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A
A5/1

A5/1 is the symmetric cipher used for encrypt-
ing over-the-air transmissions in the GSM stan-
dard. A5/1 is used in most European countries,
whereas a weaker cipher, called A5/2, is used
in other countries (a description of A5/2 and an
attack can be found in [4]). The description of
A5/1 was first kept secret but its design was re-
versed engineered in 1999 by Briceno, Golberg,
and Wagner. A5/1 is a synchronous stream cipher
based on linear feedback shift registers (LFSRs).
It has a 64-bit secret key.

A GSM conversation is transmitted as a se-
quence of 228-bit frames (114 bits in each direc-
tion) every 4.6 millisecond. Each frame is xored
with a 228-bit sequence produced by the A5/1
running-key generator. The initial state of this
generator depends on the 64-bit secret key, K,
which is fixed during the conversation, and on a
22-bit public frame number, F.

The A5/1 running-key generator (see Figure 2)
consists of three LFSRs of lengths 19, 22, and 23.
Their characteristic polynomials are X19 + X5 +
X2 + X + 1, X22 + X + 1, and X23 + X15 + X2 +
X + 1. For each frame transmission, the three
LFSRs are first initialized (see Figure 1) to zero.
Then, at time t = 1, . . . , 64, the LFSRs are clocked,
and the key bit Kt is xored to the feedback bit
of each LFSR. For t = 65, . . . , 86, the LFSRs are
clocked in the same fashion, but the (t − 64)th bit
of the frame number is now xored to the feedback
bits.

After these 86 cycles, the generator runs as fol-
lows. Each LFSR has a clocking tap: tap 8 for the
first LFSR, tap 10 for the second and the third
ones (where the feedback tap corresponds to tap 0).
At each unit of time, the majority value b of the

F22 ... F1K64 ... K1

Fig. 1. Initialization of the A5/1 running-key generator

three clocking bits is computed. A LFSR is clocked
if and only if its clocking bit is equal to b. For
instance, if the three clocking bits are equal to
(1, 0, 0), the majority value is 0. The second and
third LFSRs are clocked, but not the first one. The
output of the generator is then given by the xor of
the outputs of the three LFSRs. After the 86 ini-
tialization cycles, 328 bits are generated with the
previously described irregular clocking. The first
100 ones are discarded and the following 228 bits
form the running-key.

Several time–memory trade-off attacks have
been proposed on A5/1 [1, 2]. They require the
knowledge of a few seconds of conversation plain-
text and run very fast. But, they need a huge
precomputation time and memory. Another attack
due to Ekdahl and Johansson [3] exploits some
weaknesses of the key initialization procedure. It
requires a few minutes using 2–5 minutes of con-
versation plaintext without any notable precom-
putation and storage capacity.

Anne Canteaut
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Fig. 2. A5/1 running-key generator
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ABA DIGITAL SIGNATURE
GUIDELINES

The American Bar Association provided a very
elaborate, thorough, and detailed guideline on all
the legal aspects of digital signature schemes and
a Public Key Infrastructure (PKI) solution such as
X.509 at a time when PKI was still quite novel
(1996). The stated purpose was to establish a
safe harbor—a secure, computer-based signature
equivalent—which will
1. minimize the incidence of electronic forgeries,
2. enable and foster the reliable authentication of

documents in computer form,
3. facilitate commerce by means of computerized

communications, and
4. give legal effect to the general import of the

technical standards for authentication of com-
puterized messages.

This laid the foundation for so-called Certificate
Policy Statements (CPS) issued by Certification
Authorities (CA), the purpose of which is to re-
strict the liability of the CA. It is fair to state that
often these CPS are quite incomprehensible to or-
dinary users.

Peter Landrock

ACCESS CONTROL

Access control (also called protection or authoriza-
tion) is a security function that protects shared
resources against unauthorized accesses. The
distinction between authorized and unauthorized

accesses is made according to an access control pol-
icy. The resources which are protected by access
control are usually referred to as objects, whereas
the entities whose accesses are regulated are
called subjects. A subject is an active system entity
running on behalf of a human user, typically a pro-
cess. It is not to be confused with the actual user.

Access control is employed to enforce security
requirements such as confidentiality and integrity
of data resources (e.g., files, database tables), to
prevent the unauthorized use of resources (e.g.,
programs, processor time, expensive devices), or to
prevent denial of service to legitimate users. Prac-
tical examples of security violations that can be
prevented by enforcing access control policies are:
a journalist reading a politician’s medical record
(confidentiality); a criminal performing fake bank
account bookings (integrity); a student printing
his essays on an expensive photo printer (unau-
thorized use); and a company overloading a com-
petitor’s computers with requests in order to pre-
vent it from meeting a critical business deadline
(denial of service).

ENFORCEMENT MECHANISM AND POLICY DE-
CISION: Conceptually, all access control systems
comprise two separate components: an enforce-
ment mechanism and a decision function. The en-
forcement mechanism intercepts and inspects ac-
cesses, and then asks the decision function to de-
termine if the access complies with the security
policy or not. This is depicted in Figure 1.

An important property of any enforcement
mechanism is the complete mediation property
[17] (also called reference monitor property), which
means that the mechanism must be able to inter-
cept and potentially prevent all accesses to a re-
source. If it is possible to circumvent the enforce-
ment mechanism no security can be guaranteed.

The complete mediation property is easier to
achieve in centralized systems with a secure ker-
nel than in distributed systems. General-purpose
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Fig. 1. Enforcement mechanism and decision function

operating systems, e.g., are capable of intercepting
system calls and thus of regulating access to de-
vices. An example for an enforcement mechanism
in a distributed system is a packet filter firewall,
which can either forward or drop packets sent to
destinations within a protected domain. However,
if any network destinations in the protected do-
main are reachable through routes that do not
pass through the packet filter, then the filter is
not a reference monitor and no protection can be
guaranteed.

ACCESS CONTROL MODELS: An access control
policy is a description of the allowed and denied
accesses in a system. In more formal terms, it is
a configuration of an access control model. In all
practically relevant systems, policies can change
over time to adapt to changes in the sets of objects,
subjects, or to changes in the protection require-
ments. The model defines how objects, subjects,
and accesses can be represented, and also the op-
erations for changing configurations.

The model thus determines the flexibility and
expressive power of its policies. Access control
models can also be regarded as the languages
for writing policies. The model determines how
easy or difficult it is to express one’s security re-
quirements, e.g., if a rule like “all students ex-
cept Eve may use this printer” can be conveniently
expressed. Another aspect of the access model is
which formal properties can be proven about poli-
cies, e.g., can a question like “Given this policy, is
it possible that Eve can ever be granted this ac-
cess?” be answered. Other aspects influenced by
the choice of the access model are how difficult it
is to manage policies, i.e., adapt them to changes
(e.g., “can John propagate his permissions to oth-
ers?”), and the efficiency of making access deci-
sions, i.e. the complexity of the decision algorithm
and thus the run-time performance of the access
control system.

There is no single access model that is suitable
for all conceivable policies that one might wish to
express. Some access models make it easier than
others to directly express confidentiality require-
ments in a policy (“military policies”), whereas
others favor integrity (“commercial policies,” [4]),

or allow to express history-based constraints
(“Chinese Walls,” [3]). Further detail on earlier se-
curity models can be found in [14].

Access Matrix Models

A straightforward representation of the allowed
accesses of a subject on an object is to list
them in a table or matrix. The classical access
matrix model [12] represents subjects in rows, ob-
jects in columns, and permissions in entries. If
an access mode print is listed in the matrix en-
try M(Alice,Laser Printer ), then the subject Alice may
print-access the LaserPrinter object.

Matrix models typically define the sets of sub-
jects, objects, and access modes (“rights”) that they
control directly. It is thus straightforward to ex-
press what a given subject may do with a given
object, but it is not possible to directly express a
statement like “all students except Eve may print.”
To represent the desired semantics, it is necessary
to enter the access right print in the printer col-
umn for the rows of all subjects that are students,
except in Eve’s. Because this is a low-level rep-
resentation of the policy statement, it is unlikely
that administrators will later be able to infer the
original policy statements by looking at the ma-
trix, especially after a number of similar changes
have been performed.

A property of the access matrix that would be
interesting to prove is the safety property. The gen-
eral meaning of safety in the context of protection
is that no access rights can be leaked to an unau-
thorized subject, i.e. that there is no sequence of
operations on the access matrix that, given some
initial safe state, would result in an unsafe state.
The proof by Harrison et al. [11] that safety is only
decidable in very restricted cases is an important
theoretical result of security research.

The access matrix model is simple, flexible, and
widely used in practice. It is also still being ex-
tended and refined in various ways in the recent
security literature, e.g., to represent both permis-
sions and denials, to account for typed objects with
specific rather than generic access modes, or for
objects that are further grouped in domains.

Since the access matrix can become very large
but is typically also very sparse, it is usually not
stored as a whole, but either row-wise or column-
wise. An individual matrix column contains
different subjects’ rights to access one object. It
thus makes sense to store these rights per ob-
ject as an access control list (ACL). A matrix row
describes the access rights of a subject on all ob-
jects in the system. It is therefore appealing to
store these rights per subject. From the subject’s
perspective, the row can be broken down to a list
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of access rights per object, or a capability list. The
two approaches of implementing the matrix model
using either ACLs or capabilities have different
advantages and disadvantages.

Access Control Lists

An ACL for an object o is a list of tuples
(s, (r1, . . . , rn)), where s is a subject and the ri are
the rights of s on o. It is straightforward to asso-
ciate an object’s access control list with the object,
e.g., a file, which makes it easy for an administra-
tor to find out all allowed accesses to the object, or
to revoke access rights.

It is not as easy, however, to determine a
subject’s allowed accesses because that requires
searching all ACLs in the system. Using ACLs to
represent access policies can also be difficult if the
number of subjects in a system is very large. In this
case, storing every single subject’s rights results
in long and unwieldy lists. Most practical systems
therefore use additional aggregation concepts to
reduce complexity, such as user groups or roles.

Another disadvantage of ACLs is that they do
not support any kind of discretionary access con-
trol (DAC), i.e., ways to allow subjects to change
the access matrix at their discretion. In the UNIX
file system, e.g., every file object has a designated
owner who may assign and remove access rights
to the file to other subjects. If the recipient sub-
ject did not already possess this right, executing
this command changes the state of the access ma-
trix by entering a new right in a matrix entry. File
ownership—which is not expressed in the basic
access matrix—thus implies a limited form of ad-
ministrative authority for subjects.

A second example of discretionary access control
is the GRANT option that can be set in relational
databases when a database administrator assigns
a right to a user. If this option is set on a right that
a subject possesses, this subject may itself use the
GRANT command to propagate this right to an-
other subject. This form of discretionary access
control is also called delegation. Implementing
controlled delegation of access rights is difficult,
especially in distributed systems. In SQL, delega-
tion is controlled by the GRANT option, but if this
option is set by the original grantor of a right, the
grantor cannot control which other subjects may
eventually receive this right through the grantee.
Delegation can only be prevented altogether.

In systems that support delegation there is typ-
ically also an operation to remove rights again.
If the system’s protection state after a revocation
should be the same as before the delegation, re-
moving a right from a subject which has delegated
this right to other subjects requires transitively

revoking the right from these grantees, too. This
cascading revocation [9, 10] is necessary to pre-
vent a subject from immediately receiving a re-
voked right back from one of its grantees.

Discretionary access control and delegation are
powerful features of an access control system that
make writing and managing policies easier when
applications require or support cooperation be-
tween users. These concepts also support appli-
cations that need to express the delegation of
some administrative authority to subjects. How-
ever, regular ACLs need to be extended to support
DAC, e.g., by adding a meta-right GRANT and by
tracing delegation chains. Delegation is more el-
egantly supported in systems that are based on
capabilities or, more generally, credentials. A sem-
inal paper proposing a general authorization the-
ory and a logic that can express delegation is [13].

Capabilities and Credentials

An individual capability is a pair (o, (r1, . . . , rn)),
where o is the object and the r1, . . . , rn are access
rights for o. Capabilities were first introduced as a
way of protecting memory segments in operating
systems [6, 8, 15, 16]. They were implemented as
a combination of a reference to a resource (e.g., a
file, a block of memory, a remote object) with the
access rights to that resource. Capabilities were
thus directly integrated with the memory address-
ing mechanism, as shown in Figure 2. Thus, the
complete mediation property was guaranteed be-
cause there is no way of reaching an object without
using a capability and going through the access
enforcement mechanism.

The possession of a capability is sufficient to
be granted access to the object identified by
that capability. Typically, capability systems al-
low subjects to delegate access rights by passing
on their capabilities, which makes delegation sim-
ple and flexible. However, determining who has
access to a given object at a given time requires
searching the capability lists of all subjects in
the system. Consequently, blocking accesses to an
object is more difficult to realize because access
rights are not managed centrally.

rightsreference

resource

{read, write, append, execute, ...}capability

Fig. 2. A capability



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 20:59

Access control 5

Capabilities can be regarded as a form of creden-
tials. A credential is a token issued by an author-
ity that expresses a certain privilege of its bearer,
e.g., that a subject has a certain access right, or is
a member of an organization. A verifier inspecting
a credential can determine three things: that the
credential comes from a trusted authority, that it
contains a valid privilege, and that the credential
actually belongs to the presenter. A real-life anal-
ogy of a credential is registration badge, a driver’s
license, a bus ticket, or a membership card.

The main advantage of a credentials system is
that verification of a privilege can be done, at least
theoretically, off-line. In other words, the verifier
does not need to perform additional communica-
tions with a decision function but can immediately
determine if an access is allowed or denied. In ad-
dition, many credentials systems allow subjects
some degree of freedom to delegate their creden-
tials to other subjects. A bus ticket, e.g., may be
freely passed on, or some organizations let mem-
bers issue visitor badges to guests.

Depending on the environment, credentials may
need to be authenticated and protected from theft.
A bus ticket, e.g., could be reproduced on a photo-
copier, or a membership card stolen. Countermea-
sures against reproduction include holograms on
expensive tickets, while the illegal use of a stolen
driver’s license can be prevented by comparing the
photograph of the holder with the appearance of
the bearer. Digital credentials that are created,
managed, and stored by a trusted secure kernel do
not require protection beyond standard memory
protection. Credentials in a distributed system are
more difficult to protect: Digital signatures may
be required to authenticate the issuing authority,
transport encryption to prevent eavesdropping or
modification in transit, and binding the subject to
the credential to prevent misuse by unauthorized
subjects. Typically, credentials in distributed sys-
tems are represented in digital certificates such as
X.509 or SPKI [7], or stored in secure devices such
as smart cards.

Role-Based Access Control (RBAC)

In the standard matrix model, access rights are
directly assigned to subjects. This can be a man-
ageability problem in systems with large numbers
of subjects and objects that change frequently be-
cause the matrix will have to be updated in many
different places. For example, if an employee in a
company moves to another department, its subject
will have to receive a large number of new access
rights and lose another set of rights.

Aggregation concepts such as groups and roles
were introduced specifically to make security

Users Roles

User
Assignment

Permission
Assignment

Permissions

Fig. 3. The basic RBAC model

administration simpler. Because complex admin-
istrative tasks are inherently error-prone, reduc-
ing the potential for management errors also in-
creases the overall security of a system. The most
widely used role models are the family of models
introduced in [19], which are called RBAC0, . . . ,
RBAC3. RBAC0 is the base model that defines roles
as a management indirection between users and
permissions and is illustrated in Figure 3. Users
are assigned to roles rather than directly to per-
missions, and permissions are assigned to roles.

The other role-based access control (RBAC)
models introduce role hierarchies (RBAC1) and
constraints (RBAC2). A role hierarchy is a partial
order on roles that lets an administrator define
that one role is senior to another role, which means
that the more senior role inherits the junior role’s
permissions. For example, if a Manager role is de-
fined to be senior to an Engineer role, any user
assigned to the Manager role would also have the
permissions assigned to the Engineer role.

Constraints are predicates over configurations
of a role model that determine if the configura-
tion is acceptable. Typically, role models permit
the definition of mutual exclusion constraints to
prevent the assignment of the same user to two
conflicting roles, which can enforce separation of
duty. Other constraints that are frequently men-
tioned include cardinality constraints to limit the
maximum number of users in a role, or prerequi-
site role constraints, which express that, e.g., only
someone already assigned to the role of an En-
gineer can be assigned to the Test-Engineer role.
The most expressive model in the family is RBAC3,
which combines constraints with role hierarchies.

The role metaphor is easily accessible to most
administrators, but it should be noted that the
RBAC model family provides only an extensional
definition of roles, so the meaning of the role
concept is defined only in relation to users and
permissions. Often, roles are interpreted in a task-
oriented manner, i.e., in relation to a particular
task or set of tasks, such as an Accountant role
that is used to group the permissions for account-
ing. In principle, however, any concept that is
perceived as useful for grouping users and per-
missions can be used as a role, even purely struc-
tural user groups such as IT-Department. Finding
a suitable intensional definition is often an impor-
tant prerequisite for modeling practical, real-life
security policies in terms of roles.
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Information Flow Models

The basic access matrix model can restrict the re-
lease of data, but it cannot enforce restrictions
on the propagation of data after it has been read
by a subject. Another approach to control the dis-
semination of information more tightly is based
on specifying security not in terms of individual
acess attempts, but rather in terms of the infor-
mation flow between objects. The focus is thus not
on protecting objects themselves, but the informa-
tion contained within (and exchanged between)
objects. An introduction to information flow mod-
els can be found in [18].

Since military security has traditionally been
more concerned with controlling the release and
propagation of information, i.e., confidentiality,
than with protecting data against integrity vio-
lations, it is a good example for information flow
security. The classic military security model de-
fines four sensitivity levels for objects and four
clearance levels for subjects. These levels are: un-
classified, confidential, secret, and top secret. The
classification of subjects and objects according to
these levels is typically expressed in terms of se-
curity labels that are attached to subjects and
objects.

In this model, security is enforced by control-
ling accesses so that any subject may only access
objects that are classified at the same level for
which the subject has clearance, or for a lower
level. For example, a subject with a “secret” clear-
ance is allowed access to objects classified as “un-
classified,” “confidential,” and “secret,” but not to
those classified as “top secret.” Information may
thus only flow “upwards” in the sense that its sen-
sitivity is not reduced. An object that contains
information that is classified at multiple secu-
rity levels at the same time is called a multilevel
object.

This approach takes only the general sensitivity,
but not the actual content of objects into account.
It can be refined to respect the need-to-know prin-
ciple. This principle, which is also called principle
of least privilege, states that every subject should
only have those permissions that are required for
its specific tasks. In the military security model,
this principle is enforced by designating compart-
ments for objects according to subject areas, e.g.,
“nuclear.” This results in a security classification
that comprises both the sensitivity label and the
compartment, e.g., “nuclear, secret.” Subjects may
have different clearance levels for different com-
partments.

The terms discretionary access control (DAC)
and mandatory access control (MAC) originated

in the military security model, where performing
some kinds of controls was required to meet le-
gal requirements (“mandatory”), viz. that classi-
fied information may only be seen by subjects with
sufficient clearance. Other parts of the model, viz.
determining whether a given subject with suffi-
cient clearance also needs to know the informa-
tion, involved some discretion (“discretionary”).

The military security model (without compart-
mentalization) was formalized in [1]. This model
defined two central security properties, the sim-
ple security property (“subjects may only read-
access objects with a classification at or below their
own clearance”) and the star-property or ∗-property
(“subjects may not write to objects with a classifi-
cation below the subject’s current security level”).
The letter property ensures that a subject may not
read information of a given sensitivity and write
that information to another object at a lower sen-
sitivity level, thus downgrading the original sen-
sitivity level of the information. The model in [1]
also included an ownership attribute for objects
and the option to extend access to an object to an-
other subject. The model was refined in [2] to ad-
dress additional integrity requirements.

The permitted flow of information in a system
can also more naturally be modeled as a lattice of
security classes. These classes correspond to the
security labels introduced above and are partially
ordered by a flow relation “→” [5]. The set of se-
curity classes forms a lattice under “→” because a
least upper bound and a greatest lower bound can
be defined using a join operator on security classes.
Objects are bound to these security classes. Infor-
mation may flow from object a to b through any se-
quence of operations if and only if A “→” B, where
A and B are the objects’ security classes. In this
model, a system is secure if no flow of information
violates the flow relation.

Gerald Brose
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ACCESS STRUCTURE

Let P be a set of parties. An access structure �P
is a subset of the powerset 2P . Each element of �P
is considered trusted, e.g., has access to a shared
secret (see secret sharing scheme). �P is monotone
if for each element of �P each superset belongs to
�P , formally: whenA ⊆ B ⊆ P andA ∈ �P ,B ∈ �P .

An adversary structure is the complement of an
access structure; formally, if �P is an access struc-
ture, then 2P \�P is an adversary structure.

Yvo Desmedt

ACQUIRER

In retail payment schemes and electronic com-
merce, there are normally two parties involved,
a customer and a shop. The Acquirer is the bank
of the shop.

Peter Landrock

ADAPTIVE CHOSEN
CIPHERTEXT ATTACK

An adaptive chosen ciphertext attack is a chosen
ciphertext attack scenario in which the attacker
has the ability to make his choice of the inputs
to the decryption function based on the previous
chosen ciphertext queries. The scenario is clearly
more powerful than the basic chosen ciphertext
attack and thus less realistic. However, the attack
may be quite practical in the public-key setting.
For example, plain RSA is vulnerable to chosen
ciphertext attack (see RSA public-key encryption
for more details) and some implementations of
RSA may be vulnerable to adaptive chosen cipher-
text attack, as shown by Bleichenbacher [1].

Alex Biryukov
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ADAPTIVE CHOSEN
PLAINTEXT AND CHOSEN
CIPHERTEXT ATTACK

In this attack the scenario allows the attacker
to apply adaptive chosen plaintext and adaptive
chosen ciphertext queries simultaneously. The at-
tack is one of the most powerful in terms of the ca-
pabilities of the attacker. The only two examples
of such attacks known to date are the boomerang
attack [2] and the yoyo-game [1].

Alex Biryukov



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 20:59

8 Adaptive chosen plaintext attack

References

[1] Biham, E., A. Biryukov, O. Dunkelman, E. Richard-
son, and A. Shamir (1999). “Initial observations on
Skipjack: Cryptanalysis of Skipjack-3xor.” Selected
Areas in Cryptography, SAC 1998, Lecture Notes in
Computer Science, vol. 1556, eds. S.E. Tavares and
H. Meijer. Springer-Verlag, Berlin, 362–376.

[2] Wagner, D. (1999). “The boomerang attack.” Fast
Software Encryption, FSE’99, Lecture Notes in
Computer Science, vol. 1636, ed. L.R. Knudsen.
Springer-Verlag, Berlin, 156–170.

ADAPTIVE CHOSEN
PLAINTEXT ATTACK

An adaptive chosen plaintext attack is a chosen
plaintext attack scenario in which the attacker

q a g t b o r h e s c y l n m d v f i k p z w u j x
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

has the ability to make his choice of the inputs
to the encryption function based on the previous
chosen plaintext queries and their corresponding
ciphertexts. The scenario is clearly more power-
ful than the basic chosen plaintext attack, but is
probably less practical in real life since it requires
interaction of the attacker with the encryption
device.

Alex Biryukov

ALBERTI ENCRYPTION

This is a polyalphabetic encryption with shifted,
mixed alphabets.

As an example, let the mixed alphabet be given
by:

plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext B E K P I R C H S Y T M O N F U A G J D X Q W Z L V

or, reordered for decryption:

plaintext q a g t b o r h e s c y l n m d v f i k p z w u j x
ciphertext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Modifying accordingly, the headline of a Vigenère
table (see Vigenère cryptosystem) gives the Alberti
table:
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Z
Y

X
W

V
U

T
S R Q P O

N

M
L

K
J

I
H

GFEDCB
A

z
y

x

w
v

u
t

s
r

q
p o n m l

k

j
i

h
g

f
e

d
cba

Alberti discs

An encryption example with the keytext “GOLD”
of length 4 is:

plaintext m u c h h a v e i t r a v e l l e d
keytext G O L D G O L D G O L D G O L D G O
ciphertext U L V K N P B L Y R R E W W X P O D

Friedrich L. Bauer
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ALPHABET

An alphabet is a set of characters (literals, figures,
other symbols) together with a strict ordering (de-
noted by <) of this set. For good reasons it is usu-
ally required that a set of alphabetic characters
has at least two elements and that it is finite. An
alphabet Z of n elements is denoted Zn, the order
is usually the one of the listing.

Z26 = {a, b, c, . . . , x, y, z} is the common alpha-
bet of Latin letters of present days. In former
times and cultures, the Latin letter alphabet was
smaller, so

Z21 = Z26\{j, k, w, x, y} in Italian until about 1925,
Z24 = Z26\{k, w} in Spanish until about 1950,
Z25 = Z26\{w} in French and Swedish until

about 1900.

In the Middle Ages, following the Latin tradition,
20 letters seem to have been enough for most writ-
ers (with v used for u),

Z20 = Z26\{j, k, u, w, x, y}.
Sometimes, mutated vowels and consonants like
ä, ö, ü, ß (German), æ, œ (French), å, ø
(Scandinavian), l� (Polish), č, ě, ř, š, ž (Czech) oc-
cur in literary texts, but in cryptography there is

a tendency to suppress or transcribe them, i.e. to
avoid diacritic marks.

The (present-day) Cyrillic alphabet has 32
letters (disregarding Ë):

Z32={A,B,V,G,D,E,�,Z, I, Ĭ, K, L, M,N,O, P,
R, S,T,U,F,H,C, Q,X,W,�,Y,�, �̀,�,�}.

A set of m-tuples formed by elements of some set V
is denoted Vm. If Z is an alphabet, Zm has usually
the lexicographic order based on the order of Z.

In mathematics and also in modern cryptogra-
phy, the denotation ZZn is usually reserved for the
set {0, 1, 2, . . . , n–1}. It makes arithmetic modulo
n possible (see modular arithmetic). Of course,

Z26 = {a, b, c, . . . , x, y, z} can and often will be
identified with ZZ26 .

The following number alphabets are of particu-
lar historical interest:

ZZ10 = {0, 1, 2, . . . , 9} (denary alphabet)
with 0 < 1 < 2 < · · · < 9,

ZZ4 = {0, 1, 2, 3} (quaternary alphabet)
with 0 < 1 < 2 < 3 (Alberti 1466),

ZZ3 = {0, 1, 2} (ternary alphabet)
with 0 < 1 < 2 (Trithemius 1518),

ZZ2 = {0, 1} (binary alphabet) with 0 < 1
(Francis Bacon 1605). An element from
ZZ2 is called bit, from bi(nary digi)t.

The technical utilization of the binary alphabet ZZ2
goes back to Jean Maurice Émile Baudot, 1874; at
present one mainly uses quintuples and octuples
of binary digits (called bytes).

The alphabet of m-tuples formed by elements of
ZZn and ordered lexicographically is denoted ZZm

n :
Z32 = ZZ5

2 (teletype alphabet or CCIT2 code), its
cryptographic use goes back to Gilbert S.
Vernam, 1917.

Z256 = ZZ8
2 (bytes alphabet), IBM ca. 1964 (crypto-

graphic use by Horst Feistel, 1973).
Note that from a mathematical point of view,
ZZ32 ={0, 1, 2, . . . , 31} is not the same as ZZ5

2 =
{(00000), (00001), (00010), (00011), (00100), . . . ,
(11111)}. Of course, these two sets have the same
cardinality, but arithmetically that does not make
them the same. This can be seen from the way ad-
dition is defined for the elements of ZZ32 and ZZ5

2 ;
while in ZZ32 arithmetic is done modulo 32, in ZZ5

2
every element added to itself gives (00000) .
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We mention the following alphabets:
standard alphabet: alphabet listed in its regular

order.
mixed alphabet: standard alphabet listed in some

permuted order.
reversed alphabet: standard alphabet listed in

some backwards order.
shifted alphabet: standard alphabet listed with a

cyclically shifted order.
A vocabulary is a set of characters (usually a stan-
dard alphabet), or of words, and/or phrases (usu-
ally alphabetically ordered), used to formulate the
plaintext (plaintext vocabulary) or the ciphertext
(ciphertext vocabulary) (see cryptosystem).

Friedrich L. Bauer
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ANONYMITY

Anonymity of an individual is the property of be-
ing indistinguishable from other individuals in a
certain respect. On the Internet, individuals may
seek anonymity in sending certain messages, ac-
cessing certain chat rooms, publishing certain pa-
pers, etc. Consider a particular system, e.g., an
electronic voting scheme, with participants P1,

P2, . . . , Pn who seek anonymity with respect to
a certain class A of action types A1, A2, . . . , Am,
e.g., casting ballots B1 (for candidate 1), B2 for
candidate 2, and so forth to Bm for candidate m,
against an attacker who observes the system. In
this system, anonymity with respect to the class
A of action types means that for each i, the at-
tacker cannot distinguish participant Pj (1 ≤ j ≤
n) executing action type Ai , denoted [Pj : Ai], from
any other participant Pk (1 ≤ k ≤ n) executing ac-
tion type Ai . Expressed in terms of unlinkability,
anonymity with respect to A means that for each
action type Ai (1 ≤ i ≤ m) and each two partici-
pants Pj, Pk, the two events [Pj : Ai] and [Pk : Ai]
are unlinkable (by the attacker). In this case, the
anonymity set of the event [Pj : Ai] is the set of all
individuals P1, P2, . . . , Pn, i.e., those who the at-
tacker cannot distinguish from Pj when they exe-
cute action type Ai [3]. Sometimes, the anonymity
set is more adequately defined in probabilistic
terms as the set of all individuals who the attacker
cannot distinguish with better than a small prob-
ability, which needs to be defined.

The anonymity set of an event is a volatile quan-
tity that is beyond control of a single individual
and typically changes significantly in size over
time. For example, at the start of the voting pe-
riod, only few participants may have reached the
voting booths, while in the afternoon almost ev-
eryone may have cast his vote. Hence, soon after
the start of the system, an attacker may not have a
hard time guessing who has cast a particular vote
he sees is cast in the system.

In order to apply this notion to a particular cryp-
tographic scheme, the attacker model needs to be
specified further. For example, is it a passive at-
tacker such as an eavesdropper, or is it an ac-
tive attacker (see cryptanalysis)? If passive, which
communication lines can he observe and when. If
active, how can he interact with the honest system
participants (e.g., oracle access) and thereby stim-
ulate certain behavior of the honest participants,
or how many honest participants can he con-
trol entirely? (The number of honest participants
an attacker can control without breaking a sys-
tem is sometimes called the resilience of the sys-
tem.) Is the attacker computationally restricted or
computationally unrestricted (see computational
security)? Based on a precise attacker model,
anonymity can be defined with respect to specific
classes of critical actions types, i.e., actions types
of particular concern to the honest participants.
Examples of critical actions are withdrawing and
paying amounts in an electronic cash scheme, get-
ting credentials issued and using them in an
electronic credential scheme, casting ballots in
electronic voting schemes, etc.

A measure of anonymity is the strength of the at-
tacker model against which anonymity holds and
the sizes of all anonymity sets. The stronger the at-
tacker model is, the stricter the anonymity sets are
defined, and the larger the sizes of all anonymity
sets are, the stronger anonymity is achieved.

An important tool to achieve anonymity is
pseudonyms [1, 2, 4]. Specific examples of anony-
mity are sender anonymity, recipient anonymity,
and relationship anonymity. Sender anonymity
can be achieved if senders use pseudonyms for
sending messages, recipient anonymity can be
achieved if recipients use pseudonyms for receiv-
ing messages, and relationship anonymity can
be achieved if any two individuals use a joint
pseudonym for sending and receiving messages to
and from each other.

Anonymity can be regarded the opposite ex-
treme of complete identifiability (accountability).
Either extreme is often undesirable. The whole
continuum between anonymity and complete iden-
tifiability is called pseudonymity. Pseudonymity is
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the use of pseudonyms as IDs for individuals. The
use of pseudonyms may be rare, occasional, or fre-
quent, and may be fully deliberate.

Gerrit Bleumer
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ASYMMETRIC
CRYPTOSYSTEM

The type of cryptography in which different keys
are employed for the operations in the cryptosys-
tem (e.g., encryption and decryption), and where
one of the keys can be made public without
compromising the secrecy of the other keys. See
public-key encryption, digital signature scheme,
key agreement, and (for the contrasting notion)
symmetric cryptosystem.

Burt Kaliski

ATTRIBUTE CERTIFICATE

This is a certificate, i.e. a message digitally signed
by some recognized Trusted Third Party, the con-
tent of which ties certain attributes to an ID, i.e.
a user-ID. In the wake of the first PKI-euphoria
(see Public Key Infrastructure), it was anticipated
that there would be a great need for attribute cer-
tificates, and we may still come to see useful re-
alizations of this concept. The original idea goes
back to an early European project on PKI, where
attribute certificates were introduced to represent
e.g. power of attorney, executive rights etc., infor-

mation which currently is stored as official infor-
mation on registered companies.

Peter Landrock

ATTRIBUTES
MANAGEMENT

Attributes management is a subset of general “au-
thorization data” management (see authorization
architecture) in which the data being managed is
attributes associated with entities in an environ-
ment. An attribute may be defined as follows [1]:
“an inherent characteristic; an accidental quality;
an object closely associated with or belonging to a
specific person, thing, or office.”

Carlisle Adams
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AUTHENTICATED
ENCRYPTION

INTRODUCTION: Often when two parties commu-
nicate over a network, they have two main se-
curity goals: privacy and authentication. In fact,
there is compelling evidence that one should never
use encryption without also providing authentica-
tion [8, 14]. Many solutions for the privacy and
authentication problems have existed for decades,
and the traditional approach to solving both si-
multaneously has been to combine them in a
straightforward manner using so-called generic
composition. However, recently there have been
a number of new constructions which achieve
both privacy and authenticity simultaneously, of-
ten much faster than any solution which uses
generic composition. In this article we will explore
the various approaches to achieving both privacy
and authenticity, the so-called Authenticated En-
cryption problem. We will often abbreviate this as
simply “AE.” We will start with generic compo-
sition methods and then explore the newer com-
bined methods.

Background

Throughout this article we will consider the
AE problem in the “symmetric-key model.” This
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means that we assume our two communicat-
ing parties, traditionally called “Alice” and “Bob,”
share a copy of some bit-string K, called the “key.”
This key is typically chosen at random and then
distributed to Alice and Bob via one of various
methods. This is the starting point for our work.
We now wish to provide Alice and Bob with an AE
algorithm such that Alice can select a message M
from a predefined message-space, process it with
the AE algorithm along with the key (and possi-
bly a “nonce” N–a counter or random value), and
then send the resulting output to Bob. The out-
put will be the ciphertext C, the nonce N, and a
short message authentication tag, σ . Bob should
be able to recover M just given C, N, and his copy
of the key K. He should also be able to certify that
Alice was the originator by computing a verifica-
tion algorithm using the above values along with
the tag σ .

But what makes an AE algorithm “good?” We
may have many requirements, and the relative im-
portance of these requirements may vary accord-
ing to the problem domain. Certainly one require-
ment is that the AE algorithm be “secure.” We will
speak more about what this means in a moment.
But many other attributes of the algorithm may
be important for us as well: performance, porta-
bility, simplicity/elegance, parallelizability, avail-
ability of reference implementations, or freedom
from patents; we will pay attention to each of these
concerns to varying levels as well.

Security

Certainly an AE scheme is not going to serve
our needs unless it is secure. An AE scheme has
two goals: privacy and authenticity. And each of
these goals has a precise mathematical meaning
[2, 3, 19]. In addition there is a precise definition
for “authenticated encryption,” the combination of
both goals [5, 6, 26]. It would take us too far afield
to carefully define each notion, but we will give a
brief intuitive idea of what is meant. In our dis-
cussion we will use the term “adversary” to mean
someone who is trying to subvert the security of
the AE scheme, who knows the definition of the
AE scheme, but who does not possess the key K.

Privacy means, intuitively, that a passive adver-
sary who views the ciphertext C and the nonce
N cannot “understand” the content of the mes-
sage M. One way to achieve this is to make C
indistinguishable from random bits, and indeed
this is one definition of security for an encryption
scheme that is sometimes used, although it is quite
a strong one.

Authenticity means, intuitively, that an active
adversary cannot successfully fabricate a cipher-

text C, a nonce N, and a tag σ in such a way that
Bob will believe that Alice was the originator. In
the formal security model we allow the adversary
to generate tags for messages of his choice as if
he were Alice for some period of time, and then he
must attempt a forgery. We do not give him credit
for simply “replaying” a previously generated mes-
sage and tag, of course: he must construct a new
value. If he does so with any significant probabil-
ity of success, the authentication scheme is con-
sidered insecure.

Associated data

In many application settings we wish not only to
encrypt and authenticate message M, but we wish
also to include auxiliary data H which should be
authenticated, but left unencrypted. An example
might be a network packet where the payload
should be encrypted (and authenticated) but the
header should be unencrypted (and authenti-
cated). The reason being that routers must be able
to read the headers of packets in order to know how
to properly route them.

This need spurred some designers of AE
schemes to allow “associated data” to be included
as input to their schemes. Such schemes have been
termed AEAD (authenticated encryption with as-
sociated data) schemes, a notion which was first
formalized by Rogaway [32]. As we will see, the
AEAD problem is easily solved in the generic com-
position setting, but can become challenging when
designing the more complex schemes. In his paper,
Rogaway describes a few simple, but limited, ways
to include associated data in any AE scheme, and
then presents a specific method to efficiently add
associated data to the OCB scheme, which we dis-
cuss below.

Provable security

One unfortunate aspect of most cryptographic
schemes is that we cannot prove that any scheme
meets the formal goals required of it. However,
we can prove some things related to security,
but it depends on the type of cryptographic ob-
ject we are analyzing. If the object is a “prim-
itive,” such as a block cipher, no proof of secu-
rity is possible, so instead we hope for security
once we have shown that no known attacks (e.g.,
differential cryptanalysis) seem to work. However,
for algorithms which are built on top of these prim-
itives, called “modes,” we can prove some things
about their security; namely that they are as
secure as the primitives which underlie them. Al-
most all of the AE schemes we will describe here
are modes; only two of them are primitives.
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Scheme

IAPM 1

1

1

1

2

2

2

XECB

OCB

CCM

EAX

CWC

Helix

SOBER-128

#Passes Provably Secure Assoc Data Parallelizable On-line Patent-Free

1

Fig. 1. A comparison of the various AE schemes. Generic composition is omitted since answers would depend on
the particular instantiation. For the schemes which do not support associated data, subsequent methods have
been suggested to remedy this; for example, see [32]

AE schemes

The remainder of this article is devoted to the de-
scription and discussion of various AE algorithms.
For convenience we list them in Figure 1. Note
that we omit generic composition from the table
since this approach comprises a class of schemes
rather than a particular scheme.

Conventions

Let ε denote the empty string. Let �n denote the
set of all n-bit strings. In general, if S is a set we
write S+ to mean 1 or more repetitions of elements
from S; that is, the set {s1s2 · · · sm | m > 0, si ∈
S, 1 ≤ i ≤ m}. Thus (�n)+ is the set of all binary
strings whose lengths are a positive multiple of n.
If we write S ∗ we mean zero or more repetitions
of elements from S. In other words, S∗ = S+ ∪ {ε}.
We write A⊕ B to mean the exclusive-or of strings
A and B.

