
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Discrete Mathematics 309 (2009) 3975–3984

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Divisibility properties of classical binary Kloosterman sumsI

Pascale Charpin a, Tor Helleseth b, Victor Zinoviev c,∗
a INRIA, Domaine de Voluceau-Rocquencourt, BP 105 - 78153, Le Chesnay, France
b The Selmer Center, Department of Informatics, University of Bergen, PB 7803, N-5020, Bergen, Norway
c Institute for Problems of Information Transmission of the Russian Academy of Sciences, Bol’shoi Karetnyi per. 19, GSP-4, Moscow, 101447, Russia

a r t i c l e i n f o

Article history:
Received 11 December 2007
Received in revised form 17 October 2008
Accepted 7 November 2008
Available online 20 December 2008

Keywords:
Binary primitive narrow sense BCH code
Coset
Coset weight distribution
Exponential sum
Cubic sum
Classical Kloosterman sum
Inverse cubic sum
Partial sum

a b s t r a c t

Let K(a) be the so-called classical Kloosterman sum over F2m . In this paper, we compute
K(a) modulo 24 for even m, completing our previous results for odd m. We extensively
study the links between K(a) and other exponential sums, especially the cubic sums. We
point out (as we did for oddm) that the values K(a) are involved in the computation of the
weight distributions of cosets of primitive narrow sense extended BCH codes of length 2m
and minimum distance 8. We also complete some recent results on K(a)− 1 modulo 3.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We denote by K(a), a ∈ F2m , the so-called classical binary Kloosterman sum over F2m . Let Bm be the extended binary
narrow sense BCH code of length 2m and minimum distance 8 and D(4) be any coset of Bm of minimumweight 4. Recall that
the vectors of weight 4 in D(4) are the coset leaders. We continue here our work on coset weight distributions of Bm (see [6,
3–5]) and on the relations which link the weight distribution of any coset D(4) with the spectrum of three exponential sums,
including the Kloosterman sum. In [4], we computed the spectrum of K(a) modulo 24 in the case where m is odd. We
obtained this result by using some congruences modulo 3, which we derived from our study of the cosets D(4), form odd.
Most recently, we treated the even case (m even) and found the exact expression for the number of coset leaders

of any coset D(4) [5]. We proved that, as for the odd case, this expression includes exponential sums of three different
types: Kloosterman sums, cubic sums and inverse cubic sums, over GF(2m). As often, the even case is much harder, i.e., the
expressions are more complicated as well as the spectrum of the cubic sum is. This led us to another approach, independent
from the codes Bm; it appeared that this approach is suitable for oddm too.
The paper is organized as follows: Section 2 includes the definitions andbasic propertieswhichweneed for the remainder

of the paper. Most of these properties are known and given without proof. By Lemma 8, we exhibit some relations between
K(a) and partial cubic sums which are particularly important in the even case. In Section 3, we recall our main result
concerning cosets D(4) of Bm [3,5] and show how we can extend our previous results (for odd m) to any m. Section 4 is
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number of project 06 - 01 - 00226).
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devoted to the congruences modulo 3, and further modulo 24, which prepare the complete result, for even m, of the next
section. Our main results are given in Section 5, where we compute K(a) modulo 24 by means of the values of the cubic
sums. In particular, we show the links between K(a)modulo 3 and the pair of cubic sums (C(a), C(a, a)) by Theorem 18.
In the last section, we study the divisibility of K(a)− 1 by 3. Notably, we complete the results presented in [8].

2. Preliminaries

In this paper F2m always denotes the Galois field of order 2m where m ≥ 3. We use the notation e(p(x)) = (−1)Tr(p(x))
where Tr is the absolute trace over F2m , and e(a) is an additive character of F2m . For evenm, wewill also use the trace function
from F2m to its subfield F4, denoted by Tm2 , that is

Tm2 (x) = x+ x
4
+ x4

2
+ · · · + x4

s−1
wherem = 2s.

For any set V , V ∗ = V \ {0} and the cardinality of V is denoted by #V .

