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Abstract

Berger, T. and P. Charpin, The automorphism group of Generalized Reed-Muller codes, Discrete
Mathematics 117 (1993) 1-17.

We prove that the automorphism group of Generalized Reed-Muller codes is the general linear
nonhomogeneous group. The Generalized Reed—Muller codes are introduced by Kasami, Lin and
Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result follows
their description of the minimum weight codewords. An automorphism of a cyclic g-ary code is here
a substitution over the field GF(¢™). In the more general case where the automorphisms are defined
by monomial matrices, we also obtain the automorphism group (called the monomial group) as the
direct product of the general linear nonhomogeneous group with the multiplicative group of the
alphabet field.

1. Introduction

In this paper we consider linear codes of length g™, g=p" and p is a prime, over a finite
field K of characteristic p. Usually these codes are called extended primitive codes. Let
G be the finite field of order ¢™; an automorphism of such a code C is a permutation on
G which preserves C. We denote by G(m, q) the general linear nonhomogeneous group
GLNH(m, gq) whose elements are the permutations on G of the form:

T nig — Mg+h, 43

where M is a nonsingular matrix of order m over GF(gq) and A is any point of
G represented as a column vector. The whole class of extended primitive codes that
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are invariant under G(m, q) was characterized by Delsarte. We denote by 2(m, q) this
class of codes. The result of Delsarte [10] was derived from significant work on the
polynomial codes due essentially to Kasami et al. [13-15] and Delsarte et al. [11]. In
particular, Delsarte generalized the condition, obtained by Kasami et al., for extended
cyclic codes which are invariant under the affine group G(1, q). These conditions are of
great interest, because a code of Z(m,q) is then recognizable by the form of its
zero’s-set; so it is clear that the class 2(m, q) contains such interesting subclasses as the
extended Bose—Chaudhury-Hocquenghem (BCH) codes, for m=1, or the Generalized
Reed-Muller (GRM) codes. However there are few results about the full automor-
phism group of the codes belonging to Z(m,q). For instance, the automorphism
group of BCH-codes are not known; on the other hand, the automorphism group of
the extended Reed—Solomon (RS) codes of length g is exactly G(1,q) [12] and it is well
known that the automorphism group of the binary Reed—Muller (RM) codes is
G(m,2) (cf. in [16], for example).

We say that a GRM-code of length g™ over K=GF(q°) is a g-ary RM-code.
Our main result in the present paper is that the automorphism group of the
g-ary Reed-Muller codes, for any g and any m, is precisely G(m,q) (Theorem 5).
The generalisation of the RM-codes to the nonbinary case was originally introduced
by Kasami et al. [15]; Delsarte et al. later studied, in great detail, the properties
of these codes and their relatives; in particular, they obtain in the general case
an enumeration of the minimum weight codewords of the GRM-codes [11].
Starting from this last result we can characterize, in some cases, the permutations
on G which preserve the set of the minimum weight codewords of a given GRM-code.
The complete result follows from the fact that the dual of a GRM-code is a
GRM-code.

A linear code of length g™ over K can be considered as a subspace of the modular
algebra K[ G], that we denote by A. This property is more interesting for the codes
of Z(m,q), because a code belonging to Z(m,q) is an extended cyclic code which
is an ideal of 4. In Section 2 we present in this context the extended cyclic g-ary
codes and the automorphisms of codes. We point out that the product of the algebra
A is an interesting tool for the description of the codes of Z(m, q). In particular, the
product of two codes of Z(m, q) is a code of Z(m, q). In Section 3 we describe in 4 the
set of minimum weight codewords of the GRM-codes, using the product of the
algebra and the minimum codewords of the extended RS-codes of length g. Hence-
forth we can identify a permutation which preserves a given GRM-code with an affine
bijection (in Section 4). The proof follows our description of the minimum weight
codewords and uses the fundamental theorem of affine geometry, applied to finite fields
—— this theorem is recalled and described in the Appendix. Some corollaries are then
deduced.

! Recently Knorr and Willems proved that the automorphism group of the p-ary RM-codes (where p is
a prime) equals G(m, p); their proof uses the classification of doubly transitive groups — cf. in Asterisque
181-182, 1990.
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A more general definition of the automorphism group of a nonbinary code is given
in [16]; in fact, in Theorem 6, by adapting the proof of Theorem 5 we obtain the larger
so called monomial automorphism group of the GRM-codes.