Many of our schemes use a block cipher.
Throughout, n will be understood to be the block
size of the underlying block cipher and k will be
the size of its key. For block cipher E, we will write
EK(P) to indicate invocation of block cipher E us-
ing the k-bit key K on the n-bit plaintext block P.

In order to process a message M ∈ (�n)+ we will
often wish to break M into m strings, M1, . . . , Mm,
each having n-bits such that M = M1M2 · · · Mm.
For brevity, we will say “write M = M1 · · · Mm” and
understand it to mean the above.

GENERIC COMPOSITION: Although AE did not
get a formal definition until recently, the goal has
certainly been implicit for decades. The traditional
way of achieving both authenticity and privacy
was to simply find an algorithm which yields each
one and then use the combination of these two al-
gorithms on our message. Intuitively it seems that

this approach is obvious, straightforward, and
completely safe. Unfortunately, there are many
pitfalls accidentally “discovered” by well-meaning
protocol designers.

One commonly made mistake is the assump-
tion that AE can be achieved by using a non-
cryptographic non-keyed hash function h and a
good encryption scheme like CBC mode (Cipher
Block Chaining mode; see modes of operation of a
block cipher) with key K and initialization vec-
tor N. One produces CBCK,N (M, h (M)) and hopes
this yields a secure AE scheme. However, these
schemes are virtually always broken. Perhaps the
best-known example is the Wired Equivalent Pri-
vacy (WEP) protocol used with 802.11 wireless
networks. This protocol instantiates h as a Cyclic
Redundancy Code (CRC) and then uses a stream
cipher to encrypt. Borisov et al. showed, among
other things, that it was easy to circumvent the
authentication mechanism [15].

Another common pitfall is “key reuse.” In other
words, using some key K both for the encryption
scheme and the MAC algorithm. This approach
appliedly blindly almost always fails. We will later
see that all of our “combined modes,” listed after
this section, do in fact use a single key, but they
are carefully designed to retain security in spite of
this.

It is now clear to researchers that one needs to
use a keyed hash (i.e., a MAC) with some appropri-
ate key K1 along with a secure encryption scheme
with an independent key K2. However, it is un-
clear in what order these modes should be applied
to a message M in order to achieve authenticated
encryption. There are three obvious choices:
� MtE: MAC-then-Encrypt. We first MAC M un-

der key K1 to yield tag σ and then encrypt the
resulting pair (M, σ ) under key K2.

� EtM: Encrypt-then-MAC. We first encrypt M
under key K2 to yield ciphertext C and then
compute σ ← MACK1(C) to yield the pair (C, σ ).
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� E&M: Encrypt-and-MAC. We first encrypt M
under key K2 to yield ciphertext C and then
compute σ ← MACK1(M) to yield the pair (C, σ ).
Also note that decryption and verification are

straightforward for each approach above: for MtE
decrypt first, then verify. For EtM and E&M verify
first, then decrypt.

Security

In 2000, Bellare and Namprempre gave formal
definitions for AE [5], and then systematically ex-
amined each of the three approaches described
above in this formal setting. Their results show
that if the MAC has a property called “strongly
unforgeable,” then it possible to achieve the
strongest definition of security for AE only via
the EtM approach. They further show that some
known-good encryption schemes fail to provide
privacy in the AE setting when using the E&M
approach, and fail to provide a slightly stronger
notion of privacy with the MtE approach.

These theoretical results generated a great
deal of interest since three major pre-existing
protocols, SSL/TLS (see Secure Socket Layer and
Transport Layer Security), IPSec, and SSH, each
used a different one of these three approaches:
the SSL/TLS protocol uses MtE, IPSec uses EtM,
and SSH uses E&M. One might think that per-
haps security flaws exist in SSL/TLS and SSH be-
cause of the results of Bellare and Namprempre;
however, concurrent with their work, Krawczyk
showed that SSL/TLS was in fact secure because
of the encoding used alongside the MtE mecha-
nism [29]. And later Bellare, Kohno, and Nam-
prempre showed that despite some identified se-
curity flaws in SSH, it could be made provably se-
cure via a number of simple modifications despite
its E&M approach.

The message here is that EtM with a provably
secure encryption scheme and a provably secure
MAC each with independent keys is the best ap-
proach for achieving AE. Although MtE and E&M
can be secure, security will often depend on sub-
tle details of how the data are encoded and on the
particular MAC and encryption schemes used.

Performance

Simple methods for doing very fast encryption
have been known for quite some time. For exam-
ple, CBC mode encryption has very little overhead
beyond the calls to the block cipher. Even more at-
tractive is CTR mode (CounTeR mode; see modes
of operation of a block cipher), which similarly
has little overhead and in addition is paralleliz-

able. However, MACing quickly is not so simple.
The CBC MAC (Cipher Block Chaining Message
Authentication Code; see CBC MAC and variants)
is quite simple and just as fast as CBC mode
encryption, but there are well-known ways to go
faster. The fastest software MAC in common use
today is HMAC [1, 20]. HMAC uses a crypto-
graphic hash function to process the message M
and this is faster than processing M block-by-
block with a block cipher. However even faster ap-
proaches have been invented using the Wegman–
Carter construction [34]. This approach involves
using a non-cryptographic hash function to pro-
cess M, and then uses a cryptographic function to
process the hash output. The non-cryptographic
hash is randomly selected from a carefully de-
signed family of hash functions, all with a com-
mon domain and range. The goal is to produce a
family such that distinct messages are unlikely to
hash to the same value when the hash function
is randomly chosen from that family. This is the
so-called universal hash family [16]. The fastest
known MACs are based on the Wegman–Carter
approach. The speed champions are UMAC [11]
and hash127 [10], though neither of these are in
common use yet.

Associated data

As we mentioned in the introduction, it is a com-
mon requirement in cryptographic protocols that
we allow authenticated but non-encrypted data to
be included in our message. Although the single-
pass modes we describe next do not naturally al-
low for associated data, due to the fact that their
encryption and authentication methods are intri-
cately interwoven, we do not have this problem
with generically composed schemes. Since the en-
cryption and MAC schemes are entirely indepen-
dent, we simply run the MAC on all the data and
run the encryption scheme only on the data to be
kept private.

Can we do better?

One obvious question when considering generi-
cally composed AE schemes is “can we do better?”
In other words, might there be a way of achiev-
ing AE without using two different algorithms,
with two different keys, and making two sepa-
rate passes over the message. The answer is “yes,”
and a discussion of these results constitutes the
remainder of this article.

SINGLE-PASS COMBINED MODES: It had long
been a goal of cryptographers to find a mode of
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operation which achieved AE using only a single
pass over the message M. Many attempts were
made at such schemes, but all were broken. There-
fore, until the year 2000, people still used generic
composition to achieve AE, which as we have seen
requires two passes over M.

IAPM

In 2000, Jutla at IBM invented two schemes which
were the first correct single-pass AE modes [25].
He called these modes IACBC (Integrity-Aware
Cipher Block Chaining) and IAPM (Integrity-
Aware Parallelizable Mode). The first mode some-
what resembles CBC-mode encryption; however,
offsets were added in before and after each block-
cipher invocation, a technique known as “whiten-
ing.” However, as we know, CBC-mode encryption
is inherently serial: we cannot begin computation
for the (k + 1)th block-cipher invocation until we
have the result of the kth invocation. Therefore,
more interest has been generated around the sec-
ond mode, IAPM, which does not have this disad-
vantage. Let’s look at how IAPM works.

IAPM accepts a message M ∈ (�n)+, a nonce N ∈
�n, and a key pair K1, K2 each selected from �k

for use with the underlying block cipher E. The key
pair is set up and distributed in advance between
the communicating parties; the keys are reused
for a large number of messages. However, N and
(usually) M vary with each transmission. First we
break M into M1 · · · Mm−1 and proceed as follows.

There are two main steps: (1) offset generation
and (2) encryption/tag generation. For offset gen-
eration we encipher N to get a seed value, and then
encipher sequential seed values to get the remain-
ing seed values. In other words, set W1 ← EK2(N)
and then set Wi ← EK2(W1 + i − 2) for 2 ≤ i ≤ t
where t = 	lg(m + 2)
. Here lg means log2, so if we
had a message M with 256 n-bit blocks, we would
require 	lg(259)
 = 9 block-cipher invocations to
generate the Wi values. Finally, to derive our m + 1
offsets from the seed values, for i from 1 to m + 1,
we compute Si−1 ← ⊕t

j=1(i[ j] · Wj) where i[ j] is
the jth bit of i.

Armed with S0 through Sm we are now ready
to process M. First we encrypt each block of
M by computing Ci ← EK1(Mi ⊕ Si) ⊕ Si for 1 ≤
i ≤ m − 1. This xoring of Si before and af-
ter the block-cipher invocation is the whitening
we spoke of previously, and is the main idea
in all schemes discussed in this section. Next
we compute the authentication tag σ : set σ ←
EK1(Sm ⊕ ⊕m−1

i=1 Mi) ⊕ S0. Notice that we are
whitening the simple sum of the plaintext blocks
with two different offset values, S0 and Sm. Finally,

output (N, C1, . . . , Cm−1, σ ) as the authenticated
ciphertext. Note that the output length is two n-bit
blocks longer than M. This “ciphertext expansion,”
comparable to what we saw with generic composi-
tion, is quite minimal.

Given the K1, K2, and some output
(N, C1, . . . , Cm−1, σ ), it is fairly straightfor-
ward to recover M and check the authenticity
of the transmission. Notice that N is sent in the
clear and so using K2 we can compute the Wi
values and therefore the Si values. We compute
Mi ← E−1

K1(Ci ⊕ Si) ⊕ Si for 1 ≤ i ≤ m − 1 to re-
cover M. Then we check EK1(Sm ⊕ ⊕m−1

i=1 Mi) ⊕ S0
to ensure it matches σ . If we get a match, we ac-
cept the transmission as authentic, and if not we
reject the transmission as an attempted forgery.

Comments on IAPM. Compared to generic com-
position, where we needed about 2m block-cipher
invocations per message (assuming our encryp-
tion and authentication modes were block-cipher-
based), we are now using only around m lg(m) in-
vocations. Further refinements to IAPM reduce
this even more, so the number of block-cipher in-
vocations is nearly m in these optimized versions
meaning that one can achieve AE at nearly the
same cost of encryption alone.

Proving a scheme like IAPM secure is not a sim-
ple task, and indeed we cannot present such a
proof here. The interested reader is encouraged
to read Halevi’s article which contains a rigorous
proof that if the underlying block cipher is secure,
then so are IACBC and IAPM [21].

XCBC and OCB

Quickly after announcement of IACBC and IAPM,
other researchers went to work on finding similar
single-pass AE schemes. Soon two other parties
announced similar schemes: Gligor and Donescu
produced a host of schemes, each with various ad-
vantages and disadvantages [18], and Rogaway,
et al. announced their OCB scheme [33], which is
similar to IAPM but with a long list of added opti-
mizations.

Gligor and Donescu presented two classes of
schemes: XCBC and XECB. XCBC is similar to
CBC mode encryption just as IACBC was above,
and XECB is similar to ECB mode encryption
which allows parallelism to be exploited, much
like the IAPM method presented above. Since
many practitioners desire parallelizable modes,
the largest share of attention has been paid to
XECB. Similar to IAPM, XECB uses an offset to
each message block, applied before and after a
block cipher invocation. However, XECB gener-
ates these offsets in a very efficient manner, using
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arithmetic mod 2n, which is very fast on most com-
modity processors. Once again, both schemes are
highly optimized and provide AE at a cost very
close to that of encryption alone. Proofs of security
are included in the paper, using the reductionist
approach we described above.

Rogaway, Bellare, Black, and Krovetz produced
a single scheme called OCB (Offset CodeBook).
This work was a follow-on to Jutla’s IAPM scheme,
designed to be fully parallelizable, along with a
long list of other improvements. In comparison to
IAPM, OCB uses a single block-cipher key, pro-
vides a message space of �∗ so we never have to
pad, and is nearly endian-neutral. Once again, a
full detailed proof of security is included in the
paper, demonstrating that the security of OCB is
directly related to the security of the underlying
block cipher.

OCB is no doubt the most aggressively op-
timized scheme of those discussed in this sec-
tion. Performance tests indicate that OCB is
about 6.4% slower than CBC mode encryption,
and this is without exploiting the parallelism
that OCB offers up. For more information, one
can find an in-depth FAQ, all relevant publi-
cations, reference code, test vectors, and perfor-
mance figures on the OCB Web page at http://
www.cs.ucdavis.edu/˜rogaway/ocb/.
Associated data. In many settings, the ability to

handle associated data is crucial. Rogaway [32]
suggests methods to handle associated data in
all three of the single-pass schemes mentioned
above, and for OCB gives an extension which
uses PMAC [13] to give a particularly efficient
variant of OCB which handles associated data.

Intellectual property. Given the importance of
these new highly efficient AE algorithms, all of
the authors decided to file for patents. There-
fore, IBM and Gligor and Rogaway all have in-
tellectual property claims for their algorithms
and perhaps on some of the overriding ideas in-
volved. To date, none of these patents have been
tested in court, so the extent to which they are
conflicting or interrelated is unclear. One effect,
however, is that many would-be users of this
new technology are worried that the possible
legal entanglements are not worth the benefits
offered by this technology. Despite this, OCB has
appeared in the 802.11 draft standard as an
alternate mode, and has been licensed several
times. However, without IP claims it is possible
all of these algorithms would be in common use
today.

It was the complications engendered by the IP
claims which spurred new teams of researchers
to find further efficient AE algorithms which

would not be covered by patents. Although not
as fast as the single-pass modes described here,
they still offer significant performance improve-
ments over generic composition schemes. These
schemes include CCM, CWC, and EAX, the lat-
ter invented in part by two researchers from the
OCB team. We discuss these schemes next.

TWO-PASS COMBINED MODES: If we have
highly efficient single-pass AE modes, why would
researchers subsequently work to develop less ef-
ficient multi-pass AE schemes? Well, as we just
discussed, this work was entirely motivated by
the desire to provide patent-free AE schemes. The
first such scheme proposed was CCM (CBC MAC
with Counter Mode) by Ferguson, Housley, and
Whiting. Citing several drawbacks to CCM,
Bellare, Rogaway, and Wagner proposed EAX,
another patent-free mode which addresses these
drawbacks. And independently, Kohno, Viega,
and Whiting proposed the CWC mode (Carter-
Wegman with Counter mode encryption). CWC
is also patent-free and, unlike the previous two
modes, is fully parallelizable. We now discuss each
of these modes in turn.

CCM Mode

CCM was designed with AES specifically in mind.
It therefore is hard-coded to assume a 128-bit
block size, though it could be recast for other block
sizes. Giving all the details of the mode would be
cumbersome, so we will just present the overriding
ideas. For complete details, see the CCM specifi-
cation [35].

CCM is parameterized. It requires that you
specify a 128-bit block-cipher (eg, AES), a tag
length (which must be one of 4, 6, 8, 10, 12, 14,
or 16), and the message-length field’s size (which
induces an upperbound on the message length).
Like all other schemes we mention, CCM uses a
nonce N each time it is invoked, and the size of
N depends on the the parameters chosen above;
specifically, if we choose a longer maximum mes-
sage length, we must accept a shorter nonce. It is
left to the user to decide which parameters to use,
but typical values might be to limit the maximum
message length to 16 MBytes and then use a 96-bit
nonce.

Once the parameters are decided, we invoke
CCM by providing four inputs: the key K which
will be used with AES, the nonce N of proper size,
associated data H which will be authenticated but
not encrypted, and the plaintext M which will be
authenticated and encrypted. CCM operates in
two passes: first we encode the above parameters
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into an initial block, prepend this block to H and
M, and then run CBC MAC over this entire byte
string using K. This yields the authentication tag
σ . (The precise details of how the above concatena-
tion is done are important for the security of CCM,
but are omitted here.)

Next we form a counter-value using one of the
scheme’s parameters along with N and any neces-
sary padding to reach 128 bits. This counter is then
used with CTR mode encryption on (σ ‖ M) under
K to produce the ciphertext. The first 128 bits are
the authentication tag, and we return the appro-
priate number of bytes according to the tag-length
parameter. The subsequent bytes are the encryp-
tion of M and are always included in the output.

Decryption and verification are quite straight-
forward: N produces the counter-value and allows
the recovery of M. Re-running CBC MAC on the
same input used above allows verification of the
tag.

Comments on CCM. It would seem that CCM is
not much better than simple generic composition;
after all, it uses a MAC scheme (the CBC MAC)
and an encryption scheme (CTR mode encryption),
which are both well-known and provably secure
modes. But CCM does offer advantages over the
straightforward use of these two primitives gener-
ically composed; in particular it uses the same key
K for both the MAC and the encryption steps. Nor-
mally this practice would be very dangerous and
unlikely to work, but the designers were careful to
ensure the security of CCM despite this normally
risky practice. The CCM specification does not in-
clude performance data or a proof of security. How-
ever, a rigorous proof was published by Jonsson
[24]. CCM is currently the mandatory mode for
the 802.11 wireless standard as well as currently
being considered by NIST as a FIPS standard.

EAX Mode

Subsequent to the publication and subsequent
popularity of CCM, three researchers decided to
examine the shortcomings of CCM and see if they
could be remedied. Their offering is called EAX
[7] and addresses several perceived problems with
CCM, including the following:
1. If the associated data field is fixed from mes-

sage to message, CCM does not take advantage
of this, but rather re-processes this data anew
with each invocation.

2. Message lengths must be known in advance be-
cause the length is encoded into the first block
before processing begins. This is not a problem
in some settings, but in many applications we
do not know the message length in advance.

3. The parameterization is awkward and, in par-
ticular, the trade-off between maximum mes-
sage length and the size of the nonce seems un-
natural.

4. The definition of CCM (especially the encodings
of the parameters and length information in the
message before it is processed) is complex and
difficult to understand. Moreover, the correct-
ness of CCM strongly depends on the details of
this encoding.
Like CCM, EAX is a combination of a type of

CBC MAC and CTR mode encryption. However,
unlike CCM, the MAC used is not raw CBC MAC,
but rather a variant. Two well-known problems
exist with CBC MAC: (1) all messages must be of
the same fixed length and (2) length must be a pos-
itive multiple of n. If we violate the first property,
security is lost. Several variants to the CBC MAC
have been proposed to address these problems:
EMAC [9, 31] adds an extra block-cipher call to
the end of CBC MAC to solve problem (1). Not to
be confused with the AE mode of the same name
above, XCBC [12] solves both problems (1) and
(2) without any extra block-cipher invocations, but
requires k + 2n key bits. Finally, OMAC [23] im-
proves XCBC so that only k bits of key are needed.
The EAX designers chose to use OMAC with an
extra input called a “tweak” which allows them
to essentially get several different MACs by using
distinct values for this tweak input. This is closely
related to an idea of Liskov et al. who introduced
tweakable block ciphers [30].

We now describe EAX at a high level. Unlike
CCM, the only EAX parameters are the choice
of block cipher, which may have any block size
n, and the number of authentication tag bits to
be output, τ . To invoke EAX, we pass in a nonce
N ∈ �n, a header H ∈ �∗ which will be authen-
ticated but not encrypted, and the message M ∈
�∗ which will be authenticated and encrypted,
and finally the key K, appropriate for the chosen
block cipher. We will be using OMAC under key
K three times, each time with a different tweak,
written OMAC0

K , OMAC1
K , and OMAC2

K ; it’s con-
ceptually easiest to think of these three OMAC
invocations as three separate MACs, although
this is not strictly true. First, we compute ctr ←
OMAC0

K(N) to obtain the counter value we will
use with CTR mode encryption. Then we compute
σH ← OMAC1

K(H) to get an authentication tag for
H. Then we encrypt and authenticate M with C ←
OMAC2

K(CTRctr
K (M)). And finally we output the

first τ bits of σ = (ctr ⊕ C ⊕ σH) as the authenti-
cation tag. We also output the nonce N, the associ-
ated data H, and the ciphertext C. The decryption
and verification steps are quite straightforward.
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Note that each of the problem areas cited above
has been addressed by the EAX mode: no re-
striction on message length, no interdependence
between the tag length and maximum message
length, a performance savings when there is static
header data, and no need for message length to
be known up front. Also, EAX is arguably sim-
pler to specify and implement. Once again, prov-
ing EAX secure is more difficult than just appeal-
ing to proofs of security for generically composed
schemes since the key K is reused in several con-
texts which is normally not a safe practice.

CWC Mode

The CWC Mode [28] is also a two-pass mode:
it uses a Wegman–Carter MAC along with CTR
mode encryption under a common key K. Its main
advantage over CCM and EAX is that it is par-
allelizable whereas the other two are not (due to
their use of the inherently sequential CBC MAC
type algorithms). Also, CWC strives to be very fast
in hardware, a consideration which was not given
nearly as much attention in the design of the other
modes. In fact, the CWC designers claim that CWC
should be able to encrypt and authenticate data at
10Gbps in hardware, whereas CCM and EAX will
be limited to about 2Gbps because of their serial
constraints.

As we discussed above in the section on generic
composition, Wegman–Carter MACs require one
specify a family of hash functions on a common do-
main and range. Typically we want these functions
to (1) be fast to compute and (2) have a low colli-
sion probability. The CWC designers also looked
for a family with additional properties: (3) paral-
lelizability and (4) good performance in hardware.
The function family they settled on is the well-
known polynomial hash. Here a function from the
family is named by choosing a value for x in some
specified range, and then the polynomial

Y1x� + Y2x�−1 + · · · + Y�x + Y�+1

is computed modulo some integer (see modular
arithmetic), typically a prime number. The spe-
cific family chosen by the CWC designers fixes
Y1, . . . , Y� to be 96-bit integers, and Y�+1 to be a
127-bit integer; their values are determined by the
message being hashed. The modulus is set to the
prime, 2127 − 1.

Although it is possible to evaluate this polyno-
mial quickly on a serial machine using Horner’s
method (and in fact, this may make sense in
some cases), it is also possible to exploit par-
allelism in the computation of this polynomial.
Assume n is odd and set m = (n − 1)/2 and

y = x2 mod 2127 − 1. Then we can rewrite the func-
tion above as(

Y1ym + Y3ym−1 + · · · + Y�

)
x

+
(
Y2ym + Y4ym−1 + · · · + Y�+1

)
mod 2127 − 1.

This means that we can subdivide the work for
evaluating this polynomial and then recombine
the results using addition modulo 2127 − 1. Build-
ing a MAC from this hash family is fairly straight-
forward, and therefore CWC yields a paralleliz-
able scheme since CTR is clearly parallelizable.

The CWC designers go on to provide benchmark
data to compare CCM, EAX, and CWC on a Pen-
tium III, showing that the speed differences are
not that significant. However, this is without ex-
ploiting any parallelism available with CWC. They
do not compare the speed of CWC with that of
OCB, where we would expect OCB to be faster even
in parallel implementations.

CWC comes with a rigorous proof of security via
a reduction to the underlying 128-bit block cipher
(typically AES/Rijndael), and the paper includes
a readable discussion of why the various design
choices were made. In particular, it does not suffer
from any of the above-mentioned problems with
CCM.

AE PRIMITIVES: Every scheme discussed up to
this point has been a mode of operation. In fact
with the possible exception of some of the MAC
schemes, every mode has used a block cipher as its
underlying primitive. In this section we consider
two recently developed modes which are stream ci-
phers which provide authentication in addition to
privacy. That is to say, these are primitives which
provide AE.

This immediately means there is no proof of
their security, nor is there likely to ever be one.
The security of primitives is usually a matter of
opinion: does the object withstand all known at-
tacks? Has it been in use for a long enough time?
Have good cryptanalysts examined it?

With new objects, it is often hard to know how
much trust to place in their security. Sometimes
the schemes break, and sometimes they do not.
We will discuss two schemes in this section: Helix
and SOBER-128. Both were designed by teams of
experienced cryptographers who paid close atten-
tion to their security as well as to their efficiency.

HELIX: Helix was designed by Ferguson et al. [17].
Their goal was to produce a fast, simple, patent-
free stream cipher which also provided authenti-
cation. The team claims speeds of about 7 cycles
per byte on a Pentium II, which is quite a bit faster
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than the fastest-known implementations of AES,
which run at about 15 cycles per byte. At first
glance this might be quite surprising: after all,
AES does about 160 table look-ups and 160 32-
bit XORs to encipher 16 bytes. This means AES
uses about 10 look-ups and 10 XORs per byte. As
we will see in a moment, Helix uses more oper-
ations than this per-byte! But a key difference is
that AES does memory look-ups from large tables
which perhaps are not in cache whereas Helix con-
fines its work to the register file.

Helix takes a key K up to 32 bytes in length,
and a 16-byte nonce N and a message M ∈ (�8)∗.
As usual, K will allow the encryption of a large
amount of data before it needs to be changed,
and N will be issued anew with each message en-
crypted, never to repeat throughout the life of K.
Helix uses only a few simple operations: addition
modulo 232, exclusive-or of 32-bit strings, and bit-
wise rotations. However, each iteration of Helix,
called a “block,” uses 11 XORs, 12 modular addi-
tions, and 20 bitwise rotations by fixed amounts
on 32-bit words. So Helix is not simple to specify;
instead we give a high-level description.

Helix keeps its “state” in five 32-bit registers
(the designers were thinking of the Intel family
of processors). The ith block of Helix emits one
32-bit word of key-stream Si , requires two 32-bit
words scheduled from K and N, and also requires
the ith plaintext word Mi . It is highly unusual
for a stream cipher to use the plaintext stream as
part of its key-stream generation, but this feature
is what allows Helix to achieve authentication as
well as generating a key-stream.

As usual, the key-stream is used as a one-time
pad to encrypt the plaintext. In other words, the
ith ciphertext block Ci is simply Mi ⊕ Si . The
five-word state resulting from block i is then fed
into block i + 1 and the process continues until
we have a long enough key-stream to encrypt M.
At this point, a constant is XORed into one of the
words of the resulting state, twelve more blocks
are generated using a fixed plaintext word based
on the length of M, with the key-stream of the four
last blocks yielding the 128-bit authentication tag.

SOBER-128

A competitor to Helix is an offering from Hawkes
and Rose called SOBER-128 [22]. This algorithm
evolved from a family of simple stream ciphers
(i.e., ciphers which did not attempt simultaneous
authentication) called the SOBER family, the first
of which was introduced in 1998 by Rose. SOBER-
128 retains many of the characteristics of its
ancestors, but introduces a method for authenti-

cating messages as well. We will not describe the
internals of SOBER-128 but rather describe a few
of its attributes at a higher level.

SOBER-128 uses a linear-feedback shift regis-
ter in combination with several non-linear com-
ponents, in particular a carefully-designed S-box
which lies at its heart. To use SOBER-128 for
AE one first generates a keystream used to XOR
with the message M and then uses a separate
API call “maconly” to process the associated data.
The method of feeding back plaintext into the key-
stream generator is modeled after Helix, and the
authors are still evaluating whether this change
to SOBER-128 might introduce weaknesses.

Tests by Hawkes and Rose indicate that
SOBER-128 is comparable in speed to Helix; how-
ever, both are quite new and are still undergoing
cryptanalytic scrutiny—a crucial process when de-
signing primitives. Time will help us determine
their security.

BEYOND AE AND AEAD: Real protocols of-
ten require more than just an AE scheme or an
AEAD scheme: perhaps they require something
that more resembles a network transport proto-
col. Desirable properties might include resistance
to replay and prevention against packet loss or
packet reordering. In fact, protocols like SSH aim
to achieve precisely this.

Work is currently underway to extend AE no-
tions to encompass a broader range of such
goals [27]. This is an extension to the SSH analy-
sis referred to above [4], but considers the various
EtM, MtE, and E&M approaches rather than fo-
cusing on just one. Such research is another step
in closing the gap between what cryptographers
produce and what consumers of cryptographic
protocols require. The hope is that we will reach
the point where methods will be available to prac-
titioners which relieve them from inventing cryp-
tography (which, as we have seen, is a subtle
area with many insidious pitfalls) and yet allow
them easy access to provably secure cryptographic
protocols. We anticipate further work in this
area.

NOTES ON REFERENCES: Note that AE and its
extensions continue to be an active area of re-
search. Therefore, many of the bibliographic ref-
erences are currently to unpublished pre-prints
of works in progress. It would be prudent for the
reader to look for more mature versions of many
of these research reports to obtain the latest revi-
sions.

J. Black
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AUTHENTICATION

There is a rather common saying that cryptology
has two faces. The first (and better known) face
is cryptography in its narrow sense which should
protect data (information) from being revealed to
an opponent. The second face, known as authen-

tication (also as information integrity), should
guarantee with some confidence that a given in-
formation is authentic, i.e., has not been altered or
substituted by the opponent. This confidence may
depend on the computing power of the opponent
(e.g., in digital signature schemes this is the case).
The latter is called unconditional authentication
and makes use of symmetric cryptosystems.

The model of unconditional authentication
schemes (or codes) consists of a sender, a receiver,
and an opponent. The last one can observe all
the information transmitted from the sender to
the receiver; it is assumed (following Kerkhoff ’s
maxim) that the opponent knows everything, even
the original (plain) message (this is called authen-
tication without secrecy), but he does not know the
used key.

There are two kinds of possible attacks by the
opponent. One speaks about an impersonation at-
tack when the opponent sends a message in the
hope that it will be accepted by the receiver as
a valid one. In a substitution attack the opponent
observes a transmitted message and then replaces
it with another message. For authentication pur-
poses it is enough to consider only so-called sys-
tematic authentication codes in which the trans-
mitted message has the form (m; z), where m is
chosen from the set M of possible messages and
z = f (m) is its tag (a string of “parity-check sym-
bols” in the language of coding theory). Let Z be
the tag-set and let F = { f1, . . . , fn} be a set of n en-
coding maps fi : M → Z. To authenticate (or code)
message m, the sender chooses randomly one of
the encoding mappings fi (the choice is in fact
the secret key unknown to the opponent). One
may assume without loss of generality that these
encoding maps fi are chosen uniformly. The cor-
responding probabilities of success for imperson-
ation and substitution attacks are denoted by PI
and PS respectively. The first examples of authen-
tication codes were given in [3], among which is
the following optimal scheme (known as affine
scheme).

Let the set M of messages and the set Z of tags
coincide with the finite field Fq of q elements (q
should be a power of a prime number). The set F
of encoding mappings consists of all possible affine
functions, i.e. mappings of the form

fa,b(m) = am + b.

For this scheme PI = PS = q−1 and the scheme is
optimal for both parameters—for PI this is obvi-
ous and for PS this follows from the square-root
bound PS ≥ 1/

√
n which is also derived in [3]. Al-

though this scheme is optimal (meets this bound
with equality), it has a serious drawback when
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being applied in practice since its key size (which
is equal to log n = 2 log q) is two times larger than
the message size.

For a long time (see [6, 10]), no known schemes
(codes) had a key size that was much smaller
than the message size. Schemes that did allow
this were first constructed in [4]. They made use
of a very important relationship between authen-
tication codes and error-correcting codes (ECC,
shortly) (see [8] and cyclic codes).

By definition (see [5]), an authentication code
is a q-ary code V over the alphabet Z (|Z| =
q) of length n consisting of |M| codewords
( f1(m), . . . , fn(m)) : m ∈ M. Almost without loss of
generality one can assume that all words in the A-
code V have a uniform composition, i.e., all “char-
acters” from the alphabet Z appear equally often
in every codeword (more formally, |{i : vi = z}| =
n/q for any v ∈ V and any z ∈ Z). This is equiva-
lent to saying that PI takes on its minimal possible
value q−1. The maximal probability of success of a
substitution by the opponent is

PS = 1 − n−1dA(V),

where dA(x, y) = n − qγ (x, y), γ (x, y) = max{|{i :
xi = z, yi = z′}| : z, z′ ∈ Z} and dA(V) (the min-
imum A-distance of the code V) is defined as
usual (see cyclic codes and McEliece public-key
encryption scheme). The obvious inequality
dA(V) ≤ dH(V), with dH(V) being the minimum
Hamming distance of V, allows one to apply
known upper bounds for ECC to systematic A-
codes and re-derive known nonexistence bounds
for authentication codes as well as obtain new
bounds (see [1, 5] for details).

On the other hand, the q-twisted construction
proposed in [5] turns out to be a very effective tool
to construct good authentication codes from ECC
(in fact almost all known authentication schemes
are implicitly or explicitly based on the q-twisted
construction). Let C be an error-correcting code
of length m over Fq with the minimal Hamming
distance dH(C) and let U be its subcode of car-
dinality q−1 |C | such that for all U ∈ U and all
λ ∈ Fq vectors u + λ1 are distinct and belong to
C, where 1 is the all-one vector. Then the fol-
lowing q-ary code VU := {(u, u + λ11, . . . , u + λq1) :
u ∈ U} (where λ1, . . . , λq are all different elements
of the field Fq ) of length n = mq is called q-twisted
code and considered as A-code generates the au-
thentication scheme [5] for protecting |U| mes-
sages with the number of keys n = mq providing
probabilities

PI = 1
q

, PS = 1 − dH(C)
m

.

Application of the q-twisted construction to
many optimal ECC (with enough large minimal
code distance) produces optimal or near optimal
authentication codes. For instance, Reed–Solomon
codes generate authentication schemes which are
the natural generalization of the aforementioned
affine scheme (namely, k = 1) and have the follow-
ing parameters ([2, 5]):

The number of messages is qk, the number
of keys is q2, and the probabilities are PI =
1/q, PS = k/q, where k + 1 is the number of in-
formation symbols of the corresponding Reed–
Solomon code.

Reed–Solomon codes are a particular case of
algebraic-geometry (AG) codes and the corre-
sponding application of q-twisted construction to
AG codes leads to an asymptotically very efficient
class of schemes with the important, additional
property of being polynomial constructible (see
[9]).

To conclude, we note that there is also another
equivalent “language” to describe and investigate
unconditional authentication schemes, namely,
the notion of almost strongly two-universal hash
functions (see [7] and also [10]).

Grigory Kabatiansky
Ben Smeets
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AUTHENTICATION TOKEN

The term “authentication token” can have at least
three different definitions, but is generally used to
refer to an object that is used to authenticate one
entity to another (see authentication). The various
definitions for “authentication token” include the
credentials provided to an authenticating party
as part of an identity verification protocol, a data
structure provided by an authentication server for
later use in authenticating to a different applica-
tion server, and a physical device or computer file
used to authenticate oneself. These definitions are
expanded below.

CREDENTIALS PROVIDED TO AN AUTHENTI-
CATING PARTY: In most identity verification or
authentication protocols, the entity being authen-
ticated must provide the authenticating entity
with some proof of the claimed identity. This
proof will allow the authenticating party to ver-
ify the identity that is being claimed and is some-
times called an “authentication token.” Examples
of these types of authentication tokens include
functions of shared secret information, like pass-
words, known only to both the authenticating and
authenticated parties and responses to challenges
that are provided by the authenticating party but
which could only be produced by the authenticated
party.

DATA STRUCTURE PROVIDED BY AN AUTHEN-
TICATION SERVER: In some security architec-
tures end users are authenticated by a dedicated
“authentication server” by means of an identity
verification protocol. This server then provides the
user with credentials, sometimes called an “au-
thentication token,” which can be provided to other
application servers in order to authenticate to
those servers. Thus, these credentials are not un-

like those described above, which are provided di-
rectly by the end user to the authenticating party,
except in that they originate with a third party,
the authentication server.

Usually these tokens take the form of a
data structure which has been digitally signed
(see digital signature schemes) or MACed (see
MAC algorithms) by the authentication server
and thus vouch for the identity of the authen-
ticated party. In other words, the authenticated
party can assert his/her identity to the applica-
tion server simply by presenting the token. These
tokens must have a short lifetime since if they are
stolen they can be used by an attacker to gain ac-
cess to the application server.

DEVICE OR FILE USED FOR AUTHENTICATION:
Quite often the credentials that must be provided
to an authenticating party are such that they can-
not be constructed using only data that can be re-
membered by a human user. In such situations
it is necessary to provide a storage mechanism
to maintain the user’s private information, which
can then be used when required in an identity ver-
ification protocol. This storage mechanism can be
either a software file containing the private infor-
mation and protected by a memorable password,
or it can be a hardware device (e.g., a smart card
and is sometimes called an “authentication token.”

In addition to making many identity verifica-
tion protocols usable by human end entities, these
authentication tokens have another perhaps more
important benefit. Since successful completion
of the protocol now usually involves both some-
thing the end entity has (the file or device) and
something the end entity knows (the password or
PIN to access the smart card) instead of just some-
thing the end entity knows, the actual security
of the authentication mechanism is increased. In
particular, when the token is a hardware device,
obtaining access to that device can often be quite
difficult, thereby providing substantial protection
from attack.

Robert Zuccherato

AUTHORIZATION
ARCHITECTURE

Authentication and authorization are separate
concepts (although authentication may be used in
the service of authorization), and their respective
architectures or infrastructures may be separately
deployed and managed. Authentication allows
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Fig. 1. Conceptual model of an authorization architec-
ture

entity A to convince entity B of A’s identity
with some degree of certainty (see identification,
identity verification protocol, and entity authen-
tication). Typically, however, this information is
insufficient. Entity A may be trying to perform
some task (e.g., execute an application, invoke a
function, or access a file) and B needs to know
not “who A is” as much as “whether A should be
allowed to perform this task.” Authorization al-
lows B to make and enforce this decision. In some
cases, A’s identity will be a critical input to the
decision-making process (“is A allowed to read A’s
medical record?”); in other cases, A’s identity may
be almost irrelevant, useful for auditing purposes
only (“the requester is an executive of the com-
pany and—regardless of who it is—all executives
are allowed to see the quarterly results before
they are announced”). Authentication answers the
question “who is this entity?” and authorization
answers the question “is this entity allowed to do
what it is trying to do?”

AUTHORIZATION ARCHITECTURE: An autho-
rization architecture is the set of components and
data that allows authorization decisions to be
made and enforced. The components of this archi-
tecture are shown in Figure 1 (note that this is
a conceptual model; actual implementations will
typically combine subsets of these components
into single machines or even single processes).

COMPONENTS: The subject, S, sends a request to
perform some action on a resource, R (e.g., read a
file, POST to a Web site, execute an application,
or invoke an object method). This request is in-
tercepted by an entity called a policy enforcement
point (PEP) whose job is to enforce a “PERMIT”
or “DENY” decision with respect to this request.
The decision itself is made by an entity called a
policy decision point (PDP). The PDP makes this
decision by gathering all the input data that is
relevant to this request and evaluating it accord-

ing to an authorization policy that is applicable to
this request. The relevant data includes the sub-
mitted request along with particular attributes
about both the subject and the resource, and may
also include attributes about the environment in
which the request is submitted. Various authori-
ties are responsible for creating and making avail-
able this attribute information: one or more sub-
ject authorities (SAs), a resource authority (RA),
and one or more environmental authorities (EAs)
package this information in a syntax that will be
accessible by a policy information point (PIP), the
entity that collects this data on behalf of the PDP.
Similarly, a policy administration point (PAP) is
responsible for creating authorization policies and
making them accessible to a policy retrieval point
(PRP), the entity that fetches policies for the
PDP.