2.1. Equations of low degree

Lemma 1 ([1]). The cubic equation x3 + ax+ b = 0, where a, b ∈ F∗2m has a unique solution in F2m if and only if Tr(a
3/b2) 6=

Tr(1). Furthermore, if it has three distinct roots in F2m , then Tr(a3/b2) = Tr(1).

Lemma 2 ([10]). Let m ≥ 2 be an integer. Set fb(x) = x3 + x+ b, for any b ∈ F∗2m . Then fb has 0, 1 or 3 roots in F2m . Let

Mi = # {b : fb(x) = 0 has precisely i solutions in F2m}.

If m is odd, then

M0 = (2m + 1)/3, M1 = 2m−1 − 1 and M3 = (2m−1 − 1)/3.

If m is even, then

M0 = (2m − 1)/3, M1 = 2m−1 and M3 = (2m−1 − 2)/3.

The next lemma will be useful, in particular for the understanding of Theorem 5 (below). We give the proof for clarity.

Lemma 3. Let m be even. Set fc(x) = x4 + cx+ 1, with c ∈ F∗2m . Let

Ni = # {c ∈ F∗2m : fc(x) = 0 has precisely i solutions in F2m}.

Then fc has 0, 1 or 4 roots in F2m . Precisely,
• fc has only one root if and only if c is not a cube;
• when c = b3, for some b,
fc has no root if Tm2 (1/b) 6= 0;
fc has 4 roots if Tm2 (1/b) = 0.

Moreover

N0 = 2m−2, N1 = 2(2m − 1)/3, N4 = (2m−2 − 1)/3.

Proof. Note that fc is an affine mapping on F2m . More precisely,

fc(x) = `c(x)+ 1 with `c(x) = x4 + cx,

where `c is linear on F2m . So, if fc has at least one root, say z, then the number of roots of fc equals the number of roots of `c .
This is because for any root x of `c , we have

fc(z + x) = fc(z)+ `c(x) = 0.

Let P3 = {b3 | b ∈ F∗2m}. Note that P3 has cardinality (2
m
− 1)/3. Since `c(x) = x(x3 + c), the mapping `c is a permutation

if and only if c 6∈ P3. Otherwise `c has four roots which are 0 and the three elements (b, bδ, bδ2), where c = b3 and δ is an
element of F4 of order 3. Clearly N2 = N3 = 0.
When `c is a permutation, there is only one x such that `c(x) = 1. This means that fc has only one root if and only if

c 6∈ P3, providing N1 = 2(2m − 1)/3.
Now suppose that c = b3 for some b ∈ F∗2m . In this case, either fc has no root or fc has 4 roots. Replacing x = by, to solve

f (x) = 0 is to solve

y4 + y+
1
b4
= 0. (1)
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The image set of y 7→ y4 + y has exactly 2m−2 − 1 non zero elements, corresponding to those b such that (1) has four
solutions. Since c = b3, we get (2m−2 − 1)/3 elements c such that fc has four roots. In this case, b satisfies

Tm2

(
1
b

)
= Tm2 (y

4
+ y) = 0.

Moreover, if Tm2 (1/b) 6= 0 then (1) is not satisfied. We can conclude N4 = (2
m−2
− 1)/3 and, further,

N0 = 2m − 1−
2m−2 − 1+ 2m+1 − 2

3
= 2m −

3 · 2m

4
= 2m−2. �

2.2. Some exponential sums

Now, we need to define several exponential sums on F2m .

Definition 4. The classical Kloosterman sums are:

K(a) =
∑
x∈F2m

e
(
a x+

1
x

)
, a ∈ F2m .

The cubic sums are:

C(a, b) =
∑
x∈F2m

e(a x3 + b x), a ∈ F∗2m , b ∈ F2m .

We denote C(a, 0) by C(a). The inverse cubic sums are:

G(a, b) =
∑
x∈F2m

e
( a
x3
+ bx

)
, a ∈ F∗2m , b ∈ F2m .

