A DESCRIPTION OF SOME EXTENDED CYCLIC CODES WITH APPLICATION TO REED-SOLOMON CODES

P. CHARPIN

Institute de Programmation et LITP, 75230 Paris Cedex 05, France

Received December 1984

Let A be the modular algebra in which a large class of extended cyclic codes is examined. We characterize the set of A-codes which are the results of the peculiar sums of principal A-codes. The set described contains extended cyclic codes that we specify. Some of them are Reed-Solomon codes.

Soit A l'algèbre modulaire dans laquelle est étudiée une classe importante de codes cycliques étendus. Nous caractérisons un ensemble de codes de A obtenus par des sommes particulières de codes principaux de A. L'ensemble décrit contient des codes cycliques étendus que nous déterminons. Parmi ceux-ci certains sont des codes de Reed-Solomon.

1. Introduction

Let p be a prime; m and r are two positive numbers; K and G are respectively the Galois fields $GF(p^r)$ and $Gf(p^m)$. We denote by A the modular algebra K[G]; A is the polynomial algebra

$$A = \left\{ x = \sum_{\mathbf{g} \in G} x_{\mathbf{g}} X^{\mathbf{g}} \mid x_{\mathbf{g}} \in K \right\}.$$
(1)

We denote by R the quotient algebra $K[X]/(X^n-1)$ with $n = p^m - 1$. By convention an A-code is an ideal in A and an R-code is a cyclic code of length n over K.

An R-code, the extension of which is invariant under the affine permutation group on G, is characterized by Kasami in [9]. Such a code is an A-code. For example the extended BCH codes, the generalized Reed-Muller codes, the extended Reed-Solomon codes are A-codes. So we study the algebraic properties of A-codes, in the same way we study a large class of cyclic codes.

We have described in [7] the R-codes, and particularly the Reed-Solomon codes, the extension of which is a principal ideal of A. We give here a more general presentation: the A-codes in question are particular sums of principal A-codes; they are defined in Section 2. In Section 3 all R-codes, the extensions of which are A-codes, are explicitly characterized. So, in Section 4, we can point out for an extended Reed-Solomon code, the relation between its minimum distance and its representation in the modular algebra.

0012-365X/85/\$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

The proofs of Sections 2, 3 and 4 require a theory which is developed in [4]. Here we only give the useful definitions and properties.

When we say distance we always mean the Hamming distance.

2. Definition of an A-code set

Let P be the set of all nilpotent elements of A, called the radical of the algebra [2];

$$P = \left\{ x \in A \mid \sum_{g \in G} x_g = 0 \right\}.$$
 (2)

The *j*th power of the radical P is denoted P^{i} ; the ideals P^{i} are described in [4, 11, 12].

Particularly we have shown in [8] that they are the generalized Reed-Muller codes. Each element and therefore each ideal of A has a position in the decreasing sequence $\{P^i \mid j \le m(p-1)\}$ which is called its depth by Poli [12].

Definition 1. $j \in [1, m(p-1)]; x \in A; I$ is an A-code.

- (1) x has the depth j if and only if $x \in P^{j}$ and $x \notin P^{j+1}$;
- (2) I has the depth *j* if and only if $I \subseteq P^{j}$ and $I \not\subset P^{j+1}$.

Notations. The principal ideals of A generated by an element x: is denoted by (x). Let $\{I_1, \ldots, I_k\}$ be k ideals of A; their sum is

$$+ \prod_{i=1}^{k} I_i = \left\{ \sum_{i=1}^{k} a_i \mid a_i \in I_i \right\}.$$
(3)

Theorem 1. Let I be an A-code with depth j. The two following propositions are equivalent:

(i) There are $\{x_1, \ldots, x_k\}$, k elements of A such that:

$$\sum_{i=1}^{k} \lambda_{i} x_{i} \in P^{i} \setminus P^{i+1} \quad with \ (\lambda_{i})_{i} \in K^{k} - \{0\}$$

and

$$I = \stackrel{k}{+}_{i=1}^{k} (x_i),$$

(ii) $PI = P^{j+1} \cap I$ and dim $PI = \dim I - k$.

Remark. In (i), the first condition involves that the I-expression is minimal.