A given implementation may have variations on
the basic architecture discussed above. For exam-
ple, there may be multiple PDPs that work to-
gether to render an overall decision with respect
to an authorization request.

INFORMATION FLOW: The flow of information
in Figure 1 is as follows. The subject S submits
a request to access a resource R. The PEP inter-
cepts this access request and sends a request for
an authorization decision to the PDP. The decision
request will contain the information contained in
the original access request, but may also contain
additional information, such as some attributes
of the subject, resource, or environment that are
known to the PEP (e.g., the IP address of the ma-
chine from which the access request was made).
The PDP will need to find an authorization pol-
icy that is relevant to this access request and so
will supply the appropriate subject, resource, and
action information to the PRP and ask it to retrieve
the correct policy. Once the PDP has the authoriza-
tion policy for this access request, it can examine
the policy to see what subject, resource, or environ-
ment attributes are required in order for it to ren-
der a decision. If the PDP requires attributes that
were not supplied by the PEP in the authorization
decision request, the PDP will ask the PIP to re-
trieve these attributes. Once the PDP has all the
data it requires (or has determined that some at-
tribute data cannot be retrieved for some reason),
it can evaluate the authorization policy and render
a decision or produce a value of “indeterminate”
(no decision possible due to missing attributes) or
“error” (no decision possible due to network or pro-
cessing difficulties). The PDP can then return its
result to the PEP, which will enforce this result
by granting access to the requested resource, or
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by returning an “access denied” or relevant error
message to the subject.

ATTRIBUTES: An attribute is a piece of informa-
tion that may be categorized as being associated
with the subject, action, resource, or environment
in an authorization architecture. Attributes may
be static or dynamic. Static attributes of the sub-
ject are referred to by many names in various
discussions and contexts, including privileges, per-
missions, rights, authorizations, properties, char-
acteristics, entitlements, and grants. Static at-
tributes can also be associated with resources and
with actions. Groups, roles, and document labels
are all examples of static attributes (even though
a “role” is dynamic in another sense: that is, an
entity may be able to step into or out of a role at
will in the course of performing some aspects of its
job).

Dynamic attributes are those whose values can-
not be relied upon to remain unchanged between
one time they are required (e.g., by the PDP) and
the next time they are required. Example dynamic
attributes of the subject include current account
balance, amount of credit remaining, and IP ad-
dress of requesting machine; dynamic attributes
of the resource include the number of times it has
been accessed; and dynamic attributes of the en-
vironment include current time of day, and time of
receipt of the request.

Dynamic attributes are retrieved by the
PDP/PIP in real time (i.e., at the time of access re-
quest evaluation) from the relevant authority. In
order for this exchange to occur securely, it is nec-
essary for the response to be authenticated so that
the PDP/PIP can be confident that the intended
authority created the response. In some cases, the
request for these attributes may also need to be
authenticated so that the authority can be confi-
dent that the legitimate PDP/PIP asked for this
information. This authentication may take place
independently on each message (e.g., using digi-
tal signatures), or may take place in the context
of a secure session (such as an SSL (see Secure
Socket Layer) session between the PDP/PIP and
the relevant authority).

Static attributes need not be retrieved in real
time from the authority; for example, they may be
cached locally by the PDP or retrieved from an on-
line repository such as a database or a directory.
However, in such cases, the authenticity and in-
tegrity of the information must still be ensured.
A method commonly employed is to put the at-
tribute data into a data structure along with some
representation of the entity to which it pertains
(the identity of the subject, or the name of the

resource, for example) and to have the relevant
authority digitally sign this data structure. The
signed data structure is the authority’s “certifi-
cate” of the authenticity of the binding between
the attribute data and the entity, which the en-
tity may be able to use in a proof procedure with
other parties to show ownership of the contained
attributes.

When static attributes are available in an au-
thorization architecture, the use of signed data
structures binding such attributes to entities can
have a number of attractive benefits. First, “of-
fline” operation may be possible, in that relying
parties such as the PDP and PIP do not need to
access SAs or RAs in real time as access requests
are being evaluated. Second, caching or other rela-
tively local storage of this data at the PDP/PIP can
significantly reduce network traffic when these
attributes need to be retrieved. Third, extended
trust and delegation of attribute granting author-
ity are more readily achievable through the use of
signed data structures. Finally, such an architec-
ture can allow a simple mechanism to “turn off”
all attributes for a given entity simultaneously
(for example, if all attribute certificates are cryp-
tographically linked to an entity’s public-key cer-
tificate, then revoking that single public-key cer-
tificate will automatically revoke all associated
attribute certificates—this can be a significant
convenience when a company employee is fired or
otherwise rendered inactive and access to many
different networks and systems has to be cut off
instantaneously).

POLICIES: An access control policy with respect
to a specific resource or set of resources is the
set of rules governing who can do what to those
resources under what conditions. The term au-
thorization policy includes access control policy,
but has a broader definition, potentially includ-
ing rules regarding the actual assignment of at-
tributes to subjects or resources, the rules re-
garding the delegation of authority to assign such
attributes, rules regarding the default behavior of
various components in the absence of sufficient in-
formation, rules regarding the trusted system en-
tities for each component in the architecture, and
so on.

Terminology in this area is far from universally
agreed, but the concepts are quite similar across
many discussions. Typically a “rule” has an effect
(indicating whether it is intended to contribute
to a PERMIT decision or a DENY decision), a
scope or a target of applicability (indicating the
subject, resource, and action to which it applies),
and a condition or set of conditions (indicating any
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restrictions, limitations, or qualifications to be im-
posed upon this subject being permitted or denied
access to this resource). A “policy” is a collection
of one or more rules along with an (implicit or
explicit) algorithm for combining the rules that
it contains or references. A well-known example
combining algorithm is “deny overrides,” in which
any satisfied rule that has an effect of DENY takes
precedence over all satisfied rules that have an ef-
fect of PERMIT. Another common example is “de-
fault deny,” in which access is denied if for what-
ever reason an actual decision cannot be rendered
by the PDP from the available data.

In many environments, policies will have what
is referred to as “distributed authorship.” That
is, several different PAPs (policy administration
points) may independently create policies that per-
tain to the same subject or to the same resource.
For example, in a particular company or orga-
nization, there may be regulatory policies that
govern access to certain types of data, legislative
policies regarding the release of the same data,
and corporate and even departmental policies re-
garding access to the same data. When a subject
asks to read this data, all these policies must be
taken into account by the PDP before it can ren-
der the appropriate decision. This means that the
PDP must have some sort of reconciliation algo-
rithm, determining the correct (i.e., intended) way
in which to combine these various—potentially
conflicting—policies. The reconciliation algorithm
must be robust and comprehensive in order for
the PDP to be able to deal in an automated fash-
ion with all the possible ways in which indepen-
dently created policies may interact. This aspect
of authorization policy is still an area of much
research.

ATTRIBUTE AND POLICY MANAGEMENT: Sub-
ject and resource attributes, as well as access con-
trol and authorization policies, need to be man-
aged in an authorization architecture. Attributes
and policies have life cycles: they may be created,
used, versioned, audited, revoked, and archived.
They may be “current” (i.e., active and valid) for a
relatively short period of time or for a long period
of time, and components in the architecture (espe-
cially the PDP) must readily be able to tell whether
a particular attribute binding or policy statement
can be relied upon or not. Various authorities in
the architecture are responsible for managing the
life cycle of this information, including SAs, RAs,
and PAPs. Such authorities must be trusted to do
this job in a reliable and timely fashion; thus, the
establishment of a trust model (see trust models)

or trust infrastructure is critical to the success of
the authorization architecture.

Another important aspect of management is at-
tribute/policy storage and retrieval. How can this
information be found by the components that need
it (the PIP and PRP), when they need it? At-
tributes and policies must be indexed and stored in
a manner that makes them easy to retrieve in real
time, given only the information contained in the
access request. Finding the best indexing mecha-
nism, storage technology, and retrieval method for
a given environment is an area of both theoretical
and practical interest.

SYNTAX: The various pieces of information in the
authorization architecture must be expressed and
conveyed in a syntax that is understood by dif-
ferent components in the architecture. For exam-
ple, the Subject Authority will bind attribute in-
formation to subject identifiers and express this
binding in a data structure; the policy adminis-
tration point will define an access control policy
and express this policy in a data structure; the pol-
icy enforcement point will need a decision from a
policy decision point regarding a particular access
request and will package this decision request in
a protocol message. In each case, the syntax and
semantics of the data must be understood by mul-
tiple components in the architecture in order for
proper enforcement of the intended authorization
policies to take place.

Over the years, there have been many at-
tempts to define a syntax to express attribute
bindings and policy information, some based on
Baccus-Nauer Form (BNF), some based on Ab-
stract Syntax Notation One (ASN.1), and some
more recent work based on Extensible Markup
Language (XML). Examples include work in
the Distributed Computing Environment (DCE),
SESAME, and CORBA Security initiatives, Policy-
Maker, PONDER, Distributed Management Task
Force/Common Information Model (DMTF/CIM),
IETF Simple Public Key Infrastructure (SPKI) s-
expressions, ISO/ITU-T X.509 Attribute Certifi-
cate and PrivilegePolicy, OASIS XACML policy
language, and OASIS SAML assertions and pro-
tocols.

It is unlikely that a single syntax for attribute
binding information or for policy expression will
meet the needs of all environments and architec-
tures. However, the search for flexible, powerful
syntaxes for these types of information continues
throughout the academic and commercial commu-
nities. In the meantime, some of the efforts men-
tioned above have been found to be appropriate



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 20:59

Availability 27

and useful in specific environments and commu-
nities of interest.

FURTHER READING: Further discussion on au-
thorization models and architectures can be found
in the references list.

Carlisle Adams
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AUTHORIZATIONS
MANAGEMENT

Authorizations management is a subset of
general “authorization data” management (see
authorization architecture) in which the data be-
ing managed is authorizations associated with en-
tities in an environment. An authorization may
be defined as follows [1]: something (typically in
writing) “empowering a person (or system entity)
to perform an act or to execute an office.”

Carlisle Adams
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AUTHORIZATION POLICY

Authorization policy is the policy used by a policy
decision point (PDP), in conjunction with autho-
rization data, to render authorization decisions.
See authorization architecture for details.

Carlisle Adams

AUTOCORRELATION

Let {at } be a sequence of period n (so at = at+n
for all values of t) with symbols being the inte-
gers mod q (see modular arithmetic). The periodic
auto-correlation of the sequence {at } at shift τ is
defined as

A(τ ) =
n−1∑
t=0

ωat+τ −at ,

where ω is a complex qth root of unity.
In most applications one considers binary

sequences when q = 2 and ω = −1. Then the auto-
correlation at shift τ equals the number of agree-
ments minus the number of disagreements be-
tween the sequence {at } and its cyclic shift {at+τ }.
Note that in most applications one wants the au-
tocorrelation for all nonzero shifts τ �= 0 (mod n)
(the out-of-phase autocorrelation) to be low in
absolute value. For example, this property of a
sequence is extremely useful for synchronization
purposes.

Tor Helleseth
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AVAILABILITY

A service is of no practical use if no one is able to
access it. Availability is the property that legiti-
mate principals are able to access a service within
a timely manner whenever they may need to do so.
Availability is typically expressed numerically as
the fraction of a total time period during which a
service is available. Although one of the keystones
of computer security, availability has historically
not been emphasized as much as other properties
of security such as confidentiality and integrity.
This lack of emphasis on availability has changed
recently with the rise of open Internet services.

Decreased availability can occur both inadver-
tently, through failure of hardware, software, or
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infrastructure, or intentionally, through attacks
on the service or infrastructure. The first can be
mitigated through redundancy, where the prob-
ability of all backups experiencing a failure si-
multaneously is (hopefully) very low. It is in re-
gard to these random failures where “five-nines
of availability” (available 99.999% of the time)
are often used when describing systems. The
second cause for loss of availability is of more
interest from a security standpoint. When an

attacker is able to degrade availability, it is known
as a Denial of Service attack. Malicious attacks
against availability can focus on the service it-
self (e.g., exploiting a common software bug to
cause all backups to fail simultaneously), or on the
infrastructure supporting the service (e.g., flood-
ing network links between the service and the
principal).

Eric Cronin
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BEAUFORT ENCRYPTION

This is an encryption similar to the Vigenère
encryption [1], but with shifted reversed standard
alphabets. For encryption and decryption, one can
use the Beaufort table below (Giovanni Sestri,
1710).

a b c d e f g h i j k l m n o p q r s t u v w x y z
A Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

B A Z Y X W V U T S R Q P O N M L K J I H G F E D C B

C B A Z Y X W V U T S R Q P O N M L K J I H G F E D C

D C B A Z Y X W V U T S R Q P O N M L K J I H G F E D

E D C B A Z Y X W V U T S R Q P O N M L K J I H G F E

F E D C B A Z Y X W V U T S R Q P O N M L K J I H G F

G F E D C B A Z Y X W V U T S R Q P O N M L K J I H G

H G F E D C B A Z Y X W V U T S R Q P O N M L K J I H

I H G F E D C B A Z Y X W V U T S R Q P O N M L K J I

J I H G F E D C B A Z Y X W V U T S R Q P O N M L K J

K J I H G F E D C B A Z Y X W V U T S R Q P O N M L K

L K J I H G F E D C B A Z Y X W V U T S R Q P O N M L

M L K J I H G F E D C B A Z Y X W V U T S R Q P O N M

N M L K J I H G F E D C B A Z Y X W V U T S R Q P O N

O N M L K J I H G F E D C B A Z Y X W V U T S R Q P O

P O N M L K J I H G F E D C B A Z Y X W V U T S R Q P

Q P O N M L K J I H G F E D C B A Z Y X W V U T S R Q

R Q P O N M L K J I H G F E D C B A Z Y X W V U T S R

S R Q P O N M L K J I H G F E D C B A Z Y X W V U T S

T S R Q P O N M L K J I H G F E D C B A Z Y X W V U T

U T S R Q P O N M L K J I H G F E D C B A Z Y X W V U

V U T S R Q P O N M L K J I H G F E D C B A Z Y X W V

W V U T S R Q P O N M L K J I H G F E D C B A Z Y X W

X W V U T S R Q P O N M L K J I H G F E D C B A Z Y X

Y X W V U T S R Q P O N M L K J I H G F E D C B A Z Y

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A Z

Friedrich L. Bauer
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BERLEKAMP–MASSEY
ALGORITHM

The Berlekamp–Massey algorithm is an algorithm
for determining the linear complexity of a finite
sequence and the feedback polynomial of a linear
feedback shift register (LFSR) of minimal length
which generates this sequence. This algorithm is
due to Massey [3], who showed that the iterative

algorithm proposed in 1967 by Berlekamp [1] for
decoding BCH codes (see cyclic codes) can be used
for finding the shortest LFSR that generates a
given sequence.

For a given sequence sn of length n, the
Berlekamp–Massey algorithm performs n iter-

ations. The tth iteration determines an LFSR
of minimal length, which generates the first
t digits of sn. The algorithm can be described as
follows.

Input. sn = s0s1. . .sn−1, a sequence of n elements
of Fq .

Output. �, the linear complexity of sn and P, the
feedback polynomial of an LFSR of length �

which generates sn.
Initialization.

P(X) ← 1, P ′(X) ← 1, � ← 0, m ← −1, d ′ ← 1.

For t from 0 to n − 1 do
d ← st + ∑�

i=1 pist−i .

29
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If d �= 0 then
T(X) ← P(X).
P(X) ← P(X) − d(d ′)−1 P′(X)Xt−m.
if 2� ≤ t then

� ← t + 1 − �.
m ← t .
P′(X) ← T(X).
d ′ ← d.

Return � and P.

In the particular case of a binary sequence, the
quantity d ′ does not need to be stored since it is
always equal to 1. Moreover, the feedback polyno-
mial is simply updated by

P(X) ← P(X) + P′(X)Xt−m.

The number of operations performed for comput-
ing the linear complexity of a sequence of length n
is O(n2).

It is worth noting that the LFSR of minimal
length that generates a sequence sn of length n
is unique if and only if n ≥ 2�(sn), where �(sn) is
the linear complexity of sn.

EXAMPLE: The following table describes the
successive steps of the Berlekamp–Massey algo-
rithm applied to the binary sequence of length 7,
s0· · ·s6 = 0111010. The values of � and P obtained
at the end of step t correspond to the linear com-
plexity of the sequence s0· · ·st and to the feedback
polynomial of an LFSR of minimal length that gen-
erates it.

t st d � P(X) m P′(X)

0 1 −1 1
0 0 0 0 1 −1 1
1 1 1 2 1 + X 2 1 1
2 1 1 2 1 + X + X 2 1 1
3 1 1 2 1 + X 1 1
4 1 0 2 1 + X 1 1
5 0 1 4 1 + X + X4 5 1 + X
6 0 0 4 1 + X + X4 5 1 + X

The linear complexity �(s) of a linear recur-
ring sequence s = (st )t≥0 is equal to the linear
complexity of the finite sequence composed of
the first n terms of s for any n ≥ �(s). Thus,
the Berlekamp–Massey algorithm determines the
shortest LFSR that generates an infinite linear
recurring sequence s from the knowledge of any
2�(s) consecutive digits of s.

It can be proved [2] that the Berlekamp–Massey
algorithm and the Euclidean algorithm are essen-
tially the same.

Anne Canteaut
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BERLEKAMP Q-MATRIX

The Q-matrix is the key component in Berlekamp’s
elegant algorithm [1] for factoring a polynomial
over finite field.

Let Fq be a finite field and let f (x) be a monic
polynomial of degree d over Fq :

f (x) = xd + fd−1xd−1 + · · · + f1x + f0,

where the coefficients f0, . . . , fd−1 are elements of
Fq . The factorization of f (x) has the form

f (x) =
∏

i

hi(x)ei ,

where each factor hi(x) is an irreducible poly-
nomial and ei ≥ 1 is the multiplicity of the factor
hi(x).

Berlekamp’s algorithm exploits the fact that for
any polynomial g(x) over Fq ,

g(x)q − g(x) =
∏
c∈Fq

(g(x) − c).

Accordingly, given a polynomial g(x) such that

g(x)q − g(x) ≡ 0 mod f (x),

one can find factors of f (x) by computing the great-
est common divisor (in terms of polynomials) of
f (x) and each g(x) − c term. (This process may
need to be repeated with other polynomials g(x)
until the irreducible factors hi(x) are found.) The
Q-matrix is the key to obtaining the polynomial
g(x). In particular, Berlekamp shows how to trans-
form the congruence above into a problem in linear
algebra,

(Q − I)g = 0,

where Q is a d × d matrix over Fq , and I is the
d × d identity matrix. The elements of Q cor-
respond to the coefficients of the polynomials
xqi

mod f (x), 0 ≤ i < d. The elements of each solu-
tion g, a vector over Fq , are the coefficients of g(x).
The running time of the algorithm as described is
polynomial time in d and q, but it can be improved
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to be polynomial in d and log q, and more efficient
algorithms are also available (e.g., [2]).

Burt Kaliski
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BINARY EUCLIDEAN
ALGORITHM

The principles behind this algorithm were dis-
covered by R. Silver and J. Tersian and indepen-
dently by Stein [8]. The algorithm computes the
greatest common divisor and is based on the fol-
lowing observations:
� If u and v are both even, then gcd(u, v) =

2 gcd(u/2, v/2);
� If u is even and v is odd, then gcd(u, v) =

gcd(u/2, v);
� Otherwise both are odd, and gcd(u, v) =

gcd(|u − v|/2, v).
The three conditions cover all possible cases for
u and v. The algorithm systematically reduces u
and v by repeatedly testing the conditions and ac-
cordingly applying the reductions. Note that the
first condition, i.e., u and v both being even, ap-
plies only in the very beginning of the procedure.
Thus, the algorithm first factors out the highest
common power of 2 from u and v and stores it in g.
In the remainder of the computation only the other
two conditions are tested. The computation termi-
nates when one of the operands becomes zero. The
algorithm is given as follows.

The Binary GCD Algorithm
Input: positive integers x and y
Output: g = GCD(u, v)

g ← 1
While u is even AND v is even do

u ← u/2 ; v ← v/2 ; g ← 2g;
End While
While u �= 0 do

While u is even do u ← u/2;
While v is even do v ← v/2;
t ← |u − v|/2;
If u ≥ v then

u ← t ;

Else
v ← t ;

End While
End While
Return (gv)

In the algorithm, only simple operations such as
addition, subtraction, and divisions by two (shifts)
are computed. Although the binary GCD algo-
rithm requires more steps than the classical Eu-
clidean algorithm, the operations are simpler. The
number of iterations is known [6] to be bounded
by 2(log2(u) + log2(v) + 2).

Similar to the extended Euclidean algorithm,
the binary GCD algorithm was adapted to re-
turn two additional parameters s and t such
that

su + tv = gcd(u, v).

These parameters are essential for modular in-
verse computations. If gcd(u, v) = 1 then it follows
that s = u−1 mod v and t = v−1 mod u. Knuth [5]
attributes the extended version of the binary GCD
algorithm to Penk. The algorithm given below is
due to Bach and Shallit [1].

The Binary Euclidean Algorithm
Input: positive integers x and y
Output: integers s, t , g such that su + tv = g
where g = GCD(u, v)

g ← 1
While u is even AND v is even do

u ← u/2; v ← v/2; g ← 2g;
End While
x ← u; y ← v; s ′′ ← 1; s ′ ← 0; t ′′ ← 0;
t ′ ← 1;

L1 While x is even do
x ← x/2;
If s ′′ is even and t ′′ is even then

s ′′ ← s ′′/2; t ′′ ← t ′′/2;
Else

s ′′ ← (s ′′ + v)/2; t ′′ ← (t ′′ − u)/2;
End If

End While
While y is even do

y ← y/2;
If s ′ is even AND t ′ is even then

s ′ ← s ′/2; t ′ ← t ′/2;
Else

s ′ ← (s ′ + v)/2; t ′ ← (t ′ − u)/2;
End If

End While
If x ≥ y then

x ← x − y; s ′′ ← s ′′ − s ′; t ′′ ← t ′′ − t ′;
Else

y ← y − x; s ′ ← s ′ − s ′′; t ′ ← t ′ − t ′′;
End If
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If x = 0 then
s ← s ′; t ← t ′;

Else
GoTo L1

End If
Return (s, t, gy)

The binary Euclidean algorithm may be used for
computing inverses a−1 mod m by setting u = m
and v = a. Upon termination of the execution, if
gcd(u, v) = 1 then the inverse is found and its
value is stored in t . Otherwise, the inverse does
not exist. In [6], it is noted that for computing mul-
tiplicative inverses the values of s ′′ and t ′′ do not
need to be computed if m is odd. In this case, the
evenness condition on s ′′ and t ′′ in the second while
loop may be decided by examining the parity of s ′.
If m is odd and s ′ is even, then s ′′ must be even.

The run time complexity is O((log(n))2) bit op-
erations. Convergence of the algorithm, if not ob-
vious, can be shown by induction. A complexity
analysis of the binary euclidean algorithm was
presented by Brent in [2]. Bach and Shallit give
a detailed analysis and comparison to other GCD
algorithms in [1].

Sorenson claims that the binary Euclidean al-
gorithm is the most efficient algorithm for com-
puting greatest common divisors [7]. In the same
reference Sorenson also proposed a k-ary version
of the binary GCD algorithm with worst case run-
ning time O(n2/ log(n)).

In [3], Jebelean claims that Lehmer’s Euclidean
algorithm is more efficient than the binary GCD
algorithm. The same author presents [4] a word-
level generalization of the binary GCD algorithm
with better performance than Lehmer’s Euclidean
algorithm.

See also Euclidean Algorithm.

Berk Sunar
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BINARY EXPONENTIATION

Most schemes for public-key cryptography involve
exponentiation in some group (or, more generally,
in some semigroup; a semigroup is an algebraic
structure that is like a group except that elements
need not have inverses, and that there may not
even be a neutral element). The term exponentia-
tion assumes that the group operation is written
multiplicatively. If the group operation is written
additively, one speaks of scalar multiplication in-
stead, but this change in terminology does not af-
fect the essence of the task.

Let ◦ denote the group operation and assume
that the exponentiation to be performed is ge

where g is an element of the group (or semi-
group) and e is a positive integer. Computing the
result g ◦ · · · ◦ g in a straightforward way by ap-
plying the group operation e − 1 times is feasible
only if e is very small; for e ≥ 4, it is possible to
compute ge with fewer applications of the group
operation. Determining the minimum number of
group operations needed for the exponentiation,
given some exponent e, is far from trivial; see
fixed-exponent exponentiation. (Furthermore, the
time needed for each single computation of the
group operation is usually not constant: for ex-
ample, it often is faster to compute a squaring
A◦ A than to compute a general multiplication
A◦ B.) Practical implementations that have to
work for arbitrary exponents need exponentiation
algorithms that are reasonably simple and fast.

Assuming that for the exponentiation one can
use no other operation on group elements than
the group operation ◦ (and that one cannot make
use of additional information such as the order
of the group or the order of specific group ele-
ments), it can be seen that for l-bit exponents
(i.e., 2l−1 ≤ e < 2l), any exponentiation method
will have to apply the group operation at least l − 1
times to arrive at the power ge. The left-to-right
binary exponentiation method is a very simple and
memory-efficient technique for performing expo-
nentiations in at most 2(l − 1) applications of the
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group operation for any l-bit exponent (i.e., within
a factor of 2 from the lower bound). It is based on
the binary representation of exponents e:

e =
l−1∑
i=0

ei2i , ei ∈ {0, 1}.

With l chosen minimal in such a representation,
we have el−1 = 1. Then ge can be computed as fol-
lows:

A ← g
for i = l − 2 down to 0 do

A ← A◦ A
if ei = 1 then

A ← A◦ g
return A

If the group is considered multiplicative, then com-
puting A◦ A means squaring A, and computing
A◦ g means multiplying A by g; hence this algo-
rithm is also known as the square-and-multiply
method for exponentiation. If the group is consid-
ered additive, then computing A◦ A means dou-
bling A, and computing A◦ g means adding g to A;
hence this algorithm is also known as the double-
and-add method for scalar multiplication.

The algorithm shown above performs a left-to-
right exponentiation, i.e., it starts at the most sig-
nificant digit of the exponent e (which, assuming
big-endian notation, appears at the left) and goes
toward the least significant digit (at the right).
The binary exponentiation method also has a vari-
ant that performs a right-to-left exponentiation,
i.e., starts at the least significant digit and goes
toward the most significant digit:

flag ← false
B ← identity element
A ← g
for i = 0 to l − 1 do

if ei = 1 then
if flag then

B ← B ◦ A
else

B ← A {Equiv. to B ← B ◦ A}
flag ← true

if i < l − 1 then
A ← A ◦ A

return B

This algorithm again presumes that el−1 = 1. The
right-to-left method is essentially the traditional
algorithm known as “Russian peasant multiplica-
tion,” generalized to arbitrary groups.

For an l-bit exponent, the left-to-right and right-
to-left binary exponentiation methods both need
l − 1 squaring operations (A◦ A) and, assuming

that all bits besides el−1 are uniformly and inde-
pendently random, (l − 1)/2 general group opera-
tions (A◦ g or B ◦ A) on average.

Various other algorithms are known that can be
considered variants or generalizations of binary
exponentiation: see 2k-ary exponentiation and
sliding window exponentiation for other meth-
ods for computing powers (which can often be
faster than binary exponentiation), and see simul-
taneous exponentiation for methods for comput-
ing power products. See also signed digit exponen-
tiation for techniques that can improve efficiency
in groups allowing fast inversion.

Bodo Möller

BINOMIAL DISTRIBUTION

If a two-sided coin is flipped n times, what is the
probability that there are exactly k heads? This
probability is given by the binomial distribution.
If the coin is unbiased and the coin flips are in-
dependent of one another, then the probability is
given by the equation

Pr[k heads | n coin flips] =
(

n
k

)
2−n.

Here, the notation
(n

k

)
, read “n choose k,” is the

number of ways of choosing k items from a set of n
items, ignoring order. The value may be computed
as (

n
k

)
= n!

k!(n − k)!
.

For the first several values of n, the following
probabilities are as follows for an unbiased coin
(read k left to right from 0 to n):

n = 0 : 1
n = 1 : 1

2
1
2

n = 2 : 1
4

1
2

1
4

n = 3 : 1
8

3
8

3
8

1
8

n = 4 : 1
16

1
4

3
8

1
4

1
16

More generally, if the coin flips are independent
but the probability of heads is p, the binomial dis-
tribution is likewise biased:

Pr[k heads | n coin flips, probability p of heads]

=
(

n
k

)
pk(1 − p)n−k.

The name “binomial” comes from the fact that
there are two outcomes (heads and tails) and the
probability distribution can be determined by
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computing powers of the two-term polynomial
(binomial) f(x) = px + (1 − p). The probability
that there are exactly k heads after n coin flips is
exactly the same as the xk term of the polynomial
f(x)n.

As coin flips (either physical or their compu-
tational equivalent) are the basic building block
of randomness in cryptography, the binomial dis-
tribution is likewise the foundation of probability
analysis in this field.

Burt Kaliski

BIOMETRICS

A wide variety of systems require reliable au-
thentication schemes to confirm the identity
of an individual requesting their services (see
identification). The purpose of such schemes is to
ensure that the rendered services are accessed
only by a legitimate user, and no one else. Ex-
amples of such applications include secure access
to buildings, computer systems, laptops, cellular
phones, and ATMs. In the absence of robust au-
thentication schemes, these systems are vulnera-
ble to the wiles of an impostor.

Traditionally, passwords (knowledge-based se-
curity) and ID cards (token-based security) have
been used to restrict access to systems. However,
security can be easily breached in these systems
when a password is divulged to an unauthorized
user or an ID card is stolen by an impostor. Fur-
ther, simple passwords are easy to guess (by an
impostor) and complex passwords may be hard
to recall (by a legitimate user). The emergence
of biometrics has addressed the problems that
plague these traditional security methods. Bio-
metrics refers to the automatic identification (or
verification) of an individual (or a claimed iden-
tity) by using certain physiological or behavioral
traits associated with the person. By using biomet-
rics it is possible to establish an identity based on
“who you are,” rather than by “what you possess”
(e.g., an ID card) or “what you remember” (e.g.,
a password). Current biometric systems make
use of fingerprints, hand geometry, iris, retina,
face, hand vein, facial thermograms, signature,
voiceprint, etc. (Figure 1) to establish a person’s
identity [1,4]. While biometric systems have their
limitations (e.g., additional cost, temporal changes
in biometric traits, etc.), they have an edge over
traditional security methods in that they cannot
be easily stolen or shared.

Biometric systems also introduce an aspect of
user convenience that may not be possible using

(a) Fingerprint (b) Face (c) Hand Geometry

0 1 2 3 4 5 6 7 8
× 104

(d) Signature (e) Iris (f) Voice

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Fig. 1. Examples of some of the biometric traits used for
authenticating an individual

traditional security techniques. For example,
users maintaining different passwords for differ-
ent applications may find it challenging to recol-
lect the password associated with a specific ap-
plication. In some instances, the user might even
forget the password, requiring the system admin-
istrator to intervene and reset the password for
that user. Maintaining, recollecting, and resetting
passwords can, therefore, be a tedious and expen-
sive task. Biometrics, on the other hand, addresses
this problem effectively: a user can use the same
biometric trait (e.g., right index finger) or differ-
ent biometric traits (e.g., fingerprint, hand geome-
try, iris) for different applications, with “password”
recollection not being an issue at all.

A typical biometric system operates by acquir-
ing biometric data from an individual, extracting
a feature set from the acquired data, and compar-
ing this feature set against the template feature
set stored in the database (Figure 2). In an identi-
fication scheme, where the goal is to recognize the
individual, this comparison is done against tem-
plates corresponding to all the enrolled users (a
one-to-many matching); in a verification scheme,
where the goal is to verify a claimed identity, the
comparison is done against only those templates
corresponding to the claimed identity (a one-to-
one matching). Thus, identification (“whose bio-
metric data is this?”) and verification (“does this
biometric data belong to Bob?”) are two differ-
ent problems with different inherent complexities.
The templates are typically created at the time
of enrollment, and, depending on the application,
may or may not require human personnel inter-
vention.

Biometric systems are being increasingly de-
ployed in large scale civilian applications. The
Schiphol Privium scheme at the Amsterdam
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Fig. 2. The enrollment module and the verification module of a biometric system

airport, for example, employs iris scan cards to
speed up the passport and visa control procedures.
Passengers enrolled in this scheme insert their
card at the gate and look into a camera; the cam-
era acquires the image of the traveler’s eye and
processes it to locate the iris, and computes the
Iriscode; the computed Iriscode is compared with
the data residing in the card to complete user ver-
ification. A similar scheme is also being used to
verify the identity of Schiphol airport employees
working in high-security areas. Thus, biometric
systems can be used to enhance user convenience
while improving security.

A simple biometric system has four important
modules: (i) Sensor module which acquires the bio-
metric data of an individual. An example would be
a fingerprint sensor that images the fingerprint
ridges of a user. (ii) Feature extraction module in
which the acquired biometric data is processed to
extract a feature set that represents the data. For
example, the position and orientation of ridge bi-
furcations and ridge endings (known as minutiae
points) in a fingerprint image are extracted in the
feature extraction module of a fingerprint system.
(iii) Matching module in which the extracted fea-
ture set is compared against that of the template
by generating a matching score. For example, in
this module, the number of matching minutiae
points between the acquired and template finger-
print images is determined, and a matching score
reported. (iv) Decision-making module in which

the user’s claimed identity is either accepted or re-
jected based on the matching score (verification).
Alternately, the system may identify a user based
on the matching scores (identification).

In order to analyze the performance of a bio-
metric system, the probability distribution of gen-
uine and impostor matching scores is examined.
A genuine matching score is obtained when two
feature sets corresponding to the same individual
are compared, and an impostor matching score is
obtained when feature sets from two different in-
dividuals are compared. When a matching score
exceeds a certain threshold, the two feature sets
are declared to be from the same individual; oth-
erwise, they are assumed to be from different in-
dividuals. Thus, there are two fundamental types
of errors associated with a biometric system: (i)
a false accept, which occurs when an impostor
matching score exceeds the threshold, and (ii) a
false reject, which occurs when a genuine match-
ing score does not exceed the threshold. The error
rates of systems based on fingerprint and iris are
usually lower compared to those based on voice,
face, and hand geometry. A receiver operating
characteristic (ROC) curve plots the false reject
rate (FRR—the percentage of genuine scores that
do not exceed the threshold) against the false ac-
cept rate (FAR—the percentage of impostor scores
that exceed the threshold) at various thresholds.
The operating threshold employed by a system de-
pends on the nature of the application. In forensic
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Fig. 3. Evaluating the matching accuracy of a biometric system: (a) histograms of genuine and impostor matching
scores and the two types of errors that are possible in a biometric system; (b) a receiver operating characteristic
curve indicating the operating point (threshold) for different kinds of applications

applications, for example, a low FRR is preferred,
while in high security access facilities like nuclear
labs, a low FAR is desired (Figure 3). Besides FAR
and FRR, other types of errors are also possible
in a biometric system. The failure to enroll (FTE)
error refers to the inability of a biometric system
to enroll an individual whose biometric trait may
not be of good quality (e.g., poor quality fingerprint
ridges). Similarly, a biometric system may be un-
able to procure good quality biometric data from
an individual during authentication resulting in a
failure to acquire (FTA) error.

A biometric system is susceptible to various
types of attacks. For example, an impostor may
attempt to present a fake finger or a face mask
or even a recorded voice sample in order to cir-
cumvent the system. The problem of fake biomet-
rics may be mitigated by employing challenge-
response mechanisms or conducting liveness
detection tests. Most biometric systems currently
deployed are used for local authentication, i.e., sel-
dom is the biometric data acquired from a user
transmitted across a network channel. This avoids
problems that would arise if a channel is compro-
mised. Privacy concerns related to the use of bio-
metrics and protection of biometric templates are
issues that are currently being studied [3].

The increased demand for reliable and conve-
nient authentication schemes, availability of in-
expensive computing resources, development of
cheap biometric sensors, and advancements in sig-
nal processing have all contributed to the rapid de-
ployment of biometric systems in establishments

ranging from grocery stores to airports. The emer-
gence of multimodal biometrics has further en-
hanced the matching performance of biometric
systems [2]. It is only a matter of time before bio-
metrics integrates itself into the very fabric of so-
ciety and impacts the way we conduct our daily
business.

Anil K. Jain
Arun Ross
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BIRTHDAY PARADOX

The birthday paradox refers to the fact that there
is a probability of more than 50% that among
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a group of at least 23 randomly selected peo-
ple at least 2 have the same birthday. It follows
from

365
365

· 365 − 1
365

· · · 365 − 22
365

≈ 0.49 < 0.5;

it is called a paradox because the 23 is felt to be
unreasonably small compared to 365. Further, in
general, it follows from

∏
0≤i≤1.18

√
p

p− i
p

≈ 0.5

that it is not unreasonable to expect a duplicate
after about

√
p elements have been picked at ran-

dom (and with replacement) from a set of cardinal-
ity p. A good exposition of the probability analysis
underlying the birthday paradox can be found in
Corman et al. [1], Section 5.4.

Under reasonable assumptions about their in-
puts, common cryptographic k-bit hash functions
may be assumed to produce random, uniformly
distributed k-bit outputs. Thus one may expect
that a set of the order of 2k/2 inputs contains two
elements that hash to the same value. Such hash
function collisions have important cryptanalytic
applications. Another prominent cryptanalytic ap-
plication of the birthday paradox is Pollard’s rho
factoring method (see integer factoring) where el-
ements are drawn from Z/nZ for some integer n
to be factored. When taken modulo p for any un-
known p dividing n, the elements are assumed to
be uniformly distributed over Z/pZ. A collision
modulo p, and therefore possibly a factor of n,
may be expected after drawing approximately

√
p

elements.
Cryptanalytic applications of the birthday para-

dox where the underlying distributions are not
uniform are the large prime variations of sieving
based factoring methods. There, in the course of
the data gathering step, data involving so-called
large primes q is found with probability approxi-
mately inversely proportional to q. Data involving
large primes is useless unless different data with
a matching large prime is found. The fact that
smaller large primes occur relatively frequently,
combined with the birthday paradox, leads to
a large number of matches and a considerable
speed-up of the factoring method.

Arjen K. Lenstra
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BLIND SIGNATURE

In a blind signature scheme signers have indi-
vidual private signing keys and distribute their
corresponding public verifying keys, just as in
normal cryptographic digital signature schemes.
Public verifying keys are distributed via authen-
tication channels, for example, by means of public
key infrastructures. There is also a publicly avail-
able verifying algorithm such that anyone who has
retrieved a public verifying key y of a signer can
verify whether a given signature s is valid for a
given message m with respect to the signer’s pub-
lic verifying key y.

In a blind signature scheme, the signers neither
learn the messages they sign, nor the signatures
the recipients obtain for their messages. A verifier
who seeks a signature for a message m′ from a
signer with verifying key y prepares some related
message m and passes m to the signer. The signer
provides a response s back to the recipient, such
that the recipient can derive a signature s ′ from
y, m, m′, s such that s ′ is valid for m′ with respect
to y. The resulting signature s ′ is called a “blind
signature,” although it is not the signature that is
blind, but the signer.