2. GRM-codes in a modular algebra

Recall that G=GF(g™), ¢=p", may be identified with the field GF(p™). In general
K =GF(g°). The algebra A=K[G] is the set of formal polynomials,

— g
X= Z x, X% x,eKk,

geG

with the usual operations:

a Z xQXg+b Z ngg: Z (axg+byg)Xga

geG geG geG

Y x, X9 y,X0=) (ngy,,_g>X", 0=) 0X9 1=X°
geG geG heG \geG 9eG
where aeK, beK, xeA, yeA.

By convention, a K-subspace of 4 is a code of A. An automorphism of a code is
a permutation of the g™ coordinate places which transforms codewords into code-
words. Then we define a permutation ¢ on G as a transformation on A4:

0:Y X, X9 > Y x, X°9=3 x,-1,X°. )
geG geG geG
We denote by Aut(C) the automorphism group of a code C. A permutation ¢ is an
element of Aut(C) if and only if ¢(x)eC for all xeC.
A code C is an extended cyclic code if and only if Aut(C) contains the permutations:

Ty o0:X€EA > Y x, X", ueG*
geG
— the extension is here the usual one: each codeword is extended by adding an overall
parity check [16].
In this case, C can be defined by its zeros-set. Let S=[0,n], n=¢q" — 1; for each se$§
let us define:

s xEA > Py (x)= ZG X,9°, 3)
ge
where ¢, (x) is calculated in an overfield of K and G and, by convention,
¢O(X)=decxg'
Let o be a primitive element of G. The codeword x is an extension of a polynomial
which has the root o° if and only if ¢,(x)=0. Thus an extended cyclic code can be
uniquely defined by the set {seS|p,(C)=0}.
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Definition 1. Let 7 be a subset of S containing 0, and assume that T is invariant
under the multiplication by g mod n. Then the code,

C={xeAd|d,(x)=0,seT}, )]

is an extended cyclic g-ary code. We say that T is the defining-set of C.

Let the g-ary expansion of seS be

m—1
§= z siqi’ Sie[(),q_l]’
i=0
and define the g-weight of s as w,(s)=Y 7=, s;. Let ve[1,m(q—1)[. Then the set:
I,(m,q)={seS|o,(s)<v} 5)

is the defining-set of the g-ary RM-code of order m(q—1)—v, denoted by C,(m,q)*
[9,11,15].

Remarks 1. (1) The code C,(1,q) is the extended Reed-Solomon code of minimum
distance v+ 1.
(2) Recall that the dual of C,(m,q) is the code C,(m,q) with u=m(g—1)—v+1

[15].

(3) For each ¢’ dividing ¢, we can define a class of g'-ary extended cyclic codes as
codes of 4. Then we can always define the p-ray RM-codes as codes of A: that is the
codes C,(rm, p), with defining-set I,(rm, p).

The following theorem, due to Delsarte, gives a necessary and sufficient condition
for cyclic g-ary codes to be invariant under the group G(m,q).

Theorem 1 ([10]). Let C be a code of A. Then Aut(C) contains G(m,q) if and only if
C is an extended cyclic g-ary code, the defining-set T of which satisfies:

seT and t satisfies (1) = teT, (6)
where (1) is the condition

(D): wy(p*t)<w,(p*s), ke[0,r—1]
— g=p" and the multiplication in S is calculated modulo n.
Remark 2. Itis clear that the codes C,(m, g) are invariant under G(m, q). f m=1—i.e.

if we consider codes of length g over K —, we have w,(s)=s for se[0, g—1]. Then the
condition (I) is equivalent to

t;<s;, ie[0,r—1],

2 Note that this code is denoted by Cyy-1,-,(m, q) in [11].
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where (sq,...,8,—1)} and (¢, ...,t,—,) are respectively the coefficients of the p-ary
expansion of s and . We then obtain the condition of Kasami et al. for extended cyclic
codes which are invariant under the affine group G(1, ¢} [13]. Diir proved in [12] that
the automorphism group of the codes C,(1, q), ve[2,g— L[, is exactly G(1, g) (see also
a direct proof in [2]).

Remark 3 ([10]). The Theorem 1 characterizes the codes of 4 which are invariant
under G(rm,p). In this case T is invariant under the multiplication by p and the
condition (I) becomes: w,(t) <w,(s). Thus there is an element v of [1,rm(p—1)] such
that the defining-set T is the set {s|w,(s)<v}, which is the defining-set I,(rm, p) of the
p-ary RM-code C,(rm, p). Then a code of A which is invariant under G(rm, p) is a p-ary
RM-code.