The partial cubic sums are:

P(a, b) =
∑

x∈F2m : Tr(1/x)=0

e(a x3 + b x), a ∈ F∗2m , b ∈ F2m .

The Kloosterman sums and the inverse cubic sums are generally defined on F∗2m , the multiplicative group of F2m . In this
paper we extend them to 0, assuming that

e(x−1) = e(x−3) = 1 for x = 0.

In fact: Tr(x−1) = Tr(x2
m−1
−1) and Tr(x−3) = Tr(x2

m−2
−1). It is well known that for evenm and for any a ∈ F2m we have

− 2(m/2)+1 + 4 ≤ K(a) ≤ 2(m/2)+1. (2)

Also, for any pair (a, b) of nonzero elements of F2m , we have

|G(a, b)| ≤ 2m/2+2. (3)

These bounds are explained in [5].
The spectrum of the cubic sum C(a, b) was first specified by Carlitz [2]. In this paper we use the sums C(a, a) and C(a)

only. For evenm,m = 2s, the next theorem is directly deduced from [2, Theorem 1]. Recall that C(a) = C(a, 0).

Theorem 5. Let a ∈ F∗2m . For any even m = 2s we have that

C(a) =
{

(−1)s+12s+1, if a is a cube in F2m ,
(−1)s2s, otherwise.

If a = b3, b ∈ F∗2m , then

C(a, a) =
{
0, if T 2s2 (b) 6= 0,
(−1)s+12s+1e(x30), otherwise,

where x0 denotes any solution of x4 + x = b4.
If a 6= b3, then for all such a ∈ F∗2m

C(a, a) = e
(
1
h+ 1

)
(−1)s2s,

where h is the unique solution of ax4 + x+ a = 0.
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2.3. Useful properties

Lemma 6 ([9]). For any m ≥ 3

K(a) ≡
{
4 (mod 8), if Tr(a) = 1,
0 (mod 8), if Tr(a) = 0.

Lemma 7 ([5]). For any a ∈ F∗2m and any m ≥ 3:

K(a) = 2
∑

x,Tr(1/x)=0

e(ax) = −2
∑

x,Tr(1/x)=1

e(ax),

where x runs through F2m .

Lemma 8 ([5]). Let a ∈ F∗2m . Then we have

• 2P(a, a) = K(a) when m is odd;
• 2P(a, a) = 2 C(a, a)+ K(a) when m is even.

3. Some systems of BCH equations

Recall that Bm is the binary extended (primitive narrow sense) BCH code of length n = 2m wherem ≥ 5, with minimum
distance 8. The number of coset leaders of any coset D(4) (of minimumweight 4) of Bm is the number of solutions {x, y, z, u}
of the following system of equations over F2m :

x + y + z + u = a
x3 + y3 + z3 + u3 = b
x5 + y5 + z5 + u5 = c

 . (4)

Here x, y, z and u are pairwise distinct elements of F2m and a, b, c ∈ F2m are fixed, with a 6= 0. Let µ(a, b, c) be the number
of solutions of (4) over F2m form ≥ 3. Then there are ε ∈ F2 and λ ∈ F∗2m

ε = Tr
(
b
a3

)
and λ =

c
a5
+
b2

a6
+
b
a3
+ 1, (5)

such that µ(a, b, c) equals the value µ(ε, λ), which is given in the next theorem.

Theorem 9. For m ≥ 3 the value µ(ε, λ), where λ and ε are given by (5), is an even integer expressed as follows.

• For even m [5]

24 µ(ε, λ) = 2m − 8+ 3 · G(λ, λ)+ C(λ)+ (−1)ε (2K(λ)+ 4C(λ, λ)− 8) . (6)

• For odd m [3]

24 µ (ε, λ) = 2m − 8+ 3 · G(λ, λ)+ (−1)ε+1 (2K(λ)+ 2C(λ, λ)− 8) . (7)

• Furthermore, when λ = 0 then µ(ε, 0) = 0 for even and odd m.

