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Abstract 

Berger, T. and P. Charpin, The automorphism group of Generalized Reed-Muller codes, Discrete 

Mathematics 117 (1993) l-17. 

We prove that the automorphism group of Generalized Reed-Muller codes is the general linear 

nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and 

Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result follows 

their description of the minimum weight codewords. An automorphism of a cyclic q-ary code is here 

a substitution over the field GF(q”). In the more general case where the automorphisms are defined 

by monomial matrices, we also obtain the automorphism group (called the monomial group) as the 

direct product of the general linear nonhomogeneous group with the multiplicative group of the 

alphabet field. 

1. Introduction 

In this paper we consider linear codes of length q”, q =pr and p is a prime, over a finite 

field K of characteristic p. Usually these codes are called extended primitive codes. Let 

G be the finite field of order qm; an automorphism of such a code C is a permutation on 

G which preserves C. We denote by G(m, q) the general linear nonhomogeneous group 

GLNH(m, q) whose elements are the permutations on G of the form: 

n,,h:g H Mg+h, (1) 

where M is a nonsingular matrix of order m over GF(q) and h is any point of 

G represented as a column vector. The whole class of extended primitive codes that 
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are invariant under G(m, q) was characterized by Delsarte. We denote by 9(m, q) this 

class of codes. The result of Delsarte [lo] was derived from significant work on the 

polynomial codes due essentially to Kasami et al. [13-153 and Delsarte et al. [ll]. In 

particular, Delsarte generalized the condition, obtained by Kasami et al., for extended 

cyclic codes which are invariant under the affine group G( 1, q). These conditions are of 

great interest, because a code of g(m,q) is then recognizable by the form of its 

zero’s_set; so it is clear that the class 9(m, q) contains such interesting subclasses as the 

extended Bose-Chaudhury-Hocquenghem (BCH) codes, for m = 1, or the Generalized 

Reed-Muller (GRM) codes. However there are few results about the full automor- 

phism group of the codes belonging to 9(m,q). For instance, the automorphism 

group of BCH-codes are not known; on the other hand, the automorphism group of 

the extended Reed-Solomon (RS) codes of length q is exactly G(l, q) [12] and it is well 

known that the automorphism group of the binary Reed-Muller (RM) codes is 

G(m, 2) (cf. in [16], for example)‘. 

We say that a GRM-code of length q” over K = GF(q’) is a q-ary RM-code. 

Our main result in the present paper is that the automorphism group of the 

q-ary Reed-Muller codes, for any q and any m, is precisely G(m,q) (Theorem 5). 

The generalisation of the RM-codes to the nonbinary case was originally introduced 

by Kasami et al. [lS]; Delsarte et al. later studied, in great detail, the properties 

of these codes and their relatives; in particular, they obtain in the general case 

an enumeration of the minimum weight codewords of the GRM-codes [ll]. 

Starting from this last result we can characterize, in some cases, the permutations 

on G which preserve the set of the minimum weight codewords of a given GRM-code. 

The complete result follows from the fact that the dual of a GRM-code is a 

GRM-code. 

A linear code of length q” over K can be considered as a subspace of the modular 

algebra K [G], that we denote by A. This property is more interesting for the codes 

of 9(m,q), because a code belonging to 9(m,q) is an extended cyclic code which 

is an ideal of A. In Section 2 we present in this context the extended cyclic q-ary 

codes and the automorphisms of codes. We point out that the product of the algebra 

A is an interesting tool for the description of the codes of 9(m, q). In particular, the 

product of two codes of 9(m, q) is a code of 9(m, q). In Section 3 we describe in A the 

set of minimum weight codewords of the GRM-codes, using the product of the 

algebra and the minimum codewords of the extended RS-codes of length q. Hence- 

forth we can identify a permutation which preserves a given GRM-code with an affine 

bijection (in Section 4). The proof follows our description of the minimum weight 

codewords and uses the fundamental theorem of afine geometry, applied to finite fields 

- this theorem is recalled and described in the Appendix. Some corollaries are then 

deduced. 

’ Recently Knorr and Willems proved that the automorphism group of the p-ary RM-codes (where p is 
a prime) equals G(m,p); their proof uses the classification of doubly transitive groups ~ cf. in A&risque 

181-182, 1990. 
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A more general definition of the automorphism group of a nonbinary code is given 

in [ 161; in fact, in Theorem 6, by adapting the proof of Theorem 5 we obtain the larger 

so called monomial automorphism group of the GRM-codes. 