A code C is an ideal of A4 if and only if Aut(C) contains the permutations:

To.n:X€A > Y x, Xt heG

geG

So a code of Z2(m,q) is an ideal of A. The algebra 4 has only one maximal ideal
namely its radical. The radical P of 4 is composed of the elements xeA satisfying
xP=0. Since (¥,.%, XV =Y,.6X5X°, we have:

Pz{xeA

Y xg:O}.
geG

Hence, by definition, an extended cyclic code is contained in P. We denote
by P/ the ideal which is the j-power of the ideal P — ie. which is generated
by the products []i_,xi. x.€P. Suppose that G is identified with GF(p™)
and let (e4,...,e, ) be any basis of G,m'=rm. Then for each je[l,m'(p—1)],
the set

B(J')={]_[l(X"i—l)""lkie[O,p—l], > k%]} (7
i= i=1

is a basis of P/ [7]. This description yields that P/ is invariant under G{m’, p). Then it
follows from Remark 3 that the jth-powers of the radical of A are the p-ary
Reed—Muller codes.

This result was presented by Berman in [4]; the reader can see other proofs in [6, 9];
it was proved independently by Poli, who showed that the codes P/ are the only ideals
of A that are invariant under G(m',p) [17].

One can remark also that C,(m,q)=P and

Cm(‘l_l)(m9q)=PM(q-1):< z X!])K

geG
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Let U and V be two codes of A; we denote by UV the code generated by the
products xy, xeU and yeV and we say that UV is the product of U and V. Let
7y, 0€G(m, q); we have

T, o(XY) = Tag, 0 (X) Tar, 0 (1),
since
T O(XyX ) XM(g+h) XngMh

Hence if U and ¥V are invariant under ny, o, then the code UV is invariant under 7y, .
In particular, a product of two extended cyclic codes is an extended cyclic code.

We have seen that the product of two p-ary RM-codes is a p-ary RM-code. This
result does not remain the same for the g-ary RM-codes. For instance, we have
P=C,(m,q) while P? is not the code C,(m,q). However we can prove an inclusion
formula and therefore, we need the following.

Lemma 1. Let x and y be any codewords in A. Let s€S. Then,

$s(xy)= Z( )¢ () s— (¥, (8)

t<s

where (g, ..., Sm—1) and (tg,...,t, —1) are the coefficients of the p-ary expansion of
s and t and < denotes the partial order relation:

t<s <= t,-SSi, for all i. (9)

Proof.

(xy)= ngthw ngthZOgt”H

geG heG geG heG t=0
Z( >ngg thhs t_Z( ) ¢s t( )
geG heG t<s

— applying Lucas’s Theorem, we obtain the summation over t<s. [

Theorem 2. Let v and v' be such that v+v' <m(q—1). Then the product of C,(m, q) and
C,-(m, q) satisfies:

Cv(m’ (I) Cv’ (m’ q)C Cv+v’(ma (1)
Proof. Let U=C,(m,q), V=C,.(m,q), xeU and ye V. Let T be the defining-set of UV

Let sel, ., (m,q) and calculate ¢ (xy) with (8). Let t<s; if tel,(m, q) then ¢,(x)=0; if
t¢l,(m,q), we have:

v (t)<v+v and t<s = o,(s—1)<v' = ¢, (y)=0.

Thus ¢4(xy)=0; we have proved that I, ,.(m, g) < T; that means that UV is contained
in Cv+v'(m’ q) U
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3. The minimum weight codewords of the GRM-codes

Recall that A=K[G], G=GF(q™) and K =GF(g°). For any element x of A4, let us
define the support of x as the set:
supp(x)={geG|x,#0}, where x= ) x,X". (10)
geG
The weight of x is: w(x)=|supp(x)|. Let g be a nonzero element of G and let
ve[l,q—1[. We denote by C,({g},q) the extended RS-code of length ¢ and minimum
distance v+ 1, considered as a code of 4 in the sense that each codeword has its
support in the subspace gGF(q) of G:
C.({gha)={xed|x= )Y x,X%* and ds(x)=0,se[0,v[}. (11)

AeGF(q)

Let xeC,({g},q) and let teS be such that w,(t)<v. Since 14= 1, we have:

G(x)= Y x,(Ag)=g" > x,A%0=0.