The first constructions of cryptographic blind
signatures were proposed by David Chaum. These
early blind signature schemes were based on
RSA signatures. An example is the Chaum Blind
Signature [7, 8].

The security of blind signature schemes is de-
fined by a degree of unforgeability and a degree
of blindness. Of the notions of unforgeability (see
forgery) for normal cryptographic signature
schemes defined by Goldwasser et al. [16], only
unforgeability against total break and universal
break apply to blind signature schemes. However,
the notions of selective forgery and existential
forgery are inappropriate for blind signature
schemes, because they assume an active attack
to be successful if after the attack the recipient
has obtained a signature for a (new) message that
the signer has not signed before. Obviously, this
condition holds for every message a recipient gets
signed in a blind signature scheme, and therefore
the definition cannot discriminate attacks from
normal use of the scheme. For blind signatures,
one is interested in other notions of unforgeability,
namely unforgeability against one-more forgery
and restrictiveness (see forgery), both of which are
mainly motivated by the use of blind signatures in
untraceble electronic cash.

A one-more-forgery [19] is an attack that for
some polynomially bounded integer n comes up
with valid signatures for n + 1 pairwise different
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messages after the signer has provided signa-
tures only for n messages. Blind signatures un-
forgeable against one-more forgery have attracted
attention since Chaum et al. [10] and Chaum
[9] used them to build practical offline and on-
line untraceable electronic cash schemes. Most
practical electronic cash schemes employ one-
time blind signatures, where a customer can ob-
tain only one signed message from each inter-
action with the bank during withdrawal of an
electronic coin. This helps to avoid the problem
of counterfeiting electronic coins [3–6, 22]. For-
mal definitions of one-time blind signatures have
been proposed by Franklin and Yung [15] and by
Pointcheval [19].

In a restrictive blind signature scheme, a re-
cipient who passes a message m to a signer (us-
ing verifying key y) and receives information s
in return can derive from y, m, m′, s only valid
signatures for those messages m′ that observe
the same structure as m. In offline electronic
cash this is used to encode a customer’s identity
into the messages that are signed by the bank
such that the messages obtained by the customer
all have his identity encoded correctly. Impor-
tant work in this direction was done by Chaum
and Pedersen [7], Brands [1], Ferguson [12, 13],
Frankel et al. [14] and Radu et al. [20, 21]. A
formal definition of a special type of restrictive
blind signatures has been given by Pfitzmann and
Sadeghi [18].

Blindness is a property serving the privacy in-
terests of honest recipients against cheating and
collaborating signers and verifiers. The highest
degree of unlinkability is unconditional unlinka-
bility, where a dishonest signer and verifier, both
with unconditional computing power, cannot dis-
tinguish the transcripts (m, s) seen by the signer in
his interactions with the honest recipient from the
recipient’s outputs (m′, s ′), which are seen by the
verifier, even if the signer and the verifier collabo-
rate. More precisely, consider an honest recipient
who first obtains n pairs of messages and respec-
tive valid signatures (m1, s1), . . . , (mn, sn) from a
signer, then derives n pairs of blinded messages
and signatures (m′

1, s ′
1), . . . , (m′

n, s ′
n) from the for-

mer n pairs one by one, and later shows the latter
n pairs to a verifier in random order. Then, the
signer and the collaborating verifier should find
each bijection of the former n pairs onto the lat-
ter n pairs to be equally likely to describe which
of the latter pairs the honest recipient has derived
from which of the former pairs. A weaker degree of
blindness is defined as computational unlinkabil-
ity, which is defined just as unconditional unlinka-
bility except that the attacker is computationally

restricted (computational complexity). These are
formalizations of the intended property that the
signer does not learn “anything” about the mes-
sage being signed.

On a spectrum between keeping individuals ac-
countable and protecting their identities against
unduly propagation or misuse, blind signature
schemes tend toward the latter extreme. In many
applications this strongly privacy oriented ap-
proach is not acceptable in all circumstances.
While the identities of honest individuals are pro-
tected in a perfect way, criminal dealings of in-
dividuals who exploit such systems to their own
advantage are protected just as perfectly. For ex-
ample, Naccache and van Solms [17] have de-
scribed “perfect crimes” where a criminal black-
mails a customer to withdraw a certain amount of
money from her account by using a blind signa-
ture scheme and then deposit the amount into the
criminal’s account.

Trustee based blind signature schemes have
been proposed to strike a more acceptable balance
between keeping individuals accountable and pro-
tecting their identities. Stadler et al. [22] have
proposed fair blind signatures. Fair blind signa-
tures employ a trustee who is involved in the
key setup of the scheme and in an additional
link-recovery operation between a signer and the
trustee. The trustee can revoke the “blindness”
of certain pairs of messages and signatures upon
request. The link-recovery operation allows the
signer or the judge to determine for each transcript
(m, s) of the signing operation which message m′

has resulted for the recipient, or to determine for
a given recipient’s message m′ from which tran-
script (m, s) it has evolved. Similar approaches
have been applied to constructions of electronic
cash [3,21].

Blind signatures have been employed exten-
sively in cryptographic constructions of privacy
oriented services such as untraceable electronic
cash, anonymous electronic voting schemes, and
unlinkable credentials.

Gerrit Bleumer
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BLINDING TECHNIQUES

Blinding is a concept in cryptography that allows
a client to have a provider compute a mathemati-
cal function y = f(x), where the client provides an
input x and retrieves the corresponding output y,
but the provider would learn about neither x nor y.
This concept is useful if the client cannot compute
the mathematical function f all by himself, for



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:29

40 Blinding techniques

example, because the provider uses an additional
private input in order to compute f efficiently.

Blinding techniques can be used on the client
side of client-server architectures in order to en-
hance the privacy of users in online transactions.
This is the most effective way of dealing with
server(s) that are not fully trusted.

Blinding techniques are also the most effective
countermeasure against remote timing analysis of
Web servers [4] and against power analysis and/or
timing analysis of hardware security modules (see
side-channel attacks and side-channel analysis).

In a typical setting, a provider offers to com-
pute a function fx(m) using some private key x
and some input m chosen by a client. A client
can send an input m, have the provider compute
the corresponding result z = fx(m), and retrieve z
from the provider afterward. With a blinding tech-
nique, a client would send a transformed input m′

to the provider, and would retrieve the correspond-
ing result z′ in return. From this result, the client
could then derive the result z′ = fx(m′) that corre-
sponds to the input m in which the client was inter-
ested in the first place. Some blinding techniques
guarantee that the provider learns no information
about the client’s input m and the corresponding
output z.

More precisely, blinding works as follows: con-
sider a key generating algorithm gen that outputs
pairs (x, y) of private and public keys (see public-
key cryptography), two domains M, Z of messages,
and a domain A of blinding factors. Assume a
family of functions z = fx(m), where each mem-
ber is indexed by a private key x, takes as in-
put a value m ∈ M, and produces an output z ∈ Z.
Let φy,a : M → M and Φy,a : Z → Z be two fami-
lies of auxiliary functions, where each member is
indexed by a public key y and a blinding factor
a, such that the following two conditions hold for
each key pair (x, y) that can be generated by gen,
each blinding factor a ∈ A and each input m ∈ M:
– the functions φy,a and Φ−1

y,a are computable in
polynomial time,

– Φ−1
y,a( fx(φy,a(m))) = fx(m) (as shown in the follow-

ing diagram).

M
fx(m)−→ Z

φy,a(m)
	


Φ−1
y,a(z′)

M
fx(m′)−→ Z

In order to blind the computation of fx by the
provider, a client can use the auxiliary functions
φ, Φ in a two-pass interactive protocol as follows:
1. The provider generates a pair (x, y) of a private

key and a public key and publishes y.

2. The client chooses an input m, generates a
blinding factor a ∈ A at random, and trans-
forms m into m′ = φy,a(m).

3. The client sends m′ to the provider and receives
z′ = fx(m′) from the provider in return.

4. The client computes z = Φ−1
y,a(z′).

If both m and m′ are equally meaningful or mean-
ingless to the provider, then he has no way of dis-
tinguishing a client who sends the plain argument
m from a client who sends a blinded argument m′

in step 3.
The first blinding technique was proposed by

Chaum as part of the Chaum Blind Signature
[5,6]. It is based on a homomorphic property of the
RSA signing function (see RSA digital signature
scheme).

Let n = pq be the product of two large
safe primes, (x, y) being a pair of private and pub-
lic RSA keys such that x is chosen randomly from
ZZ ∗

(p−1)(q−1) and y = x−1 (mod (p− 1)(q − 1)) and
M = ZZ ∗

n be the domain of multiplicative inverses
of the residues modulo n. The functions fx(m) =
mx (mod n) are the RSA signing functions. The
families φ, Φ of auxiliary functions are chosen as
follows:

φy,a(m) = may (mod n)

Φ−1
y,a(z′) = z′a−1 (mod n).

Other blinding techniques have been used in a
variety of interactive protocols such as divert-
ible proofs of knowledge [1, 7, 8], privacy-oriented
electronic cash [2, 3] and unlinkable credentials
[6], and in anonymous electronic voting schemes.

Gerrit Bleumer
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BLOCK CIPHERS

INTRODUCTION: In his milestone paper in 1949
[43] Shannon defines perfect secrecy for secret-key
systems and shows that they exist. A secret-key ci-
pher obtains perfect secrecy if for all plaintexts x
and all ciphertexts y it holds that Pr(x) = Pr(x|y)
(see Information Theory and [43]). In other words,
a ciphertext y gives no information about the
plaintext. This definition leads to the following
result.

COROLLARY 1. A cipher with perfect secrecy is
unconditionally secure against a ciphertext-only
attack.

As noted by Shannon the Vernam cipher, also
called the one-time pad, obtains perfect secrecy.
In the one-time pad the plaintext characters are
added with independent key characters to pro-
duce the ciphertexts. However, the practical appli-
cations of perfect secret-key ciphers are limited,
since it requires as many digits of secret key as
there are digits to be enciphered. A more desir-
able situation would be if the same key could be
used to encrypt texts of many more bits.

Two generally accepted design principles for
practical ciphers are the principles of confusion
and diffusion that were suggested by Shannon.
Confusion: “the ciphertext statistics should de-

pend on the plaintext statistics in a manner too
complicated to be exploited by the cryptanalyst.”

Diffusion: “each digit of the plaintext and each
digit of the secret key should influence many
digits of the ciphertext” [29].

These two design principles are very general and
informal.

Shannon also discusses two other more specific
design principles. The first is to make the secu-
rity of the system reducible to some known diffi-
cult problem. This principle has been used widely
in the design of public-key systems, but not in
secret-key ciphers. Shannon’s second principle is
to make the system secure against all known at-
tacks, which is still the best known design princi-
ple for secret-key ciphers today.

A block cipher with n-bit blocks and a κ-bit key is
a selection of 2κ permutations (bijective mappings)
of n bits. For any given key k, the block cipher
specifies an encryption algorithm for computing
the n-bit ciphertext for a given n-bit plaintext, to-
gether with a decryption algorithm for computing
the n-bit plaintext corresponding to a given n-bit
ciphertext.

The number of permutations of n-bit blocks
is 2n!, which using Stirlings approximation is√

2π2n( 2n

e )2n
for large n. Since

√
2π2n( 2n

e )2n
<

2(n−1)2n
for n ≥ 3, with κ = (n − 1)2n one could

cover all n-bit permutations, but typically κ is cho-
sen much smaller for practical reasons. For ex-
ample, for the AES (see Rijndael/AES and [38])
one option is the parameters κ = n = 128 in which
case (n − 1)2n  2135.

Most block ciphers are so-called iterated ciphers
where the output is computed by applying in an
iterative fashion a fixed key-dependent function r
times to the input. We say that such a cipher is
an r -round iterated (block) cipher. A key-schedule
algorithm takes as input the user-selected κ-bit
key and produces a set of subkeys.

Let g be a function which is invertible when the
first of its two arguments is fixed. Define the se-
quence zi recursively by

zi = g(ki, zi−1), (1)

where z0 is the plaintext, ki is the ith subkey, and
zr is the ciphertext. The function g is called the
round function.

z0 →
k1↓
g → z1 →

k2↓
g → z2 · · · → zr−1 →

kr↓
g → zr

In many block ciphers g consists of a layer of sub-
stitution boxes, or S-boxes, and a layer of bit per-
mutations. Such ciphers are called SP-networks
(see substitution-permutation (SP) network).

A special kind of iterated ciphers are the Feistel
ciphers [10], which are defined as follows. Let n
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(even) be the block size and assume the cipher
runs in r rounds. Let zL

0 and zR
0 be the left and

right halves of the plaintext, respectively, each of
n/2 bits. The round function g operates as follows:

zL
i = zR

i−1

zR
i = f(ki, zR

i−1) + zL
i−1,

and the ciphertext is the concatenation of zR
r and

zL
r . Here fcan be any function taking as arguments

an n/2-bit text and a round key ki and producing
n/2 bits. ‘+’ is a commutative group operation on
the set of n/2-bit blocks. If not specified otherwise,
it will be assumed that ‘+’ is bitwise addition mod-
ulo 2 (or in other terms, the exclusive-or operation
denoted by ⊕). Also, variants where the texts are
split into two parts not of equal lengths and vari-
ants where the texts are split into more than two
parts have been suggested.

Two of the most important block ciphers are the
Feistel cipher Data Encryption Standard (DES)
[35] and the SP-network Advanced Encryption
Standard (Rijndael/AES) [37].

In the following ek(·) and dk(·) denote, respec-
tively the encryption operation and the decryption
operation of a block cipher of block length n using
the κ-bit key k.

We shall now describe Shannon’s model which is
standard in secret-key cryptology. The sender and
the receiver share a common key k, which has been
transmitted over a secure channel. The sender en-
crypts a plaintext x using the secret key k and
sends the ciphertext y over an insecure channel
to the receiver, who restores y into x using k. The
attacker has access to the insecure channel and
can intercept the ciphertexts (cryptograms) sent
from the sender to the receiver. To avoid an at-
tacker to speculate in how the legitimate parties
have constructed their common key, the following
assumption is often made.

ASSUMPTION 1. All keys are equally likely and a
key k is always chosen uniformly at random.

Also it is often assumed that all details about the
cryptographic algorithm used by the sender and
receiver are known to the attacker, except for the
value of the secret key. Assumption 2 is known as
Kerckhoffs’s assumption (see [17] or maxims).

ASSUMPTION 2. The enemy cryptanalyst knows all
details of the enciphering process and deciphering
process except for the value of the secret key.

The possible attacks against a block cipher are
classified as follows, where A is the attacker.
Ciphertext-only attack. A intercepts a set of ci-

phertexts.

Known plaintext attack. A obtains x1, x2, . . . , xs
and y1, y2, . . . , ys , a set of s plaintexts and the
corresponding ciphertexts.

Chosen plaintext attack. A chooses a priori a set
of s plaintexts x1, x2, . . . , xs and obtains in some
way the corresponding ciphertexts y1, y2, . . . , ys .

Adaptively chosen plaintext attack. Achooses a set
of plaintexts x1, x2, . . . , xs interactively as he ob-
tains the corresponding ciphertexts y1, y2, . . . , ys.

Chosen ciphertext attacks. These are similar to
those of chosen plaintext attack and adaptively
chosen plaintext attack, where the roles of plain-
texts and ciphertexts are interchanged.
Also, one can consider any combination of the

above attacks. The chosen text attacks are obvi-
ously the most powerful attacks. In many appli-
cations they are however also unrealistic attacks.
If the plaintext space contains redundancy (see
Information Theory),1 it may be hard for an at-
tacker to ‘trick’ a legitimate sender into encrypt-
ing nonmeaningful plaintexts and similarly hard
to get ciphertexts decrypted, which do not yield
meaningful plaintexts. But if a system is secure
against an adaptively chosen plaintext/ciphertext
attack, then it is also secure against all other
attacks. An ideal situation for a designer would
be to prove that his system is secure against an
adaptively chosen text attack, although an at-
tacker may never be able to mount more than a
ciphertext-only attack.

The unicity distance of a block cipher is the
smallest integer s such that essentially only one
value of the secret key k could have encrypted a
random selection of s plaintext blocks to the corre-
sponding ciphertext blocks. The unicity distance
depends on both the key size and on the redun-
dancy in the plaintext space. However, the unic-
ity distance gives no indication of the computa-
tional difficulty in breaking a cipher, it is merely
a lower bound on the amount of ciphertext blocks
needed in a ciphertext-only attack to be able to (at
least in theory) identify a unique key. Let κ and n
be the number of bits in the secret key respectively
in the plaintexts and ciphertexts and assume that
the keys are always chosen uniformly at random.
In a ciphertext-only attack the unicity distance
is defined as nu = κ/(nrL), where rL is the redun-
dancy of the plaintexts, see e.g., [44]. The concept
can be adapted also to the known or chosen plain-
text scenarios. In these cases the redundancy of
the plaintexts from the attacker’s point of view is
100%. The unicity distance in a known or chosen
plaintext attack is nv = �κ/n�.

1 Redundancy is an effect of the fact that certain sequences of
plaintext characters appear more frequently than others.
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The results of the cryptanalytic effort of the at-
tacker A can be grouped as follows [21].
Total break. A finds the secret key k.
Global deduction. A finds an algorithm F, func-

tionally equivalent to ek(·) (or dk(·)) without
knowing the key k.

Local deduction. A finds the plaintext (ciphertext)
of an intercepted ciphertext (plaintext), which
he did not obtain from the legitimate sender.

Distinguishing algorithm. A is given access to a
black-box containing either the block cipher for
a randomly chosen key or a randomly chosen
permutation. He is able to distinguish between
these two cases.
Clearly, this classification is hierarchical, that

is, if a total break is possible, then a global deduc-
tion is possible and so on.

CRYPTANALYSIS: We begin by listing some at-
tacks which apply to all block ciphers.
Exhaustive key search: this attack requires the

computation of about 2κ encryptions and re-
quires nu ciphertexts (ciphertext-only attack) or
nv plaintext/ciphertext pairs (known and chosen
plaintext attack), where nu and nv are the unic-
ity distances, cf. above.

Table attack: encrypt in a precomputation phase a
fixed plaintext x under all possible keys, sort,
and store all ciphertexts. Thereafter, a total
break is possible requiring one chosen plaintext.

Dictionary attack: intercept and store all possible
plaintext/ciphertext pairs. The running time of
a deduction is the time of one table look-up.

Matching ciphertext attack: this attack applies to
encryption using the (ecb), (cbc), and (cfb) modes
of operation, see modes of operation for a block
cipher or [40]. Collect s ciphertext blocks and
check for collisions. For example, if yi, yj are n-
bit blocks encrypted (using the same key) in the
(cbc) mode, then if yi = yj, then ek(xi ⊕ yi−1) =
ek(xj ⊕ yj−1) ⇒ yi−1 ⊕ yj−1 = xi ⊕ xj, thus infor-
mation about the plaintexts is leaked. With s ≈
2n/2 the probability of finding matching cipher-
texts is about 1/2, see birthday paradox.

Time-memory trade-off attack [14]: let us assume
for the sake of exposition that the key space
of the attacked cipher equals the ciphertext
space, that is, κ = n. Fix some plaintext block
x0. Define the function f(z) = ez(x0). Select m
randomly chosen values z0, . . . , zm−1. For each
j ∈ {0, . . . , m} compute the values z j

i = f(z j
i−1) for

i = 1, . . . , t , where z j = z j
0; store the pairs (start

and end results) (z j
0, z j

t ) for j = 0, . . . , m in a ta-
ble T and sort the elements on the second com-
ponents.

Subsequently, imagine that an attacker has in-
tercepted the ciphertext y = ek(x0). Let w0 = y and
check if w0 is a second component in T. If, say,
w0 = z�

t , the attacker can find a candidate for the
key k by computing forward from z�

0. If this does
not lead to success, compute wi = f(wi−1) and re-
peat the above test for wi for i = 1, 2, . . . , t .

A close analysis [14] shows that if m and t are
chosen such that mt2 ≈ 2κ , there is a probability of
about mt/2κ that in the above computations of {zk

i }
the secret key has been used. If this is the case, the
attack will find the secret key. If it is not the case,
the attack fails. The probability of success can be
increased by repeating the attack, e.g., with 2κ/3

iterations each time with m = t = 2κ/3 one obtains
a probability of success of more than 1/2.

In summary, with κ = n the attack finds the se-
cret key with good probability after 22κ/3 encryp-
tions using 22κ/3 words of memory. The 22κ/3 words
of memory are computed in a preprocessing phase,
which takes the time of about 2κ encryptions.

To estimate the complexity of a cryptanalytic at-
tack, one must consider at least the time it takes,
the amount of data that is needed, and the storage
requirements. For an n-bit block cipher the follow-
ing complexities should be considered.
Data complexity: the amount of data needed as in-

put to an attack. Units are measured in blocks
of length n.

Processing complexity: the time needed to perform
an attack. Time units are measured as the num-
ber of encryptions an attacker has to do himself.

Storage complexity: the words of memory needed
to do the attack. Units are measured in blocks
of length n.

The complexity of an attack is often taken as the
maximum of the three complexities above; how-
ever, in most scenarios the amount of data en-
crypted with the same secret key is often limited
and for most attackers the available storage is
small.

Iterated Attacks

Let x and y denote the plaintext and the cipher-
text, respectively. In most modern attacks on iter-
ated ciphers, the attacker repeats his attack for all
possible values of (a subset of) the bits in the last-
round key. The idea is that when he guesses the
correct values of the key bits, he can compute the
value of some bits of the ciphertexts before the last
round, whereas when he guesses wrongly, these
bits will correspond to ciphertext bits encrypted
with a wrong key. If one can distinguish between
these two cases, one might be able to extract bits of
the last-round key. The wrong key randomization
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hypothesis, which is often used, says that when
the attacker guesses a wrong value of the key, the
resulting values are random and uniformly dis-
tributed. If an attacker succeeds in determining
the value of the last-round key, he can peel off one
round of the cipher and do a similar attack on a
cipher one round shorter to find the second-last
round key, etc. In some attacks it is advantageous
to consider the first-round key instead of the last-
round key or both at the same time, depending on
the structure of the cipher, the number of key bits
involved in each round, etc.

The two most general attacks on iterated ci-
phers are linear cryptanalysis and differential
cryptanalysis.

Linear Cryptanalysis

Linear cryptanalysis [30,34] is a known plaintext
attack. Consider an iterated cipher, cf. (1). Then a
linear approximation over s rounds (or an s-round
linear hull) is

(zi · α) ⊕ (zi+s · β) = 0, (2)

which holds with a certain probability p, where
zi, zi+s, α, β are n-bit strings and where ‘·’ denotes
the dot (or inner) product modulo 2. The strings
α, β are also called masks. The quantity |p− 1/2|
is called the bias of the approximation. The ex-
pression with a ‘1’ on the right side of (2) will have
a probability of 1 − p, but the biases of the two ex-
pressions are the same. The linear round approx-
imations are usually found by combining several
one-round approximations under the assumption
that the individual rounds are mutually indepen-
dent (for most ciphers this can be achieved by
assuming that the round keys are independent).
The complexity of a linear attack is approximately
|p− 1/2|−2. It was confirmed by computer exper-
iments that the wrong key randomization hy-
pothesis holds for the linear attack on the DES
(see Data Encryption Standard). The attack on
the DES was implemented in 1994, required a
total of 243 known plaintexts [31] and in 2002
was the fastest, known key-recovery attack on the
DES. Linear cryptanalysis for block ciphers gives
further details of the attack.

Differential Cryptanalysis

Differential cryptanalysis [3] is a chosen plaintext
attack and was the first published attack which
could (theoretically) recover DES keys in time less
than that of an exhaustive search for the key. In
a differential attack one exploits that for certain
input differences the distribution of output differ-

ences of the nonlinear components is nonuniform.
A difference between two bit strings, x and x′

of equal length, is defined in general terms as
	x = x ⊗ (x′)−1, where ⊗ is a group operation on
bit strings and where the superscript −1 denotes
the inverse element. Consider an iterated cipher,
cf. (1). The pair (	z0, 	zs) is called an s-round
differential [27]. The probability of the differen-
tial is the conditional probability that given an
input difference 	z0 in the plaintexts, the differ-
ence in the ciphertexts after s rounds is 	zs . Ex-
periments have shown that the number of chosen
plaintexts needed by the differential attack in gen-
eral is approximately 1/p, where p is the probabil-
ity of the differential being used. For iterated ci-
phers, one often specifies the expected differences
after each round of encryption. Such a structure
over s rounds, i.e., (	z0, 	z1, . . . , 	zs−1, 	zs), is
called an s-round characteristic. The differential
attack is explained in more details in differential
cryptanalysis.

Extensions, Generalization, and Variations

The differential and linear attacks have spawned
a lot of research in block cipher cryptanalysis and
several extensions, generalizations, and variants
of the differential and linear attacks have been
developed. In [15] it was shown how to combine
the techniques of differential and linear attacks.
In particular, an attack on the DES reduced to
eight rounds was devised, which on input only 512
chosen plaintexts finds the secret key. In [47] a
generalization of both the differential and linear
attacks, known as statistical cryptanalysis, was in-
troduced. It was demonstrated that this statisti-
cal attack on the DES includes the linear attack
by Matsui but without any significant improve-
ment. In [18] an improved linear attack using mul-
tiple linear approximations was given. In [24] a
linear attack is shown using nonlinear approxi-
mations in the outer rounds of an iterated cipher.
In [12,13] two generalizations of the linear attack
were given.

A dth order differential [26] is the difference be-
tween two (d − 1)th order differentials and is a
collection of 2d texts, where a first-order differen-
tial is what is called a differential above. The main
idea in the higher order differential attack is the
fact that a dth order differential of a function of
maximum algebraic degree d is a constant. Conse-
quently, a (d + 1)th order differential of the func-
tion is zero. In [16,22] these attacks were applied
to various ciphers.

The boomerang attack [50] is a clever applica-
tion of a second-order differential. Boomerangs are
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particularly effective when one can find a good
differential covering the first half of the encryp-
tion operation and a good differential covering the
first half of the decryption operation. More details
of the attack can be found in boomerang attack.

Let {α0, α1, . . . , αs} be an s-round characteristic.
Then {α′

0, α
′
1, . . . , α

′
s} is called a truncated charac-

teristic, if α′
i is a subsequence of αi . Truncated

characteristics were used to some extent in [3].
Note that a truncated characteristic is a collec-
tion of characteristics and therefore reminiscent
of a differential. A truncated characteristic con-
tains all characteristics {α′′

0, α′′
1, . . . , α′′

s } for which
trunc(α′′

i ) = α′
i , where trunc(x) is a truncated value

of x not further specified here. The notion of trun-
cated characteristics extends in a natural way to
truncated differentials introduced in [22].

Other Attacks

Integral cryptanalysis [5, 25] can be seen as a
dual to differential cryptanalysis and it is the best
known attack on the advanced encryption stan-
dard. The attack is explained in more details in
multiset attacks. In the interpolation attack [16]
one expresses the ciphertext as a polynomial of the
plaintext. If this polynomial has a sufficiently low
degree, an attacker can reconstruct it from known
(or chosen) plaintexts and the corresponding ci-
phertexts. In this way, he can encrypt any plain-
text of his choice without knowing the (explicit)
value of the secret key, see interpolation attack for
more details. There has been a range of other cor-
relation attacks most of which are relative to the
attacked cipher, but which all exploit the nonuni-
formity of certain bits of plain- and ciphertexts
[2,8,11,19,23,47].

Key Schedule Attacks

One talks about weak keys for a block cipher, if
there is a subspace of keys relative to which a cer-
tain attack can be mounted successfully, such that
for all other keys the attack has little or zero prob-
ability of success. If there are only a small number
of weak keys, they pose no problem for applications
of encryption if the encryption keys are chosen uni-
formly at random. However, when block ciphers
are used in other modes, e.g., for hashing, these
attacks play an important role as demonstrated
in [6,42].

One talks about related keys for a block cipher,
if for two (or more) keys k and k∗ of a certain
relation, there are certain (other) relations be-
tween the two (or more) encryption functions ek(·)
and ek∗ (·), which can be exploited in cryptanalytic

attacks. There are several variants of this attack
depending on how powerful the attacker A is as-
sumed to be. One distinguishes between whether
Agets encryptions under one or under several keys
and whether there is a known or chosen relation
between the keys (see related key attack).

The slide attack [4] applies to iterated ciphers
where the list of round keys has a repeated pat-
tern, e.g., if all round functions are identical, there
are very efficient attacks.

BOUNDS OF ATTACKS: A motivation for the
Feistel cipher design is the results by Luby and
Rackoff (see Luby-Rackoff cipher or [28]). They
showed how to build a 2n-bit pseudorandom per-
mutation from a pseudorandom n-bit function
using the Feistel construction. For a three-round
construction they showed that under a chosen
plaintext attack, an attacker needs at least 2n/2

chosen texts to distinguish the Feistel construc-
tion from a random 2n-bit function. Under a
combined chosen plaintext and chosen ciphertext
attack, this construction is however easily distin-
guished from random. For a four-round construc-
tion it was shown that even under this strong at-
tack, an attacker needs at least 2n/2 chosen texts to
distinguish the construction from a random 2n-bit
function.

In the decorrelation theory [48] one attempts to
distinguish a given n-bit block cipher from a ran-
domly chosen n-bit permutations. Using particu-
lar well-defined metrics, this approach is used to
measure the distance between a block cipher and
randomly chosen permutations. One speaks about
decorrelation of certain orders depending on the
type of attack one is considering. In [49] it was
shown how this technique can be used to prove
resistance against elementary versions of differ-
ential and linear cryptanalysis.

Resistance Against Differential
and Linear Attacks

First it is noted that one can unify the com-
plexity measures in differential and linear crypt-
analysis. Let pL be the probability of a linear
approximation for an iterated block cipher, then
define q = (2pL − 1)2 [32]. Let q denote the high-
est such quantity for a one-round linear approxi-
mation. Denote by p the highest probability of a
one-round differential achievable by the cryptan-
alyst. It is possible to lower bound the probabili-
ties of all differentials and all hulls in an r -round
iterated cipher expressed in terms of p and q
[21, 32, 40, 41]. The probabilities are taken as an
average over all possible keys. It has further been
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shown that the round functions in iterated ciphers
can be chosen in such a way that the probabili-
ties of the differentials and of the linear hulls are
small [39,40]. In this way it is possible to construct
iterated ciphers with a proof of security (as an
average over all possible keys) against differen-
tial and linear cryptanalysis. This approach was
used in the design of the block ciphers Misty1 [33]
and Kasumi (see Kasumi/Misty1 or [1]).

ENHANCING EXISTING CONSTRUCTIONS

Multiple Encryption

In a double encryption with two keys k1 and k2,
the ciphertext corresponding to x is y = ek2 (ek1 (x)).
However, regardless of how k1, k2 are generated,
there is a meet-in-the-middle attack that breaks
this system with a few known plaintexts using
about 2κ+1 encryptions and 2κ blocks of mem-
ory, that is, roughly the same time complexity as
key search in the original system. Assume some
plaintext x and its corresponding ciphertext y en-
crypted as above are given. Compute ek1(x) for all
choices of the key k1 = i and store the results ti in
a table. Next compute dk2(y) for all values of the
key k2 = j and check whether the results s j match
a value in the table, that is, whether for some (i, j),
ti = s j. Each such match gives a candidate k1 = i
and k2 = j for the secret key. The attack is re-
peated on additional pairs of plaintext–ciphertext
until only one pair of values for the secret key
remains suggested. The number of known plain-
texts needed is roughly 2κ − n. There are vari-
ants of this attack with trade-offs between run-
ning time and the amount of storage needed [46].
In a triple encryption with three independent keys
k1, k2, and k3, the ciphertext corresponding to x
is y = ek3 (ek2 (ek1 (x))). One variant of this idea is
well known as two-key triple encryption, proposed
in [45], where the ciphertext corresponding to x is
ek1 (dk2 (ek1 (x))). Compatibility with a single encryp-
tion can be obtained by setting k1 = k2. However,
whereas triple encryption is provably as secure as
a single encryption, a similar result is not known
for two-key triple encryption. A two-key triple en-
cryption scheme with a proof of security appeared
in [7].

Key-Whitening

Another method of increasing the key size is by
key-whitening. One approach is the following: y =
ek(x ⊕ k1) ⊕ k2, where k is a κ-bit key, and k1 and k2
are n-bit keys. Alternatively, k1 = k2 may be used.

It was shown [20] that for attacks not exploit-
ing the internal structure, the effective key size is
κ + n − log2 m bits, where m is the maximum num-
ber of plaintext/ciphertext pairs the attacker can
obtain. (This method applied to the DES is named
DES-X and attributed to Ron Rivest.)

Lars R. Knudsen
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BLOWFISH

Blowfish [3] is a 64-bit block cipher designed by
Bruce Schneier and published in 1994. It was in-
tended to be an attractive alternative to DES (see
Data Encryption Standard) or IDEA. Today, the
Blowfish algorithm is widely used and included
in many software products.

Blowfish consists of 16 Feistel-like iterations.
Each iteration operates on a 64-bit datablock, split

32 bits

32 bits

32 bits32 bits

S-box 1

S-box 2

S-box 3

S-box 4

Pi

Fig. 1. One round of Blowfish

into two 32-bits words. First, a round key is XORed
to the left word. The result is then input to four
key-dependent 8 × 32-bit S-boxes, yielding a 32-
bit output word which is XORed to the right word.
Both words are swapped and then fed to the next
iteration.

The use of key-dependent S-boxes distinguishes
Blowfish from most other ciphers, and requires
a rather complex key-scheduling algorithm. In
a first pass, the lookup tables determining the
S-boxes are filled with digits of π , XORed with
bytes from a secret key which can consist of 32–
448 bits. This preliminary cipher is then used to
generate the actual S-boxes. Although Blowfish
is one of the faster block ciphers for sufficiently
long messages, the complicated initialization pro-
cedure results in a considerable efficiency degra-
dation when the cipher is rekeyed too frequently.
The need for a more flexible key schedule was one
of the factors that influenced the design of Twofish,
an Advanced Encryption Standard (see Rijndael/
AES) finalist which was inspired by Blowfish.

Since the publication of Blowfish, only a few
cryptanalytical results have been published. A
first analysis was made by Vaudenay [4], who re-
vealed classes of weak keys for up to 14 rounds
of the cipher. Rijmen [2] proposed a second-
order differential attack on a four-round variant of
Blowfish. In a paper introducing slide attacks [1],
Biryukov and Wagner highlighted the importance
of XORing a different subkey in each round of
Blowfish.

Christophe De Cannière
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BLS SHORT DIGITAL
SIGNATURES

It is well known that a digital signature scheme
that produces signatures of length � can have se-
curity at most 2�. In other words, it is possible to
forge a signature on any message in time O(2�) just
given the public key. It is natural to ask whether
we can construct signatures with such security,
i.e., signatures of length � where the best algo-
rithm for creating an existential forgery (with con-
stant success probability) under a chosen message
attack takes time O(2�). Concretely, is there a sig-
nature scheme producing 80-bit signatures where
creating an existential forgery (with probability
1/2) takes time approximately 280?

DSS signatures and Schnorr signatures provide
security O(2�) with signatures that are 4�-bits
long. These signatures can be shortened [3] to
about 3.5�-bits without much affect on security.
Hence, for concrete parameters, � = 80, shortened
DSS signatures are 280-bits long.

Boneh et al. [2] describe a short signature
scheme where 170-bit signatures provide approx-
imately 280 security, in the random oracle model.
Hence, for � = 80, these signatures are approxi-
mately half the size of DSS signatures with com-
parable security. The system makes use of a group
G where (i) the computational Diffie–Hellman
problem is intractable, and (ii) there is an effi-
ciently computable, nondegenerate, bilinear map
e : G × G → G1 for some group G1. There are sev-
eral examples of such groups from algebraic ge-
ometry where the bilinear map is implemented
using the Weil pairing. Given such a group G of
prime order q, the digital signature scheme works
as follows:
Key Generation.

1. Pick an arbitrary generator g ∈ G.
2. Pick a random α ∈{1, . . . , q} and set y = gα ∈G.
3. Let H be a hash function H : {0, 1}∗ → G.

Output (g, y, H) as the public key and (g, α, H)
as the private key.
Signing. To sign a message m ∈ {0, 1}∗ using the

private key (g, α, H) output H(m)α ∈ G as the
signature.

Verifying. To verify a message/signature pair
(m, s) ∈ {0, 1}∗ × G using the public key
(g, y, H) test if e(g, s) = e(y, H(m)). If so, accept
the signature. Otherwise, reject.
For a valid message/signature pair (m, s)

we have that s = H(m)α and therefore e(g, s) =
e(g, H(m)α) = e(gα, H(m))= e(y, H(m)). The second
equality follows from the bilinearity of e(, ). Hence,
a valid signature is always accepted. As mentioned
above, the system is existentially unforgeable un-
der a chosen message attack in the random or-
acle model, assuming the computational Diffie–
Hellman assumption holds in G. Observe that a
signature is a single element in G whereas DSS
signatures are pairs of elements. This explains the
reduction in signature length compared to DSS.

Recently, Boneh and Boyen [1] and Zhang
et al. [4] describe a more efficient system produc-
ing signatures of the same length as BLS. How-
ever, security is based on a stronger assumption.
Key generation is identical to the BLS system, ex-
cept that the hash function used is H : {0, 1}∗ →
Zq . A signature on a message m ∈ {0, 1}∗ is s =
g1/(α+H(m)) ∈ G. To verify a message/signature pair
(m, s) test that e(ygH(m), s) = e(g, g). We see that
signature length is the same as in BLS signatures.
However since e(g, g) is fixed, signature verifica-
tion requires only one computation of the bilin-
ear map as opposed to two in BLS. Security of
the system in the random oracle model is based
on a nonstandard assumption called the t-Diffie–
Hellman-inversion assumption. Loosely speaking,
the assumption states that no efficient algorithm
given g, gx, g(x2), . . . , g(xt ) as input can compute
g1/x. Here t is the number of chosen message
queries that the attacker can make. Surprisingly,
a variant of this system can be shown to be existen-
tially unforgeable under a chosen message attack
without the random oracle model [1].

Dan Boneh
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BLUM INTEGER

A positive integer n is a Blum integer if it is the
product of two distinct primes p, q where p ≡ q ≡
3 (mod 4). Blum integers are of interest in cryp-
tography because the mapping

x ← x2 mod n

is believed to be a trapdoor permutation (see
trapdoor one-way function) on the quadratic
residues modulo n. That is, exactly one of the four
square roots of a quadratic residue modulo a Blum
integer n is itself a quadratic residue. Inverting
the permutation is equivalent to factoring n, but
is easy given p and q. This fact is exploited in the
Blum–Blum–Shub PRNG.

The permutation can be inverted when the
prime factors p and q are known by computing
both square roots modulo each factor, selecting
the square root modulo each factor which itself
is a square, then applying the Chinese remainder
theorem. Conveniently, the square roots modulo
the prime factors of a Blum integer can be com-
puted with a simple formula: the solutions of x2 ≡
a (mod p) are given by x ≡ ±a(p+1)/4 (mod p) when
p ≡ 3 (mod 4). The appropriate square root can be
selected by computing the Legendre symbol.

See also modular arithmetic, prime number.