2. GRM-codes in a modular algebra 

Recall that G = GF( 4”‘) q = pr, may be identified with the field GF(p’“). In general 

K = GF( 4”). The algebra A = K [ G] is the set of formal polynomials, 

x= 1 x,X9, x~EK, 
gsG 

with the usual operations: 

agTGxgxg+h 1 YgX”= 1 (axg+bYg)xg, 
gsG gsG 

1 X,XTG YgXg=zG ( ZG “r)‘h-g) Xh9 1 =x0, 
gsG 

where aEK, bEK, XEA, YEA. 

By convention, a K-subspace of A is a code of A. An automorphism of a code is 

a permutation of the q”’ coordinate places which transforms codewords into code- 

words. Then we define a permutation c on G as a transformation on A: 

CT: c x,xg H c xgxu(g)= c x,-,(g)xg. 
geG gsG goG 

We denote by Aut(C) the automorphism group of a code C. A permutation c is an 

element of Aut(C) if and only if ~(x)EC for all XEC. 

A code C is an extended cyclic code if and only if Aut(C) contains the permutations: 

TQ:XEA H 2 xgXug, UEG* 
gcG 

-the extension is here the usual one: each codeword is extended by adding an overall 

parity check [16]. 

In this case, C can be defined by its zeros-set. Let S = [0, n], n = qm - 1; for each SES 

let us define: 

$,:=A H A(x)= 1 xggs, (3) 
gEG 

where ~Jx) is calculated in an overfield of K and G and, by convention, 

&(X)=&Xg’ 
Let IX be a primitive element of G. The codeword x is an extension of a polynomial 

which has the root us if and only if +s(x)=O. Thus an extended cyclic code can be 

uniquely defined by the set { s~Sld,(C)=o}. 
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Definition 1. Let T be a subset of S containing 0, and assume that T is invariant 

under the multiplication by q mod n. Then the code, 

C={XEAI&(X)=O,~ET), (4) 

is an extended cyclic q-ary code. We say that T is the defining-set of C. 

Let the q-ary expansion of SES be 

m-l 

S= C Siqi, siECo, 4- ll, 
i=O 

and define the q-weight of s as u,(s)=~~~~ si. Let vE[l,m(q- l)[. Then the set: 

I,(m,q)={sESIOq(s)<v} (5) 

is the defining-set of the q-ary RM-code of order m(q- 1)-v, denoted by C,(m,q)’ 

[9,11,15]. 

Remarks 1. (1) The code C,(l, q) is the extended Reed-Solomon code of minimum 

distance v + 1. 

(2) Recall that the dual of C,(m,q) is the code C,(m,q) with ,u=m(q- 1)-v+ 1 

Cl51. 
(3) For each q’ dividing q, we can define a class of q’-ary extended cyclic codes as 

codes of A. Then we can always define the p-ray RM-codes as codes of A: that is the 

codes C,(rm, p), with defining-set IV(~m, p). 

The following theorem, due to Delsarte, gives a necessary and sufficient condition 

for cyclic q-ary codes to be invariant under the group G(m,q). 

Theorem 1 ([lo]). Let C be a code ofA. Then Aut(C) contains G(m,q) ifand only if 

C is an extended cyclic q-ary code, the dejining-set T of which satisfies: 

SET and t satisjies (I) 5 tET, (6) 

where (I) is the condition 

(I): o,(pkt)<W,(pks), kCO,r- 11 

- q=pr and the multiplication in S is calculated modulo n. 

Remark 2. It is clear that the codes C,(m, q) are invariant under G(m, q). If m = 1 -i.e. 

if we consider codes of length q over K -, we have oJs) = s for SE[O, q - 11. Then the 

condition (I) is equivalent to 

ti d Si, iE[O,r- 11, 

*Note that this code is denoted by C,~,_l,-,(m,q) in [ll]. 
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where (so, . . . . s,_i) and (to, . . . . t,_i) are respectively the coefficients of the p-ary 

expansion of s and t. We then obtain the condition of Kasami et al. for extended cyclic 

codes which are invariant under the affine group G(l, q) [13]. Diir proved in [12] that 

the automorphism group of the codes C,(l,q), VE[~, q- l[, is exactly G(l, q) (see also 

a direct proof in [2]). 

Remark 3 ([lo]). The Theorem 1 characterizes the codes of A which are invariant 

under G(rm,p). In this case T is invariant under the multiplication by p and the 

condition (I) becomes: op( t) d up(s). Thus there is an element v of [ 1, rm( p - l)] such 

that the defining-set T is the set {s 1 w,(s) < v}, which is the defining-set I,(rm, p) of the 

p-ary RM-code CV(rm, p). Then a code of A which is invariant under G(rm, p) is a p-ary 
RM-code. 