AeGF(q) AeGF(q)

Then ¢,(x)=0, for each tel,(m, q). We have proved the following.

Lemma 2. Ler ve[l,q—1[. Then the code C,({g},q) is contained in C,(m,q), for all
geG*.

Let ke[1,m] and let V" be a k-dimensional subspace of G. Let x=Y__, X?; the
following property is proved by Kasami et al. in [15]:

seS and wy(s)<k(g—1) = ¢(x)=0. (12)

In accordance with the definition of Cy,—1,(m, q), this property implies the following.
Lemma 3. Let ke[1,m] and define the subset of A:

Ak={ Y X9V is a k—dimensional subspace of G} (13)

geV

Then Ak < Ck(q— 1)(m, CI)-

Now we are able to present a description of the set of the minimum weight
codewords (mwc’s) of any GRM-code. We shall show that an mwe can be identified
with an element y of an A, or with an mwc z of a code C,({g}, m) or with a product of
type yz.

In[11], Delsarte et al. gave another description and the enumeration of the mwc’s of
the GRM-codes of length g™ over GF(q). The following lemma shows that their
results are available for K =GF(g°), e>1. So we can present the enumeration of the
mwc’s in this context (Theorem 3).
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Lemma 4. Set K=GF(q°). Let C be an extended cyclic g-ary code. Let x be an mwc of
C. Then x=Ax’ where AeK and x' is an mwc of C whose coefficients are in GF(q).

Proof. Let 7 be the defining-set of C and let x=Y, 4%, X? x,eK. Assume that at
least one x,, denoted x,, is not in GF(gq). Define:

x®=3Y x2Xx9 ke[0,el.

geG
Since T is invariant under the multiplication by g, we have for all seT:
k -k qk
B.(x¥)= ¥ xi gs:( Y x0" ) =
geG geG
Then x*® is an element of C. Now we get:
e—1 e—1
x=Y x0=Y Y x#"X7=Y Tr(x,)X?,
k=0 geG k=0 geG

where Tr(x,) is the trace of x, over GF(q). Without lost in generality, we can choose
x such that Tr(x;) #0. Since x is an mwc of C, we have w(x’)=w(x). Thus we obtain an
x'eC such that the coefficients of x” are in GF(q) and the support of x’ equals the
support of x — ie. x'=Ax, leK. O

Theorem 3 ([11]). Let ve[l,m(qg—1)[, m(g—1)—v=u(qg—1)+v with ve[0,q—1[.
Then the number of the minimum weight codewords of the code C,(m,q) is

m—i_l
L=ik*¢ |] qq—N (14)

i=0

where No=1 and, for v>0,
Nv:(q)q iy
v q—1

Theorem 4. Let v=>b(q—1)+a, ac[0,q—1[, be[0,m[. A minimum weight codeword
(mwc) of the code C,(m,q) is an element of A of the form:

x=2X"yz, AleK* heG, yecAd, zeAd (15)
where
o Ifb=0 then y=X°; otherwise yeA,.
o Ifa=0then z=X0; otherwise there is ge G, g¢supp(y), such that z is an mwc of the

code C,({g},9)-
— The set A, and the code C,({g},q) are respectively defined by (13) and (11).

Proof. 1t is well known that the minimum distance of the GRM-code C,(m, q) equals
(a+1)g®>. When a>0 the codeword z can be considered as an mwc of an extended
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RS-code of length ¢ and minimum distance a+ 1; thus w(z)=a+ 1. From Lemma 2,

z is an mwe of C,{m,q). The weight of an element of 4,, b>0, is clearly ¢°; from

Lemma 3, y is an mwc of Cy,—1y(m, q). If a>0 and b>0, the Theorem 2 implies that

element of Cy,-1)+4(m, q). Moreover:

¢*la+D<o(yz)<o(y)o(z)<q(a+1),

which means that w(x)=(a+ 1)g®. Then a codeword x which has the form (15) is an
mwc of C,(m,q). Note that yz50, because the support of yz contains at least two
cosets of a b-dimensional subspace of G.

Let R, be the number of the x’s defined by (15) and let m{(g—1)—v=u(g—1)+v,
ve[0, g—1[. We want to prove that R,=L, (L, is given by (14)).