Burt Kaliski

BLUM–BLUM–SHUB
PSEUDORANDOM BIT
GENERATOR

The Blum–Blum–Shub (BBS) pseudorandom bit
generator [1] is one of the most efficient pseudo-
random number generators known that is prov-
ably secure under the assumption that factor-
ing large composites is intractable (see integer
factoring). The generator makes use of modular
arithmetic and works as follows:
Setup. Given a security parameter τ ∈ Z as input,

generate two random τ -bit primes p, q where

p = q = 3 mod 4. Set N = pq ∈ Z. Integers N of
this type (where both prime factors are distinct
and are 3 mod 4) are called Blum integers. Next
pick a random y in the group Z

∗
N and set s =

y2 ∈ Z
∗
N. The secret seed is (N, s). As we will see

below, there is no need to keep the number N
secret.

Generate. Given an input � ∈ Z and a seed (N, s)
we generate a pseudorandom sequence of length
�. First, set x1 = s. Then, for i = 1, . . . , �:
1. View xi as an integer in [0, N − 1] and let bi ∈

{0, 1} be the least significant bit of xi .
2. Set xi+1 = x2

i ∈ ZN.
The output sequence is b1b2 · · · b� ∈ {0, 1}�.
The generator can be viewed as a special case of

the general Blum–Micali generator [2]. To see this,
we show that the generator is based on a one-way
permutation (see one-way function and substitu-
tions and permutations) and a hard-core predicate
of that permutation. For an integer N let QRN =
(Z∗

N)2 denote the subgroup of quadratic residues
in Z

∗
N and let FN : ZN → ZN denote the function

FN(x) = x2 ∈ ZN. For Blum integers the function
FN is a permutation (a one-to-one map) of the sub-
group of quadratic residues QRN. In fact, it is not
difficult to show that FN is a one-way permuta-
tion of QRN, unless factoring Blum integers is easy.
Now that we have a one-way permutation we need
a hard-core bit of the permutation to construct a
Blum–Micali-type generator. Consider the predi-
cate B : QRN → {0, 1} that on input x ∈ QRN views
x as an integer in [1, N] and outputs the least sig-
nificant bit of x. Blum, Blum, and Shub showed
that B(x) is a hard-core predicate of FN assuming
it is hard to distinguish quadratic residues in ZN
from nonresidues in ZN with Jacobi symbol 1. Ap-
plying the Blum–Micali construction to the one-
way permutation FN and the hard-core predicate
B produces the generator above. The general the-
orem of Blum and Micali now shows that the gen-
erator is secure assuming it is hard to distinguish
quadratic residues in ZN from nonresidues in ZN
with Jacobi symbol 1. Vazirani and Vazirani [5]
improved the result by showing that B(x) is a hard-
core predicate under the weaker assumption that
factoring random Blum integers is intractable.

One can construct many different hard-core
predicates for the one-way permutation FN defined
above. Every such hard-core bit gives a slight vari-
ant of the BBS generator. For example, Hastad and
Naslund [3] show that for most 1 ≤ j < log2 N the
predicate Bj(x) : QRN → {0, 1} that returns the jth
bit of x is a hard-core predicate of FN assuming fac-
toring Blum integers is intractable. Consequently,
one can output bit j of xi at every iteration and
still obtain a secure generator, assuming factoring
Blum integers is intractable.
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One can improve the efficiency of the gen-
eral Blum–Micali generator by outputting mul-
tiple simultaneously secure hard-core bits per
iteration. For the function FN it is known that
the O(log log N) least significant bits are si-
multaneously secure, assuming factoring Blum
integers is intractable. Consequently, the simu-
lator remains secure (asymptotically) if one out-
puts the O(log log N) least significant bits of xi per
iteration.

Let I be the set of integers I = {1, . . . , N}. We
note that for a Blum integer N and a generator
g ∈ Z

∗
N, Hastad et al. [4] considered the function

GN,g : I → ZN defined by GN,g(x) = gx ∈ ZN. They
showed that half the bits of x ∈ I are simultane-
ously secure for this function, assuming factoring
Blum integers is intractable. Therefore, one can
build a Blum–Micali generator from this function
that outputs (log N)/2 bits per iteration. The re-
sulting pseudorandom generator is essentially as
efficient as the BBS generator and is based on the
same complexity assumption.

Dan Boneh
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BLUM–GOLDWASSER
PUBLIC KEY ENCRYPTION
SYSTEM

The Blum–Goldwasser public key encryption
system combines the general construction of
Goldwasser–Micali [5] with the concrete Blum–
Blum–Shub pseudorandom bit generator [2] to
obtain an efficient semantically secure public key

encryption whose security is based on the dif-
ficulty of factoring Blum integers. The system
makes use of modular arithmetic and works as
follows:
Key Generation. Given a security parameter τ ∈

Z as input, generate two random τ -bit primes
p, q where p = q = 3 mod 4. Set N = pq ∈ Z.
The public key is N and private key is (p, q).

Encryption. To encrypt a message m =
m1 . . . m� ∈ {0, 1}�:
1. Pick a random x in the group Z

∗
N and set x1 =

x2 ∈ Z
∗
N.

2. For i = 1, . . . , �:
(a) View xi as an integer in [0, N − 1] and

let bi ∈ {0, 1} be the least significant bit
of xi .

(b) Set ci = mi ⊕ bi ∈ {0, 1}.
(c) Set xi+1 = x2

i ∈ Z
∗
N.

3. Output (c1, . . . , c�, x�+1) ∈ {0, 1}� × ZN as the
ciphertext.

Decryption. Given a ciphertext (c1, . . . , c�, y) ∈
{0, 1}� × ZN and the private key (p, q) decrypt
as follows:
1. Since N is a Blum integer, ϕ(N)/4 is odd

(see Euler’s totient function) and therefore
2�+1 has an inverse modulo ϕ(N)/4. Let t =
(2�+1)−1 mod (ϕ(N)/4).

2. Compute x1 = yt ∈ Z
∗
N. Observe that if y ∈

(Z∗
N)2 then x(2�+1)

1 = y(t ·2�+1) = y ∈ Z
∗
N.

3. Next, for i = 1, . . . , �:
(a) View xi as an integer in [0, N − 1] and

let bi ∈ {0, 1} be the least significant bit
of xi .

(b) Set mi = ci ⊕ bi ∈ {0, 1}.
(c) Set xi+1 = x2

i ∈ Z
∗
N.

4. Output (m1, . . . , m�) ∈ {0, 1}� as the plaintext.
Semantic security of the system (against a pas-

sive adversary) follows from the proof of secu-
rity of the Blum–Blum–Shub generator. The proof
of security shows that an algorithm capable of
mounting a successful semantic security attack is
able to factor the Blum integer N in the public
key.

We note that the system is XOR malleable:
given the encryption C = (c1, . . . , c�, y) of a mes-
sage m ∈ {0, 1}� it is easy to construct an encryp-
tion of m ⊕ b for any chosen b ∈ {0, 1}� (without
knowing m). Let b = b1 · · · b� ∈ {0, 1}�. Simply set
C′ = (c1 ⊕ b1, . . . , c� ⊕ b�, y). Since the system is
XOR malleable it cannot be semantically secure
under a chosen ciphertext attack.

Interestingly, the same reduction given in the
proof of semantic security shows that a chosen ci-
phertext attacker can factor the modulus N and
therefore recover the private key from the public
key. Consequently, as it is, the system completely
falls apart under a chosen ciphertext attack. When
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using the system one must use a mechanism to
defend against chosen ciphertext attacks. For ex-
ample, Fujisaki and Okamoto [4] provide a gen-
eral conversion from semantic security to chosen
ciphertext security in the random oracle model.
However, in the random oracle model one can con-
struct more efficient chosen ciphertext secure sys-
tems that are also based on the difficulty of factor-
ing [1,3].

Dan Boneh
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BOLERO.NET

When exporters and importers wish to trade in
goods onboard a ship, they use a document of ti-
tle called a Bill of Lading (or B/L for short). It is
issued by the ship operator as a receipt for the
goods and, because he will only release the cargo
against production of this document, the B/L has
been used for centuries for trading and as financial
security.

Making the functionality of this document avail-
able by electronic means is an undertaking simi-
lar to that of putting share trading online, and it
is the job of bolero.net, a service operated since
1999 by the Through Transport Club, a mutual
marine insurer, and S.W.I.F.T., the banks’ coop-
eratively owned data network operator. The ori-
gins of the project stem from the mid-1980s and

it has been known as Bolero since 1994, when an
early version was piloted in a project funded by the
European Commission.

Bolero.net handles not just Bs/L but all other
trade documentation too. However, it is the title
function of the B/L which gives rise to the most
interesting isuses.

In essence, the B/L is issued as a message from
the shipowner to the original cargo owner, digitally
signed and handled via bolero.net’s secure mes-
sage handling facility, the Core Messaging Plat-
form (CMP). The CMP, when sent a new B/L,
also passes a message to a bolero.net component
called the Title Registry (TR). The TR sets up a
new record in its database and from this point
on, it is the information about ownership held in
the TR which is ultimately authoritative in any
dispute.

When the electronic B/L is being traded, the TR
is updated through digitally signed messages from
the users via the CMP. The TR will only accept
instructions from the user currently recorded as
the “holder,” i.e., owner of the title being traded.
This is a system similar to that operated by most
dematerialized share trading schemes.

To enable electronic trading of negotiable docu-
ments such as the B/L, all you need is a database
operated by a trusted third party, and digital
signatures which can be verified by that party.
Bolero.net is that trusted third party, and it oper-
ates its own Certification Authority, though there
is a project under way to accept certificates from
other issuers in the future.

As the traders would also like to keep their in-
formation confidential, the communications are
handled as SSL protected exchanges (see Secure
Socket Layer). The legal security of the transac-
tion, i.e. the certainty that a trade carried out
over bolero.net will be treated as legally binding
by the courts, is provided via a multilateral user
contract, known as the Rule Book. All users are
bound by this contract and it creates a legal safety
net which ensures that the traditional function-
ality of the ancient B/L can still be provided by
electronic means.

For more information, see www.bolero.net and
www.bolerassociation.org

Peter Landrock

BOOLEAN FUNCTIONS

Boolean functions play a central role in the de-
sign of most symmetric cryptosystems and in their
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security. In stream ciphers, they are usually used
to combine the outputs to several linear feedback
shift registers (see the corresponding entry and
Combination generator), or to filter (and combine)
the contents of a single one (see Filter generators).
The sequence of their output, during a certain
number of clock cycles, then produces the pseudo-
random sequence which is used in a Vernam cipher
(that is, which is bitwisely added to the plaintext
to produce the ciphertext). In block ciphers (see
Block cipher, Data Encryption Standard (DES),
Advanced Encryption Standard (Rijndael/AES)),
the S-boxes are designed by appropriate composi-
tion of nonlinear Boolean functions.

An n-variable Boolean function f is a function
from the set Fn

2 of all binary vectors x = (x1, . . . , xn)
of length n to the field F2 = {0, 1}. The number n of
variables is rarely large in practice. In the case
of stream ciphers, it is most often less than 10;
and the S-boxes used in most block ciphers are
concatenations of sub S-boxes on at most eight
variables. But determining and studying those
Boolean functions which satisfy some conditions
needed for cryptographic uses (see below) is not
feasible through an exhaustive computer inves-
tigation, since the number of n-variable Boolean
functions is too large when n ≥ 6. However, clever
computer investigations are useful for imagining
or testing conjectures, and sometimes for generat-
ing interesting functions.

The Hamming weight wH( f) of a Boolean func-
tion f on Fn

2 is the size of its support {x ∈
Fn

2 / f (x) �= 0}. The Hamming distance dH( f, g) be-
tween two functions f and g is the size of the
set {x ∈ Fn

2 / f (x) �= g(x)}. Thus it equals the Ham-
ming weight wH( f ⊕ g) of the sum (modulo 2) of the
functions.

Every n-variable Boolean function can be repre-
sented with its truth table. But the representation
of Boolean functions, which is most usually used
in cryptography, is the n-variable polynomial rep-
resentation over F2 of the form

f (x) =
⊕

I⊆{1,...,n}
aI

(∏
i∈I

xi

)
,

where ⊕ denotes the binary sum. The variables
x1, . . . , xn appear in this polynomial with expo-
nents smaller than or equal to 1 because, repre-
senting bits, they are equal to their own squares.
This polynomial representation is called the Al-
gebraic Normal Form, in brief, ANF (see also
Reed–Muller codes).

EXAMPLE: The three-variable function f whose
truth table equals

x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

has ANF: (1 ⊕ x1)(1 ⊕ x2) x3 ⊕ x1(1 ⊕ x2) x3 ⊕
x1x2x3 = x1x2x3 ⊕ x2x3 ⊕ x3. Indeed, the expres-
sion (1 ⊕ x1)(1 ⊕ x2) x3, for instance, equals 1
if and only if 1 ⊕ x1 = 1 ⊕ x2 = x3 = 1, that is,
(x1, x2, x3) = (0, 0, 1). �

A similar polynomial representation, called the
Numerical Normal Form, in which the coefficients
and the operation of summation take place in the
group of integers instead of F2, can also be used
for studying Boolean functions.

The ANF of every Boolean function exists and
is unique.

Two simple relations relate the truth table and
the ANF:

∀x ∈ Fn
2 , f(x) =

⊕
I⊆supp(x)

aI, (1)

∀I ⊆ {1, . . . , n}, aI =
⊕

x∈Fn
2 / supp(x)⊆I

f(x), (2)

where supp(x) denotes the support {i ∈
{1, . . . , n}/ xi = 1} of x. Thus, the function is
the image of its ANF by the binary Möbius
transform, and vice versa.

The degree of the ANF is denoted by d ◦ f and is
called the algebraic degree of the function (some
authors use also the term nonlinearity order). The
algebraic degree is an affine invariant in the fol-
lowing sense: two functions f and g are called
affinely (resp. linearly) equivalent if there exists
an affine (resp. a linear) automorphism (i.e., in-
vertible homomorphism) A of Fn

2 such that g =
f ◦ A. A mapping is called affine invariant if it is
invariant under affine equivalence.

The affine functions are those Boolean func-
tions with degrees 0 or 1 (thus, with the simplest
ANFs). Denoting by a · x the usual inner product
a · x = a1 x1 ⊕ · · · ⊕ an xn in Fn

2 , the general form
of an n-variable affine function is a · x ⊕ a0, with
a ∈ Fn

2 ; a0 ∈ F2.
Another representation of Boolean functions

can be used: the trace representation. The vector
space Fn

2 is endowed with the structure of the field
F2n . Let us denote by tr the trace function from
F2n to F2: tr(x) = x + x2 + x22 + · · · + x2n−1

. Every
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Boolean function on F2n can be represented in the
form tr(P(x)), where x ∈ F2n , and where P(x) is a
polynomial on one variable over F2n , of degree at
most 2n − 1.

Almost all of the characteristics needed for
Boolean functions in cryptography can be ex-
pressed by means of the discrete Fourier trans-
forms of the functions. The discrete Fourier trans-
form (also called Hadamard transform) of a
Boolean function, or more generally of an integer-
valued function ϕ on Fn

2 , is the integer-valued func-
tion ϕ̂ defined on Fn

2 by

ϕ̂ (u) =
∑
x∈Fn

2

ϕ(x) (−1)x·u. (3)

There exists a simple divide-and-conquer butter-
fly algorithm to compute ϕ̂, whose complexity is
O(n2n):
1. Write the table of the values of ϕ (its truth table

if ϕ is Boolean), the binary vectors of length n
being, say, in lexicographic order;

2. Let ϕ0 be the restriction of ϕ to {0} × Fn−1
2 and

ϕ1 its restriction to {1} × Fn−1
2 ; the table of ϕ0

(resp. ϕ1) corresponds to the upper (resp. lower)
half of the table of ϕ; replace the values of ϕ0
by those of ϕ0 + ϕ1 and those of ϕ1 by those of
ϕ0 − ϕ1;

3. Apply recursively step 2 to ϕ0 and to ϕ1 (these
(n − 1)-variable functions taking the place of ϕ).

At each recursion, the number of variables of the
functions decreases by 1. When the algorithm ends
(i.e., when it arrives to functions on one variable
each), the global table gives the values of ϕ̂.

EXAMPLE: This algorithm, applied for computing
the Fourier transform of the three-variable func-
tion f already considered above, gives the follow-
ing table.

x1 x2 x3 f (x) f̂ (x)
0 0 0 0 0 0 3
0 0 1 1 2 3 −3
0 1 0 0 0 0 1
0 1 1 0 1 1 −1
1 0 0 0 0 0 −1
1 0 1 1 0 −1 1
1 1 0 0 0 0 1
1 1 1 1 −1 1 −1

For a given Boolean function f, the discrete
Fourier transform can be applied to f itself (no-
tice that f̂ (0) equals the Hamming weight of
f ). It can also be applied to the function f (x) =
(−1) f (x) (often called the sign function), which

gives:

f̂ (u) =
∑
x∈Fn

2

(−1) f (x)⊕x·u.

We call f̂ the Walsh transform of f. We shall use
only this transform of Boolean functions in the se-
quel.

The discrete Fourier transform, as any other
Fourier transform, has numerous properties. The
two most important ones are the inverse Fourier
relation: ̂̂ϕ = 2n ϕ, and Parseval’s relation:∑

u∈Fn
2

ϕ̂ 2(u) = 2n
∑
x∈Fn

2

ϕ2(x).

Parseval’s relation applied to the Walsh transform
of a Boolean function f gives:∑

u∈Fn
2

f̂ 2(u) = 22n.

The resistance of the diverse cryptosystems
implementing Boolean functions to the known
attacks can be quantified through some funda-
mental characteristics of the Boolean functions
used in them. The design of cryptographic func-
tions then needs to consider various characteris-
tics (depending on the choice of the cryptosystem)
simultaneously. Of course, these criteria are par-
tially in conflict with each other, and trade-offs are
necessary.

Criteria and Cryptographic
Characteristics

1. Cryptographic functions must have high al-
gebraic degrees, since all cryptosystems using
Boolean functions can be attacked if the func-
tions have low degrees.

For instance, in the case of combin-
ing functions, if n LFSRs having lengths
L1, . . . , Ln are combined by the function f (x) =⊕

I⊆{1,...,n} aI
(∏

i∈I xi
)
, then the sequence pro-

duced by f can be obtained by a LFSR of length
L ≤ ∑

I⊆{1,...,n} aI
(∏

i∈I Li
)
. The degree of f has

therefore to be high so that L can have a high
value (otherwise, the system does not resist the
Berlekamp–Massey attack [2]). In the case of
block ciphers, the use of Boolean functions of
low degrees makes effective the “higher differ-
ential attack.”

2. The output to any Boolean function f always
has correlation to certain linear functions of its
inputs. But this correlation should be small.
In other words, the minimum Hamming dis-
tance between fand all affine functions must be
high. Otherwise, an affine approximation of the
Boolean function can be used to build attacks on
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any kind of system implementing the function
(see Linear cryptanalysis for block ciphers and
Linear cryptanalysis for stream ciphers). The
minimum distance between f and all affine
functions is called the nonlinearity of f and
denoted by N L( f) (see Nonlinearity of Boolean
functions for more details). It can be quantified
through the Walsh transform:

NL( f ) = 2n−1 − 1
2 max

u∈Fn
2

| f̂ (u)|.

Parseval’s relation then implies that for every
n-variable Boolean function f :

NL( f ) ≤ 2n−1 − 2n/2−1.

3. Cryptographic functions must be balanced
(their output must be uniformly distributed) for
avoiding statistical dependence between the in-
put and the output, which can be used in at-
tacks. Note that f is balanced if and only if
f̂ (0) = 0.

Moreover, any combining function f(x) must
stay balanced if we keep constant some coor-
dinates xi of x (at most m of them, where m
is as large as possible). We say that f is then
m-resilient. More generally, a (non necessarily
balanced) Boolean function, whose output dis-
tribution probability is unaltered when any m
of the input bits are kept constant, is called
mth order correlation-immune (see Correlation
immune and resilient Boolean functions).

4. The propagation criterion (PC), generalizing
the strict avalanche criterion (SAC), quanti-
fies the level of diffusion put in a cipher by a
Boolean function. This criterion is more rele-
vant to block ciphers. An n-variable Boolean
function satisfies the propagation criterion
PC(l) of degree l if, for every vector x of Ham-
ming weight at most l, the derivative Da f (x) =
f (x) ⊕ f (x + a) is balanced (see Propagation
characteristics of Boolean functions).

By definition, SAC is equivalent to PC(1).
5. A vector e ∈ Fn

2 is called a linear structure of an
n-variable Boolean function f if the derivative
De f is constant. Boolean functions used in block
ciphers should avoid nonzero linear structures
(see [1]). A Boolean function admits a nonzero
linear structure if and only if it is linearly equiv-
alent to a function of the form f (x1, . . . , xn) =
g(x1, . . . , xn−1) ⊕ ε xn where ε ∈ F2.

6. Other characteristics of Boolean functions have
been considered in the literature:
– The sum-of-squares indicator V( f ) =

∑
a∈Fn

2

(∑
x∈Fn

2
(−1)Da f (x)

)2
and the abso-

lute indicator maxa∈Fn
2 , a �=0 | ∑x∈Fn

2
(−1)Da f (x)|

quantify the global diffusion capability of
the function (the lower they are, the better
is the diffusion);

– The maximum correlation between an
n-variable Boolean function f and a
subset I of {1, . . . , n} equals C f (I) =
2−n max

g∈FI

∑
x∈Fn

2
(−1) f (x)⊕g(x), where FI is the

set of all n-variable Boolean functions
whose values depend on {xi, i ∈ I} only. The
maximum correlation C f (I) must be low for
every nonempty set I of small size, to avoid
nonlinear correlation attacks (note that mth
order correlation immunity corresponds to
an optimum maximum correlation to every
subset I of size at most m, if we consider only
affine approximations instead of all Boolean
approximations).

Claude Carlet
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BOOMERANG ATTACK

The boomerang attack is a chosen plaintext and
adaptive chosen ciphertext attack discovered by
Wagner [5]. It is an extension of differential at-
tack to two-stage differential–differential attack
which is closely related to impossible differential
attack as well as to the meet-in-the middle ap-
proach. The attack may use characteristics, dif-
ferentials as well as truncated differentials. The
attack breaks constructions in which there are
high-probability differential patterns propagating
half-way through the cipher both from the top and
from the bottom, but there are no good patterns
that propagate through the full cipher.

The idea of the boomerang attack is to find
good conventional (or truncated) differentials that
cover half of the cipher but cannot necessarily be
concatenated into a single differential covering the
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whole cipher. The attack starts with a pair of plain-
texts P and P′ with a difference 	 which goes
to difference 	∗ through the upper half of the ci-
pher. The attacker obtains the corresponding ci-
phertexts C and C′, applies the difference ∇ to ob-
tain ciphertexts D = C + ∇ and D′ = C′ + ∇, and
decrypts them to plaintexts Q and Q′. The choice
of ∇ is such that the difference propagates to the
difference ∇∗ in the decryption direction through
the lower half of the cipher. For the right quar-
tet of texts, difference 	∗ is created in the mid-
dle of the cipher between partial decryptions of D
and D′ which propagates to the difference 	 in the
plaintexts Q and Q′. This can be detected by the
attacker.

Moreover, working with quartets (pairs of pairs)
provides boomerang attacks with additional filtra-
tion power. If one partially guesses the keys of the
top round one has two pairs of the quartet to check
whether the uncovered partial differences follow
the propagation pattern, specified by the differen-
tial. This effectively doubles the attacker’s filtra-
tion power.

The attack was demonstrated with a practical
cryptanalysis of a cipher which was designed with
provable security against conventional differen-
tial attack [4], as well as on round-reduced ver-
sions of several other ciphers. The related method
of the inside out attack was given in the same pa-
per. Further refinements of the boomerang tech-
nique have been found in papers on so-called am-
plified boomerang and rectangle attacks [1, 3]. In
certain cases a free round in the middle may be
gained due to a careful choice of the differences
coming from the top and from the bottom [2,5].

Alex Biryukov
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BROADCAST ENCRYPTION

CONCEPT DEFINITION AND APPLICATIONS:
The concept of broadcast encryption deals with
methods that allow to efficiently transmit infor-
mation to a dynamically changing group of priv-
ileged users who are allowed to receive the data.
It is often convenient to think of it as a revoca-
tion scheme, which addresses the case where some
subset of the users are excluded from receiving the
information.

The problem of a center transmitting data to
a large group of receivers so that only a pre-
defined subset is able to decrypt the data is at
the heart of a growing number of applications.
Among them are pay-TV applications, multicast
(or secure group) communication, secure distribu-
tion of copyright-protected material (e.g., music),
digital rights management, and audio streaming.
Different applications impose different rates for
updating the group of legitimate users. Users are
excluded from receiving the information due to
payments, subscription expiration, or since they
have abused their rights in the past.

One special case is when the receivers are state-
less. In such a scenario, a (legitimate) receiver is
not capable of recording the past history of trans-
missions and change its state accordingly. Instead,
its operation must be based on the current trans-
mission and its initial configuration. Stateless re-
ceivers are important for the case where the re-
ceiver is a device that is not constantly on-line,
such as a media player (e.g., a CD or DVD player
where the “transmission” is the current disc [4,10],
a satellite receiver (GPS) and perhaps in multicast
applications).

Broadcast encryption can be combined with
tracing capabilities to yield trace-and-revoke
schemes. A tracing mechanism enables the efficient
tracing of leakage, specifically, the source of keys
used by illegal devices, such as pirate decoders or
clones. Trace-and-revoke schemes are of particu-
lar value in many scenarios: they allow to trace
the identity of the user whose key was leaked; in
turn, this user’s key is revoked from the system
for future uses.
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What are the desired properties of a broadcast
encryption scheme? A good scheme is character-
ized by
� Low bandwidth—we aim at a small message

expansion, namely that the length of the en-
crypted content should not be much longer than
the original message.

� Small amount of storage—we would like the
amount of required storage (typically keys) at
the user to be small, and as a secondary objec-
tive the amount of storage at the server to be
manageable as well.

� Attentiveness—does the scheme require users
to be on-line “all the time?” If such a require-
ment does not apply, then the scheme is called
stateless.

� Resilience—we want the method to be resilient
to large coalitions of users who collude and
share their resources and keys.
In order to evaluate and compare broadcast en-

cryption methods, we define a few parameters. Let
N be the set of all users, |N | = N, and R ⊂ N be
a group of |R| = r users whose decryption privi-
leges should be revoked. The goal of a broadcast
encryption algorithm is to allow a center to trans-
mit a message M to all users such that any user
u ∈ N \ R can decrypt the message correctly, while
a coalition consisting of t or fewer members of R
cannot decrypt it. The important parameters are
therefore r, t , and N.

A system consists of three parts: (1) a key assign-
ment scheme, which is an initialization method for
assigning secret keys to receivers that will allow
them to decrypt. (2) The broadcast algorithm—
given a message M and the setR of users to revoke
outputs a ciphertext message M′ that is broad-
cast to all receivers. (3) A decryption algorithm—
a (nonrevoked) user who receives ciphertext M′

should produce the original message M using its
secret information.

HISTORY OF THE PROBLEM: The issue of se-
cure broadcasting to a group has been investi-
gated earlier on, see for example [1]. The first
formal definition of the area of broadcast encryp-
tion, including parameterization of the problem
and its rigorous analysis (as well as coining the
term) was done by Fiat and Naor in [5] and has
received much attention since then; see for exam-
ple [2,6,8,9,11,13–15,18,19]. The original broad-
cast encryption method of [5] allows the removal
of any number of users as long as at most t of them
collude. There the message length is O(t log2 t), a
user must store a number of keys that is logarith-
mic in t and the amount of work required by the
user is Õ(r/t) decryptions. The scheme can be used
in a stateless environment as it does not require

attentiveness. On the other hand, in the stateful
case, gradual revocation of users is particularly
efficient.

The logical-tree-hierarchy (LKH) scheme, sug-
gested independently in the late 1990s by Wallner
et al. [18] and Wong et al. [19], is designed to
achieve secure group communication in a multi-
cast environment. Useful mainly in the connected
mode for multicast re-keying applications, it re-
vokes or adds a single user at a time, and up-
dates the keys of all remaining users. It requires
a transmission of 2 log N keys to revoke a single
user, each user is required to store log N keys and
the amount of work each user should do is log N
encryptions (the expected number is O(1) for an
average user). These bounds are somewhat im-
proved in [2, 3, 12, 16, 17], but unless the storage
at the user is extremely high they still require a
transmission of length (r log N). This algorithm
may revoke any number of users, regardless of the
coalition size.

Luby and Staddon [11] considered the infor-
mation theoretic (see computational complexity,
information theory, and security) setting and de-
vised bounds for any revocation algorithms under
this setting. Garay et al. [6] introduced the no-
tion of long-lived broadcast encryption. In this sce-
nario, keys of compromised decoders are no longer
used for encryptions. The question they address is
how to adapt the broadcast encryption scheme so
as to maintain the security of the system for the
good users.

CPRM, which stands for content protection for
recordable media, [4] is a technology for protect-
ing content on physical media such as recordable
DVD, DVD Audio, Secure Digital Memory Card,
and Secure CompactFlash. It is one of the meth-
ods that explicitly considers the stateless scenario.
There, the message is composed of r log N encryp-
tions, the storage at the receiver consists of log N
keys, and the computation at the receiver requires
a single decryption. It is a variant on the tech-
niques of [5].

The subset difference method for broadcast en-
cryption, proposed by Naor, Naor, and Lotspiech
[13, 14], is most appropriate in the stateless sce-
nario. It requires a message length of 2r − 1 (in
the worst case, or 1.38r in the average case) en-
cryptions to revoke r users, and storage of 1

2 log2 N
keys at the receiver. The algorithm does not as-
sume an upper bound of the number of revoked
receivers, and works even if all r revoked users
collude. The key assignment of this scheme is com-
putational and not information theoretic, and as
such it outperforms an information theoretic lower
bound on the size of the message [11]. A rigor-
ous security treatment of a family of schemes,
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including the subset difference method, is pro-
vided in [14]. Halevy and Shamir [8] have sug-
gested a variant of subset difference called LSD
(layered subset difference). The storage require-
ments are reduced to O(log1+ε N) while the mes-
sage length is O(r/ε), providing a full spectrum
between the complete subtree and subset differ-
ence methods. A reasonable choice is ε = 2.

Both LKH and the subset difference methods
are hierarchical in nature and as such are partic-
ularly suitable to cases where related users must
all be revoked at once, for instance, all users whose
subscription expires on a certain day.

It is also important to realize that many imple-
mentations in this field remain proprietary and
are not published both for security reasons (not to
help the pirates) as well as for commercial reasons
(not to help the competitors).

CONSTRUCTIONS: A high level overview of three
fundamental broadcast encryption constructions
is outlined below. Details are omitted and can be
found in the relevant references. One technique
that is commonly used in the key assignment of
these constructions is the derivation of keys in a
tree-like manner: a key is associated with the root
of a tree and this induces a labeling of all the nodes
of the tree. The derivation is done based on the
technique first used by Goldreich, Goldwasser, and
Micali (GGM) [7].

Fiat–Naor Construction

The idea of the construction in [5] is to start with
the case where the coalition size (the number of
users who collude and share their secret informa-
tion) is t and reduce it to the case where the coali-
tion size is 1, the basic construction. For this case,
suppose that there is a key associated with each
user; every user is given all keys except the one as-
sociated with it. (As an illustration, think of the
key associated with a user as written on its fore-
head, so that all other users except for itself can
see it.) To broadcast a message to the group N \ R,
the center constructs a broadcast key by Xoring
all keys associated with the revoked users R. Note
that any user u ∈ N \ R can reconstruct this key,
but a user u ∈ R cannot deduce the key from its
own information. This naive key assignment re-
quires every user to store N − 1 keys. Instead, by
deriving the keys in a GGM tree-like process, the
key assignment is made feasible by requiring ev-
ery user to store log N keys only.

The construction is then extended to handle the
case where up to t users may share their secret

information. The idea then is to obtain a scheme
for larger t by various partitions of the user set,
where for each such partition the basic scheme is
used.

Logical Key Hierarchy

The LKH (logical key hierarchy) scheme [18–20]
maintains a common encryption key for the active
group members. It assumes that there is an initial
set N of N users and that from time to time an ac-
tive user leaves and a new value for the group key
should be chosen and distributed to the remain-
ing users. The operations are managed by a center
which broadcasts all the maintenance messages
and is also responsible for choosing the new key.
When some user u ∈ N is revoked, a new group
key K ′ should be chosen and all nonrevoked users
in N should receive it, while no coalition of the
revoked users should be able to obtain it; this is
called a leave event. At every point a nonrevoked
user knows the group key K as well as a set of
secret “auxiliary” keys. These keys correspond to
subsets of which the user is a member, and may
change throughout the lifetime of the system.

Users are associated with the leaves of a full bi-
nary tree of height log N. The center associates a
key Ki with every node vi of the tree. At initial-
ization, each user u is sent (via a secret channel)
the keys associated with all the nodes along the
path connecting the leaf u to the root. Note that
the root key K is known to all users and can be
used to encrypt group communications.

In order to remove a user u from the group (a
leave event), the center performs the following op-
erations. For all nodes vi along the path from u
to the root, a new key K ′

i is generated. The new
keys are distributed to the remaining users as fol-
lows: let vi be a node on the path and v j be its
child on the path and v� its child that is not on the
path. Then K ′

i is encrypted using K ′
j and K� (the

latter did not change), i.e., a pair of encryptions
〈EK ′

j
(K ′

i), EK�
(K ′

i)〉. The exception is if vi is the par-
ent of the leaf u, in which case only a single encryp-
tion using the sibling of u is sent. All encryptions
are sent to all the users.

Subset Difference

The subset difference construction defines a col-
lection of subsets of users S1, . . . , Sw, Sj ⊆ N . Each
subset Sj is assigned a long-lived key Lj; a user u
is assigned some secret information Iu so that ev-
ery member of Sj should be able to deduce Lj from
its secret information. Given a revoked set R, the
remaining users are partitioned into disjoint sets
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Si1 , . . . , Sim from the collection that entirely cover
them (every user in the remaining set is in at least
one subset in the cover) and a session key K is en-
crypted m times with Li1 , . . . , Lim . The message is
then encrypted with the session key K.

Again, users are associated with the leaves of a
full binary tree of height log N. The collection of
subsets S1, . . . , Sw defined by this algorithm corre-
sponds to subsets of the form “a group of receivers
G1 minus another group G2,” where G2 ⊂ G1. The
two groups G1, G2 correspond to leaves in two full
binary subtrees. Therefore, a valid subset S is rep-
resented by two nodes in the tree (vi, v j) such that
vi is an ancestor of v j and is denoted as Si, j. A leaf
u is in Si, j iff it is in the subtree rooted at vi but
not in the subtree rooted at v j, or in other words
u ∈ Si, j iff vi is an ancestor of u but v j is not.

The observation is that for any subset R of re-
voked users, it is possible to find a set of at most
2r − 1 subsets from the predefined collection that
cover all other users N \R.

A naive key assignment that assigns to each
user all long-lived keys of the subsets it belongs
to requires a user to store O(N) key. Instead, this
information (or rather a succinct representation of
it) can be reduced to 1

2 log2 N based on a GGM-like
tree construction; for details see [14].

Dalit Naor
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C
CÆSAR CIPHER

Julius Cæsar is reported to have replaced each
letter in the plaintext by the one standing three
places further in the alphabet. For instance, when
the key has the value 3, the plaintext word
cleopatra will be encrypted by the ciphertext
word fohrsdwud. Augustus allegedly found this
too difficult and always took the next letter. Break-
ing the Cæsar cipher is almost trivial: there are
only 26 possible keys to check (exhaustive key
search) and after the first four or five letters are
decrypted the solution is usually unique.

The Cæsar cipher is one of the most simple cryp-
tosystems, with a monoalphabetic encryption: by
counting down in the cyclically closed ordering of
an alphabet, a specified number of steps.

Cæsar encryptions are special linear substi-
tution (see substitutions and permutations) with
n = 1 and the identity as homogeneous part ϕ.
Interesting linear substitutions with n ≥ 2 have
been patented by Lester S. Hill in 1932.

Friedrich L. Bauer
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CAMELLIA

Camellia [1] is a block cipher designed in 2000 by a
team of cryptographers from NTT and Mitsubishi
Electric Corporation. It was submitted to differ-
ent standardization bodies and was included in the
NESSIE Portfolio of recommended cryptographic
primitives in 2003.

Camellia encrypts data in blocks of 128 bits and
accepts 128-bit, 192-bit, and 256-bit secret keys.
The algorithm is a byte-oriented Feistel cipher
and has 18 or 24 rounds depending on the key
length. The F-function used in the Feistel struc-
ture can be seen as a 1-round 8-byte substitution-
permutation (SP) network. The substitution layer
consists of eight 8 × 8-bit S-boxes applied in paral-
lel, chosen from a set of four different affine equiv-
alent transformations of the inversion function in
GF(28) (see Rijndael/AES). The permutation layer,
called the P-function, is a network of byte-wise
exclusive ORs and is designed to have a branch
number of 5 (which is the maximum for such a
network). An additional particularity of Camellia,
which it shares with MISTY1 and KASUMI (see
KASUMI/MISTY1), is the FL-layers. These lay-
ers of key-dependent linear transformations are
inserted between every six rounds of the Feistel
network, and thus break the regular round struc-
ture of the cipher.
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Fig. 1. Camellia: encryption for 128-bit keys and details of F-function
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In order to generate the subkeys used in the F-
functions, the secret key is first expanded to a 256-
bit or 512-bit value by applying four or six rounds
of the Feistel network. The key schedule (see block
cipher) then constructs the necessary subkeys by
extracting different pieces from this bit string.

The best attacks on reduced-round Camellia
published so far are square and rectangle attacks
(see integral attack and boomerang attack). The
nine-round square attack presented by Yeom et al.
[4] requires 261 chosen plaintexts and an amount
of work equivalent to 2202 encryptions. The rectan-
gle attack proposed by Shirai [3] breaks ten rounds
with 2127 chosen plaintexts and requires 2241 mem-
ory accesses. Hatano, Sekine, and Kaneko [2] also
analyze an 11-round variant of Camellia using
higher order differentials. The attack would re-
quire 293 chosen ciphertexts, but is not likely to
be much faster than an exhaustive search for the
key, even for 256-bit keys.

Note that more rounds can be broken if the
FL-layers are discarded. A linear attack on a 12-
round variant of Camellia without FL-layers is
presented in [3]. The attack requires 2119 known
plaintexts and recovers the key after performing
a computation equivalent to 2247 encryptions.

Christophe De Cannière
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K. Nyberg. Springer-Verlag, Berlin, 39–56.

[3] Shirai, T. (2002). “Differential, linear, boomerang
and rectangle cryptanalysis of reduced-round
Camellia.” Proceedings of the Third NESSIE
Workshop, NESSIE, November 2002.