A code C is an ideal of A if and only if Aut(C) contains the permutations: 

So a code of 9(m,q) is an ideal of A. The algebra A has only one maximal ideal 

namely its radical. The radical P of A is composed of the elements XEA satisfying 

xp=O. Since (CgEC~gXg)P=CgsG~~Xo, we have: 

Hence, by definition, an extended cyclic code is contained in P. We denote 

by Pj the ideal which is the j-power of the ideal P - i.e. which is generated 

by the products n”,=, xk,xk~P. Suppose that G is identified with GF(p’“) 

and let (ei, . . . . e,,) be any basis of G,m’=rm. Then for each jE[l,m’(p- l)], 

the set 

W)= 
i 
in; (X’i-l)k’IkiEIO,p-l], 5 ki>j 

i=l i=l I 

(7) 

is a basis of Pj [7]. This description yields that Pj is invariant under G(m’, p). Then it 

follows from Remark 3 that the jth-powers of the radical of A are the p-ary 
Reed-Muller codes. 

This result was presented by Berman in [4]; the reader can see other proofs in [6,9]; 

it was proved independently by Poli, who showed that the codes Pj are the only ideals 

of A that are invariant under G(m’,p) [17]. 

One can remark also that C,(m,q)= P and 
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Let U and V be two codes of A; we denote by U V the code generated by the 

products xy, XEU and ygV and we say that UV is the product of U and V. Let 

zM, 0~ G(m, q); we have 

XM, o(XY) = KM, o(X)%, o(Y), 
since 

rcnM,o(X~X~)=X M(g+h)=xMgxMh~ 

Hence if U and V are invariant under ran, o, then the code U V is invariant under rcM, o. 

In particular, a product of two extended cyclic codes is an extended cyclic code. 

We have seen that the product of two p-ary RM-codes is a p-ary RM-code. This 

result does not remain the same for the q-ary RM-codes. For instance, we have 

P= C,(m,q) while P2 is not the code &(m,q). However we can prove an inclusion 

formula and therefore, we need the following. 

Lemma 1. Let x and y be any codewords in A. Let SES. Then, 

4s(xY)=C (;) 4tbM-t(Y), 
f<S 

(8) 

where (so, . . . . s,,_~) and (to, . . . . t,, _ 1) are the coefficients of the p-ary expansion of 
s and t and < denotes the partial order relation: 

t<S 0 ti~Si, for all i. (9) 

Proof. 

- applying Lucas’s Theorem, we obtain the summation over t<s. 0 

Theorem 2. Let v and v’ be such that v + v’ <m(q - 1). Then the product ofC,(m, q) and 

C,*(m, q) satisfies: 

C,(m,q)G (m?q)CC”+.,(m,q). 

Proof. Let U = C,(m, q), V= C,,(m, q), XE U and ye V. Let T be the defining-set of UV. 

Let XI,+,, (m,q) and calculate $Jxy) with (8). Let tis; if teI,(m,q) then $,(x)=0; if 

t$IY(m,q), we have: 

v<w,(t)<v+v’ and t<s * coq(s-t)<v’ * 4,-,(y)=O. 

Thus ~$Jxy)=0; we have proved that ZV+Vz (m, q) c T; that means that U V is contained 

in Cv+.+n,q). 0 
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3. The minimum weight codewords of the GRM-codes 

Recall that A = K [G], G = GF(q”) and K = GF(q’). For any element x of A, let us 

define the support of x as the set: 

supp(x)={g~Glx,#O}, where x= c x,Xg. 
geG 

(IO) 

The weight of x is: o(x)= Isupp(x)l. Let g be a nonzero element of G and let 

vE[l,q-l[.WedenotebyC,({g},q)th e extended RS-code of length q and minimum 

distance v+ 1, considered as a code of A in the sense that each codeword has its 

support in the subspace gGF(q) of G: 

C,({g},q)={x~AIX= c xAgx”g and 4,(.x)=0, s~cW). (11) 
J.sGF(q) 

Let xgC,( { g}, q) and let tE,S be such that mq(t) < v. Since iq = i, we have: 

Then 4,(x)=0, for each t~Z,(m,q). We have proved the following. 

Lemma 2. Let v~[l,q- l[. Then the code C,({g},q) is contained in C,(m,q),for all 

geG*. 