Proof. (1) We suppose that I verifies (i). Clearly $PI \subset P^{i+1} \cap I$. Let $y \in P^{i+1} \cap I$; by (i) we have $y = \sum_{i=1}^{k} a_i x_i$ with $a_i \in P$; so $y \in PI$. We have proved that $P^{i+1} \cap I = PI$.

Let $h = \dim PI$, $\{y_1, \ldots, y_h\}$ a basis of PI and $y \in I$. We recall that $A = K \oplus P$. We have

$$y = \sum_{i=1}^{k} a_{i}x_{i}, \quad a_{i} \in A;$$

$$y = \sum_{i=1}^{k} \lambda_{i}x_{i} + \sum_{i=1}^{k} b_{i}x_{i}, \quad \lambda_{i} \in K, \ b_{i} \in P, \lambda_{i} + b_{i} = a_{i};$$

$$y = \sum_{i=1}^{k} \lambda_{i}x_{i} + \sum_{i=1}^{h} \mu_{i}y_{i}, \quad \lambda_{i} \in K, \ \mu_{i} \in K.$$

So the set $\{x_1, \ldots, x_k, y_1, \ldots, y_h\}$ is a generator system of the K-vector space I; it is a maximal generator system because we cannot have

$$\sum_{i=1}^k \lambda_i x_i = -\sum_{i=1}^h \mu_i y_i \quad \text{with } \mu_i y_i \in PI \text{ and } \lambda_i x_i \in P^j \setminus P^{j+1}.$$

So dim $I = \dim PI + k$; (ii) is proved.

(2) We suppose that I verifies (ii). Let $\{y_1, \ldots, y_h\}$ be a basis of PI; it is completed in order to obtain a basis of $I:\{x_1, \ldots, x_k, y_1, \ldots, y_h\}$. Let x be a K-linear combination of the vectors x_i . From (ii) x has the depth j. Each y_i , $1 \le i \le h$, is an elements of PI. From the definition of the ideal product, we have

$$y_i = \sum_{s=1}^k x_s^i x_s + \sum_{s=1}^h y_s^i y_s, \quad y_s^i \in P, \, x_s^i \in P$$

and we deduce the system

$$\begin{bmatrix} 1 - y_1^1 & -y_2^1 & \cdots & -y_h^1 \\ -y_1^2 & \ddots & & \vdots \\ \vdots & & \ddots & -y_h^{h-1} \\ -y_1^h & \cdots & -y_{h-1}^h & & 1 - y_h^h \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_h \end{bmatrix} = \begin{bmatrix} \sum_{s=1}^k x_s^1 x_s \\ \vdots \\ \sum_{s=1}^k x_s^h x_s \end{bmatrix}$$

Let M be the representative matrix of the system. Its determinant is a unit of the algebra because the only terms of M that are units of A are the principal diagonal terms. So each y_i is a P-linear combination of x_i , therefore every element of PI too. (i) is proved. \Box

From Theorem 1 we get a necessary and sufficient condition for the A-code to be principal. It is the particular case k = 1; in this case we note that

$$\dim I = \dim PI + 1 \implies PI = P^{i+1} \cap I.$$

Corollary 1. An A-code is principal if and only if dim $PI = \dim I - 1$.

We give a notation for the A-codes characterized by Theorem 1:

$$\mathscr{C} = \{ I \subset A \mid I \text{ is an } A \text{-code}, \quad I \text{ verifies (i) or (ii)} \}.$$
(4)

3. Extended cyclic codes and \mathscr{C} elements

Let $n = p^m - 1$. Let α be a primitive element of G and let C be an R-code with generator polynomial,

$$g(X) = \prod_{t \in T} (X - \alpha^t), \quad T \subset]0, n[, g \in K[X].$$
(5)

We denote by C' the extended code C, C' is defined usually as in van Lint [13].

$$a \in C$$
, $a = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$,
 $a' \in C'$, $a' = \left(-\sum_{i=0}^{n-1} a_i\right) X^0 + a_0 X^{\alpha^0} + \dots + a_{n-1} X^{\alpha^{n-1}}$.