[4] Yeom, Y., S. Park, and I. Kim (2002). “On the se-
curity of Camellia against the square attack.” Fast
Software Encryption, FSE 2002, Lecture Notes in
Computer Science, vol. 2365, eds. J. Daemen and
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CAST

CAST is a design procedure for symmetric cryp-
tosystems developed by C. Adams and S. Tavares

in 1993 [1, 2]. In accordance with this procedure,
a series of DES-like block ciphers was produced
(see Data Encryption Standard (DES)), the most
widespread being the 64-bit block cipher CAST-
128. The latest member of the family, the 128-bit
block cipher CAST-256, was designed in 1998 and
submitted as a candidate for the Advanced En-
cryption Standard (see Rijndael/AES).

All CAST algorithms are based on a Feistel
cipher (a generalized Feistel network in the case of
CAST-256). A distinguishing feature of the CAST
ciphers is the particular construction of the f-
function used in each Feistel round. The gen-
eral structure of this function is depicted in Fig-
ure 1. The data entering the f-function is first
combined with a subkey and then split into a
number of pieces. Each piece is fed into a sepa-
rate expanding S-box based on bent functions (see
nonlinearity of Boolean functions). Finally, the
output words of these S-boxes are recombined one
by one to form the final output. Both CAST-128 and
CAST-256 use three different 32-bit f-functions
based on this construction. All three use the same
four 8 × 32-bit S-boxes but differ in the operations
used to combine the data or key words (the oper-
ations a, b, c, and d in Figure 1). The CAST ci-
phers are designed to support different key sizes
and have a variable number of rounds. CAST-128
allows key sizes between 40 and 128 bits and uses

32-bit data half

a Ki
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S-box 3
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32
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Fig. 1. CAST’s f-function
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12 or 16 rounds. CAST-256 has 48 rounds and sup-
ports key sizes up to 256 bits.

The first CAST ciphers were found to have some
weaknesses. Rijmen et al. [5] presented attacks
exploiting the nonsurjectivity of the f-function in
combination with an undesirable property of the
key schedule. Kelsey et al. [3] demonstrated that
the early CAST ciphers were vulnerable to related
key attacks. Moriai et al. [4] analyzed simplified
versions of CAST-128 and presented a five-round
attack using higher order differentials.

Christophe De Cannière
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CBC-MAC AND VARIANTS

SIMPLE CBC-MAC: CBC-MAC is one of the old-
est and most popular MAC algorithms. A MAC
algorithm is a cryptographic algorithm that com-
putes a complex function of a plaintext and a se-
cret key; the resulting MAC value is typically ap-
pended to the plaintext to protect its authenticity.
CBC-MAC is a MAC algorithm based on a block
cipher; it is derived from the Cipher Block Chain-
ing (CBC) mode of operation, which is a mode for
encryption. CBC-MAC is very popular in financial
applications and smart cards.

In the following, the block length and key length
of the block cipher will be denoted by n and k re-
spectively. The length (in bits) of the MAC value
will be denoted by m. The encryption and decryp-

E
K

x1

H1

IV

E
K

x2

H2

E
K

xt

Ht

+ + +

Fig. 1. CBC-MAC, where the MAC value is g(Ht )

tion with the block cipher E using the key K will be
denoted by EK(·) and DK(·), respectively. An n-bit
string consisting of zeroes will be denoted by 0n.

CBC-MAC is an iterated MAC algorithm, which
consists of the following steps (see also Figure 1):
� Padding and splitting of the input. The goal of

this step is to divide the input into t blocks of
length n; before this can be done, a padding al-
gorithm needs to be applied. The most common
padding method can be described as follows [12].
Let the message string before padding be x =
x1, x2, . . . , xt ′ , with |x1| = |x2| = · · · = |xt ′−1| = t
(here |xi | denotes the size of the string xi in bits).
If |xt ′ | = n append an extra block xt ′+1 consist-
ing of one one-bit followed by n − 1 zero bits,
such that |xt ′+1| = n and set t = t ′ + 1; otherwise
append a one-bit and n − |xt ′ | − 1 zero bits, s.t.
|xt ′ | = n and set t ′ = t . A simpler padding algo-
rithm (also included in [12]) consists of append-
ing n − |xt ′ | zero bits and setting t ′ = t . This
padding method is not recommended, as it al-
lows for trivial forgeries.

� CBC-MAC computation, which iterates the fol-
lowing operation:

Hi = EK(Hi−1 ⊕ xi) , 1 ≤ i ≤ t.

The initial value is equal to the all zero string,
or H0 = 0n (note that for the CBC encryption
mode, a random value H0 is recommended).

� Output transformation. The MAC value is com-
puted as MACK(x) = g(Ht ), where g is the out-
put transformation.
The simplest construction is obtained when the

output transformation g() is the identity function.
Bellare et al. [4] have provided a security proof for
this scheme. Their proof is based on the pseudo-
randomness of the block cipher and requires that
the inputs are of fixed length. It shows a lower
bound for the number of chosen texts that are re-
quired to distinguish the MAC algorithm from a
random function, which demonstrates that CBC-
MAC is a pseudorandom function. Note that this is
a stronger requirement than being a secure MAC
as this requires just unpredictability or computa-
tion resistance. An almost matching upper bound
to this attack is provided by an internal collision
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attack based on the birthday paradox (along the
lines of Proposition 1 of MAC algorithms [6, 24]).
The attack obtains a MAC forgery; it requires a
single chosen text and about 2n/2 known texts; for a
64-bit block cipher such as Data Encryption Stan-
dard (DES), this corresponds to 232 known texts.

If the input is not of fixed length, very simple
forgery attacks apply to this scheme:
� given MAC(x), one knows that MACK(x‖(x ⊕

MACK(x))) = MACK(x) (for a single block x);
� given MAC(x) and MAC(x′), one knows that

MACK(x‖(x′ ⊕ MACK(x))) = MACK(x′) (for a
single block x′).

� given MAC(x), MAC(x‖y), and MAC(x′), one
knows that MAC(x′‖y′) = MAC(x‖y) if y′ = y ⊕
MAC(x) ⊕ MAC(x′), where y and y′ are single
blocks.
A common way to preclude these simple forgery

attacks is to replace the output transform g by a
truncation to m < n bits; m = 32 is a very popular
choice for CBC-MAC based on DES (n = 64). How-
ever, Knudsen has shown that a forgery attack on
this scheme requires 2 · 2(n−m)/2 chosen texts and
two known texts [16], which is only 217 chosen
texts for n = 64 and m = 32. Note that this is sub-
stantially better than an internal collision attack.
The proof of security for fixed length inputs still
applies however.

In order to describe attacks parameters in a
compact way, an attack is quantified by the four-
tuple [a, b, c, d ], where
� a is the number off-line block cipher encipher-

ments,
� b is the number of known text-MAC pairs,
� c is the number of chosen text-MAC pairs, and
� d is the number of on-line MAC verifications.
Attacks are often probabilistic; in that case the
parameters indicated result in a large success
probability (typically at least 0.5). As an exam-
ple, the complexity of exhaustive key search is
[2k, �k/m�, 0, 0] and for a MAC guessing attack it
is [0, 0, 0, 2m]. The forgery attacks based on an in-
ternal collision for CBC-MAC as described above
have attack parameters [0, 2n/2, 1, 0] if g is the
identity function and [0, 2, 2 · 2(n−m)/2, 0] if g is a
truncation to m bits.

VARIANTS OF CBC-MAC: As a first comment,
it should be pointed out that for most of these
schemes, a forgery attack based on internal col-
lisions applies with complexity [0, 2n/2, 1, 0] for
m = n and [0, 2n/2, min(2n/2, 2n−m), 0] for m < n
(Propositions 1 and 2 in MAC algorithms).

The EMAC scheme uses as output transforma-
tion g the encryption of the last block with a
different key. It was first proposed by the RIPE

Consortium in [27]; Petrank and Rackoff have pro-
vided a security proof in [23], which shows that
this MAC algorithm is secure with inputs of arbi-
trary lengths:

g(Ht ) = EK ′ (Ht ) = EK ′ (EK(xt ⊕ Ht−1)) ,

where K ′ is a key derived from K.
A further optimization by Black and Rogaway

[5] reduces the overhead due to padding; it is
known as XCBC (or three-key MAC). XCBC uses a
k-bit block cipher key K1 and two n-bit whitening
keys K2 and K3. It modifies the last encryption and
padding such that the number of blocks before and
after padding is equal or t = t ′. If |xt ′ | = n, then
XOR the n-bit key K2 to xt ′ ; otherwise append a
one-bit and n − |xt ′ | − 1 zero bits, s.t. |xt ′ | = n, and
then XOR the n-bit key K3 to xt ′ . The OMAC al-
gorithm by Iwata and Kurosawa [13] reduces the
number of keys to one by choosing K2 = ‘2’ · EK(0n)
and K3 = ‘4’ · EK(0n) where ‘2’ and ‘4’ are two ele-
ments of the finite field GF(2n) (see [13] for the
details of this representation) and “·” represents
multiplication in the finite field GF(2n). It is antic-
ipated that NIST will standardize this algorithm
under the name CMAC for use with AES.

RIPE-MAC [27] is a variant of EMAC with the
following iteration:

Hi = EK(Hi−1 ⊕ xi) ⊕ xi , 1 ≤ i ≤ t .

This increases the complexity to find collisions
even if one knows the key.

Because of the 56-bit key length, CBC-MAC
with DES no longer offers adequate security. Sev-
eral constructions exist to increase the key length
of the MAC algorithm. No lower bounds on the
security of these schemes against key recovery are
known.

A widely used solution is the ANSI retail MAC,
which first appeared in [3]. Rather than replac-
ing DES by triple-DES, one processes only the
last block with two-key triple-DES, which corre-
sponds to an output transformation g consisting
of a double-DES encryption:

g(Ht ) = EK1 (DK2 (Ht )).

When used with DES, the key length of this
MAC algorithm is 112 bits. However, Preneel and
van Oorschot have shown that 2n/2 known texts
allow for a key recovery in only 3 · 2k encryptions,
compared to 22k encryptions for exhaustive key
search [25] (note that for DES n = 64 and k = 56).
If m < n, this attack requires an additional 2n−m

chosen texts. The complexity of these attacks
is thus [2k+1, 2n/2, 0, 0] and [2k+1, 2n/2, 2n−m, 0].
Several key recovery attacks require mostly MAC
verifications, with the following parameters:
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[2k, 1, 0, 2k] [20], [2k+1, �(max(k, n) + 1)/m�, 0,

�(k − n − m + 1)/m� · 2n)] [18] and for m < n:
[2k+1, 0, 0, (�n/m� + 1) · 2(n+m)/2−1] [21].

The security of the ANSI retail MAC can be im-
proved at no cost in performance by introducing a
double DES encryption in the first and last itera-
tion; this scheme is know as MacDES [20]:

H1 = EK ′
2
(EK1 (X1)) and g(Ht ) = EK2 (Ht ).

Here K ′
2 is derived from K2. The best known

key recovery attack due to Coppersmith et al.
[8] has complexity [2k+3, 2n/2+1, 3s · 23n/4, 0], for
small s ≥ 1; with truncation of the output to
m = n/2 bits, this complexity increases to [2k+s +
2k+2p, 0, 2n+3−p, 2k+1] with space complexity 2k−2s .
These attacks assume that a serial number is in-
cluded in the first block; if this precaution is not
taken, key recovery attacks have complexities sim-
ilar to the ANSI retail MAC: [2k+2, 2n/2, 2, 0] and
[2k+2, 1, 1, 2k] [9].

Several attempts have been made to increase
the resistance against forgery attacks based on in-
ternal collisions. A first observation is that the use
of serial numbers is not sufficient [7].

RMAC, proposed by Jaulmes et al. [14], intro-
duces in the output transformation a derived key
K ′ that is modified with a randomizer or “salt” R
(which needs to be stored or sent with the MAC
value):

g(Ht ) = EK ′⊕R(Ht ).

The RMAC constructions offer increased resis-
tance against forgery attacks based on internal
collisions, but it has the disadvantage that its
security proof requires resistance of the under-
lying block cipher against related key attacks.
A security analysis of this scheme can be found
in [17,19]. The best known attack strategy against
RMAC is to recover K ′: once K ′ is known, the secu-
rity of RMAC reduces to that of simple CBC-MAC.
For m = n, the complexities are [2k−s + 2k−n, 1, 2s,

2n−1] or [2k−s + 2k−n, 1, 0, 2s+n−1 + 2n−1], while
for m < n the complexities are [2k−s + 2k−m,

0, 2s, �n/m + 1� · 2(n+m)/2] and [2k−s + 2k−m, 0, 0,

�n/m + 1� · 2(n+m)/2 + 2s+m−1]. A variant which
exploits multiple collisions has complexity [2k−1/

(u/t), 0, (t/e)2(t−1)nt , 0] with u = t + t(t − 1)/2 (for
m = n). These attacks show that the security level
of RMAC is smaller than anticipated. However,
when RMAC is used with three-key triple-DES,
the simple key off-setting technique is inse-
cure; [19] shows a full key recovery attack with
complexity [264, 28, 28, 256], which is much lower
than anticipated. RMAC was included in NIST’s
2002 draft special publication [22]; however, this
draft has been withdrawn.

3GPP-MAC [1] uses a larger internal memory
of 2n bits, as it also stores the sum of the interme-
diate values of the MAC computation. The MAC
value is computed as follows:

MAC = g(EK2 (H1 ⊕ H2 ⊕ · · · Ht )).

Knudsen and Mitchell analyze this scheme in [18].
If g is the identity function, the extra computation
and storage does not pay off: there exist forgery
attacks that require only 2n/2 known texts, and
the complexity of key recovery attacks is similar
to that of the ANSI retail MAC. However, truncat-
ing the output increases the complexity of these
attacks to an adequate level. For the 3GPP appli-
cation, the 64-bit block cipher KASUMI is used
with a 128-bit key and with m = 32. The best
known forgery attack requires 248 texts and the
best known key recovery attacks have complexi-
ties [2130, 248, 232, 0] and [2129, 3, 0, 264].

STANDARDIZATION: CBC-MAC is standardized
by several standardization bodies. The first stan-
dards included only simple CBC-MAC [2, 10]. In
1986, the ANSI retail MAC was added [3, 11].
The 1999 edition of ISO 9797-1 [12] includes sim-
ple CBC-MAC, EMAC, the ANSI retail MAC and
MacDES (and two other schemes which are no
longer recommended because of the attacks in
[15]). 3GPP-MAC has been standardized by 3GPP
[1]. It is anticipated that NIST will standardize
OMAC.

B. Preneel
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CCIT2-CODE

This is a binary coding of the International Tele-
type Alphabet No. 2. The six control characters of
the teletype machines are: 0: Void, 1: Letter Shift,
2: Word Space, 3: Figure Shift, 4: Carriage Return,
5: Line Feed.

0 t 4 o 2 h n m 5 l r g i p c v e z d b s y f x a w j 3 u q k 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 4

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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CEPS STANDARD

The Common Electronic Purse Specifications
(CEPS) define an electronic purse program built
on the EMV specification. The CEPS scheme ex-
tends the EMV authentication architecture with a
certification authority (CA) and issuer certificates
to include the Acquirer side. The Acquirer is re-
sponsible for managing Point Of Sale (POS) trans-
actions using a Purchase Secure Application Mod-
ule (PSAM). The terminal (PSAM) authenticates



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

Certificate 67

itself to the smart card and does so using a
method similar to the approach of EMV. On the
card is stored an issuer-side CA index, an issuer
certificate, and a card certificate which is trans-
mitted to the terminal. Using a stored issuer CA
certificate, the terminal verifies the issuer cer-
tificate and the card certificate. The terminal re-
sponds by generating a digital signature—using a
terminal private key—which is encrypted by the
card public key and transmitted to the card to-
gether with a corresponding terminal certificate
on the public key, an acquirer certificate, and an
acquirer-side CA index. As the card also has an
acquirer-side CA certificate stored, the terminal
can be properly authenticated.

In addition to the physical cards themselves,
the majority of the cryptographic mechanisms and
protocols comply with EMV (Personal Identifica-
tion Number (PIN), MAC algorithms, card com-
munication commands, public key cryptography,
etc.). A few areas such as certain usages of sym-
metric cryptography are however at the (relative)
discretion of the card issuer.

Peter Landrock

CERTIFICATE

A certificate is a data structure signed by an en-
tity that is considered (by some other collection of
entities) to be authoritative for its contents. The
signature on the data structure binds the con-
tained information together in such a way that this
information cannot be altered without detection.
Entities that retrieve and use certificates (often
called “relying parties”) can choose to rely upon
the contained information because they can de-
termine whether the signing authority is a source
they trust and because they can ensure that the
information has not been modified since it was cer-
tified by that authority.

The information contained in a certificate de-
pends upon the purpose for which that certificate
was created. The primary types of certificates are
public-key certificates (see public-key infrastruc-
ture) and attribute certificate, although in prin-
ciple an authority may certify any kind of infor-
mation [1–3, 5]. Public-key certificates typically
bind a public key pair1 to some representation of

1 The identity is bound explicitly to the public key, but implic-
itly to the private key as well. That is, only the public key is
actually included in the certificate, but the underlying assump-
tion is that the identified entity is the (sole) holder of the cor-
responding private key; otherwise, relying parties would have
no reason to use the certificate to encrypt data for, or verify
signatures from, that entity.

an identity for an entity, although other relevant
information may also be bound to these two pieces
of data such as a validity period, an identifier
for the algorithm for which the public key may
be used, and any policies or constraints on the
use of this certificate. Attribute certificates typi-
cally do not contain a public key, but bind other
information (such as roles, rights, or privileges)
to some representation of an identity for an en-
tity. Public-key certificates are used in protocols
or message exchanges involving authentication
of the participating entities, whereas attribute
certificates are used in protocols or message ex-
changes involving authorization decisions (see
authorization architecture) regarding the partic-
ipating entities.

Many formats and syntaxes have been defined
for both public-key certificates and attribute cer-
tificates, including X.509 [4], SPKI [7] (see security
standards activities), PGP [8], and SAML [6] (see
privacy and also key management for a high-level
overview of the X.509 certificate format). Manage-
ment protocols have also been specified for the
creation, use, and revocation of (typically X.509-
based) public-key certificates.
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CERTIFICATE
MANAGEMENT

Certificate management is the management of
public-key certificates, covering the complete life
cycle from the initialization phase, to the issued
phase, to the cancellation phase. See key manage-
ment for details.

Carlisle Adams

CERTIFICATE OF
PRIMALITY

A certificate of primality (or prime certificate) is a
small set of values associated with an integer that
can be used to efficiently prove that the integer is
a prime number. Certain primality proving algo-
rithms, such as Elliptic Curves for Primality Prov-
ing, generate such a certificate. A certificate of pri-
mality can be independently verified by software
other than the one that generated the certificate.
This is useful in detecting any possible bugs in the
implementation of a primality proving algorithm.

Anton Stiglic

CERTIFICATE
REVOCATION

A certificate (see certificate and certification
authority) is a binding between a name of an entity
and that entity’s public key (see public key crypto-
graphy). Normally, this binding is valid for the full
lifetime of the issued certificate. However, circum-
stances may arise in which an issued certificate
should no longer be considered valid, even though
the certificate has not yet expired. In such cases,
the certificate may need to be revoked. Reasons
for revocation vary, but they may involve anything
from a change in job status to a suspected private-
key compromise. Therefore, an efficient and reli-
able method must be provided to revoke a public-
key certificate before it might naturally expire.

Certificates must pass a well-established vali-
dation process before they can be used. Part of that
validation process includes making sure that the
certificate under evaluation has not been revoked.
Certification Authorities (CAs) are responsible for
making revocation information available in some
form or another. Relying parties (users of a certifi-
cate for some express purpose) must have a mecha-
nism to either retrieve the revocation information

directly, or rely upon a trusted third party to re-
solve the question on their behalf.

Certificate revocation can be accomplished in a
number of ways. One class of methods is to use
periodic publication mechanisms; another class
is to use online query mechanisms to a trusted
authority. A number of examples of each class will
be given in the sections below.

PERIODIC PUBLICATION MECHANISMS: A va-
riety of periodic publication mechanisms exist.
These are “prepublication” techniques, character-
ized by issuing the revocation information on a
periodic basis in the form of a signed data struc-
ture. Most of these techniques are based on a data
structure referred to as a Certificate Revocation
List (CRL), defined in the ISO/ITU-T X.509 In-
ternational Standard. These techniques include
CRLs themselves, Certification Authority Revoca-
tion Lists (CARLs), End-entity Public-key certifi-
cate Revocation Lists (EPRLs), CRL Distribution
Points (CDPs), Indirect CRLs, Delta CRLs and In-
direct Delta CRLs, Redirect CRLs, and Certificate
Revocation Trees (CRTs).

CRLs are signed data structures that contain
a list of revoked certificates; the digital signature
appended to the CRL provides the integrity and
authenticity of the contained data. The signer of
the CRL is typically the same entity that signed
the issued certificates that are revoked by the
CRL, but the CRL may instead be signed by an
entity other than the certificate issuer.

Version 2 of the CRL data structure defined by
ISO/ITU-T (the X.509v2 CRL) contains a powerful
extension mechanism that allows additional infor-
mation to be defined and placed in the CRL within
the scope of the digital signature. Lacking this,
the version 1 CRL has scalability concerns and
functionality limitations in many environments.
Some of the extensions that have been defined and
standardized for the version 2 CRL enable great
flexibility in the way certificate revocation is per-
formed, making possible such techniques as CRL
Distribution Points, Indirect CRLs, Delta CRLs,
and some of the other methods listed above.

The CRL data structure contains a version num-
ber (almost universally version 2 in current prac-
tice), an identifier for the algorithm used to sign
the structure, the name of the CRL issuer, a pair
of fields indicating the validity period of the CRL
(“this update” and “next update”), the list of re-
voked certificates, any included extensions, and
the signature over all the contents just mentioned.
At a minimum, CRL processing engines are to as-
sume that certificates on the list have been re-
voked, even if some extensions are not understood,
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and take appropriate action (typically, not rely
upon the use of such certificates in protocols or
other transactions).

Extensions in the CRL may be used to modify
the CRL scope or revocation semantic in some way.
In particular, the following techniques have been
defined in X.509.
� An Issuing Distribution Point extension and/or

a CRL Scope extension may be used to limit the
CRL to holding only CA certificates (creating a
CARL) or only end-entity certificates (creating
an EPRL).

� A CRL Distribution Point (CDP) extension par-
titions a CRL into separate pieces that together
cover the entire scope of a single complete CRL.
These partitions may be based upon size (so that
CRLs do not get too large), upon revocation rea-
son (this segment is for certificates that were
revoked due to key compromise; that segment is
for revocation due to privilege withdrawn; and
so on), or upon a number of other criteria.

� The Indirect CRL component of the Issuing Dis-
tribution Point extension can identify a CRL as
an Indirect CRL, which enables one CRL to con-
tain revocation information normally supplied
from multiple CAs in separate CRLs. This can
reduce the number of overall CRLs that need to
be retrieved by relying parties when performing
the certificate validation process.

� The Delta CRL Indicator extension, or the Base
Revocation Information component in the CRL
Scope extension, can identify a CRL as a Delta
CRL, which allows it to contain only incremen-
tal revocation information relative to some base
CRL, or relative to a particular point in time.
Thus, this (typically much smaller) CRL must
be used in combination with some other CRL
(which may have been previously cached) in or-
der to convey the complete revocation informa-
tion for a set of certificates. Delta CRLs allow
more timely information with lower bandwidth
costs than complete CRLs. Delta CRLs may also
be Indirect, through the use of the extension
specified above.

� The CRL Scope and Status Referral extensions
may be used to create a Redirect CRL, which al-
lows the flexibility of dynamic partitioning of a
CRL (in contrast with the static partitioning of-
fered by the CRL Distribution Point extension).

Finally, a Certificate Revocation Tree is a revoca-
tion technology designed to represent revocation
information in a very efficient manner (using sig-
nificantly fewer bits than a traditional CRL). It is
based on the concept of a Merkle hash tree, which
holds a collection of hash values in a tree struc-
ture up to a single root node, which is signed for
integrity and authenticity purposes.

ONLINE QUERY MECHANISMS: Online query
mechanisms differ from periodic publication
mechanisms in that both the relying party and
the authority with respect to revocation informa-
tion (i.e., the CA or some designated alternative)
must be online whenever a question regarding
the revocation status of a given certificate needs
to be resolved. With periodic publication mecha-
nisms, revocation information can be cached in
the relying party’s local environment or stored in
some central repository, such as an LDAP direc-
tory. Thus, the relying party may work offline (to-
tally disconnected from the network) at the time
of certificate validation, consulting only its local
cache of revocation information, or may go online
only for the purpose of downloading the latest re-
vocation information from the central repository.
As well, the authority may work offline when cre-
ating the latest revocation list and go online peri-
odically only for the purpose of posting this list to
a public location.

An online query mechanism is a protocol
exchange—a pair of messages—between a rely-
ing party and an authority. The request message
must indicate the certificate in question, along
with any additional information that might be rel-
evant. The response message answers the ques-
tion (if it can be answered) and may provide sup-
plementary data that could be of use to the relying
party. In the simplest case, the requester asks the
most basic question possible for this type of pro-
tocol: “has this certificate been revoked?” In other
words, “if I was using a CRL instead of this online
query mechanism, would this certificate appear
on the CRL?” The response is essentially a yes or
no answer, although an answer of “I don’t know”
(i.e., “unable to determine status”) may also be re-
turned. The IETF PKIX Online Certificate Status
Protocol (OCSP) was created for exactly this pur-
pose and has been successfully deployed in a num-
ber of environments worldwide.

However, the online protocol messages can be
richer than the exchange described above. For ex-
ample, the requester may ask not for a simple revo-
cation status, but for a complete validation check
on the certificate (i.e., is the entire certificate path
“good,” according to the rules of a well-defined path
validation procedure). This is known as a Dele-
gated Path Validation (DPV) exchange. Alterna-
tively, the requester may ask the authority to find
a complete path from the certificate in question
to a specified trust anchor, but not necessarily to
do the validation—the requester may prefer to do
this part itself. This is known as a Delegated Path
Discovery (DPD) exchange. The requirements for
a general DPV/DPD exchange have been pub-
lished by the IETF PKIX Working Group and a
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general, flexible protocol to satisfy these require-
ments (the Simple Certificate Validation Protocol,
SCVP) is currently undergoing development in
that group.

OTHER REVOCATION OPTIONS: It is important
to note that there are circumstances in which the
direct dissemination of revocation information to
the relying party is unnecessary. For example,
when certificates are “short-lived”—that is, have a
validity period that is shorter than the associated
need to revoke them—then revocation information
need not be examined by relying parties. In such
environments, certificates may have a lifetime of
a few minutes or a few hours and the danger of a
certificate needing to be revoked before it will nat-
urally expire is considered to be minimal. Thus,
revocation information need not be published at
all.

Another example environment that can func-
tion without published revocation information is
one in which relying parties use only brokered
transactions. Many financial institutions operate
in this way: online transactions are always bro-
kered through the consumer’s bank (the bank that
issued the consumer’s certificate). The bank main-
tains revocation information along with all the
other data that pertains to its clients (account
numbers, credit rating, and so on). When a trans-
action occurs, the merchant must always go to
its bank to have the financial transaction autho-
rized; this authorization process includes verifica-
tion that the consumer’s certificate had not been
revoked, which is achieved through direct inter-
action between the merchant’s bank and the con-
sumer’s bank. Thus, the merchant itself deals only
with its own bank (and not with the consumer’s
bank) and never sees any explicit revocation infor-
mation with respect to the consumer’s certificate.

FURTHER READING: A survey of the various re-
vocation techniques can be found in Chapter 8 of
[1]. See also [2] for a good discussion of the many
options in this area. The X.509 Standard [3] con-
tains detailed specifications for most of the pe-
riodic publication mechanisms. For online query
mechanisms, see the OCSP [4] and DPV/DPD Re-
quirements [5] specifications.

Carlisle Adams
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CERTIFICATION
AUTHORITY

A Certification Authority1 (CA) in a Public-Key
Infrastructure (PKI) is an authority that is trusted
by some segment of a population of entities—or
perhaps by the entire population—to validly per-
form the task of binding public key pairs to iden-
tities. The CA certifies a key pair/identity binding
by digitally signing (see digital signature scheme)
a data structure that contains some representa-
tion of the identity of an entity (see identification)
and the entity’s corresponding public key. This
data structure is called a “public-key certificate”
(or simply a certificate, when this terminology will
not be confused with other types of certificates,
such as attribute certificates).

Although the primary and definitional duty of
a CA is to certify key pair/identity bindings, it
may also perform some other functions, depend-
ing upon the policies and procedures of the PKI in
which it operates. For example, the CA may gen-
erate key pairs for entities upon request; it may
store the key history for each entity in order to
provide a key backup and recovery service; it may
create identities for its subject community; and it
may publicly disseminate revocation information
for the certificates that it has issued. Alternatively,
some or all these functions may be performed by
other network entities that may or may not be
under the explicit control of the CA, such as key
generation servers, backup and recovery services,
naming authorities, and on-line certificate status
protocols (OCSP) responders.

1 A CA is often called a “Certificate Authority” in the popular
press and other literature, but this term is generally discour-
aged by PKI experts and practitioners because it is somewhat
misleading: a CA is not an authority on certificates as much as
it is an authority on the process and act of certification. Thus,
the term “Certification Authority” is preferred.
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The roles and duties of a CA have been spec-
ified in a number of contexts [1–5], along with
protocols for various entities to communicate with
the CA. As one example, the IETF PKIX Working
Group (see security standards activities) has sev-
eral standards-track specifications that are rele-
vant to a CA operating in the context of an Internet
PKI; see http://www.ietf.org/html.charters/pkix-
charter.html for details.
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CERTIFIED MAIL

Certified mail is the fair exchange of secret data
for a receipt. It is the most mature instance of fair
exchange that has been standardized in [4]: the
players in a certified mail system are at least one
sender Sand one receiver R. Depending on the pro-
tocols used and the service provided, the protocol
may involve one or more trusted third parties
(TTPs) T. If reliable time stamping is desired, ad-
ditional time-stamping authorities TS may be in-
volved, too. For evaluating the evidence produced,
a verifier V can be invoked after completion of
the protocol. Sending a certified mail includes sev-
eral actions [4]. Each of these actions may be dis-
putable, i.e., may later be disputed at a verifier,
such as a court (see Figure 1): a sender composes

sender:
S

TTP
T1

. . .
TTP
Tn

recipient:
R

origin transport transport receipt
submission delivery

Fig. 1. Framework for Certified Mail [4]: players and
their actions

Sender S TTP Recipient R

signR(Ek(m))

signS(Ek(m))

k

signT (k) signT (k)

Fig. 2. Sketch of the protocol proposed in [7] (E1 denotes
symmetric encryption)

a signed message (nonrepudiation of origin) and
sends it to the first TTP (nonrepudiation of sub-
mission). The first TTP may send, it to additional
TTPs (nonrepudiation of transport) and finally to
the recipient (nonrepudiation of delivery, which is
a special case of nonrepudiation of transport). The
recipient receives the message (nonrepudiation of
receipt).

Like fair exchange and contract signing proto-
cols, early research focused on two-party proto-
cols [3, 5] fairly generating nonrepudiation of re-
ceipt tokens in exchange of the message. Like
generic fair exchange, two-party protocols either
have non-negligible failure probability or do not
guarantee termination within a fixed time.

Early work on fair exchange with inline TTP
was done in [8]. Optimistic protocols have been
proposed in [1,2]. A later example of a protocol us-
ing an in-line TTP is the protocol proposed in [7].
The basic idea is that the parties first exchange
signatures under the encrypted message. Then,
the third party signs and distributes the key. The
signature on the encrypted message together with
the signatures on the key then forms the nonrepu-
diation of origin and receipt tokens. The protocol
is sketched in Figure 2.
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CHAFFING AND
WINNOWING

Chaffing and winnowing introduced by Ron Rivest
[3] is a technique that keeps the contents of trans-
mitted messages confidential against eavesdrop-
pers without using encryption. Chaffing and win-
nowing was meant as a liberal statement in the
debate about cryptographic policy in the 1990s as
to whether law enforcement should be given au-
thorized surreptitious access to the plaintext of
encrypted messages. The usual approach proposed
for such access was “key recovery,” where law en-
forcement has a “back door” that enables them to
recover the decryption key. Chaffing and winnow-
ing was meant to obsolete this approach of key
recovery because it reveals a technique of keeping
messages confidential without using any decryp-
tion keys.

Here is how chaffing and winnowing works. A
sender using the chaffing technique needs to agree
with the intended recipient on an authentication
mechanism, e.g., a message authentication code
(see MAC algorithms) such as HMAC, and needs
to establish an authentication key with the recip-
ient. In order to send a message, the sender takes
two steps:
Authentication: Breaks the message up into pac-

kets, numbers the packets consecutively, and au-
thenticates each packet with the authentication
key. The result is a sequence of “wheat” packets,
i.e., those making up the intended message.

Chaffing: Fabricates additional dummy packets
independent of the intended packets. Produces
invalid MACs for the dummy packets, for exam-
ple by choosing their MACs at random. These
are the “chaff” packets, i.e., those used to hide
the wheat packets in the stream of packets.
The sender sends all packets (wheat and chaff)

intermingled in any order to the recipient. The
recipient filters those packets containing a valid
MAC (this is called winnowing), sorts them by

packet number, and reassembles the message. An
eavesdropper instead could not distinguish valid
from invalid MACs because the required authen-
tication key is only known to the sender and the
recipient.

The problem of providing confidentiality by
chaffing and winnowing is based on the eavesdrop-
per’s difficulty of distinguishing chaff packets from
wheat packets. If the wheat packets each contain
an English sentence, while the chaff packets con-
tain random bits, then the eavesdropper will have
no difficulty in detecting the wheat packets. On the
other hand, if each wheat packet contains a single
bit, and there is a chaff packet with the same serial
number containing the complementary bit, then
the eavesdropper will have a very difficult (essen-
tially impossible) task. Being able to distinguish
wheat from chaff would require him to break the
MAC algorithm and/or know the secret authen-
tication key used to compute the MACs. With a
good MAC algorithm, the eavesdropper’s ability to
winnow is nonexistant, and the chaffing process
provides perfect confidentiality of the message
contents.

If the eavesdropper is as strong as some law en-
forcement agency that may monitor the main hubs
of the Internet and may even have the power to
force a sender to reveal the authentication key
used, then senders could use alternative wheat
messages instead of chaff. For an intended mes-
sage the sender composes an innocuous looking
cover message. The intended wheat message is
broken into packets using the authentication key
as described above. The cover wheat message is
also broken into packets using a second authen-
tication key that may or may not be known to
the recipient. In this way, the sender could use
several cover wheat messages for each intended
wheat message. If the sender is forced to reveal
the authentication key he used, he could reveal
the authentication key of one of the cover wheat
messages. Thus, he could deliberately “open” a
transmitted message in several ways. This con-
cept is similar to deniable encryption proposed by
Canetti et al. [1].

In order to reduce the apparent overhead in
transmission bandwidth, Rivest suggested that
the chaffing could be done by an Internet Ser-
vice Provider rather than by the sender himself.
The ISP could then multiplex several messages,
thus using the wheat packets of one message as
chaff packets of another message and vice versa.
He suggested other measures for long messages
such that the relative number of chaff packets
can be made quite small, and the extra bandwidth
required for transmitting chaff packets might be
insignificant in practice.
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Instead of message authentication codes,
senders could also use an undeniable signature
scheme, which produces signatures that can only
be verified by the intended recipients [2].

Gerrit Bleumer
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CHALLENGE–RESPONSE
IDENTIFICATION

In its simplest form, an identification protocol in-
volves the presentation or submission of some in-
formation (a “secret value”) from a claimant to
a verifier (see Identification). Challenge–response
identification is an extension in which the infor-
mation submitted by the claimant is the function
of both a secret value known to the claimant (some-
times called a “prover”), and a challenge value re-
ceived from the verifier (or “challenger”).

Such a challenge–response protocol proceeds as
follows. A verifier V generates and sends a chal-
lenge value c to the claimant C. Using his/her se-
cret value s and appropriate function f (), C com-
putes the response value v = f (c, s), and returns v
to V. V verifies the response value v, and if success-
ful, the claim is accepted. Choices for the challenge
value c, and additionally options for the function
f () and secret s are discussed below.

Challenge–response identification is an im-
provement over simpler identification because it
offers protection against replay attacks. This is
achieved by using a challenge value that is time-
varying. Referring to the above protocol, there are
three general types of challenge values that might
be used. The property of each is that the challenge
value is not repeatedly sent to multiple claimants.
Such a value is sometimes referred to as a nonce,
since it is a value that is “not used more than once.”

The challenge value could be a randomly gen-
erated value (see Random bit generation (hard-
ware)), in which case V would send a random value
c to C. Alternatively, the challenge value might be
a sequence number, in which case the verifier V
would maintain a sequence value corresponding
to each challenger. At each challenge, the stored
sequence number would be increased by (at least)
1 before sending to the claimant. Finally, the chal-
lenge value might be a function of the current time.
In this case, a challenge value need not be sent
from V to C, but could be sent by C, along with
the computed verifier. As long as the time cho-
sen was within an accepted threshold, V would
accept.

There are three general classes of functions
and secret values that might be used as part
of a challenge–response protocol. The first is
symmetric-key based in which the claimant C and
verifier V a priori share a secret key K. The func-
tion f() is a symmetric encryption function (see
Symmetric Cryptosystem), a hash function, or a
Message Authentication Code (see MAC algori-
thms). Both Kerberos (see Kerberos authentica-
tion protocol) and the Needham–Schroeder pro-
tocol are examples of symmetric-key based
challenge–response identification. In addition, the
protocols of ISO/IEC 9798-2 perform identification
using symmetric key techniques.

Alternatively, a public key based solution may
be used. In this case, the claimant C has the pri-
vate key in a public key cryptosystem (see Pub-
lic Key Cryptography). The verifier V possesses a
public key that allows validation of the public key
corresponding to C’s private key. In general, C uses
public key techniques (generally based on number-
theoretic security problems) to produce a value v,
using knowledge of his/her private key. For exam-
ple, V might encrypt a challenge value and send
the encrypted text. C would decrypt the encrypted
text and return the value (i.e., the recovered plain-
text) to V (note that in this case it would only
be secure to use a random challenge, and not a
sequence number or time-based value). Alterna-
tively, V might send a challenge value to C and ask
C to digitally sign and return the challenge (see
Digital Signature Schemes). The Schnorr identi-
fication protocol is another example of public key
based challenge–response identification.

Finally, a zero-knowledge protocol can be used
(see Zero-Knowledge). In this case, the challenger
demonstrates knowledge of his/her secret value
without revealing any information (in an infor-
mation theoretic sense—see “information theo-
retic security” in glossary) about this value. Such
protocols typically require a number of “rounds”
(each with its own challenge value) to be executed
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before a claimant may be successfully verified (see
Zero-Knowledge and Identification).

Mike Just
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CHAUM BLIND SIGNATURE
SCHEME

The Chaum Blind Signature Scheme [3,4] was the
first blind signature scheme proposed in the pub-
licly available literature. It was proposed by David
Chaum and is based on the RSA signature scheme
using the fact that RSA is an automorphism on
ZZ∗

n, the multiplicative group of units modulo an
RSA integer n = pq, where n is the public mod-
ulus and p, q are safe RSA prime numbers. The
tuple (n, e) is the public verifying key, where e is a
prime between 216 and φ(n) = (p− 1)(q − 1), and
the tuple (p, q, d) is the corresponding private key
of the signer, where d = e−1 mod φ(n) is the sign-
ing exponent. The signer computes signatures by
raising the hash value H(m) of a given message m
to the dth power modulo n, where H(·) is a pub-
licly known collision resistant hash function. A re-
cipient verifies a signature s for message m with
respect to the verifying key (n, e) by the following
equation: se = H(m) (mod n).