Let k~[l,m] and let V be a k-dimensional subspace of G. Let x=CgsVXg; the 

following property is proved by Kasami et al. in [15]: 

SES and Wq(s)<k(q- 1) * 4Jx)=O. (12) 

In accordance with the definition of Ckcq_ l,(m, q), this property implies the following. 

Lemma 3. Let ke[l, m] and dejine the subset of A: 

A, = 
i 

c X9 1 V is a k-dimensional subspace of G (13) 
SEV 

Then A~cC~(~-II(~,~). 

Now we are able to present a description of the set of the minimum weight 

codewords (mwc’s) of any GRM-code. We shall show that an mwc can be identified 

with an element y of an Ak or with an mwc z of a code C,( {g}, m) or with a product of 

type YZ. 
In [ 111, Delsarte et al. gave another description and the enumeration of the mwc’s of 

the GRM-codes of length qm over GF(q). The following lemma shows that their 

results are available for K = GF(q’), e > 1. So we can present the enumeration of the 

mwc’s in this context (Theorem 3). 
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Lemma 4. Set K = GF(q”). Let C be an extended cyclic q-ary code. Let x be an mwc of 

C. Then x=2x’ where ~EK and x’ is an mwc of C whose coefficients are in GF(q). 

Proof. Let T be the defining-set of C and let x=CgsGxgXg, xggK. Assume that at 

least one xg, denoted x,,, is not in GF(q). Define: 

X(J0 = c x$xg, kE[O,e[. 
geG 

Since T is invariant under the multiplication by q, we have for all SET: 

Then xck) is an element of C. Now we get: 

e-l e-l 

x$Xg= c Tr(xg)Xg, 

where Tr(x,) is the trace of xg over GF( q). Without lost in generality, we can choose 

x such that Tr(x,,) #O. Since x is an mwc of C, we have w(x’) =0(x). Thus we obtain an 

X’EC such that the coefficients of x’ are in GF(q) and the support of x’ equals the 

support of x - i.e. x’ = ix, ~EK. 0 

Theorem 3 ([ll]). Let vE[l,m(q-l)[, m(q-1)-v=u(q-l)+v with vE[O,q-l[. 

Then the number of the minimum weight codewords of the code C,(m,q) is 

m-u- 1 

L,=IK*lq” n qfl”:;:J-ll N,, 
i=O 

(14) 

where No = 1 and, for u > 0, 

Theorem 4. Let v = b( q - 1) + a, aE[O, q - l[, bE[O, m[. A minimum weight codeword 

(mwc) of the code C,(m,q) is an element of A of the form: 

x=lXhyz, kK*, hEG, yeA, ZEA (15) 
where 

. If b=O then y=X’; otherwise YEA,. 

. If a = 0 then z = X0; otherwise there is gE G, g$supp(y), such that z is an mwc of the 

code C,({g}, q). 
- The set A, and the code C,({g},q) are respectively dejined by (13) and (11). 

Proof. It is well known that the minimum distance of the GRM-code C,(m, q) equals 

(a+ l)qb. When a>0 the codeword z can be considered as an mwc of an extended 



Generalized Reed-Muller codes 9 

RS-code of length q and minimum distance a+ 1; thus o(z)=a+ 1. From Lemma 2, 

z is an mwc of C,(m,q). The weight of an element of &, b>O, is clearly qb; from 

Lemma 3, y is an mwc of Cbcq_ 1j (m, q). If a > 0 and b > 0, the Theorem 2 implies that 

the product yz is an element of Cbcq- ,,+,(m, q). Moreover: 

qb(a+ l)~w(yz)~w(y)w(z)~qb(a+ l), 

which means that o(x)=(a+ l)qb. Then a codeword x which has the form (15) is an 

mwc of C,(m, q). Note that yz#O, because the support of yz contains at least two 

cosets of a b-dimensional subspace of G. 

Let R, be the number of the x’s defined by (15) and let m(q- 1)-v= u(q- l)+ u, 

VE[O, q- 1 [. We want to prove that R,= L, (L, is given by (14)). 

In all cases the support of x is contained in an (m - u)-dimensional affine subspace 

of G. There are 

ffl-u-1 

fL=q” n q4mIl;_ll 
i=O 

such affine subspaces. If v = 0, we have a = 0 and R, = &, I K* I = L,. Suppose now that 

v#O and fix geG*. It is clear that the code C,({g},q), as any extended RS-code, 

satisfies the following property. 

