

equal to a dj. The dj representation in the p-ary number system is 

m-1 

dj = tp m-s-i+ c (p- l)p’, (21) 
i=m--s 

where j = s(p - 1) + t, t E [0, p - l[. If s = 0, then dj = tp”-l. 

Theorem 4. Let j be the depth of the A-code RS’. 

So, the code RS’ is an element of % if and only if its minimal distance has the 
following type: 

d = dj_l+ h with w,(h) = 1. (22) 

Proof. Let d be the minimum distance of the code RS; we have d ~]dj_~, dj]. 
According to Theorem 2 we shall show that 

d verifies (22) e [O,d[ verifies (16) and (17). 

(1) We suppose that d verifie:, (22). From (21) we have h = pi with ic 
[O,m-s-l]. Let 

T”={~)d~~,~=d~_~+p~,i~[O,m-s-1]}. 

It is clear that w,(ti)= j; then T” verifies (16). Let t$[O,d[, so w,(t>>j and 

w,(t) 2 j and d =S 1 @at,, ti E T” and 4 < t. This proves that [0, d[ verifies (17). 

(2) We suppose that [0, d[ verifies (16) and (17). By hypothesis we have 

d = dj_I+ h with h ~10, dj -dj_,]. From (21), o,(d)> j. Suppose that w,(d)> j; 
there is a t which belongs to [d, n[ such that 

dcsandw,(s)=j+s<t. 

This is inconsistent with (16) and (17). So o,(d) = j, therefore w,(h) = 1. 0 

5. Conclusion 

The extension of the Reed-Solomon code of length n and minimal distance d 
over K is an element of % if and only if d has the following type: 

m-1 

d=pk+tp m--s--l+ c (p- l)p’, 
i=m-.5 
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withtE[O,p-l[,sE[O,m-1 

[m-s,m-l]=@. 

land kE[O,m--s-l 1. If s = 0, then 
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