When a recipient wants to retrieve a blind sig-
nature for some message m′, he chooses a blinding
factor b ∈ ZZn and computes the auxiliary message
m = be H(m′) mod n. After passing m to the signer,
the signer computes the response s = md mod n
and sends it back to the recipient. The recipient
computes a signature s ′ for the intended message
m′ as follows: s ′ = sb−1 mod n. This signature s ′

is valid for m′ with respect to the signer’s public
verifying key y because

s ′e = (sb−1)e

= (mdb−1)e

= mdeb−e

= mb−e

= be H(m′)b−e

= H(m′) (mod n). (1)

(Note how the above-mentioned automorphism of
RSA is used in the third rewriting.) It is conjec-

tured that the Chaum Blind Signature Scheme is
secure against a one-more-forgery, although this
has not been proven under standard complex-
ity theoretic assumptions, such as the assump-
tion that the RSA verification function is one-way.
The fact that the Chaum Blind Signature Scheme
has resisted one-more-forgeries for more than
20 years led Bellare et al. [1] to isolate a nonstan-
dard complexity theoretic assumption about RSA
signatures that is sufficient to prove security of
the Chaum Blind Signature in the random oracle
model, i.e., by abstracting from the properties of
any hash function H(·) chosen. They came up with
a class of very strong complexity theoretic assump-
tions about RSA, which they called the one-more-
RSA-inversion assumptions (or problems).

The Chaum Blind Signature Scheme achieves
unconditional blindness [3] (see Blind Signature
Scheme). That is if a signer produces signatures
s1, . . . , sn for n ∈ IN messages m1, . . . , mn chosen
by a recipient, and the recipient later shows the
resulting n pairs (m′

1, s ′
1), . . ., (m′

n, s ′
n) in random

order to a verifier, then the collaborating signer
and verifier cannot decide with better probability
than pure guessing which message–signature pair
(mi, si) (1 ≤ i ≤ n) resulted in which message–
signature pair (m′

j, s ′
j) (1 ≤ j ≤ n).

Analogous to how Chaum leveraged the auto-
morphism underlying the RSA signature scheme
to construct a blind signature scheme, other dig-
ital signature schemes have been extended into
blind signature schemes as well: Chaum and
Pedersen [5] constructed blind Schnorr signa-
tures [12]. Camenisch et al. [2] constructed blind
Nyberg–Rueppel signatures [9] and blind signa-
tures for a variant of DSA [8]. Horster et al. [7]
constructed blind ElGamal digital signatures [6],
and Pointcheval and Stern [10, 11] constructed
blind versions of certain adaptations of Schnorr
and Guillou–Quisquater signatures.
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CHINESE REMAINDER
THEOREM

The Chinese remainder theorem (CRT) makes
it possible to reduce modular arithmetic calcula-
tions with large moduli to similar calculations for
each of the factors of the modulus. At the end, the
outcomes of the subcalculations need to be pasted
together to obtain the final answer. The big advan-
tage is immediate: almost all these calculations
involve much smaller numbers.

For instance, the multiplication 24 × 32
(mod 35) can be found from the same multiplica-
tion modulo 5 and modulo 7, since 5 × 7 = 35 and
these numbers have no factor in common. So, the
first step is to calculate:

24 × 32 ≡ 4 × 2 ≡ 8 ≡ 3 (mod 5),
24 × 32 ≡ 3 × 4 ≡ 12 ≡ 5 (mod 7).

The CRT, explained for this example, is based on
a unique correspondence (Figure 1) between the
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Fig. 1. The Chinese remainder theorem reduces a calculation modulo 35 to two calculations, one modulo 5 and the
other modulo 7
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integers 0, 1, . . . , 34 and the pairs (u, v) with 0 ≤
u < 5 and 0 ≤ v < 7. The mapping from i, 0 ≤ i <

35, to the pair (u, v) is given by the reduction of
i modulo 5 and modulo 7, so i = 24 is mapped
to (u, v) = (4, 3). The mapping from (u, v) back
to i is given by i ≡ 21 × u + 15 × v. The multi-
plier a ≡ 21 (mod 35) can be obtained from a ≡
(v−1 mod u) × v, which is the solution of the two
relations a ≡ 1 (mod u) and a ≡ 0 (mod v). The
multiplier b ≡ 15 (mod 35) can be determined
similarly. It follows that the answer of the mul-
tiplication above is given by 21 × 3 + 15 × 5 ≡
33 (mod 35).

The CRT finds applications in implementa-
tions of the RSA public-key encryption system,
where one has to work with very large moduli
that are the product of two prime numbers. Also
Pohlig–Hellmann’s method for taking discrete log-
arithms relies on the CRT (see discrete logarithm
problem).

The CRT can be generalized to more than
two factors and solves in general system of lin-
ear congruence relations of the form ai x ≡ bi
(mod mi), 1 ≤ i ≤ k, where the greatest common
divisor of ai and mi should divide bi for each
1 ≤ i ≤ k.

Henk van Tilborg
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CHOSEN CIPHERTEXT
ATTACK

Chosen ciphertext attack is a scenario in which
the attacker has the ability to choose ciphertexts
Ci and to view their corresponding decryptions—
plaintexts Pi . It is essentially the same scenario
as a chosen plaintext attack but applied to a de-
cryption function, instead of the encryption func-
tion. The attack is considered to be less practical in
real life situations than chosen plaintext attacks.
However, there is no direct correspondence be-
tween complexities of chosen plaintext and chosen
ciphertext attacks. A cipher may be vulnerable to
one attack but not to the other attack or the other
way around. Chosen ciphertext attack is a very
important scenario in public key cryptography,
where known plaintext and even chosen plain-
text scenarios are always available to the at-
tacker due to publicly known encryption key. For

example, the RSA public-key encryption system
is not secure against adaptive chosen ciphertext
attack [1].
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Reference

[1] Bleichenbacher, D. (1998). “Chosen ciphertext at-
tacks against protocols based on the RSA encryp-
tion standard PKCS#1.” Advances in Cryptology—
CRYPTO’98, Lecture Notes in Computer Science,
vol. 1462, ed. H. Krawczyk. Springer-Verlag, Berlin,
1–12.

CHOSEN PLAINTEXT
ATTACK

Chosen plaintext attack is a scenario in which
the attacker has the ability to choose plaintexts
Pi and to view their corresponding encryptions—
ciphertexts Ci . This attack is considered to be
less practical than the known plaintext attack,
but still a very dangerous attack. If the cipher is
vulnerable to a known plaintext attack, it is au-
tomatically vulnerable to a chosen plaintext at-
tack as well, but not necessarily the opposite. In
modern cryptography differential cryptanalysis is
a typical example of a chosen plaintext attack.
It is also a rare technique for which conver-
sion from chosen plaintext to known plaintext
is possible (due to its work with pairs of texts).
If a chosen plaintext differential attack uses m
pairs of texts for an n bit block cipher, then
it can be converted to a known-plaintext attack
which will require 2n/2

√
2m known plaintexts, due

to birthday paradox-like arguments. Furthermore
as shown in [1] the factor 2n/2 may be considerably
reduced if the known plaintexts are redundant (for
example for the case of ASCII encoded English
text to about 2(n−r )/2 where r is redundancy of the
text), which may even lead to a conversion of dif-
ferential chosen-plaintext attack into a differen-
tial ciphertext-only attack.
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CHOSEN PLAINTEXT AND
CHOSEN CIPHERTEXT
ATTACK

In this attack the attacker is allowed to combine
the chosen plaintext attack and chosen ciphertext
attack together and to issue chosen queries both
to the encryption and to the decryption functions.

Alex Biryukov

CIPHERTEXT-ONLY
ATTACK

The ciphertext-only attack scenario assumes
that the attacker has only passive capability
to listen to the encrypted communication. The
attacker thus only knows ciphertexts Ci, i =
1, . . . , N, but not the corresponding plaintexts.
He may however rely on certain redundancy as-
sumptions about the plaintexts, for example that
the plaintext is ASCII encoded English text. This
scenario is the weakest in terms of capabilities
of the attacker and thus it is the most practi-
cal in real life applications. In certain cases con-
version of a known plaintext attack [2] or even
chosen plaintext attack [1] into a ciphertext-only
attack is possible.

Alex Biryukov
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CLAW-FREE

A pair of functions f and g is said to be claw-free
or claw-resistant if it is difficult to find inputs x, y
to the functions such that

f (x) = g(y).

Such a pair of inputs is called a claw, describing
the two-pronged inverse.

The concept of claw-resistance was introduced
in the digital signature scheme of Goldwasser
et al. [3], which was based on claw-free trapdoor
permutations (see trapdoor one-way function and
substitutions and permutations). Damgård [1]
showed that claw-free permutations (without the
trapdoor) could be employed to construct collision-
resistant hash functions (see also collision
resistance).

Recently, Dodis and Reyzin have shown that the
claw-free property is essential to obtaining good
security proofs for certain signature schemes [2].

Burt Kaliski
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CLIP SCHEME

Clip is MasterCard’s instantiation of the Common
Electronic Purse Specifications (see CEPS). As de-
fined by CEPS standard, the physical infrastruc-
ture and logical methods such as smart cards, ter-
minals, and cryptographic mechanisms are based
upon the EMV standard with minor deviations.
The amount involved in a purchase is debited di-
rectly on the card, and hence an additional layer
of security is applied for the terminal to strongly
authenticate itself to the card.

Peter Landrock

CLOCK-CONTROLLED
GENERATOR

Let us consider a scheme that involves several reg-
isters and produces one output sequence. Based on
some clocking mechanism, the registers go from
one state to another, thereby producing an output
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bit. We can choose whether or not to synchronize
these registers. In the second case, the output of
the scheme will be more nonlinear than in the first
case.

We will consider here registers whose clock
is controlled by some events. The best studied
case is the one of Linear Feedback Shift Registers
(LFSR), but this concept could be applied also to
Nonlinear Feedback Shift Registers (NLFSR).

So, the main idea here is that we have, for ex-
ample, two LFSRs, say R1 and R2, and that the
output of R1 will determine the clocking of R2.
For example, if R1 outputs a 1, then clock R2
twice, and if R1 outputs a 0, then clock R2 three
times. The output of the scheme could be the one
of R2.

EXAMPLE

outputR2

clock
clock

R1

Some particular examples of such generators
have been studied. We will mention here the al-
ternating step generator, and the shrinking gener-
ator. We can also remark that a LFSR can man-
age its clocking by itself, since some of its internal
bits can be chosen to determine its clocking; an
example is the self-shrinking generator.

The alternating step generator consists of three
LFSRs, say R, R0, and R1. The role of R is to deter-
mine the clocking of both R0 and R1. If R outputs
a 0, then only R0 is clocked, and if R outputs a 1,
then only R1 is clocked. At each step, a LFSR that
is not clocked outputs the same bit as previously
(a 0 if there is no previous step). So, at each step
both R0 and R1 output one bit each, but only one
of them has been clocked. The output sequence of
the scheme is obtained by XORing those two bits.

R

R0

R1

clock

clock

0

clock

1
output

EXAMPLE. Let us suppose that R and R1 are of
length 2 and have period 3; the feedback rela-
tion for R is st+1 = st + st−1. For R1, let us con-
sider st+1 = st + st−1; R0 has length 3, and its feed-
back relation is st+1 = st + st−2. Then we have for

example (the first row corresponds to the initial-
ization; the internal states are of the form stst−1
or stst−1st−2):

R R0 R1

State Output State Output State Output Output

11 010 01
01 1 010 0 10 1 1
10 1 010 0 11 0 0
11 0 001 0 11 0 0
01 1 001 0 01 1 1
10 1 001 0 10 1 1
11 0 100 1 10 1 0
01 1 100 1 11 0 1
10 1 100 1 01 1 0

...
...

...
...

...
...

...

Some studies have been performed on the
properties of the output sequence (period, linear
complexity, etc.), according to the nature of the
sequences associated with R, R0, and R1. A
survey of techniques for attacking clock-controlled
generators is given in [3], and more recent results
are discussed in [1,2,4,5].

Caroline Fontaine
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CLOSEST VECTOR
PROBLEM

The Closest Vector Problem (CVP) is a computa-
tional problem on lattices closely related to SVP
(see Shortest Vector Problem). Given a lattice L
and a target point �x, CVP asks to find the lat-
tice point closest to the target. As for SVP, CVP
can be defined with respect to any norm, but the
Euclidean norm is the most common (see the entry
lattice for a definition). A more relaxed version of
the problem (used mostly in computational com-
plexity) only asks to compute the distance of the
target from the lattice, without actually finding
the closest lattice vector.

CVP has been studied in mathematics (in the
equivalent language of quadratic forms) since the
nineteenth century. One of the first references to
CVP (under the name “Nearest Vector Problem”)
in the computer science literature is [11], where
the problem is shown to be NP-hard to solve
exactly.

Many applications of the CVP only require find-
ing a lattice vector that is not too far from the
target, even if not necessarily the closest. A g-
approximation algorithm for CVP finds a lattice
vector within distance at most g times the dis-
tance of the optimal solution. The best known
polynomial-time algorithms to solve CVP due to
Babai [2] and Kannan [7] are based on lattice
reduction, and achieve approximation factors that
(in the worst case) are essentially exponential in
the dimension of the lattice. In practice, heuris-
tics approaches (e.g., the “embedding technique,”
see lattice reduction) seem to find relatively good
approximations to CVP in a reasonable amount
of time when the dimension of the lattice is suffi-
ciently small.

CVP is widely regarded, both in theory and in
practice, as a considerably harder problem than
SVP. CVP is known to be NP-hard to solve ap-
proximately within any constant factor or even
some slowly increasing subpolynomial function
(see polynomial time) of the dimension n [1, 3].
However, CVP is unlikely to be NP-hard to ap-
proximate within small polynomial factors g =
O(

√
n/ log n) [5]. Goldreich et al. [6] showed that

any algorithm to efficiently approximate CVP can
be used to efficiently approximate SVP within the
same approximation factor and with essentially
the same computational effort, formalizing the in-
tuition that CVP is not an easier (and is a possibly
harder) problem than SVP.

CVP is the basis of various cryptosystems (see
lattice based cryptography) where the decryption

process corresponds roughly to a CVP computa-
tion. These cryptosystems are based on the fact
that any lattice admits many different represen-
tations (e.g., it can be represented by different
bases), and some of them may have better geomet-
ric properties than others, so that they can be used
as a decryption trapdoor. However, there are lat-
tices [4, 8, 10] that admit no good representation,
i.e., solving CVP (even approximately) is NP-hard
no matter which basis (or other auxiliary informa-
tion) is given. Therefore, the CVP instances used
by lattice based cryptosystems (for which CVP can
be efficiently solved using the decryption key) are
conceivably easier than general CVP instances.

CVP has many applications in computer science,
besides cryptography, and finding a good CVP ap-
proximation algorithm with approximation fac-
tors that grow as a polynomial in the dimension
of the lattice is one of the major open problems
in the area. For further information about CVP
and other computational problems on lattices, the
reader is referred to the book [9].

Daniele Micciancio
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CODEBOOK ATTACK

A codebook attack is an example of a known
plaintext attack scenario in which the attacker is
given access to a set of plaintexts and their corre-
sponding encryptions (for a fixed key): (Pi, Ci), i =
1, . . . , N. These pairs constitute a codebook which
someone could use to listen to further communica-
tion and which could help him to partially decrypt
the future messages even without the knowledge
of the secret key. He could also use this knowledge
in a replay attack by replacing blocks in the com-
munication or by constructing meaningful mes-
sages from the blocks of the codebook. Codebook
attack may even be applied in a passive traffic
analysis scenario, i.e., as a ciphertext-only attack,
which would start with frequency analysis of the
received blocks and attempts to guess their mean-
ing. Ciphers with small block size are vulnera-
ble to the Codebook attack, especially if used in
the simplest Electronic Codebook mode of opera-
tion. Already with N = 2n/2 known pairs, where
n is the block size of the cipher, the attacker has
good chances to observe familiar blocks in the fu-
ture communications of size O(2n/2), due to the
birthday paradox. If communication is redundant,
the size of the codebook required may be even
smaller. Modern block ciphers use 128-bit block
size to make such attacks harder to mount. A
better way to combat such attacks is to use chain-
ing modes of operation like Cipher-Block Chain-
ing mode (which makes further blocks of cipher-
text dependent on all the previous blocks) together
with the authentication of the ciphertext.

Alex Biryukov

COLLISION ATTACK
A collision attack exploits repeating values that
occur when a random variable is chosen with re-
placement from a finite set S. By the birthday
paradox, repetitions will occur after approxi-
mately

√|S| attempts, where |S| denotes the size
of the set S. Many cryptographic attacks are based
on collisions.

The most obvious application of a collision at-
tack is to find collisions for a cryptographic hash
function. For a hash function with an n-bit result,
an efficient collision search based on the birthday
paradox requires approximately 2n/2 hash func-
tion evaluations [10]. For this application, one can
substantially reduce the memory requirements
(and also the memory accesses) by translating the
problem to the detection of a cycle in an iterated
mapping [7]. Van Oorschot and Wiener propose an
efficient parallel variant of this algorithm [9]. In
order to make a collision search infeasible for the
next 15–20 years, the hash result needs to be
180 bits or more. A collision attack can also play
a role to find (second) preimages for a hash func-
tion: if one has 2n/2 values to invert, one expects to
find at least one (second) preimage after 2n/2 hash
function evaluations.

An internal collision attack on a MAC algorithm
exploits collisions of the chaining variable of a
MAC algorithm. It allows for a MAC forgery. As
an example, a forgery attack for CBC-MAC and
variants based on an n-bit block cipher requires at
most 2n/2 known texts and a single chosen text [6].
For some MAC algorithms, such as MAA, internal
collisions can lead to a key recovery attack [5].

A block cipher should be a one-way function
from key to ciphertext (for a fixed plaintext). If the
same plaintext is encrypted using 2k/2 keys (where
k is the key length in bits), one expects to recover
one of the keys after 2k/2 trial encryptions [1]. This
attack can be precluded by the mode of operation;
however, collision attacks also apply to these
modes. In the Cipher Block Chaining (CBC) and
Cipher FeedBack (CFB) mode of an n-bit block
cipher, a repeated value of an n-bit ciphertext
string leaks information on the plaintext [3,4] (see
block ciphers for more details).

For synchronous stream ciphers that have a
next state function that is a random function
(rather than a permutation), one expects that the
key stream will repeat after 2m/2 output symbols,
with m being the size of the internal memory in
bits. Such a repetition leaks the sum of the corre-
sponding plaintexts, which is typically sufficient
to recover them. This attack applies to a variant
of the Output FeedBack (OFB) mode of a block
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cipher where less than n output bits are fed back
to the input. If exactly n bits are fed back as spec-
ified by the OFB mode, one expects a repetition
after the selection of 2n/2 initial values.

The best generic algorithm to solve the discrete
logarithm problem in any group G requires time
O(

√
p) where p is the largest prime dividing

the order of G [8]; this attack is based on colli-
sions.

In many cryptographic protocols, e.g., entity
authentication protocols, the verifier submits a
random challenge to the prover. If an n-bit chal-
lenge is chosen uniformly at random, one expects
to find a repeating challenge after 2n/2 runs of the
protocol. A repeating challenge leads to a break of
the protocol.

A meet-in-the-middle attack is a specific vari-
ant of a collision attack which allows to cryptana-
lyze some hash functions and multiple encryption
modes (see block ciphers).

A more sophisticated way to exploit collisions
to recover a block cipher key or to find (second)
preimages is a time-memory trade-off [2].

B. Preneel
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COLLISION RESISTANCE

Collision resistance is the property of a hash func-
tion that it is computationally infeasible to find
two colliding inputs. This property is related to
second preimage resistance, which is also known
as weak collision resistance. A minimal require-
ment for a hash function to be collision resistant
is that the length of its result should be 160 bits
(in 2004). A hash function is said to be a colli-
sion resistant hash function (CRHF) if it is a col-
lision resistant one-way hash function (OWHF)
(see hash function). The exact relation between
collision resistance, second preimage resistance,
and preimage resistance is rather subtle, and de-
pends on the formalization of the definition: it
is shown in [8] that under certain conditions,
collision resistance implies second preimage res-
istance and preimage resistance.

In order to formalize the definition of a collision
resistant hash function (see [1]), one needs to in-
troduce a class of functions indexed by a public
parameter, which is called a key. Indeed, one can-
not require that there does not exist an adversary
who can produce a collision for a fixed hash func-
tion, since any simple adversary who stores two
short colliding inputs for a function would be able
to output a collision efficiently. Introducing a class
of functions solves this problem, since an adver-
sary cannot store a collision for each value of the
key (provided that the key space is not too small).

For a hash function with an n-bit result, an ef-
ficient collision research based on the birthday
paradox requires approximately 2n/2 hash func-
tion evaluations. One can substantially reduce the
memory requirements (and also the memory ac-
cesses) by translating the problem to the detec-
tion of a cycle in an iterated mapping. This was
first proposed by Quisquater and Delescaille [6].
Van Oorschot and Wiener propose an efficient par-
allel variant of this algorithm [10]; with a US$ 10
million machine, collisions for MD5 (with n = 128)
can be found in 21 days in 1994, which corresponds
to 5 hours in 2004. In order to make a collision
search infeasible for the next 15–20 years, the
hash result needs to be 180 bits or more.
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Second preimage resistance and collision resis-
tance of hash functions have been introduced by
Rabin in [7]; the attack based on the birthday
paradox was first pointed out by Yuval [11]. Fur-
ther work on collision resistance can be found in
[1–5, 9, 12]. For an extensive discussion of the re-
lation between collision resistance and (second)
preimage resistance, the reader is referred to
Rogaway and Shrimpton [8].

B. Preneel
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COMBINATION
GENERATOR

A combination generator is a running-key genera-
tor for stream cipher applications. It is composed
of several linear feedback shift registers (LFSRs)
whose outputs are combined by a Boolean function
to produce the keystream. Then, the output se-
quence (st )t≥0 of a combination generator com-
posed of n LFSRs is given by

st = f(u1
t , u2

t , . . . , un
t ), ∀t ≥ 0,

where (ui
t )t≥0 denotes the sequence generated by

the ith constituent LFSR and f is a function of
n variables. In the case of a combination genera-
tor composed of n LFSRs over Fq , the combining
function is a function from Fn

q into Fq .

...

ut
n

ut
2

ut
1

f st

The combining function f should obviously be
balanced, i.e., its output should be uniformly dis-
tributed. The constituent LFSRs should be cho-
sen to have primitive feedback polynomials (see
primitive element) for ensuring good statistical
properties of their output sequences (see Linear
Feedback Shift Register for more details).

The characteristics of the constituent LFSRs
and the combining function are usually publicly
known. The secret parameters are the initial
states of the LFSRs, which are derived from the se-
cret key of the cipher by a key-loading algorithm.
Therefore, most attacks on combination genera-
tors consist in recovering the initial states of all
LFSRs from the knowledge of some digits of the
sequence produced by the generator (in a known
plaintext attack), or of some digits of the cipher-
text sequence (in a ciphertext only attack). When
the feedback polynomials of the LFSR and the
combining function are not known, the reconstruc-
tion attack presented in [2] enables to recover the
complete description of the generator from the
knowledge of a large segment of the ciphertext
sequence.

STATISTICAL PROPERTIES OF THE OUTPUT
SEQUENCE: The sequence produced by a combi-
nation generator is a linear recurring sequence.
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Its period and its linear complexity can be de-
rived from those of the sequences generated by
the constituent LFSRs and from the algebraic nor-
mal form of the combining function (see Boolean
function). Indeed, if we consider two linear recur-
ring sequences u and v over Fq with linear com-
plexities �(u) and �(v), we have the following
properties:
� The linear complexity of the sequence u + v =

(ut + vt )t≥0 satisfies

�(u + v) ≤ �(u) + �(v),

with equality if and only if the minimal poly-
nomials of u and v are relatively prime. More-
over, in the case of equality, the period of u + v
is the least common multiple of the periods of u
and v.

� The linear complexity of the sequence uv =
(utvt )t≥0 satisfies

�(uv) ≤ �(u)�(v),

where equality holds if the minimal polynomials
of u and v are primitive and if �(u) and �(v)
are distinct and greater than 2. Other general
sufficient conditions for �(uv) = �(u)�(v) can
be found in [3–5].

Thus, the keystream sequence produced by a com-
bination generator composed of n binary LFSRs
with primitive feedback polynomials which are
combined by a Boolean function f satisfies the fol-
lowing property proven in [5]. If all LFSR lengths
L1, . . . , Ln are distinct and greater than 2 (and if
all LFSR initializations differ from the all-zero
state), the linear complexity of the output se-
quence s is equal to

f (L1, L2, . . . , Ln),

where the algebraic normal form of f is evalu-
ated over integers. For instance, if four LFSRs of
lengths L1, . . . , L4 satisfying the previous condi-
tions are combined by the Boolean function x1x2 +
x2x3 + x4, the linear complexity of the resulting se-
quence is L1L2 + L2L3 + L4. Similar results con-
cerning the combination of LFSRs over Fq can be
found in [5] and [1]. A high linear complexity is a
desirable property for a keystream sequence since
it ensures that the Berlekamp–Massey algorithm
becomes computationally infeasible. Thus, the
combining function f should have a high algebraic
degree (the algebraic degree of a Boolean func-
tion is the highest number of terms occurring in a
monomial of its algebraic normal form).

KNOWN ATTACKS AND RELATED DESIGN CRI-
TERIA: Combination generators are vulnerable
to the correlation attack and its variants called
fast correlation attacks. In order to make these

attacks infeasible, the LFSR feedback polynomi-
als should not be sparse. The combining func-
tion should have a high correlation-immunity or-
der, also called resiliency order when the involved
function is balanced (see correlation-immune and
resilient Boolean function). But, there exists a
trade-off between the correlation-immunity order
and the algebraic degree of a Boolean function.
Most notably, the correlation-immunity of a bal-
anced Boolean function of n variables cannot ex-
ceed n − 1 − deg( f ), when the algebraic degree of
f, deg( f ), is greater than 1. Moreover, the complex-
ity of correlation attacks and of fast correlation
attacks also increases with the nonlinearity of
the combining function (see correlation attack).
The trade-offs between high algebraic degree, high
correlation-immunity order, and high nonlinear-
ity can be circumvented by replacing the com-
bining function by a finite state automaton with
memory. Examples of such combination genera-
tors with memory are the summation generator
and the stream cipher E0 used in Bluetooth.

Anne Canteaut
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COMMITMENT

COMMITMENT: A commitment scheme is a two-
phase cryptographic protocol between two parties,
a sender and a receiver, satisfying the following
constraints. At the end of the Commit phase the
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I owe you
$100.

Bob

Fig. 1. Committing with an envelope

sender is committed to a specific value (often a
single bit) that he cannot change later on (Com-
mitments are binding) and the receiver should
have no information about the committed value,
other than what he already knew before the pro-
tocol (Commitments are concealing). In the Un-
veil phase, the sender sends extra information
to the receiver that allows him to determine the
value that was concealed by the commitment.
Bit commitments are important components of
zero-knowledge protocols [4, 16], and other more
general two-party cryptographic protocols [19].

A natural intuitive implementation of a com-
mitment is performed using an envelope (see
Figure 1). Some information written on a piece of
paper may be committed to by sealing it inside
an envelope. The value inside the sealed envelope
cannot be guessed (envelopes are concealing) with-
out modifying the envelope (opening it) nor the
content can be modified (envelopes are binding).

I owe you
$100.

Bob

Fig. 2. Unveiling from an envelope

Unveiling the content of the envelope is
achieved by opening it and extracting the piece
of paper inside (see Figure 2).

The terminology of commitments, influenced by
the legal vocabulary, first appeared in the contract
signing protocols of Even [14], although it seems
fair to attribute the concept to Blum [3] who im-
plicitly uses it for coin flipping around the same
time. In his Crypto 81 paper, Even refers to Blum’s
contribution saying: In the summer of 1980, in
a conversation, M. Blum suggested the use of
randomization for such protocols. So apparently
Blum introduced the idea of using random hard
problems to commit to something (coin, contract,
etc.). However, one can also argue that the earlier
work of Shamir et al. [26] on mental poker implic-
itly used commitments as well, since in order to
generate a fair deal of cards, Alice encrypts the
card names under her own encryption key, which
is the basic idea for implementing commitments.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

Commitment 85

Under such computational assumptions, com-
mitments come in two dual flavors: binding
but computationally concealing commitments and
concealing but computationally binding commit-
ments.

Commitments of the first type may be achieved
from any one-way function [18, 24] while those of
the second type may be achieved from any one-
way permutation (or at least regular one-way func-
tion) [25] or any collision-free hash function [17]
(see also collision resistance and hash function).
It is still an open problem to achieve commit-
ments of the second type from one-way functions
only.

A simple example of a bit commitment of the
first type is obtained using the Goldwasser–Micali
probabilistic encryption scheme with one’s own
pair of public keys (n, q) such that n is an RSA
modulus (see RSA public key encryption) and q
a random quadratic nonresidue modulo n with
Jacobi symbol +1 (see also quadratic residue). Un-
veiling is achieved by providing a square root
of each quadratic residue and of quadratic non-
residue multiplied by q. A similar example of a bit
commitment of the second type is constructed from
someone else’s pair of public keys (n, r ) such that
n is an RSA modulus and r a random quadratic
residue modulo n. A zero bit is committed using a
random quadratic residue mod n while a one bit is
committed using a random quadratic residue mul-
tiplied by r modulo n. Unveiling is achieved by pro-
viding a square root of quadratic residues commit-
ting to a zero and of quadratic residues multiplied
by r used to commit to a one.

Unconditionally binding and concealing com-
mitments can also be obtained under the assump-
tion of the existence of a binary symmetric channel
[10] and under the assumption that the receiver
owns a bounded amount of memory [6]. In multi-
party scenarios [2, 8, 16], commitments are usu-
ally achieved through Verifiable Secret Sharing
Schemes [9]. However, the two-prover case [1] does
not require the verifiable property because the
provers are physically isolated from each other
during the life span of the commitments.

In a quantum computation model (see quantum
cryptography) it was first believed that commit-
ment schemes could be implemented with uncon-
ditional security for both parties [5] but it was
later demonstrated that if the sender is equipped
with a quantum computer, then any uncondition-
ally concealing commitment cannot be binding
[22,23].

Commitments exist with various extra prop-
erties: chameleon/trapdoor commitments [1, 15],
commitments with equality (attributed to Bennett
and Rudich in [11, 20]), nonmalleable commit-

ments [13] (with respect to unveiling [12]),
mutually independent commitments [21], and uni-
versally composable commitments [7].

Claude Crépeau
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COMMON CRITERIA

The Common Criteria (CC) is meant to be used as
the basis for evaluation of security properties of
IT products and systems. The objective desired is
that by establishing a common base for criteria,
the evaluation results of an IT product will be of
more value to a wider audience.

The goal is for Common Criteria to permit com-
parability of products based on the results of inde-
pendent security evaluations for various products
evaluated by separate organizations in different
countries. The vision is that by providing a com-
mon set of requirements for the security functions
of IT products, and a common set of assurance
measurements applied to them that the evalua-
tion process will establish a level of confidence in
the knowledge and trust of the evaluated prod-
ucts. The evaluation results may help consumers
to determine whether an IT product or system
is appropriate for their intended application and
whether the security risks implicit in its use are
acceptable.

Common Criteria is not a security specification
that prescribes specific or necessary security func-
tionality or assurance. Therefore, it is not intended
to verify the quality or security of cryptographic
implementations. In general, products that re-
quire cryptography are often required to attain
a FIPS 140-2 validation for their cryptographic
functionality before the common criteria evalua-
tion can be completed. There are security products
that are very important to security but may not in-
corporate cryptography as a part of their function-
ality. Examples include operating systems, fire-
walls, and IDS systems. Common Criteria is a
methodology to gain assurance that a product is
actually designed and subsequently performs ac-
cording to the claims in the product’s “Security
Target” document. The level of assurance (EAL)
can be specified to one of seven levels described
later.

The Common Criteria specification has been
published as International Standard ISO/IEC
15408:1999. It is sometimes also published in
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formats specific to a given country that facilities
use in their individual test scheme. The content
and requirements are intended to be identical.

Seven governmental organizations, which are
collectively called “the Common Criteria Project
Sponsoring Organizations,” were formed to de-
velop the standard and program. The countries
and organizations are:
� Canada: Communications Security Establish-

ment
� France: Service Central de la Scurit des

Systmes dInformation
� Germany: Bundesamt fr Sicherheit in der

Informationstechnik
� Netherlands: Netherlands National Commu-

nications Security Agency
� United Kingdom: Communications-Electro-

nics Security Group
� United States: National Institute of Standards

and Technology
� United States: National Security Agency
The Common Criteria Project Sponsoring Orga-
nizations approved the licensing and use of CC
v2.1 to be the basis of ISO 15408. Because of its
international basis, certifications under Common
Criteria are under a “Mutual Recognition Agree-
ment.” This is an agreement that certificates is-
sued by organizations under a specific scheme will
be accepted in other countries as if they were eval-
uated under their own schemes. The list of coun-
tries that have signed up to the mutual recognition
have grown beyond just the original sponsoring or-
ganizations.

Common Criteria incorporates a feature called
a Protection Profile (PP). This is a document that
specifies an implementation-independent set of se-
curity requirements for a category of products (i.e.,
Traffic Filters or smart cards) that meet the needs
of specific consumer groups, communities of inter-
est, or applications. Protection Profiles are consid-
ered a product in themselves, and are evaluated
and tested for compliance to Common Criteria,
just as a functional product would. Before a prod-
uct can be validated using common criteria to a
given protection profile (or a combination of them),
the Protection Profiles have to be evaluated and is-
sued certificates of compliance. Instead of the Se-
curity Target (a required document) referring to
a protection profile for a set of security function-
ality and assurance criteria, it is acceptable for
the product Security Target to independently state
the security functionality and assurance level to
which the product will be evaluated. The limita-
tion is that this restricts the ability of product
consumers or users to readily compare products
of similar functionality.

EAL1. The objective for evaluation assurance level
1 (EAL1) is described as “functionally tested” is
to confirm that the product functions in a man-
ner consistent with its documentation, and that
it provides useful protection against identified
threats.

EAL1 is applicable where some confidence in
correct operation is required, but the threats to
security are not viewed as serious. The evalua-
tion will be of value where independent assur-
ance is required to support the contention that
due care has been exercised with respect to the
protection of personal or similar information.

EAL1 provides an evaluation of the product
as made available to the customer, including in-
dependent testing against a specification, and
an examination of the guidance documentation
provided. It is intended that an EAL1 evalua-
tion could be successfully conducted without as-
sistance from the developer of the product, and
for minimal cost and schedule impact.

EAL2. The objective for evaluation assurance
level 2 (EAL2) is described as “structurally
tested.”

EAL2 requires the cooperation of the devel-
oper in terms of the delivery of design infor-
mation and test results, but should not demand
more effort on the part of the developer than is
consistent with good commercial practice, and
therefore, should not require a substantially in-
creased investment of cost or time.

EAL2 is applicable in those circumstances
where developers or users require a low to mod-
erate level of independently assured security
but does not require the submission of a com-
plete development record by the vendor. Such a
situation may arise when securing legacy sys-
tems, or where access to the developer may be
limited.

EAL3. The objectives for evaluation assurance
level 3 (EAL3) are described as “methodically
tested and checked.”

EAL3 permits a conscientious developer to
gain maximum assurance from positive secu-
rity engineering at the design stage without
substantial alteration of existing sound devel-
opment practices.

EAL3 is applicable in those circumstances
where developers or users require a moderate
level of independently assured security, and re-
quire a thorough investigation of the product
and its development without substantial re-
engineering.

EAL4. The objectives for evaluation assurance
level 4 (EAL4) are described as “methodically
designed, tested, and reviewed.”
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EAL4 permits a developer to gain maximum
assurance from positive security engineering
based on good commercial development prac-
tices, which, though rigorous, do not require sub-
stantial specialist knowledge, skills, and other
resources.

EAL4 is therefore applicable in those circum-
stances where developers or users require a
moderate to high level of independently assured
security in conventional commodity products
and are prepared to incur additional security-
specific engineering costs.

EAL5. The objectives for evaluation assurance
level 5 (EAL5) are described as “semiformally
designed and tested.”

EAL5 permits a developer to gain maximum
assurance from security engineering based upon
rigorous commercial development practices sup-
ported by moderate application of specialist se-
curity engineering techniques. Such a product
will probably be designed and developed with
the intent of achieving EAL5 assurance. It is
likely that the additional costs attributable to
the EAL5 requirements, relative to rigorous de-
velopment without the application of specialized
techniques, will not be large.

EAL5 is therefore applicable in those circum-
stances where developers or users require a
high level of independently assured security in
a planned development and require a rigorous
development approach without incurring unrea-
sonable costs attributable to specialist security
engineering techniques.

EAL6. The objectives for evaluation assurance
level 6 (EAL6) are described as “semiformally
verified design and tested.”

EAL6 permits developers to gain high assur-
ance from application of security engineering
techniques to a rigorous development environ-
ment in order to produce a premium product for
protecting high value assets against significant
risks.

EAL6 is therefore applicable to the develop-
ment of security product for application in high-
risk situations where the value of the protected
assets justifies the additional costs.

EAL7. The objectives of evaluation assurance level
7 (EAL7) are described as “formally verified de-
sign and tested.”

EAL7 is applicable to the development of secu-
rity products for application in extremely high-
risk situations and/or where the high value of
the assets justifies the higher costs. Practical
application of EAL7 is currently limited to prod-
ucts with tightly focused security functionality
that is amenable to extensive formal analysis.

Common Criteria is documented in a family of
three interrelated documents:
1. CC Part 1: Introduction and general model
2. CC Part 2: Security functional requirements
3. CC Part 3: Security assurance requirements.
The managed international homepage of the Com-
mon Criteria is available at www.commoncriteria
.org. The homepage for US based vendors and
customers is managed by NIST at http://csrc.nist
.gov/cc.

Part 1, introduction and general model, is the
introduction to the CC. It defines general con-
cepts and principles of IT security evaluation and
presents a general model of evaluation. Part 1 also
presents constructs for expressing IT security ob-
jectives, for selecting and defining IT security re-
quirements, and for writing high-level specifica-
tions for products and systems. In addition, the
usefulness of each part of the CC is described in
terms of each of the target audiences.

Part 2, security functional requirements, estab-
lishes a set of functional components as a standard
way of expressing the functional requirements for
Targets of Evaluation. Part 2 catalogs the set of
functional components, families, and classes.

Part 3, security assurance requirements, estab-
lishes a set of assurance components as a standard
way of expressing the assurance requirements for
Targets of Evaluation. Part 3 catalogs the set of
assurance components, families, and classes. Part
3 also defines evaluation criteria for Protection
Profiles and Security Targets and presents eval-
uation assurance levels that define the predefined
CC scale for rating assurance for Targets of Eval-
uation, which is called the Evaluation Assurance
Levels.