Property 1. For each subset A of GF(q) such that IA) =a+ 1, there is an mwc of 

C,( {g), q) the support of which is the set { ig ( AEA >. 

There are 

4 
m-u 

q-1 

possibilities for the choice of g in an (m - u)-dimensional affine subspace of G. Then 

we have 

R,=IK*I 

-since Ao=l and (,Ti)=($). 0 

Remark 4. Suppose that G is considered as a GF(p)-space (i.e. q=p or G is identified 

with GF(p*“)). In accordance with (7) the form of any element of A, is: 

Jjl (Xei-l)p-l, {el, . . ..eb} are linearly independent in G. (16) 

Indeed 
p-1 

(XeL1)P-l=~ 
k=O 
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In the algebra FCF], F=GF(p), the only ideals are the principal ideals 

generated by (Xl- l)k, k~[l,p- 11, ,? being any element in F. Then a basis of a code 

CJ{gJ,p) is 

{(X”- l)kIkECa,p- II>, (17) 

and the codewords can be represented as follows 

p-1 

Z= C Zi(Xg-l)i, ZiEF 
i=a 

-for more details the reader can refer to [6]. 

4. The automorphism group of GRM-codes 

We denote by 0 = (Bili~[O,r- l]} the Galois group of the field GF(q), q =p’. Since 

the field GF(q”), here denoted G, is an F,,-vector-space, each element of 0 can be 

considered as a linear permutation on G, 8i: gE G-+gP’, involving a transformation on 

A (cf. (2)). We denote by @m,q) the set of the permutations on G: 

B(M,h,i):gEG H (Mg)“‘+h, heG, iE[O,r-I], (18) 

where M is a nonsingular matrix of order m over GF(q). The group G(m, q) is usually 

called the group of semi-afine bijections on G (denoted GSA,(E), F = GF(q) and E = G, 

in the Appendix). The group G(m, q) contains G(m, q) (cf. (1)); if q =p, 0 contains only 

the identity and we have clearly G(m,q)=G(m,q). 

Let C be an extended cyclic q-ary code in A, with defining-set T. Then Bi is 

contained in Aut(C) if and only if T is invariant under the multiplication by pi module 

q” - 1. Indeed we have, for any XEC and any SET: 

+s(Qi(xll=$s( zG xgxg’e)=~G xg(Sp’)s=4sp’(x)3 

where & is defined by (3) and C by (4). In particular, we shall show that, in general, 

a q-ary RM-code cannot be invariant under 0i, i#O. 

Lemma5. Letq=p’,r>l,vE[2,m(q-1)-l]. Then,foralliE[l,r-l],thesetI,(m,q) 

is not invariant under the multiplication by pi modulo qm- 1. In other words, the set 

OnAut(C,(m,q)) is reduced to the identity. 

Proof. The dual of the code C,(m, q) is C,(m, q), ,u =m(q - l)- v + 1. Two dual codes 

have the same automorphism group. So we need prove the Lemma only for 

v<m(q--l)+l 
2 . 
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We state the property: 

H,: For each i, i~[l,L r/2 J], there is sEZ,(m,q) such that p’s$Z,(m,q) 

- where L r/2 ] denotes the integer part of r/2. 

Assume that H, is true. Suppose that there is aj,je]L r/2 J, r - 11, such that Z,(m, q) 

is invariant under the multiplication by p j. Let i=r--j; thus p’=q =p’pj, with 

iE[l,L r/2 1-J. S’ mce Z,(m, q) is invariant under the multiplication by q, the hypothesis 

on j contradicts H,. That means: if H, is true then the lemma is proved for v. So we 

shall prove the lemma in proving H,, by induction on v, v<(m(q- l)+ 1)/2. Recall 

that Z,(m,q) is the set of those SES such that wJs)<v. 

If v=2, we have clearly 1 ~Z*(rn, q) while pi$Zz(m, q); indeed the q-weight of pi 

equals pi. Then H2 is true. We suppose now that H,, is true for all v’E[~, v[ and we 

want to prove H,. 

Let i~[l,L r/2 J]. S ince H,_ 1 is true, we know that there is s~Z,_,(m,q) such that 

pis$Z,_,(m,q). If o,(p’s)>v-1 then p’s$Z,(m,q) and H, is true. So only the case 

04(pis) = v - 1 remains. For AE[O, q - 11, let us define: 

llp’modulo q-l if ;l<q-1 

if A=q-1. 

If C&i slq* is the q-ary expansion of s, we have [lo]: 

II-1 
~q(Pis)= 2 CSlP’l. 