In all cases the support of x is contained in an (m —u)-dimensional affine subspace
of G. There are

m—u—1 qm_i—l

Au=q" H P

i—o 4

such affine subspaces. If v=0, we have a=0 and R,=1,|K*|=L,. Suppose now that
v#0 and fix geG*. It is clear that the code C,({g},q), as any extended RS-code,
satisfies the following property.

Property 1. For each subset A of GF(q) such that |A|=a+1, there is an mwc of
C.({g},q) the support of which is the set {ig|ieA}.

There are
qm—u
g—1

possibilities for the choice of g in an (m—u)-dimensional affine subspace of G. Then
we have

R=k*|( T V4 —i=1L,
a+1/qg—1

—since Ag=1and (,%,)=(%9). O

Remark 4. Suppose that G is considered as a GF(p)-space (i.e. ¢=p or G is identified
with GF(p™)). In accordance with (7), the form of any element of A, is:

b
H (Xe—1"1, {ey,...,e,} are linearly independent in G. (16)
i=1
Indeed

(Xe‘—l)p—1=z(p;1>(—1)kX(”'1_")e" and <p;1>=(—1)k.

k=0
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In the algebra F[F], F=GF(p), the only ideals are the principal ideals
generated by (X*—1)¥, ke[1,p—1], 4 being any element in F. Then a basis of a code
Ca({g},p) is

{(X?—1)lke[a,p—1]}, (17)
and the codewords can be represented as follows

p—1
z= Y z(X°—1), zeF

i=a

— for more details the reader can refer to [6].

4. The automorphism group of GRM-codes

We denote by @ = {6;]ie[0,r— 1]} the Galois group of the field GF(q), g=p". Since
the field GF(g™), here denoted G, is an F,-vector-space, each element of & can be
considered as a linear permutation on G, 6;:ge G—g”', involving a transformation on
A (cf. (2)). We denote by G(m, q) the set of the permutations on G:

O(M,h,i):geG — (Mg)” +h, heG, ic[0,r—1], (18)

where M is a nonsingular matrix of order m over GF(q). The group G(m, q) is usually
called the group of semi-affine bijections on G (denoted GSA((E), F=GF(q)and E=G,
in the Appendix). The group G(m, q) contains G(m, q) (cf. (1)); if g=p, @ contains only
the identity and we have clearly G(m, q)=G(m, q).

Let C be an extended cyclic g-ary code in A, with defining-set 7. Then 0, is
contained in Aut(C) if and only if T is invariant under the multiplication by p’ modulo

q™ — 1. Indeed we have, for any xeC and any seT:

¢s(9i(x))= d)s < Z ngg”'> = Z xg(gpi)s= ¢spi(x)a
geG ge@G

where ¢, is defined by (3) and C by (4). In particular, we shall show that, in general,

a g-ary RM-code cannot be invariant under 6;, i #0.

Lemma 5. Let q=p",r>1,ve[2,m(q—1)—1]. Then, for allie[1,r—1], the set I,(m,q)
is not invariant under the multiplication by p* modulo q™— 1. In other words, the set
OnAut(C,(m,q)) is reduced to the identity.

Proof. The dual of the code C,(m,q) is C,(m, q), u=m(q—1)—v+ 1. Two dual codes
have the same automorphism group. So we need prove the Lemma only for

m(g—1)+1

v< 3
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We state the property:
H,: For each i, ie[1,| r/2 |], there is sel,(m, q) such that p'sé¢l,(m,q)

— where | r/2 | denotes the integer part of r/2.

Assume that H, is true. Suppose that thereis a j, je]| r/2 |, r—1], such that I,(m, q)
is invariant under the multiplication by p’. Let i=r—j; thus p"=q=p'p’/, with
ie[1,| r/2 ]]. Since I,(m, q) is invariant under the multiplication by g, the hypothesis
on j contradicts H,. That means: if H, is true then the lemma is proved for v. So we
shall prove the lemma in proving H,, by induction on v, v<(m(q—1)+1)/2. Recall
that 1,(m, q) is the set of those se§ such that w,(s)<v.

If v=2, we have clearly lel,(m,q) while p'¢I,(m,q); indeed the g-weight of p
equals p’. Then H, is true. We suppose now that H,. is true for all v'€[2, v[ and we
want to prove H,.