The code C' is therefore a linear code contained in P. Its definition in A is [4, 9],

$$C' = \{ x \in A \mid t \in T \Rightarrow \phi_t(x) = 0 \}$$
(6)

with

$$T' = T \cup \{0\} \quad \text{and} \quad \phi_t(x) = \sum_{g \in G} x_g g^t.$$
(7)

The ϕ_t , $t \in [0, n]$, are K-linear applications from A to an overfield of K and G. We say that T is the definition set of C and T' is the definition set of C'. Recall that

$$\dim C = \dim C' = n - T. \tag{8}$$

Let $s \in [0, n]$, the *p*-weight of the integer *s*, where *s* is written in the *p*-ary number system, is

$$\omega_{p}(s) = \sum_{i=0}^{m-1} s_{i} \quad \text{with } s = \sum_{i=0}^{m-1} s_{i}p^{i}, s_{i} \in [0, p-1].$$
(9)

A relation of partial order, denoted \prec , is defined over [0, n]: $v \in [0, n]$, $s \in [0, n]$,

$$v \lt s \Leftrightarrow v_i \le s_i, \quad i \in [0, m-1] \tag{10}$$

(where v and s are here exprimed in the p-ary number system).

When (10) is verified, we say that s is an ascendant of v or that v is a descendant of s.

The code C' is an A-code if and only if it verifies the Kasami theorem hypothesis. We write this condition with our notation:

C' is an A-code $\Leftrightarrow t \in T'$ and $s < t \Rightarrow s \in T'$. (11)

The condition (11) is obtained for the following formula which will be used further on:

$$\boldsymbol{\phi}_{s}(xy) = \sum_{\substack{i \in [0,n]\\i < s}} {s \choose i} \boldsymbol{\phi}_{s-i}(x) \boldsymbol{\phi}_{i}(y). \tag{12}$$

We suppose now that C is such that C' is an A-code. Let j be the depth of C, we recall that the defining set of P^{i} is

$$T_{j} = \{ s \in [0, n] \mid \omega_{p}(s) < j \}.$$
(13)

Lemma 1. The code PC' is an extended R-code and its definition set is

$$\bar{T} = \{t \in [0, n] \mid s < t, s \neq t \implies s \in T'\}.$$
(14)

Proof. From (6) and (7) it is clear that an extended cyclic code is a linear code invariant under the A-automorphism:

$$\sigma: \sum_{g \in G} x_g X^g \to \sum_{g \in G} x_g X^{\alpha_g}$$

The codes P and C' and therefore the product PC' are invariant under the automorphism σ . So, the code PC' is an extended *R*-code. Let T'' be the defining set of PC'. From the definition of the ideal product we have:

$$T'' = \{t \in [0, n] \mid \phi_t(xy) = 0, x \in P, y \in C'\}.$$

Let $x \in P$, $y \in C'$ and $t \in [0, n]$, \overline{T} is defined by (14). If $t \in \overline{T}$, we have

$$s < t \text{ and } s \neq t \Rightarrow s \in T' \Rightarrow \phi_s(y) = 0.$$

So, according to the formula (12), $\phi_t(xy) = \phi_0(x)\phi_t(y)$. But $\phi_0(x) = 0$, therefore $t \in T''$. Let $x = X^g - 1$ where g is any element of G. From (12),

$$\phi_t((X^{\mathbf{g}}-1)\mathbf{y}) = \sum_{\substack{s < t \\ s \in [0,t[}} {t \choose s} g^{t-s} \phi_s(\mathbf{y}).$$

If $t \in T''$, we have $\forall g, \phi_t((X^g - 1)y) = 0$.