I=0 

Now we get: 

t=s+qk with k~[O,m-1] such that [pisk]+pi<q. 

Note that this property implies: [pi(sk+ l)] = [piskI +pi. 

This choice of k is always possible. Indeed 

CpisJ>q-ppi, Vk -+ w4(pis)3m(q-pi), 

from (19); but w4(pis)=v- 1 and v- 1 <v. Thus 

m(q- 1) 
m(q-Pi)<7 -+ 2p’-q- 1 >o, 

which contradicts i<L r/2 J. 

Then we have: 

o,(t)= 2 s~+(s~+l)=oq(s)+l<v, 
l#k 

Thus teZ,,(m, q). Moreover: 

e&+t)= c [pis~]+([pis,]+pi)=~,(&+s)+pi, 
Ifk 

which proves that p’t$Z,(m,q). Therefore H, is true. 0 

(19) 
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The automorphism group of the GRM-codes are known in the following cases: 

l for q=2, Aut(C,(m, 2))= G(m, 2); 

l if m= 1, C,(l,q) is an extended RS-code and its automorphism group is G(l,q); 

l if v= 1 or v=m(q- l), each permutation on G is an automorphism of C,(m,q). 

So we suppose now that: q > 2, m > 1 and VE[~, m(q - l)- 11. Recall that 

Theorem 1 implies that in all cases the automorphism group of C,(m,q) contains 

G(m q). 

Theorem 5. Let VE [2, m(q - 1) - 11. The automorphism group of the q-ary RM-code of 

order m(q-1)-v is G(m,q) - i.e. Aut(C,(m,q))=G(m,q). 

Proof. Let aEAut(C,(m,q)). We denote by Mw, the set of all mwc’s of C,(m,q). 
According to (2), o can be considered as a permutation on G; so, for simplification, we 

shall apply o on A or on G. It is clear that, by definition, o(Mw,)=Mw,. We shall 

prove the theorem in describing the action of Q on the elements of Mw,. We 

distinguish four cases: 

Case 1: v=b(q-1), bE[l,m-11. 

From Theorem 4, we have: 

Mw,= AXh c XgI kK*, hEG, L is a b-dim. subspace of G 
i 

. 
SleL 

That means that o transforms any b-dimensional affine subspace of G into another. 

From Corollary 4 and (24) (see the Appendix), that yields aEC(m,q). Applying 

Lemma 5, we obtain aEG(m,q). 

Case 2: v=b(q-l)+a,bE[O,m-l[, ae[2,q-l[. 

Let V= h-t L be any (b+ 1)-dimensional affine subspace of G, where h is any 

element of G and L is any (b + 1)-dimensional subspace of G. Let {e,, . . . , eb+ 1 } be 

a basis of L; let L’ be the b-dimensional subspace of G generated by fez, . . . , eb+ 1 }. 

From Theorem 4 the following codewords are elements of Mw,: 

x=yz, y=xh C Xg, zG((ell,q) and w(z)=a+ 1, (20) 
gEL’ 

where C,( (el }, q) is defined by (11) - by convention, if b = 0 then y =Xh and L’=@ 
It is clear that the support of x is contained in V. Now the code C,( {el}, q), which is 

in fact an extended RS-code of minimum distance a+ 1, satisfies the Property 1 (see 

the proof of Theorem 4). Since a > 1, the minimum distance of C,( {el}, q) is at least 3. 

So we can define two distinct mwc’s of C,( (el}, q), say z and z’, satisfying: 

Isupp(z)nsupp(z’)l>2. (21) 

Let y be defined by (20) and: 

x=yz and x’=yz’, U = supp(x) and U’ = supp(x’). 
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By definition, an mwc of C,(m, q) has its support contained in only one (b+ l)- 

dimensional affine subspace of G. Since a(x)~Mw, and o(x’)~Mw,, we have two 

(b + 1)-dimensional affine subspaces of G, say W and W’, containing respectively 

supp(a(x)) and supp(a(x’)). But a(UnU’)=o(U)no(U’); moreover (20) and (21) 

yield 

We then obtain: 

Since Wn W’ is an affine subspace of G, we can conclude that W= w’. 

Applying the Property 1, we can construct a sequence, 

x0, . . ..xk. . . ..x<. xk=Yzk, 

such that 

0 zk is an mwc of C,( {ei},q) 

l for each k >O, zk- I and zk satisfy (21) 

l ~:=,+pp(xk)= v. 