Let ie[1,[ r/2 |]. Since H,_, is true, we know that there is sel,_;(m, gq) such that
p's¢l,_1(m,q). If w,(p's)>v—1 then p’s¢l,(m,q) and H, is true. So only the case
w,(p's)=v—1 remains. For Ae[0,q—1], let us define:

; Jp'modulo g—1 if l<g—1
[4p']= o
g—1 if Ai=gq—1.
If Z;":_ol s;q' is the g-ary expansion of s, we have [10]:
m—1
w (p's)= ), [s:ip']. (19)
=0
Now we get:

t=s+q"* with ke[0,m— 1] such that [p's,]+p'<q.
Note that this property implies: [p(si+ 1)1=[p's,] +p".
This choice of k is always possible. Indeed
[p'sc]=a—p' Yk — w,(p's)=m(q—p’),

from (19); but w,(p's)=v—1 and v—1 <™ Thys

<m(qz— 1)

m(qg—p’) - 2p'—q—1>0,

which contradicts i<| r/2 |.
Then we have:

W ()= s+ (s + D)=, (s)+ 1<,
1k

Thus tel,(m,q). Moreover:

wy(p't)="3 [p's ]+ ([p'si]l+p)=wy(p's)+p’,

Ik

which proves that p'té¢I,(m,q). Therefore H, is true. [
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The automorphism group of the GRM-codes are known in the following cases:

o for g=2, Aut(C,(m,2))=G(m,?2),

e if m=1, C,(1,q) is an extended RS-code and its automorphism group is G(1, q);

e if v=1 or v=m(g— 1), each permutation on G is an automorphism of C,(m, q).

So we suppose now that. g>2, m>1 and ve[2,m(g—1)—1]. Recall that
Theorem 1 implies that in all cases the automorphism group of C,(m,q) contains
G(m,q).

Theorem 5. Let ve[2,m(q—1)~—1]. The automorphism group of the g-ary RM-code of
order m(g—1)—v is G(m,q) — ie. Aut(C,(m,q))=G(m,q).

Proof. Let aeAut(C,(m,q)). We denote by Mw, the set of all mwc’s of C,(m,q).
According to (2), ¢ can be considered as a permutation on G; so, for simplification, we
shall apply ¢ on 4 or on G. It is clear that, by definition, 6(Mw,)= Mw,. We shall
prove the theorem in describing the action of ¢ on the elements of Mw,. We
distinguish four cases:

Case 1. v=>b(qg—1), be[1,m—1].

From Theorem 4, we have:

va={/1X" Y. X9|ieK*, heG, L is a b-dim. subspace of G}.
geL

That means that ¢ transforms any b-dimensional affine subspace of G into another.

From Corollary 4 and (24) (see the Appendix), that yields ceG(m,q). Applying

Lemma 5, we obtain ceG(m,q).

Case 2: v=b(q—1)+a,be[0,m—1[, ac[2,q9—1[.

Let V=h+ L be any (b+ 1)-dimensional affine subspace of G, where h is any
element of G and L is any (b+ 1)-dimensional subspace of G. Let {e,,...,e,+} be
a basis of L; let L’ be the b-dimensional subspace of G generated by {e,, ..., €5+ .
From Theorem 4 the following codewords are elements of Mw,:

x=yz, y=X"Y X%:zeCu{ei},q) and ow(z)=a+l, (20

gelL’

where C,({e, },q) is defined by (11) — by convention, if 5=0 then y=X" and L'=0.

It is clear that the support of x is contained in V. Now the code C,({e, },q), which is
in fact an extended RS-code of minimum distance a+ 1, satisfies the Property 1 (see
the proof of Theorem 4). Since a > 1, the minimum distance of C,({e, },q) is at least 3.
So we can define two distinct mwc’s of C,({e; },q), say z and z’, satisfying:

Isupp(z)nsupp(z') > 2. 21
Let y be defined by (20) and:

x=yz and x'=yz’, U =supp(x) and U’ =supp(x’).
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By definition, an mwc of C,(m,q) has its support contained in only one (b+1)-
dimensional affine subspace of G. Since o(x)eMw, and o(x’')e Mw,, we have two
(b + 1)-dimensional affine subspaces of G, say W and W', containing respectively
supp(a(x)) and supp(a(x'}). But ¢(UnU’")=0a(U)ne(U"), moreover (20) and (21)
yield

lo(UnU")|>24"

We then obtain:
2¢°<|a(U)na(U")| S| WnW'|<qg" !

Since Wn W’ is an affine subspace of G, we can conclude that W=W",
Applying the Property 1, we can construct a sequence,

X0y eoos Xy ooes Xgy  Xg=YZy,

such that

e z; is an mwe of C,({e,},q)

o for each k>0, z;,_ and z, satisfy (21)

o Ji—osupp(x)="V.