We can deduce that $\phi_s(y) = 0$ for each s such that $s \prec t$ and $s \neq t$. Then $t \in \overline{T}$; we have proved that $\overline{T} = T''$

Lemma 2. Let j be the depth of C'. The code $P^{i+1} \cap C'$ is an extended R-code the defining set of which is:

$$\hat{T} = \{t \in [0, n] \mid t \in T' \text{ or } \omega_p(t) = j\}.$$
(15)

Proof. The A-codes P^{i+1} and C' are both extended R-codes, so the code $P^{i+1} \cap C'$ is an A-code and an extended R-code. We obtain its defining set by adding the defining set of P^{i+1} with the defining set of C'. \Box

Theorem 2. Let C' be an A-code with the depth j. So, C' belongs to the set \mathcal{C} , defined by (4), if and only if there are k elements

$$\{t_i \mid i \in [1, k], t_i \in [0, n], w_p(t_i) = j\},$$
(16)

which characterize T':

$$T' = \{t \in [0, n] \mid \forall i, i \in [1, k], t_i \notin t\}.$$
(17)

Proof. (1) We suppose that C' belongs to \mathscr{C} . From Theorem 1 the codes PC' and $P^{i+1} \cap C'$ are equal, therefore their defining sets are also equal. From (14) and (15) we have

$$T'' = \{t \notin T' \mid s \prec t, s \neq t \implies s \in T'\} = \{t \notin T' \mid \omega_p(t) = j\}.$$

We want to show that (17) characterizes the defining set T' of C'.

Let $T'' = \{t_1, \ldots, t_k\}$ and $s \in T'$. The t_i elements do not belong to T'; then s cannot be an ascendant of t_i because C' as A-code, verifies (11). So: $T' \subset \{s \mid \forall_i, t_i < s\}$. Inversely let $s \in [0, n]$ such that, for each t_i , s is not an ascendant of t_i . Two cases may occur:

(i) $\omega_p(s) \leq j$. The code C' has the depth j and the code PC' has the depth j+1. To obtain the definition set of PC', we add to T' k elements which have a p-weight j. Then we conclude that $s \in T'$.

(ii) $\omega_p(s) > j$. Suppose that $\omega_p(s) = j + 1$. Then each descendant of s is in T' because $\omega_p(t) \le j$ and $t \notin T''$. From Lemma 1, s belongs to \overline{T} and therefore s belongs to T'. By recurrence we can deduce: $w_p(s) > j \Rightarrow s \in T'$.

(2) We suppose now that T' is defined by (16) and (17). The code C is an *A*-code, which verifies (11). Let $\overline{T} = T' \cup T''$ be the defining set of the code *PC'*. For each *i* we have $t_i \in \overline{T} \setminus T'$ because,

$$t \neq t_i, t < t_i \Rightarrow t \in T'.$$

On the other hand, if $t \in T''$ with $t \neq t_i$ for each *i*, then $t \in T'$ or *t* is an ascendant of a t_i . So $T'' = \{t_1, \ldots, t_k\}$. We know from (15) the defining set of the code $P^{j+1} \cap C'$; this set is also equal to $T' \cup T''$ from (16) and (17). Then

$$P^{i+1} \cap C' = PC'$$
 and dim $PC' = \dim C' - |T''| = \dim C' - k$.

From Theorem 1, $C' \in \mathscr{C}$.

4. Application to Reed-Solomon codes

We suppose from now on that K = G. The Reed-Solomon code, here denoted by RS, of length *n* and minimum distance *d* over *K* is the *R*-code with the following generator polynomial:

$$g(X) = \prod_{k=1}^{d-1} (X - \alpha^k)$$
(18)

We note RS' the extension of the code RS:

$$\mathbf{RS}' = \{ x \in A \mid t \in [0, d[\Rightarrow \phi_t(x) = 0 \}.$$
(19)

The code RS' is an A-code because obviously the interval [0, d] verifies (11).

Theorem 3. Let M = m(p-1), $j \in [0, M]$ and,

$$d_{i} = \max\{k \in [0, n] \mid \omega_{p}(k) = j\}.$$
(20)

So the A-code RS' has the depth j, j > 0, if and only if $d \in [d_{j-1}, d_j]$.

The proof of Theorem 3 is given in [5]. We have also shown that an extended Reed-Solomon code is a principal ideal of A if and only if its minimal distance is equal to a d_i . The d_i representation in the *p*-ary number system is

$$d_{j} = tp^{m-s-1} + \sum_{i=m-s}^{m-1} (p-1)p^{i},$$
(21)

where j = s(p-1) + t, $t \in [0, p-1[$. If s = 0, then $d_j = tp^{m-1}$.

Theorem 4. Let j be the depth of the A-code RS'.