Let Uk=supp(xk) and let wk be the (b+ 1)-dimensional affine subspace of G 

containing c( uk). Applying the preceding result to xk_ 1 and xk, for each k>O, we 
obtain: 

Moreover any element of I/ is containing in an uk. Then fl( V) equals W,. We have 

proved that CJ transforms any (b+ 1)-dimensional affine subspace of G into a (b+ l)- 

dimensional affine subspace of G. From Corollary 4, aeG(m, q). Therefore from 

Lemma 5, aeG(m,q). 

Case 3: v=b(q-l)+l, bE[l,m-11. 

The dual of C,(m,q) is C,(m,q), with 

p=m(q-l)-v+l=(m-_)(q-1). 

Then, from Case 1, Aut(C,(m,q))=Aut(C,(m,q))=G(m,q). 

Case 4: v=(m-l)(q-l)+a, aE[2,q-11. 

The dual of C,(m,q) is C,(m,q), with 

p=m(q- 1)-v+ 1 =q-a where q-aE[2,q-21. 

Then, from Case 2., Aut(C,(m,q))=Aut(C,(m,q))= G(m,q). 0 

In the parts Case 1 and Case 2 of the proof of Theorem 5, we prove in fact that 

a permutation c on G, which preserves Mw,, is an element of the group c(m, q). Then 

we have immediately the following. 
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Corollaryl. Setm>l andq>p. Letv~[2,(m-l)(q-1)],v=b(q-1)+awitha=Oor 
aE[2, q- l[. Let C be an extended cyclic q-ary code such that the set of mwc’s of 

C equals Mw,. Then Aut(C)cG(m,q). 

If q = p it is well known that a GRM-code is generated by the set of its mwc’s; recall 

that the p-ary RM-codes are the powers P’ of the radical P of the algebra A (see 

Remarks 3 and 4). Then, in this case, Theorem 5 involves the following property which 

is available for all v. 

Corollary 2. Set q =p. Let VE[~, m(p- l)- 11. Let C be an extended cyclic p-ary code 
such that the set of mwc’s of C equals the set of mwc’s of P”. Then Aut(C)c G(m,p). 

We suppose now that q = p’, r > 1, and we denote by M, the minimum weight subcode 

of C,(m,q); the defining-set J, of M, is given by Delsarte in [lo]; that is, for 

v=b(q-l)+a, ae[O,q-l[: 

.I,= n {s~S13i,i~[O,r[ such that co4(pis)<b(q-l)+[pic]} (22) 
csla,q- I[ 

- where S = [0, q” - 11. Clearly M, is invariant under G(m, q); moreover if v satisfies 

the hypotheses of Corollary 1, the automorphism group of M, is contained in G(m, q). 
Suppose that a=O. Then it follows from (22) that 

J,(,_,,={sES13i,iE[O,r[ such that o,(p’s)<b(q-1)) 

= U piL,(m,q). 
is[O, r[ 

Hence Jbcq_ 1) is invariant under the multiplication by pj modulo qm- 1, for all 

jE[l, r[. Then, from Corollary 1 and (18) it follows. 

Corollary 3. The automorphism group of the minimum weight subcode of Cbcq_ I,(m, q), 
be[l,m[, is G(m,q). 

Remark 5. Let v=b(q-_)+a, aE[l,q-l)[ and bE[l,m[. The Corollary 1 can be 

applied to the code V =C,(m,q)C,(,_,,(m,q). Indeed this code is generated by the 

products xy, xEC,(m, q) and YEC~(~_ I,(m, q). From Theorem 2 and Theorem 4, the set 

of mwc’s of V is exactly the set of mwc’s of C,(m, q). Thus if v satisfies the hypotheses of 

Corollary 1, the automorphism group of V is contained in G(m,q). 

Remark 6. The monomial group of the GRM-codes. Let C be a linear code of length 

n over K. The monomial group 3 of C, denoted ML(C), consists of all n x n monomial 

matrices N over K such that CNEC for all CCC. 

3 cf. in 116, p. 2381: the automorphism group of a nonbinary code. 



Generalized Reed-Muller codes 15 

Let us assume that C is a code of A. An element Yof ML(C) can be represented as 

follows: 

r=(y,a): 1 x,xgec t--t c y,x,x%c, 

where y=(y,EKj,,G and (T is a permutation on G. Denote y-’ = {y;’ jgec; it is easy 

to prove (see for instance [3, p. lo]) that: 

(y,a)eML(C) 0 (y-l,a)~ML(c’). 