Remark 10. For a 6= 0 and odd m, it is easy to see that C(a, a) = C(1, b) where a = b3. Indeed, such b exists for any a and
we have

C(a, a) =
∑
x∈F2m

e(ax3 + ax) =
∑
y∈F2m

e(y3 + by) = C(1, b) (8)

where x = y/b. Thus, C(1, λ1/3) could replace C(λ, λ) in (7), as it was made in the formula (19) of [3].

Now we deduce two important corollaries from Theorem 9. Note that we tried to establish Corollary 12 directly (without
Theorem 9) without success.
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Corollary 11. For any m ≥ 8, any ε ∈ F2 and any λ ∈ F∗2m , the number at the right hand side of the equality (6) (resp. (7)) is a
positive integer divisible by 48.

Proof. We assume that m is even, m = 2s, since the case where m is odd was already proved in [4]. We denote by Am the
number at the right hand side of (6):

Am = 2m − 8+ 3G(λ, λ)+ C(λ)+ (−1)ε · (2K(λ)+ 4C(λ, λ)− 8) .

Since µ(ε, λ) is even (Theorem 9), Am is a multiple of 48. Now we use Theorem 5 and the bounds given by (2) and (3). We
get:

Am ≥ 2m − 8− 3 · 2s+2 − 2s+1 − (2s+2 + 2s+3 + 8)
≥ 2m − 16− 26 · 2s.

Hence Am > 0 when 2s(2s − 26) > 16 providing that Am > 0 as soon as s ≥ 5. The casem = 8 has been checked by overall
calculations of all possible values of µ(ε, λ) (see [5]). �

Corollary 12. Let λ ∈ F∗2m , where m is any integer such that m ≥ 5. Then G(λ, λ) is divisible by 8 for anym and any λ. Moreover:

G(λ, λ) ≡
{
8 (mod 16), if Tr(λ) = 1,
0 (mod 16), if Tr(λ) = 0, (9)

with one exceptional case when m = 6 and λ is a not cube.

Proof. We already proved the case wherem is odd in [4, Lemma 5]. So, we assume thatm is even,m = 2swith s ≥ 3. First,
it is clear that G(λ, λ) is divisible by 8 for any λ ∈ F∗ and anym ≥ 6. This comes directly from the formula (6) in Theorem 9.
Note that the value K(λ) is a multiple of 4, for any λ ∈ F∗2m . Moreover, from Theorem 5, C(λ) and C(λ, λ) are divisible by 8
as soon as s ≥ 3.
The cubic sums C(λ) and C(λ, λ) are congruent to 0 modulo 2s+1 when λ is a cube. Thus, they are congruent to 0 modulo

16 as soon as s ≥ 3 which is m ≥ 6. Hence, according to (6), G(λ, λ) is divisible by 16 as soon as K(λ) is divisible by 8.
Applying Lemma 6, the first part of the proof is completed.
When λ is not a cube, the cubic sums C(λ) and C(λ, λ) take the values ±2s only. If s ≥ 4 then, as previously, (9) holds.

Computing all µ(ε, λ) form = 6 in [5], we noticed that (9) does not hold in this case. �

Together with the previous corollaries, we directly obtain the following congruence linking Kloosterman sums and cubic
sums.

Corollary 13. Let m ≥ 8 be any integer and let λ ∈ F∗2m . Set

Bm(ε, λ) = 24 · µ(ε, λ)− 3 · G(λ, λ),

where µ(ε, λ) is given by (6) for even m and by (7) for odd m. Then for any ε ∈ F2, we have

Bm(ε, λ) ≡
{
0 (mod 48), if Tr(λ) = 0,
24 (mod 48), if Tr(λ) = 1.

4. More congruence relations

In this section, we establish some congruences which could be obtained from the results of the previous section.We used
this last method for odd m: in [4], we computed K(a) (mod 3) by means of our results on 3-error-correcting BCH codes of
length 2m,m odd.
We here use the relations linking Kloosterman sums to the partial sums P(a, a). Then the main congruences presented

in Theorem 15 (below) for anym can be obtained directly.