Let U,=supp(x;) and let W, be the (b+ l)-dimensional affine subspace of G
containing g(U,). Applying the preceding result to x,_,; and x,, for each k>0, we
obtain:

W0=W1:“'=WC.

Moreover any element of V' is containing in an U,. Then o(V) equals W,. We have
proved that ¢ transforms any (b + 1)-dimensional affine subspace of G into a (b+ 1)-
dimensional affine subspace of G. From Corollary 4, ¢eG(m,q). Therefore from
Lemma 5, e G(m, q).

Case 3: v=b(q—1)+1, be[l,m—1].

The dual of C,(m,q) is C,(m,q), with

p=m(g—1)—v+1=(m—b)(g—1).

Then, from Case 1, Aut(C,(m,q))=Aut(C,(m,q))=G(m,q).
Case & v=(m—1)(g—1)+a, ac[2,q—1[.
The dual of C,(m,q) is C,(m, q), with

pu=m(g—1)—v+1=gq—a where g—ac[2,9-2].
Then, from Case 2., Aut(C,(m,q))=Aut(C,(m,q))=G(m,q). O
In the parts Case 1 and Case 2 of the proof of Theorem 35, we prove in fact that

a permutation o on G, which preserves Mw,, is an element of the group G(m, q). Then
we have immediately the following.
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Corollary 1. Set m>1 and g>p. Let ve[2, (im—1)(g—1)],v=b(g—1)+a with a=0 or
a€(2,q—1[. Let C be an extended cyclic g-ary code such that the set of mwc’s of
C equals Mw,. Then Aut(C)=G(m, q).

If g=p it is well known that a GRM-code is generated by the set of its mwc’s; recall
that the p-ary RM-codes are the powers P of the radical P of the algebra 4 (see
Remarks 3 and 4). Then, in this case, Theorem 5 involves the following property which
1s available for all v.

Corollary 2. Set g=p. Let ve[2,m(p—1)—1]. Let C be an extended cyclic p-ary code
such that the set of mwc’s of C equals the set of mwc’s of P*. Then Aut(C)<=G(m,p).

We suppose now that g=p’, r> 1, and we denote by M, the minimum weight subcode
of C,(m,q), the defining-set J, of M, is given by Delsarte in [10]; that is, for
v=b(g—1)+a, ac[0,q—1[:

Jy=" () {seS|3i,ie[0,r[ such that w,(p's)<b(g—1)+[p'c]} (22)
cela,q—1[
— where §=[0,¢™—1]. Clearly M, is invariant under G(m, q); moreover if v satisfies
the hypotheses of Corollary 1, the automorphism group of M, is contained in G(m, q).
Suppose that a=0. Then it follows from (22) that

Jpq~1)={s€S|3i,ie[0, r[ such that w,(p's)<b(qg—1)}

= U p'L(mgq)
ief0,r[
Hence Jy-1 is invariant under the multiplication by p’ modulo ¢™—1, for all
jell,r[. Then, from Corollary 1 and (18) it follows.

Corollary 3. The automorphism group of the minimum weight subcode of Cy(,— 1y(m. q),
be[l,m[, is G(m,q).

Remark 5. Let v=b(q—1}+aq, ae[1l,q—1)[ and be[l,m[. The Corollary 1 can be
applied to the code U=C,(m, q)Cpy,-1,(m, q). Indeed this code is generated by the
products xy, xeC,(m, q) and yeCy,— 1,(m, q). From Theorem 2 and Theorem 4, the set
of mwc’s of U is exactly the set of mwc’s of C,(m, q). Thus if v satisfies the hypotheses of
Corollary 1, the automorphism group of U is contained in G(m, q).

Remark 6. The monomial group of the GRM-codes. Let C be a linear code of length

n over K. The monomial group 3 of C, denoted ML(C), consists of all n x n monomial
matrices N over K such that ¢cNeC for all ceC.

3¢f. in [16, p. 238]: the automorphism group of a nonbinary code.
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Let us assume that C is a code of 4. An element Yof ML(C) can be represented as

o |
101IOW>S,

Y=(y,0)l Z XQXgEC — Z nggXG(g)EC,

geG geG

where y={y,eK },.¢ and o is a permutation on G. Denote y "' ={y, '}, ¢; it is easy
to prove (see for instance [3, p. 10]) that:

(y,6)eML(C) <= (y !,6)eML(C').