We can remark that CJ preserves the set of the supports of the mwc’s of C. Suppose that 

C is any GRM-code and consider the proof of Theorem 5: in Cases 1 and 2 we proved 

in fact that a permutation on G which preserves the set of supports of the mwc’s of C is 

an element of G(m, q); by duality, we obtain CJE G(m, q) in the Cases 3 and 4. Thus we 

are able to prove the following 

Theorem 6. Let VE [2, m(q - 1) - 11. The monomial group of the q-ary RM-code of order 

m(q-1)-v is 

ML(C,(m,q))=K* x Aut(C,(m,q))=K* x G(m,q). 

Proof. For q = 2 we have clearly Aut(C) = ML(C). From the results of Diir it is known 

that ML(C,(l,q))=K*xG(l,q) [12]. Now we suppose that m>l and q>2. Let 

MML(C), Y=(y,o). From the remark above we have: oE@(m,q). 

Set v=b(q-l)+a, aE[O,q-l[ and bE[l,m-11. Let heG*; let V be a b-dimen- 

sional subspace of G containing h; let x be an mwc of C,(m,q) such that the 

support of x is the reunion of V with a cosets of V. It follows from Theorem 4 that 

the coefficients of x are equal on a same coset. In particular xh = x0. Since cr is 

a semi-affine bijection then o(v) is an affine subspace of G; hence the coefficients 

of r(x) are equal on a(v) in particular yoxo=y,xh. Moreover this result can be 

obtained for any heG*, which implies y = ( yo, . . . , y. >. By duality, this result remains 

true when b = 0. That means that in all cases ML(C) = K* x Aut(C), Theorem 5 com- 

pleting the proof. 0 

Appendix 

The reader can find in [l] a proof of the Theorem 7, namely the fundamental 

theorem of afine geometry. We only shall describe this theorem for finite fields. The 

permutations on the field GF(q”) which preserve the affine subspaces of equal 

dimension are characterized by Corollary 4. The formula (24) means that the group 

composed of these permutations is exactly the group G(m,q) defined by (18). 

We denote by E a vector-space over a field F. 
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Definition 2. An application f: E+E is semi-linear if there is an automorphism t of 

the field F such that: 

(1) f(x+y)=f(x)+f(~), XEE and YEE. 

(2) f(%x)=z(%)f(x), XEE and ~EF. 

Definition 3. An application f’ : E-E is semi-affine if there is aeE and f: E+ E 
semi-linear such that: 

f’(x)=f(x)+a, XEE. 

The group of semi-linear bijections is denoted by GSL,(E); the group of semi-a&e 
bijections is denoted by GSA,(E). 

Theorem 7 ([ 11). Suppose that the dimension of E is strictly greater than 1 and that F is not 
thejinitefield of order 2. Let f: E+ E be a bijection satisfying: ifa, b and c are collinear in E, 
then f(a), f(b) and f(c) are collinear in E. Then f is an element of GSA,(E). 

From now on assume that F is the finite field GF(q), q>2, and that E is the finite 

field GF(q”), m> 1, considered as an F-vector-space. 

Corollary 4. Let s~[l,m- l] and f: E+E be a bijection which transforms any s- 
dimensional afine subspace into an s-dimensional afine subspace. Then f is an element 
of GSA,(E).. 

Proof. Ifs= 1, the Theorem 7 implies fEGSA,(E). Suppose that s> 1. Each l-dimen- 

sional affine subspace L has q elements and can be considered as an intersection of some 

s-dimensional affine subspaces. By hypothesis f(L) has q elements and is an intersection 

of some s-dimensional affine subspaces. Then we can apply the Theorem 7. 0 

When F is the finite field GF(q), with q=pr (p is a prime and r ZO), the group of 

automorphisms of the field F is 

O={Oi: F-+FIQi(g)=gP’,i~[O,r-11). 

Since E is a field of characteristic p, each 8; is an automorphism of the field E; thus for 

any h : E -+ E, h being a linear bijection, the application 8i 0 h is an element of GSL,(E). 

Conversely letfgGSL,(E) be associated with the automorphism Bi. By definition, it 

is clear that the application 8 _ i of is linear; hence f = 8i 0 h, h linear and bijective. Then 

we can state: 

GSL,( E) = { ei 0 h 1 BiEO, h linear and bijectioe}, 

and deduce 

(23) 

GSA,(E) = { Oi 0 h + b ) BiEO, h linear bzjective, bE E}. 

Then GSA,(E) is the group G(m, q) defined by (18) in Section 4. 

(24) 
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