Lemma 14. Let m ≥ 5 and a ∈ F∗2m . Set, summing over x ∈ F2m \ {0, 1},

A =
∑

x,Tr(1/x)=0

e(a(x3 + x)) and B =
∑

x,Tr(1/x)=1

e(a(x3 + x)).

Then, 3 divides A when m is even and 3 divides B when m is odd.

Proof. Note that for x ∈ F2m \ {0, 1}

Tr
(

1
x3 + x

)
= Tr

(
1

x2 + 1
+

1
x+ 1

+
1
x

)
= Tr

(
1
x

)
. (10)
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Let m be even. Since Tr(0) = Tr(1) = 0, the sum A has exactly 2m−1 − 2 terms. According to Lemma 1, for any c such that
Tr(1/c) = 0 there is either zero or three x satisfying x3 + x = c. Thus, using (10),

A = 3
∑
c∈I

e(ac), I = {c | c 6= 0, c = x3 + xwith Tr(1/x) = 0}.

Now, assume that m is odd. In this case, Tr(0) = 0 while Tr(1) = 1. The sum B has 2m−1 − 1 terms and for any c such that
Tr(1/c) = 1 there is either zero or three x satisfying x3 + x = c. Thus, using (10),

B = 3
∑
c∈I

e(ac), I = {c | c 6= 0, c = x3 + xwith Tr(1/x) = 1}. �

Theorem 15. Let a ∈ F∗2m . Then the following congruences hold.
• If m is odd then K(a) ≡ 1− C(a, a) (mod 3).
• If m is even then K(a) ≡ 1+ C(a, a) (mod 3).

Proof. First, we need the following formula:

C(a, a) =
∑
x∈F2m

e(a(x3 + x))

=

∑
x,Tr(1/x)=0

e(a(x3 + x))+
∑

x,Tr(1/x)=1

e(a(x3 + x))

= P(a, a)+
∑

x,Tr(1/x)=1

e(a(x3 + x)). (11)

Letm be odd. Then, using Lemma 8, and (11),

K(a) = 2P(a, a) = 2C(a, a)− 2
∑

x,Tr(1/x)=1

e(a(x3 + x)).

But the sum above on the right is equal to B+ 1 where B is divisible by 3 (see Lemma 14). Then

K(a) ≡ 2(C(a, a)− 1) (mod 3),

which gives the statement.
Now assume thatm is even. Using Lemma 8 again, we get

K(a) = 2P(a, a)− 2C(a, a).

Here P(a, a) is equal to A+ 2 where A is divisible by 3 (see Lemma 14). Hence

K(a) ≡ 4− 2 C(a, a) ≡ 1+ C(a, a) (mod 3). �

The next theorem is our main congruence modulo 24. From now on, we treat the even case only. Recall that the case
wherem is odd was presented in [4].

Theorem 16. Let m = 2s with s ≥ 3. Let a ∈ F∗2m . Then we have:
If Tr(a) = 0 then

K(a)− C(a, a) ≡ 16 (mod 24) (12)

else

K(a)− C(a, a) ≡ 4 (mod 24). (13)

Proof. Recall that for evenm, we have for any a ∈ F∗2m

K(a)− C(a, a) ≡ 1 (mod 3), (14)

from Theorem 15. Now, we use the result of Carlitz [2], a simpler form of which is given by Theorem 5. It implies that
C(a, a) ≡ 0 modulo 8 as soon as s ≥ 3, that ism ≥ 6. So, in this case

K(a)− C(a, a) ≡ K(a) (mod 8).