We can remark that ¢ preserves the set of the supports of the mwc’s of C. Suppose that
C is any GRM-code and consider the proof of Theorem S: in Cases 1 and 2 we proved
in fact that a permutation on G which preserves the set of supports of the mwc’s of C is
an element of G(m, q); by duality, we obtain ce G(m, q) in the Cases 3 and 4. Thus we
are able to prove the following

Theorem 6. Let ve[2,m(q— 1}— 1]. The monomial group of the g-ary RM-code of order
m(g—1)—vis

ML(C,(m,q))=K* x Aut(C,(m, q))=K* x G(m, q).

Proof. For g =2 we have clearly Aut(C)=ML(C). From the results of Diir it is known
that ML(C,(1,9))=K*x G(l,q) [12]. Now we suppose that m>1 and ¢g>2. Let
YeML(C), Y=(y,0). From the remark above we have: seG(m, q).

Set v=b(q—1)+a, ac[0,q—1[ and be[l,m—1]. Let heG*; let ¥V be a b-dimen-
sional subspace of G containing h; let x be an mwc of C,(m,q) such that the
support of x is the reunion of ¥ with a cosets of V. It follows from Theorem 4 that
the coefficients of x are equal on a same coset. In particular x,=x,. Since o is
a semi-affine bijection then o(V) is an affine subspace of G; hence the coefficients
of Y(x) are equal on ¢(¥V) in particular yoxy=y,x,. Moreover this result can be
obtained for any heG*, which implies y={yy, ..., yo }. By duality, this result remains
true when b=0. That means that in all cases ML(C)= K* x Aut(C), Theorem 5 com-
pleting the proof. [

Appendix

The reader can find in [1] a proof of the Theorem 7, namely the fundamental
theorem of affine geometry. We only shail describe this theorem for finite fields. The
permutations on the field GF(q™) which preserve the affine subspaces of equal
dimension are characterized by Corollary 4. The formula (24) means that the group
composed of these permutations is exactly the group G(m, q) defined by (18).

We denote by E a vector-space over a field F.
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Definition 2. An application f: E—E is semi-linear if there is an automorphism t of
the field F such that:

(1) f(x+y)=f(x)+f(y), xeE and yeE.
(2) f(Ax)=1(A) f(x), xeE and AeF.

Definition 3. An application f':E—E is semi-affine if there is acE and f:E—E
semi-linear such that:

[ (x)=f(x)+a, xeE.

The group of semi-linear bijections is denoted by GSL;(E); the group of semi-affine
bijections is denoted by GSAR(E).

Theorem 7 ({1]). Suppose that the dimension of E is strictly greater than | and that F is not
the finite field of order 2. Let {: E—E be a bijection satisfying: if a, b and ¢ are collinear in E,
then f(a), f(b) and f(c) are collinear in E. Then fis an element of GSAg(E).

From now on assume that F is the finite field GF(q), ¢> 2, and that E is the finite
field GF(g™), m> 1, considered as an F-vector-space.

Corollary 4. Let se[1,m—1] and f:E—E be a bijection which transforms any s-
dimensional affine subspace into an s-dimensional affine subspace. Then f is an element
of GSAp(E).

Proof. If s=1, the Theorem 7 implies fe GSAg(E). Suppose that s> 1. Each 1-dimen-
sional affine subspace L has g elements and can be considered as an intersection of some
s-dimensional affine subspaces. By hypothesis f(L) has g elements and is an intersection
of some s-dimensional affine subspaces. Then we can apply the Theorem 7. [

When F is the finite field GF(g), with g=p" (p is a prime and r =0), the group of
automorphisms of the field F is

@ ={0,;: F~F|0i(g)=g",ie[0,r—1]}.

Since E is a field of characteristic p, each 6; is an automorphism of the field E; thus for
any h: E~E, h being a linear bijection, the application §; h is an element of GSLz(E).

Conversely let fe GSLz(E) be associated with the automorphism 6;. By definition, it
is clear that the application 6 _; > fis linear; hence f=6;° h, h linear and bijective. Then
we can state:

GSLy(E)={0;°h|0;€0, h linear and bijective}, (23)
and deduce
GSA[(E)={6;°h+b|6,€0, h linear bijective, be E}. (24)

Then GSA[(E) is the group G(m, q) defined by (18) in Section 4.
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