So, the code RS' is an element of \mathscr{C} if and only if its minimal distance has the following type:

$$d = d_{i-1} + h \quad \text{with } \omega_p(h) = 1. \tag{22}$$

Proof. Let d be the minimum distance of the code RS; we have $d \in [d_{j-1}, d_j]$. According to Theorem 2 we shall show that

d verifies (22) \Leftrightarrow [0, d[verifies (16) and (17).

(1) We suppose that d verifier (22). From (21) we have $h = p^i$ with $i \in [0, m-s-1]$. Let

$$T'' = \{t_i \mid d \leq t_i, t_i = d_{i-1} + p^i, i \in [0, m - s - 1]\}.$$

It is clear that $\omega_p(t_i) = j$; then T" verifies (16). Let $t \notin [0, d[$, so $\omega_p(t) > j$ and $\omega_p(t) \ge j$ and $d \le t \Leftrightarrow \exists t_i, t_i \in T$ " and $t_i < t$. This proves that [0, d] verifies (17).

(2) We suppose that [0, d] verifies (16) and (17). By hypothesis we have $d = d_{j-1} + h$ with $h \in [0, d_j - d_{j-1}]$. From (21), $\omega_p(d) \ge j$. Suppose that $\omega_p(d) > j$; there is a t which belongs to [d, n] such that

 $d \leq s$ and $\omega_p(s) = j \Rightarrow s < t$.

This is inconsistent with (16) and (17). So $\omega_p(d) = j$, therefore $\omega_p(h) = 1$.

5. Conclusion

The extension of the Reed-Solomon code of length n and minimal distance d over K is an element of \mathscr{C} if and only if d has the following type:

$$d = p^{k} + tp^{m-s-1} + \sum_{i=m-s}^{m-1} (p-1)p^{i},$$

with $t \in [0, p-1[, s \in [0, m-1] \text{ and } k \in [0, m-s-1].$ If s = 0, then $[m-s, m-1] = \emptyset$.

References

- [1] S.D. Berman, On the theory of group codes, Kibernetica 1 (1967) 31-39.
- [2] N. Bourbaki, Livre II, Algébre (Hermann, Paris, 1958).
- [3] P. Camion, A proof of some properties of Reed-Muller codes by means of the normal basis theorem, in: R.C. Bose and T.A. Dowlings, eds., Combinatorial Mathematics and its Applicants (Univ. North. Carolina Press, Chapel Hill, N.C., 1969).
- [4] P. Charpin, Codes idéaux de certaines algèbres modulaires—Thèse de 3ème cycle, Université de Paris VII (1982).
- [5] P. Charpin, The extended of Reed-Solomon codes considered as ideals of a modular algebra, Ann. Discrete Math. 17 (1983) 171-176.
- [6] P. Charpin, Les codes de Reed-Solomon en tant qu'idéaux d'une algèbre modulaire, C.R. Acad. Sci. Paris Sér. I (1982) 597-600.
- [7] P. Charpin, Codes cycliques étendus et idéaux principaux d'une algèbre modulaire. C.R. Acad. Sci. Paris Sér. I (1982) 313-315.
- [8] P. Charpin, Puissances du radical d'une algèbre modulaire et codes cycliques, Rev. CETHEDEC 81-2, (1981) 35-43.
- [9] T. Kasami, S. Lin and W.W. Peterson, Some results of cyclic codes which are invariant under the affine group and their applications, Inform. and Control 11 (1967) 475-496.
- [10] F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting codes (North-Holland, Amsterdam, 1977).
- [11] A. Poli, Codes dans certaines algèbres modulaires, Thèse de Doctorat d'Etat, Université Paul Sabatier, Toulouse (1978).
- [12] A. Poli, Idéaux de A = K[X₁,...,X_n]/(X₁,...,X_n) stables sous le groupe des automorphismes isométriques de A. C.R. Acad. Sci. Ser. A (1980) 1029-1042.
- [13] J.H. van Lint, Coding Theory (Springer, Berlin, 1971).
- [14] J. Wolfmann, A new construction of the binary Golay code (24, 12, 8) using a group algebra over a finite field, Discrete Math. 31 (1980) 337-338.