Set L(a) = K(a)− C(a, a) and apply Lemma 6. If Tr(a) = 0 then K(a) ≡ 0 (mod 8) so that L(a) = 8R, for some integer R.
This leads to L(a) ≡ 2R (mod 3). According to (14) we get R ≡ 2 (mod 3). Consequently L(a) ≡ 16 (mod 24).
Similarly, if Tr(a) = 1 then L(a) = 8R+4,which leads to L(a) ≡ 2R+1 (mod 3). Then, from (14),we obtainR ≡ 0 (mod 3)

which implies L(a) ≡ 4 (mod 24), completing the proof. �
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5. Kloosterman sums modulo 24 and cubic sums

In this section we compute K(a) (mod 24). Moreover we obtain some relations between K(a), C(a) and C(a, a). Wewish
to point out the interest of these relations, which specify the even case (m even).
We need the following simple observation.

Lemma 17. Let r ≥ 3. Then

2r ≡
{
8 (mod 24) if r is odd
16 (mod 24) if r is even.

The next theorem (comparing to [4, Theorem 3]) shows the differences between the even case (m even) and the odd case
(m odd).

Theorem 18. Let m = 2s, with s ≥ 2, and a ∈ F∗2m . Let K(a), C(a) and C(a, a) be the exponential sums defined in Section 2.2.
Then we have:

(1) K(a) ≡ 2 (mod 3) if and only if C(a, a) = C(a). In this case

K(a) ≡
{
8 (mod 24) if Tr(a) = 0
20 (mod 24) if Tr(a) = 1.

(2) K(a) ≡ 0 (mod 3) if and only if C(a, a) = −C(a). In this case

K(a) ≡
{
0 (mod 24) if Tr(a) = 0
12 (mod 24) if Tr(a) = 1.

(3) K(a) ≡ 1 (mod 3) if and only if |C(a, a)| 6= |C(a)|.
In this case C(a, a) = 0, a = b3 for some b such that Tm2 (b) 6= 0 and

K(a) ≡
{
16 (mod 24) if Tr(a) = 0
4 (mod 24) if Tr(a) = 1.

Proof. Form ≥ 6 we apply Theorem 16. Before, we have to specify the divisibility of C(a). From Theorem 5, we know that
C(a) = (−1)r2r with r = s or r = s+ 1. From Lemma 17, we get

(−1)r2r ≡ (−1)r × (−1)r16 (mod 24),

providing C(a) ≡ 16 (mod 24) for any a.
Assume that C(a) = C(a, a). Then

K(a)− C(a, a) = K(a)− C(a) ≡ K(a)− 16 (mod 24).

Using (12) and (13), we get K(a) ≡ 8 if Tr(a) = 0 and K(a) ≡ 20 otherwise. In both cases, K(a) ≡ 2(mod 3).
Assume that C(a) = −C(a, a). Then

K(a)− C(a, a) = K(a)+ C(a) ≡ K(a)+ 16 (mod 24).

Thus, we get K(a) ≡ 0 if Tr(a) = 0 and K(a) ≡ 12 otherwise. In both cases, K(a) ≡ 0(mod 3).
Finally, if C(a, a) 6∈ {±C(a)} then the only possibility is C(a, a) = 0, implying a = b3 for some b such that Tm2 (b) 6= 0

(see Theorem 5). In this case the divisibility of K(a) is directly obtained from Theorem 16. And this is clearly the case where
K(a) ≡ 1(mod 3).
The casem = 4 follows by direct checking of sums K(a), C(a), and C(a, a) for all a ∈ F∗2m . �

The link between the set of elements a such that K(a) = 0 and the existence of the Dillon difference sets [7] is well
known. The previous theorem provides a useful necessary condition.

Corollary 19. Let m = 2s. Let a ∈ F2m such that K(a) = 0. Then we have:
Tr(a) = 0, C(a, a) 6= 0 and C(a) = −C(a, a).

We can also express K(a)modulo 24 using C(a, a) only.

Theorem 20. Let m = 2s with s ≥ 2. Then we have for any a ∈ F∗2m :

• If C(a, a) = 0, then

K(a) ≡
{
16 (mod 24), if Tr(a) = 0,
4 (mod 24), if Tr(a) = 1.
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• If C(a, a) ∈ {2s,−2s+1}, then for odd s

K(a) ≡
{
0 (mod 24), if Tr(a) = 0,
12 (mod 24), if Tr(a) = 1,

and for even s

K(a) ≡
{
8 (mod 24), if Tr(a) = 0,
20 (mod 24), if Tr(a) = 1.

• If C(a, a) ∈ {−2s, 2s+1}, then for odd s

K(a) ≡
{
8 (mod 24), if Tr(a) = 0,
20 (mod 24), if Tr(a) = 1,

and for even s

K(a) ≡
{
0 (mod 24), if Tr(a) = 0,
12 (mod 24), if Tr(a) = 1.

Proof. The case C(a, a) = 0 is the same as Theorem 18, (3).
Assume that C(a, a) ∈ {2s,−2s+1}. Using Theorem 5, this implies C(a) ∈ {−2s, 2s+1} when s is odd and C(a) ∈

{2s,−2s+1}when s is even. Thus we apply Theorem 18, (2), and Theorem 18, (1), respectively.
When C(a, a) ∈ {−2s, 2s+1}, we have similarly C(a) ∈ {−2s, 2s+1} for odd s and C(a) ∈ {2s,−2s+1} for even s. Here, we

apply Theorem 18, (1), and Theorem 18, (2), respectively. �

To conclude this section, we want to explain the equations C(a, a) = ±C(a), where a ∈ F∗2m .

Lemma 21. For any even m ≥ 4 and any a ∈ F∗2m we have

C(a, a) =


C(a) when Tr

(
1
h+ 1

)
= 0,

− C(a) when Tr
(
1
h+ 1

)
= 1.

where h ∈ F2m is such that

a h4 + h+ a = 0.

Proof. Note that obviously C(a, a) = C(a2, a2). Clearly, we have for any h ∈ F2m :

C(a) =
∑
x∈F2m

e(ax3) =
∑
x∈F2m

e
(
a(x+ h)3

)
=

∑
x∈F2m

e
(
a(x3 + x2h+ xh2 + h3)

)
=

∑
x∈F2m

e
(
ax3 + x2(a2h4 + ah)+ ah3

)
=

∑
y∈F2m

e
(
a2y3 + y(a2h4 + ah)+ ah3

)
, where y = x2,

= (−1)Tr(ah
3)C(a2, a2h4 + ah). (15)

First note that we obtain here all b ∈ F∗2m such that either

C(a, b) = C(a) when Tr(ah3) = 0

or

C(a, b) = −C(a) when Tr(ah3) = 1.

Indeed, according to (15) we can set b2 = a2h4 + ah. The linear mapping h 7→ a2h4 + ah is a permutation if and only if
a is not a cube. Otherwise, its image is of codimension 2. But for any cube a there are exactly 2m−2 elements b ∈ F2m such
that C(a, b) 6= 0 (see [2, Theorem 1]).
Now we consider the sum C(a, a) only, that is the h ∈ F2m such that

a2h4 + ah = a2 or, equivalently, ah4 + h+ a = 0.
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Therefore

h4 +
h
a
+ 1 = 0. (16)

When (16) is satisfied for some h1, we have a = h1/(h1 + 1)4 and

Tr(ah31) = Tr
(

h41
(h1 + 1)4

)
= Tr

(
h1
h1 + 1

)
= Tr

(
1

h1 + 1

)
.

Suppose that a is not a cube. There are 2(2m − 1)/3 such a, where each a corresponds to the only one solution of (16) (see
Lemma 3).
When a = b3, to solve (16) is to find the solutions y of

y4 + y+ b4 = 0 (17)

(replacing y = hb, see (1)). If there is at least one solution of (17) then there are four solutions, say yi for i = 1, . . . , 4, and
b4 = y4i + yi for any i. �

As one would expect, the results above are in accordance with Theorem 5.

6. Another divisibility modulo 3

In this section we study the divisibility by 3 of K(a)− 1. In [9] it has been proved that for oddm and any a, a 6= 0, 1

K(a4 + a3)− 1 ≡ 0 (mod 3).

In [4], we specified K(a)− 1 modulo 3, but for oddm only. Another expression is proposed by [8], also for oddm. For even
m and any a (a 6= 0, 1) we have from [9] that K(a4 + a3) is congruent to 8 or 0 modulo 12 depending on Tr(a) = 0 or
Tr(a) = 1. Here we give another proof of our previous result (in [4] for odd m) and also completely solve the case of even
m, by proving the following theorem.

Theorem 22. Let a be any element in F∗2m . Then we have

• When m is odd then K(a)− 1 is divisible by 3 if and only if Tr(a1/3) = 0. This is equivalent to

a =
β

(1+ β)4
for some β ∈ F∗2m .

• When m = 2s. K(a)− 1 is divisible by 3 if and only if

a = b3 for some b such that T 2s2 (b) 6= 0.

• In both cases K(a)− 1 is divisible by 3 if and only if C(a, a) = 0.

Proof. Recall that notation K and C for exponential sums is introduced in Definition 4 for anym (odd or even). Also, we set
C(a) = C(a, 0) in any case.
Let m be odd, so that x 7→ ax3 is a permutation. This means notably that C(a) = 0, for any a ∈ F∗2m . From Theorem 15,

we have for any a ∈ F∗2m :

K(a)− 1 ≡ −C(a, a) (mod 3).

But, when C(a, a) is a nonzero power of 2 it cannot be divisible by 3. We deduce that 3 divides K(a) − 1 if and only if
C(a, a) = 0. We know that C(a, a) = 0 if and only if Tr(a1/3) = 0 (see [3]).
There is also another point of view, that we develop now. We compute C(1), using (15). For any h ∈ F2m :

C(1) =
∑
x∈F2m

e(x3) =
∑
x∈F2m

e
(
(x+ h)3

)
= (−1)Tr(h

3)C(1, h4 + h) = 0.

The map h 7→ h4 + h is 2-to-1 on F2m , for oddm. So, we get 2m−1 values C(1, a)with a = h4 + h. We have got here all the a
such that C(1, a) = 0, because it is well known that C(1, a) = 0 if and only if Tr(a) = 0 (see [2, Theorem 2]).
Now set a = b3 for some b. We have seen that C(1, b) = 0 if and only if there is an h such that h4 + h + b = 0. Setting

h = bywe have the following equivalent equations:

h4 + h+ b = 0⇔ b4y4 + by+ b = 0

which is equivalent to

bay4 + by+ b = 0⇔ ay4 + y+ 1 = 0.
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So a = (y+ 1)/y4, which is by replacing y = (z + 1)2:

a2 =
z2

(z4 + 1)2
=

(
z

z4 + 1

)2
.

Assume now thatm is even,m = 2s. In this case, we can use Theorem 18where the three possible values of K(a)(mod 3)
are studied. We directly obtain that

K(a)− 1 ≡ 0 (mod 3)⇔ C(a, a) = 0

(case (3) of this theorem). In accordance with Theorem 5, C(a, a) = 0 if and only if a is a cube such that Tm2 (a
1/3) 6= 0,

completing the proof. �

7. Conclusion

In this paper, we study some divisibility properties of classical binary Kloosterman sums. However, our main purpose
is to point out the interesting (and often surprising) relations which appear between these sums, the cubic sums and the
inverse cubic sums. Formula (6) and (7) show clearly these relations, as well as the involvement of these sums in the weight
distributions of cosets of the 3-error-correcting BCH-code. Moreover our results lead us to several open problems. It is first
the spectrum of K(a)modulo 24. We were able to give it for oddm in [4], but the even case seems more difficult. To obtain,
even for specific a, the values of K(a) by means of other exponential sums or of the values µ(ε, λ), using (6) and (7), is a
more general and difficult problem.
There is a natural expansion of Theorem 22, since the general problem of the computation of K(a) − 1 modulo 3 is not

considered. Whenm is even, Theorem 18 could be used extensively.
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