Each country implements its own scheme of
how it will implement the Common Evaluation
Methodology for Information Technology Security.

Tom Caddy

COMMUNICATION
CHANNEL ANONYMITY

Communication channel anonymity or relation-
ship anonymity [4] is achieved in a messaging sys-
tem if an eavesdropper who picks up messages
from the communication line of a sender and the
communication line of a recipient cannot tell with
better probability than pure guess whether the
sent message is the same as the received message.
During the attack, the eavesdropper may also lis-
ten on all communication lines of the network, and
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he may also send and receive his own messages.
It is clear that all messages in such a network
must be encrypted to the same length in order
to keep the attacker from distinguishing different
messages by their content or length.

Communication channel anonymity implies ei-
ther sender anonymity or recipient anonymity [4].

Communication channel anonymity can be
achieved against computationally restricted
eavesdroppers by MIX networks [1] and against
computationally unrestricted eavesdroppers by
DC networks [2,3].

Note that communication channel anonymity
is weaker than communication link unobservabil-
ity, where the attacker cannot even determine
whether or not any message is exchanged between
any particular pair of participants at any point of
time. Communication link unobservability can be
achieved with MIX networks and DC networks by
adding dummy traffic.

Gerrit Bleumer
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COMPROMISING
EMANATIONS

Computer and communications devices emit nu-
merous forms of energy. Many of these emissions
are produced as unintended side effects of nor-
mal operation. For example, where these emis-
sions take the form of radio waves, they can
often be observed interfering with nearby radio
receivers. Some of the unintentionally emitted en-
ergy carries information about processed data.
Under good conditions, a sophisticated and well-
equipped eavesdropper can intercept and analyze

such compromising emanations to steal informa-
tion. Even where emissions are intended, as is
the case with transmitters and displays, only a
small fraction of the overall energy and infor-
mation content emitted will ever reach the in-
tended recipient. Eavesdroppers can use special-
ized more sensitive receiving equipment to tap
into the rest and access confidential information,
often in unexpected ways, as some of the following
examples illustrate.

Much knowledge in this area is classified mili-
tary research. Some types of compromising ema-
nations that have been demonstrated in the open
literature include:
� Radio-frequency waves radiated into free space
� Radio-frequency waves conducted along cables
� Power-supply current fluctuations
� Vibrations, acoustic and ultrasonic emissions
� High-frequency optical signals.
They can be picked up passively using directional
antennas, microphones, high-frequency power-
line taps, telescopes, radio receivers, oscilloscopes,
and similar sensing and signal-processing equip-
ment. In some situations, eavesdroppers can ob-
tain additional information by actively directing
radio waves or light beams toward a device and
analyzing the reflected energy.

Some examples of compromising emanations
are:
� Electromagnetic impact printers can produce

low-frequency acoustic, magnetic, and power-
supply signals that are characteristic for each
printed character. In particular, this has been
demonstrated with some historic dot-matrix
and “golfball” printers. As a result, printed text
could be reconstructed with the help of power-
line taps, microphones, or radio antennas. The
signal sources are the magnetic actuators in
the printer and the electronic circuits that drive
them.

� Cathode-ray tube (CRT) displays are fed with
an analog video signal voltage, which they am-
plify by a factor of about 100 and apply it to a
control grid that modulates the electron beam.
This arrangement acts, together with the video
cable, as a parasitic transmission antenna. As
a result, CRT displays emit the video signal as
electromagnetic waves, particularly in the VHF
and UHF bands (30 MHz to 3 GHz). An AM ra-
dio receiver with a bandwidth comparable to the
pixel-clock frequency of the video signal can be
tuned to one of the harmonics of the emitted sig-
nal. The result is a high-pass filtered and recti-
fied approximation of the original video signal.
It lacks color information and each vertical edge
appears merely as a line. Figure 1 demonstrates
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Fig. 1. The top image shows a short test text displayed on a CRT monitor. In the bottom image, the compromising
emanation from this text was picked up with the help of an AM radio receiver (tuned at 450 MHz, 50 MHz
bandwidth) and a broadband UHF antenna. The output was then digitized, averaged over 256 frames to reduce
noise, and finally presented as a reconstructed pixel raster

that text characters remain quite readable after
this distortion. Where the display font and char-
acter spacing are predictable, automatic text
recognition is particularly practical. For older,
1980s, video displays, even modified TV sets,
with deflection frequencies adjusted to match
those of the eavesdropped device, could be used
to demonstrate the reconstruction of readable
text at a distance [7]. In modern computers,
pixel-clock frequencies exceed the bandwidth of
TV receivers by an order of magnitude. Eaves-
dropping attacks on these require special re-
ceivers with large bandwidth (50 MHz or more)
connected to a computer monitor or high-speed
signal-processing system [3].

� CRT displays also leak the video signal as a
high-frequency fluctuation of the emitted light.
On this channel, the video signal is distorted
by the afterglow of the screen phosphors and
by the shot noise that background light contri-
butes. It is possible to reconstruct readable
text from screen light even after diffuse reflec-
tion, for example from a user’s face or a wall.
This can be done from nearby buildings using
a telescope connected to a very fast photosen-
sor (photomultiplier tube). The resulting signal
needs to be digitally processed using periodic-
averaging and deconvolution techniques to be-
come readable. This attack is particularly feasi-
ble in dark environments, where light from the
target CRT contributes a significant fraction of
the overall illumination onto the observed sur-
face. Flat-panel displays that update all pixels
in a row simultaneously are immune from this
attack [2].

� Some flat-panel displays can be eavesdropped
via UHF radio, especially where a high-speed
digital serial connection is used between the
video controller and display. This is the case,
for example, in many laptops and with modern
graphics cards with a Digital Visual Interface

(DVI) connector. To a first approximation, the
signal picked up by an eavesdropping receiver
from a Gbit/s serial video interface cable indi-
cates the number of bit transitions in the data
words that represent each pixel color. For ex-
ample, text that is shown in foreground and
background colors encoded by the serial data
words 10101010 and 00000000, respectively,
will be particularly readable via radio emana-
tions [3].

� Data has been eavesdropped successfully from
shielded RS-232 cables several meters away
with simple AM shortwave radios [5]. Such
serial-interface links use unbalanced transmis-
sion. Where one end lacks an independent earth
connection, the cable forms the inductive part
of a resonant circuit that works in conjunction
with the capacitance between the device and
earth. Each edge in the data signal feeds into
this oscillator energy that is then emitted as a
decaying high-frequency radio wave.

� Line drivers for data cables have data-
dependent power consumption, which can af-
fect the supply voltage slightly. This in turn
can cause small variations in the frequency
of nearby oscillator circuits. As a result, the
electromagnetic waves generated by these os-
cillators broadcast frequency-modulated data,
which can be picked up with FM radios [5].

� Where several cables share the same conduit,
capacitive and inductive coupling occurs. This
can result in crosstalk from one cable to the
other, even where the cables run parallel for
just a few meters. With a suitable ampli-
fier, an external eavesdropper might discover
that the high-pass filtered version of a signal
from an internal data cable is readable, for
example, on a telephone line that leaves the
building.

� Devices with low-speed serial ports, such
as analog telephone modems with RS-232



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

Compromising emanations 91

interface, commonly feature light-emitting
diodes (LEDs) that are connected as status in-
dicators directly to data lines. These emit the
processed data optically, which can be picked up
remotely with a telescope and photo sensor [4].
Such optical compromising emanations are in-
visible to the human eye, which cannot perceive
flicker above about 50 Hz. Therefore, all opti-
cal data rates above 1 kbit/s appear as constant
light.

� The sound of a keystroke can identify which key
on a keyboard was used. Just as guitar strings
and drums sound very different depending on
where they are hit, the mix of harmonic fre-
quencies produced by a resonating circuit board
on which keys are mounted varies with the
location of the keystroke. Standard machine-
learning algorithms can be trained to distin-
guish, for a specific keyboard model, keys based
on spectrograms of acoustic keystroke record-
ings [1].

� Smart cards are used to protect secret keys
and intermediate results of cryptographic com-
putations from unauthorized access, especially
from the cardholder. Particular care is neces-
sary in their design with regard to compro-
mising emanations. Due to the small package,
eavesdropping sensors can be placed very close
to the microprocessor, to record, for example,
supply-current fluctuations or magnetic fields
that leak information about executed instruc-
tions and processed data. The restricted space
available in an only 0.8 mm thick plastic card
makes careful shielding and filtering difficult.
See also smartcard tamper resistance.

Video signals are a particularly dangerous type
of compromising emanation due to their periodic
nature. The refresh circuit in the video adapter
transmits the display content continuously, re-
peated 60–90 times per second. Even though the
leaked signal power measures typically only a few
nanowatts, eavesdroppers can use digital signal-
processing techniques to determine the exact rep-
etition frequency, record a large number of frames,
and average them to reduce noise from other ra-
dio sources. As frame and pixel frequencies differ
by typically six orders of magnitude, the averag-
ing process succeeds only if the frame rate has
been determined correctly within at least seven
digits precision. This is far more accurate than
the manufacturing tolerances of the crystal oscil-
lators used in graphics adapters. An eavesdropper
can therefore use periodic averaging to separate
the signals from several nearby video displays,
even if they use the same nominal refresh fre-
quency. Directional antennas are another tool for

separating images from several computers in a
building.

RF video-signal eavesdropping can be easily
demonstrated with suitable equipment. Even in a
noisy office environment and without directional
antennas, reception across several rooms (5–20
meters) requires only moderate effort. Larger
eavesdropping distances can be achieved in the
quieter radio spectrum of a rural area or with
the help of directional antennas. Eavesdropping
of nonperiodic compromising signals from modern
office equipment is usually only feasible where a
sensor or accessible conductor (crosstalk) can be
placed very close to the targeted device. Where an
eavesdropper can arrange for special software to
be installed on the targeted computer, this can be
used to deliberately modulate many other emis-
sion sources with selected and periodically re-
peated data for easier reception, including system
buses, transmission lines, and status indicators.

Compromising radio emanations are often
broadband impulse signals that can be received at
many different frequencies. Eavesdroppers tune
their receivers to a quiet part of the spectrum,
where the observed impulses can be detected with
the best signal-to-noise ratio. The selected receiver
bandwidth has to be small enough to suppress the
powerful signals from broadcast stations on neigh-
boring frequencies and large enough to keep the
width of detected impulses short enough for the
observed data rate.

Electromagnetic and acoustic compromising
emanations have been a concern to military orga-
nizations since the 1960s. Secret protection stan-
dards (TEMPEST ) have been developed. They de-
fine how equipment used to process critical secret
information must be shielded, tested, and main-
tained. Civilian radio-emission limits for comput-
ers, such as the CISPR 22 and FCC Class B regula-
tions, are only designed to help avoid interference
with radio broadcast services at distances more
than 10 meters. They do not forbid the emission of
compromising signals that could be picked up at
a quiet site by a determined receiver with direc-
tional antennas and careful signal processing sev-
eral hundred meters away. Protection standards
against compromising radio emanations therefore
have to set limits for the allowed emission power
about a million times (60 dB) lower than civil-
ian radio-interference regulations. Jamming is an
alternative form of eavesdropping protection, but
this is not preferred in military applications where
keeping the location of equipment secret is an ad-
ditional requirement.

Markus Kuhn
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COMPUTATIONAL
COMPLEXITY

Computational complexity theory is the study of
the minimal resources needed to solve compu-
tational problems. In particular, it aims to dis-
tinguish between those problems that possess
efficient algorithms (the “easy” problems) and
those that are inherently intractable (the “hard”
problems). Thus computational complexity pro-
vides a foundation for most of modern cryptog-
raphy, where the aim is to design cryptosystems
that are “easy to use” but “hard to break.” (See
security.)

RUNNING TIME: The most basic resource studied
in computational complexity is running time—the
number of basic “steps” taken by an algorithm.
(Other resources, such as space (i.e., memory us-
age), are also studied, but we will not discuss them
here.) To make this precise, one needs to fix a
model of computation (such as the Turing ma-
chine), but here we will informally think of it as the

number of “bit operations” when the input is given
as a string of 0’s and 1’s. Typically, the running
time is measured as a function of the input length.
For numerical problems, we assume the input is
represented in binary, so the length of an integer
N is roughly log2 N. For example, the elementary-
school method for adding two n-bit numbers has
running time proportional to n. (For each bit of
the output, we add the corresponding input bits
plus the carry.) More succinctly, we say that addi-
tion can be solved in time “order n,” denoted O(n)
(see O-notation). The elementary-school multipli-
cation algorithm, on the other hand, can be seen to
have running time O(n2). In these examples (and
in much of complexity theory), the running time
is measured in the worst case. That is, we mea-
sure the maximum running time over all inputs of
length n.

POLYNOMIAL TIME: Both the addition and multi-
plication algorithms are considered to be efficient,
because their running time grows only mildly with
the input length. More generally, polynomial time
(running time O(nc) for a constant c) is typically
adopted as the criterion of efficiency in computa-
tional complexity. The class of all computational
problems possessing polynomial-time algorithms
is denoted P.1 Thus ADDITION and MULTIPLICATION

are in P, and more generally we think of P as iden-
tifying the “easy” computational problems. Even
though not all polynomial-time algorithms are fast
in practice, this criterion has the advantage of ro-
bustness: the class P seems to be independent of
changes in computing technology. P is an exam-
ple of a complexity class—a class of computational
problems defined via some algorithmic constraint,
which in this case is “polynomial time.”

In contrast, algorithms that do not run in poly-
nomial time are considered infeasible. For ex-
ample, consider the trial division algorithms for
integer factoring or primality testing (see prime
number). For an n-bit number, trial division can
take time up to 2n/2, which is exponential time
rather than polynomial time in n. Thus, even
for moderate values of n (e.g., n = 200) trial di-
vision of n-bit numbers is completely infeasible
for present-day computers, whereas addition and
multiplication can be done in a fraction of a sec-
ond. Computational complexity, however, is not
concerned with the efficiency of a particular algo-
rithm (such as trial division), but rather whether a
problem has any efficient algorithm at all. Indeed,

1 Typically, P is defined as a class of decision problems (i.e.,
problems with a yes/no answer), but here we make no such
restriction.
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for primality testing, there are polynomial-
time algorithms known (see prime number), so
PRIMALITY is in P. For integer factoring, on the
other hand, the fastest known algorithm has run-
ning time greater than 2n1/3

, which is far from
polynomial. Indeed, it is believed that FACTORING

is not in P; the RSA and Rabin cryptosystems
(see RSA public-key encryption, RSA digital sig-
nature scheme, Rabin cryptosystem, Rabin signa-
ture scheme) rely on this conjecture. One of the
ultimate goals of computational complexity is to
rigorously prove such lower bounds, i.e., establish
theorems stating that there is no polynomial-time
algorithm for a given problem. (Unfortunately, to
date, such theorems have been elusive, so cryp-
tography continues to rest on conjectures, albeit
widely believed ones. More on this is given below.)

POLYNOMIAL SECURITY: Given the above associ-
ation of “polynomial time” with feasible computa-
tion, the general goal of cryptography becomes to
construct cryptographic protocols that have poly-
nomial efficiency (i.e., can be executed in poly-
nomial time) but super-polynomial security (i.e.,
cannot be broken in polynomial time). This guar-
antees that, for a sufficiently large setting of the
security parameter (which roughly corresponds to
the input length in complexity theory), “breaking”
the protocol takes much more time than using the
protocol. This is referred to as asymptotic security.

While polynomial time and asymptotic security
are very useful for the theoretical development of
the subject, more refined measures are needed to
evaluate real-life implementations. Specifically,
one needs to consider the complexity of using and
breaking the system for fixed values of the input
length, e.g., n = 1000, in terms of the actual time
(e.g., in seconds) taken on current technology (as
opposed to the “basic steps” taken on an abstract
model of computation). Efforts in this direction
are referred to as concrete security. Almost all
results in computational complexity and cryp-
tography, while usually stated asymptotically,
can be interpreted in concrete terms. However,
they are often not optimized for concrete security
(where even constant factors hidden in O-notation
are important).

Even with asymptotic security, it is some-
times preferable to demand that the growth of
the gap between the efficiency and security of
cryptographic protocols is faster than polynomial
growth. For example, instead of asking simply for
super-polynomial security, one may ask for expo-
nential security (i.e., cannot be broken in time 2nε

for some ε > 0). Based on the current best known
algorithms, it seems that FACTORING may have

exponential hardness and hence the cryptographic
protocols based on its hardness may have exponen-
tial security.2

COMPLEXITY-BASED CRYPTOGRAPHY: As de-
scribed above, a major aim of complexity theory
is to identify problems that cannot be solved in
polynomial time and a major aim of cryptography
is to construct protocols that cannot be broken in
polynomial time. These two goals are clearly well-
matched. However, since proving lower bounds (at
least for the kinds of problems arising in cryptog-
raphy) seems beyond the reach of current tech-
niques in complexity theory, an alternative ap-
proach is needed.

Present-day complexity-based cryptography
therefore takes a reductionist approach: it at-
tempts to relate the wide variety of complicated
and subtle computational problems arising in
cryptography (forging a signature, computing
partial information about an encrypted message,
etc.) to a few, simply stated assumptions about the
complexity of various computational problems.
For example, under the assumption that there is
no polynomial-time algorithm for FACTORING (that
succeeds on a significant fraction of composites
of the form n = pq), it has been demonstrated
(through a large body of research) that it is
possible to construct algorithms for almost all
cryptographic tasks of interest (e.g., asymmetric
cryptosystems, digital signature schemes, secure
multiparty computation, etc.). However, since the
assumption that FACTORING is not in P is only a
conjecture and could very well turn out to be false,
it is not desirable to have all of modern cryptog-
raphy to rest on this single assumption. Thus
another major goal of complexity-based cryptogra-
phy is to abstract the properties of computational
problems that enable us to build cryptographic
protocols from them. This way, even if one problem
turns out to be in P, any other problem satisfying
those properties can be used without changing
any of the theory. In other words, the aim is to
base cryptography on assumptions that are as
weak and general as possible.

Modern cryptography has had tremendous suc-
cess with this reductionist approach. Indeed, it
is now known how to base almost all basic cryp-
tographic tasks on a few simple and general
complexity assumptions (that do not rely on the

2 In cryptography, a slightly different definition of exponential
hardness is typically employed, with exponential security (com-
pare exponential time) only referring to protocols that cannot be
broken in time 2εn for some ε> 0. Accordingly, in cryptography,
FACTORING is typically considered to provide subexponential se-
curity (compare subexponential time).
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intractability of a single computational problem,
but may be realized by any of several candidate
problems). Among other things, the text below dis-
cusses the notion of a reduction from complex-
ity theory that is central to this reductionist ap-
proach, and the types of general assumptions, such
as the existence of one-way functions, on which
cryptography can be based.

REDUCTIONS: One of the most important notions
in computational complexity, which has been in-
herited by cryptography, is that of a reduction be-
tween computational problems. We say that prob-
lem � reduces to problem � if � can be solved in
polynomial time given access to an “oracle” that
solves � (i.e., a hypothetical black box that will
solve � on instances of our choosing in a single
time step). Intuitively, this captures the idea that
problem � is no harder than problem �. For a sim-
ple example, let us show that PRIMALITY reduces to
FACTORING.3 Suppose we have an oracle that, when
fed any integer, returns its prime factorization in
one time step. Then we could solve PRIMALITY in
polynomial time as follows: on input N, feed the
oracle with N, output “prime” if the only factor re-
turned by the oracle is N itself, and output “com-
posite” otherwise.

It is easy to see that if problem � reduces to
problem �, and � ∈ P, then � ∈ P: if we substi-
tute the oracle queries with the actual polynomial-
algorithm for �, we obtain a polynomial-time al-
gorithm for �. Turning this around, � /∈ P implies
that � /∈ P. Thus, reductions provide a way to use
an assumption that one problem is intractable to
deduce that other problems are intractable. Much
work in cryptography is based on this paradigm:
for example, one may take a complexity assump-
tion such as “there is no polynomial-time algo-
rithm for FACTORING” and use reductions to deduce
statements such as “there is no polynomial-time
algorithm for breaking encryption scheme X.” (As
discussed later, for cryptography, the formaliza-
tions of such statements and the notions of reduc-
tion in cryptography are more involved than sug-
gested here.)

NP: Another important complexity class is NP.
Roughly speaking, this is the class of all compu-
tational problems for which solutions can be veri-
fied in polynomial time.4 For example, given that

3 Of course, this reduction is redundant given that PRIMAL-
ITY is in P, but suppose for a moment that we did not know
this.
4 NP stands for nondeterministic polynomial time. Like P, NP
is typically defined as a class of decision problems, but again
that constraint is not essential for our informal discussion.

PRIMALITY is in P, we can easily see that FACTORING

is in NP: to verify that a supposed prime factoriza-
tion of a number N is correct, we can simply test
each of the factors for primality and check that
their product equals N. NP can be thought of as
the class of “well-posed” search problems: it is not
reasonable to search for something unless you can
recognize when you have found it. Given this natu-
ral definition, it is not surprising that the class NP
has taken on a fundamental position in computer
science.

It is evident that P ⊆ NP, but whether or not
P = NP is considered to be one of the most im-
portant open problems in mathematics and com-
puter science.5 It is widely believed that P �= NP;
indeed, we have seen that FACTORING is one candi-
date for a problem in NP \ P. In addition to FAC-
TORING, NP contains many other computational
problems of great importance, from many disci-
plines, for which no polynomial-time algorithms
are known.

The significance of NP as a complexity class is
due in part to the NP-complete problems. A com-
putational problem � is said to be NP-complete
if � ∈ NP and every problem in NP reduces to
�. Thus the NP-complete problems are the “hard-
est” problems in NP, and are the ones most likely
to be intractable. (Indeed, if even a single prob-
lem in NP is not in P, then all the NP-complete
problems are not in P.) Remarkably, thousands of
natural computational problems have been shown
to be NP-complete. (See [1].) Thus, it is an ap-
pealing possibility to build cryptosystems out of
NP-complete problems, but unfortunately, NP-
completeness does not seem sufficient for crypto-
graphic purposes (as discussed later).

RANDOMIZED ALGORITHMS: Throughout cryp-
tography, it is assumed that parties have the abil-
ity to make random choices; indeed this is how one
models the notion of a secret key. Thus, it is natu-
ral to allow not just algorithms whose computation
proceeds deterministically (as in the definition of
P), but also consider randomized algorithms—
ones that may make random choices in their com-
putation. (Thus, such algorithms are designed to
be implemented with a physical source of random-
ness. See random bit generation (hardware).)

Such a randomized (or probabilistic) algorithm
A is said to solve a given computational problem
if on every input x, the algorithm outputs the cor-
rect answer with high probability (over its random

5 The significance of P versus NP in mathematics comes from
the fact that it is equivalent to asking whether we can find
short mathematical proofs efficiently.
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choices). The error probability of such a random-
ized algorithm can be made arbitrarily small by
running the algorithm many times. For exam-
ples of randomized algorithms, see the probabilis-
tic primality tests in the entry on prime number.
The class of computational problems having
polynomial-time randomized algorithms is de-
noted BPP.6 A widely believed strengthening of
the P �= NP conjecture is that NP /⊆ BPP.

P VERSUS NP AND CRYPTOGRAPHY: The
assumption P �= NP (and even NP /⊆ BPP) is nec-
essary for most of modern cryptography. For exam-
ple, take any efficient encryption scheme and con-
sider the following computational problem: given
a ciphertext C, find the corresponding message M
along with the key K and any randomization R
used in the encryption process. This is an NP prob-
lem: the solution (M, K, R) can be verified by re-
encrypting the message M using the key K and the
randomization R and checking whether the result
equals C. Thus, if P = NP, this problem can be
solved in polynomial time, i.e. there is an efficient
algorithm for breaking the encryption scheme.7

However, the assumption P �= NP (or even NP /⊆
BPP) does not appear suffcient for cryptography.
The main reason for this is that P �= NP refers
to worst-case complexity. That is, the fact that a
computational problem � is not in P only means
that for every polynomial-time algorithm A, there
exist inputs on which A fails to solve �. However,
these “hard inputs” could conceivably be very rare
and very hard to find. Intuitively, to make use of
intractability (for the security of cryptosystems),
we need to be able to efficiently generate hard in-
stances of an intractable computational problem.

ONE-WAY FUNCTIONS: The notion of a one-way
function captures the kind of computational in-
tractability needed in cryptography. Informally, a
one-way function is a function f that is “easy to
evaluate” but “hard to invert.” That is, we require
that the function f can be computed in polynomial
time, but given y = f (x), it is intractable to recover
x. It is required that the difficulty of inversion
holds even when the input x is chosen at random.
Thus, we can efficiently generate hard instances

6 BPP stands for “bounded-error probabilistic polynomial
time.”
7 Technically, to conclude that the cryptosystem is broken re-
quires that the message M is uniquely determined by cipher-
text C. This will essentially be the case for most messages if the
message length is greater than the key length. (If the message
length is less than or equal to the key length, then there exist
encryption schemes that achieve information-theoretic secu-
rity (for a single encryption, e.g., the one-time pad), regardless
of whether or not P = NP.)

of the problem “find a preimage of y,” by selecting
x at random and setting y = f (x). (Note that we
actually generate a hard instance together with a
solution; this is another aspect in which one-way
functions are stronger than what follows from P �=
NP.) To formalize the definition, we need the con-
cept of a negligible function. A function ε : N →
[0, 1] is negligible if for every constant c, there is
an n0 such that ε(n) ≤ 1/nc for all n ≥ n0. That is,
ε vanishes faster than any polynomial. Then we
have:

DEFINITION 1 (one-way function). A one-to-one
function f is one-way if it satisfies the following
conditions.
1. (Easy to evaluate). f can be evaluated in polyno-

mial time.
2. (Hard to invert). For every probabilistic

polynomial-time algorithm A, there is a negli-
gible function ε such that

Pr [A( f (X )) = X ] ≤ ε(n),

where the probability is taken over selecting an
input X of length n uniformly at random and
the random choices of the algorithm A.

For simplicity, we have only given the definition
for one-to-one one-way functions. Without the one-
to-one constraint, the definition should refer to the
problem of finding some preimage of f (X ), i.e., re-
quire the probability that A( f (X )) ∈ f−1( f (X )) is
negligible.8

The input length n can be thought of as corre-
sponding to the security parameter (or key length)
in a cryptographic protocol using f. If f is one-way,
we are guaranteed that by making n sufficiently
large, inverting f takes much more time than eval-
uating f. However, to know how large to set n in an
implementation requires a concrete security ana-
logue of the above definition, where the maximum
success probability ε is specified for A with a par-
ticular running time on a particular input length
n, and a particular model of computation.

The “inversion problem” is an NP problem (to
verify that X is a preimage of Y, simply evaluate
f(X ) and compare with Y.) Thus, if NP ⊆ BPP
then one-way functions do not exist. However, the
converse is an open problem, and proving it would
be a major breakthrough in complexity theory. For-
tunately, even though the existence of one-way
functions does not appear to follow from NP ⊆/
BPP, there are a number of natural candidates
for one-way functions.

8 For technical reasons, we also need to require that f does
not shrink its input too much, e.g. that the length of | f (x)| and
length of |x| are polynomially related (in both directions.)
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SOME CANDIDATE ONE-WAY FUNCTIONS:
These examples are described informally, and
may not all match up perfectly with the sim-
plified definition above. In particular, some are
actually collections of one-way functions F = { fi :
Di → Ri}, in the functions fi are parameterized by
an index i that is generated by some randomized
algorithm.9

1. (Multiplication) f (p, q) = p · q, where p and
q are primes of equal length. Inverting f is
the FACTORING problem (see integer factoring),
which indeed seems intractable even on ran-
dom inputs of the form p · q.

2. (Subset Sum) f (x1, . . . , xn, S) = (x1, . . . , xn,∑
i∈S xi). Here each xi is an n-bit integer and

S ⊆ [n]. Inverting f is the SUBSET SUM problem
(see knapsack cryptographic schemes). This
problem is known to be NP-complete, but for
the reasons discussed above, this does not
provide convincing evidence that f is one-way
(nevertheless it seems to be so).

3. (The Discrete Log Collection) fG,g(x) = g x,
where G is a cyclic group (e.g., G = Z

∗
p for prime

p), g is a generator of G, and x ∈ {1, . . . , |G| − 1}.
Inverting fG,g is the DISCRETE LOG problem (see
discrete logarithm problem), which seems in-
tractable. This (like the next two examples) is
actually a collection of one-way functions, pa-
rameterized by the group G and generator g.

4. (The RSA Collection) fn,e(x) = xe mod n, where
n is the product of two equal-length primes, e
satisfies gcd(e, φ(n)) = 1, and x ∈ Z

∗
n. Inverting

fn,e is the RSA problem.
5. (Rabin’s Collection) (see Rabin cryptosystem,

Rabin digital signature scheme). fn(x) = x2 mod
n, where n is a composite and x ∈ Z

∗
n. Inverting

fn is known to be as hard as factoring n.
6. (Hash Functions and Block Ciphers). Most

cryptographic hash functions seem to be finite
analogues of one-way functions with respect to
concrete security. Similarly, one can obtain can-
didate one-way functions from block ciphers,
say by defining f (K ) to be the block cipher ap-
plied to some fixed message using key K.
In a long sequence of works by many re-

searchers, it has been shown that one-way func-
tions are indeed the “right assumption” for
complexity-based cryptography. On one hand, al-
most all tasks in cryptography imply the ex-
istence of one-way functions. Conversely (and
more remarkably), many useful cryptographic
tasks can be accomplished given any one-way
function.

9 Actually, one can convert a collection of one-way functions
into a single one-way function, and conversely. See [3].

THEOREM 1. The existence of one-way functions is
necessary and sufficient for each of the following:
� The existence of commitment schemes
� The existence of pseudorandom number genera-

tors
� The existence of pseudorandom functions
� The existence of symmetric cryptosystems
� The existence of digital signature schemes.

These results are proven via the notion of re-
ducibility mentioned above, albeit in much more
sophisticated forms. For example, to show that the
existence of one-way functions implies the exis-
tence of pseudorandom generators, one describes
a general construction of a pseudorandom gener-
ator G from any one-way function f. To prove the
correctness of this construction, one shows how to
“reduce” the task of inverting the one-way func-
tion f to that of “distinguishing” the output of the
pseudorandom generator G from a truly random
sequence. That is, any polynomial-time algorithm
that distinguishes the pseudorandom generator
can be converted into a polynomial-time algorithm
that inverts the one-way function. But if f is one-
way, it cannot be inverted, so we conclude that the
pseudorandom generator is secure. These reduc-
tions are much more delicate than those arising
in, say, the NP-completeness, because they involve
nontraditional computational tasks (e.g., inver-
sion, distinguishing) that must be analyzed in the
average case (i.e., with respect to non-negligible
success probability).

The general constructions asserted in Theorem
1 are very involved and not efficient enough to
be used in practice (though still polynomial time),
so it should be interpreted only as a “plausibil-
ity result.” However, from special cases of one-
way functions, such as one-way permutations (see
one-way function) or some of the specific candidate
one-way functions mentioned earlier, much more
efficient constructions are known.

TRAPDOOR FUNCTIONS: For some tasks in
cryptography, most notably public-key encryption
(see public-key cryptography), one-way functions
do not seem to suffice, and additional proper-
ties are used. One such property is the trap-
door property, which requires that the function
can be easily inverted given certain “trapdoor
information.” We do not give the full definition
here, but just list the main properties. (See also
trapdoor one-way function.)

DEFINITION 2 (trapdoor functions, informal).
A collection of one-to-one functions F = { fi : Di →
Ri} is a collection of trapdoor functions if
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1. (Efficient generation). There is a probabilistic
polynomial-time algorithm that, on input a se-
curity parameter n, generates a pair (i, ti ), where
i is the index to a (random) function in the
family and t i is the associated “trapdoor infor-
mation.”

2. (Easy to evaluate). Given i and x ∈ Di , one can
compute fi(x) in polynomial time.

3. (Hard to invert). There is no probabilistic
polynomial-time algorithm that on input (i,
fi(x)) outputs x with non-negligible probability.
(Here, the probability is taken over i, x ∈ Di, and
the coin tosses of the inverter.)

4. (Easy to invert with trapdoor). Given ti and
fi(x), one can compute x in polynomial time.

Thus, trapdoor functions are collections of one-
way functions with an additional trapdoor prop-
erty (Item 4). The RSA and Rabin collections
described earlier have the trapdoor property. Spe-
cifically, they can be inverted in polynomial time
given the factorization of the modulus n.

One of the main applications of trapdoor func-
tions is for the construction of public-key encryp-
tion schemes.

THEOREM 2. If trapdoor functions exist, then
public-key encryption schemes exist.

There are a number of other useful strength-
enings of the notion of a one-way function, dis-
cussed elsewhere in this volume: claw-free per-
mutations, collision-resistant hash functions (see
collision resistance), and universal one-way hash
functions.

OTHER INTERACTIONS WITH CRYPTOGRAPHY:
The interaction between computational complex-
ity and cryptography has been very fertile. Above,
we have described the role that computational
complexity plays in cryptography. Conversely,
several important concepts that originated in
cryptography research have had a tremendous im-
pact on computational complexity. Two notable ex-
amples are the notions of pseudorandom number
generators and interactive proof systems. For
more on these topics and the resulting develop-
ments in computational complexity, see [2].

FURTHER READING: Above, we have touched
upon only a small portion of computational com-
plexity, and even in the topics covered, many im-
portant issues were ignored (not to mention histor-
ical references). Thus, we refer the reader to the
text [3] for more on computational complexity as

it relates to cryptography, and the texts [4, 5] for
other aspects of complexity theory.

Salil Vadhan
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CONTRACT SIGNING

A contract is a nonrepudiable agreement on a
given contract text, i.e., a contract can be used to
prove agreement between the signatories to any
verifier. A contract signing scheme [4] is used to
fairly compute a contract such that, even if one of
the signatories misbehaves, either both or none of
the signatories obtain a contract. Contract signing
generalizes fair exchange of signatures: a contract
signing protocol does not need to output signa-
tures but can define its own format instead. Con-
tract signing can be categorized by the properties
of fair exchange (like abuse-freeness) as well as
the properties of the nonrepudiation tokens it pro-
duces (like third-party time stamping of the con-
tract). Unlike agreement protocols, contract sign-
ing needs to provide a nonrepudiable proof that an
agreement has been reached.

Early contract signing protocols were either
based on an in-line Trusted Third Party [8], grad-
ual exchange of secrets [5], or gradual increase
of privilege [3]. Like fair exchange protocols, two-
party contract signing protocols either do not guar-
antee termination or may else produce a partially
signed contract. As a consequence, a trusted third
party is needed for most practical applications.
Optimistic contract signing [7] protocols optimize
by involving this third-party only in case of excep-
tions. The first optimistic contract signing scheme
has been described in [6]. An optimistic contract
signing scheme for asynchronous networks has



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

98 Control vectors

................ ........................... Optimistic Phase w/o TTP: .......... ..... .............. ........
Signatory A Signatory B

m1  := signA( m1 , tstart,TTP,   A,  B, CA)

CA
?
= CB?

m2 : = signB( m2 , m1)

if m2: output m2

elseif no m5: abort
m3 := signA( m3 , m2)

if m3: output m3

else: continue
.............................................. Error Recovery w/ TTP: ......... ........ ....................

Signatory A TTPT Signatory B

m4 := signB( m4 , m2)

check

m5 := signT (  m5 , m4)m5 := signT ( m5 , m4)

output m5 output m5

.....

Fig. 1. Sketch of an optimistic synchronous contract signing protocol [7]

been described in [1]. An example for a multiparty
abuse-free optimistic contract signing protocol has
been published in [2]. A simple optimistic con-
tract signing protocol for synchronous networks is
sketched in Figure 1: party A sends a proposal,
party B agrees, and party A confirms. If party
A does not confirm, B obtains its contract from
the TTP. (Note that the generic fair exchange pro-
tocol (see fair exchange) can be adapted for con-
tract signing, too, by using a signature under C as
itemX , using (C, X) as description descX , and using
the signature verification function as the verifica-
tion function.)

Matthias Schunter
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CONTROL VECTORS

A method introduced—and patented in a number
of application scenarios—by IBM in the 1980s for
the control of cryptographic key usage. The basic
idea is that each cryptographic key has an asso-
ciated control vector, which defines the permitted
uses of the key within the system, and this is en-
forced by the use of tamper resistant hardware. At
key generation, the control vector is cryptograph-
ically coupled to the key, e.g., by XOR-ring the key
with the control vector before encryption and dis-
tribution. Each encrypted key and control vector
is stored and distributed within the cryptographic
system as a single token.
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As an example, nonrepudiation may be achieved
between two communicating hardware boxes by
the use of a conventional MAC algorithms using
symmetric methods. The communicating boxes
would share the same key, but whereas one box
would only be allowed to generate a MAC with
that key, the other box would only be able to ver-
ify a MAC with the same key. The transform of
the same key from, e.g., MAC-generation to MAC-
verification is known as key translation and needs
to be carried out in tamper resistant hardware as
well. Similarly the same symmetric key may be
used for encryption only enforced by one control
vector in one device and for decryption only en-
forced by a different control vector in a different
device.

Peter Landrock

COPY PROTECTION

Copy protection attempts to find ways which limit
the access to copyrighted material and/or inhibit
the copy process itself. Examples of copy protec-
tion include encrypted digital TV broadcast, access
controls to copyrighted software through the use of
license servers or through the use of special hard-
ware add-ons (dongles), and technical copy protec-
tion mechanisms on the media.

Copy protection mechanisms can work pro-
actively by aiming to prevent users from accessing
copy protected content.

For content that is distributed on physical me-
dia such as floppy disks, digital audio tape (DAT),
CD-ROM or digital versatile disk (DVD), copy pro-
tection can be achieved by master copy control and
copy generation control:
Master copy control: If consumers are not al-

lowed to even make backup copies of their mas-
ter media, then one can mark the master media
themselves in addition to or instead of marking
the copyrighted content. This was an inexpen-
sive and common way to protect software dis-
tributed for example on floppy disks. One of the
sectors containing critical parts of the software
was marked as bad such that data could be read
from that sector, but could not be copied to an-
other floppy disk.

Copy generation control: If consumers are al-
lowed to make copies of their master copy, but
not of copies of the master copy, then one needs
to establish control over the vast majority of con-
tent recorders, which must be able to effectively
prevent the making of unauthorized copies.

This approach is somewhat unrealistic because
even a small number of remaining unregistered
recorders can be used by organized hackers to
produce large quantities of pirated copies.
Instead of protecting the distribution media of

digital content, one can protect copyrighted digi-
tal content itself by marking copyrighted content
and enforcing playback control by allowing only
players that interpret these copyright marks ac-
cording to certain access policies (access control).
This approach works for digital content that is be-
ing distributed on physical media as well as being
broadcast or distributed online. It is an example
of a digital rights management system (DRMS).
Mark copyrighted content: If consumers are

allowed to make a few backup copies for their
personal use, then the copyrighted digital con-
tent itself can be marked as copy protected in
order to be distinguishable from unprotected
digital content. The more robust the marking,
i.e., the harder it is to remove it without signif-
icantly degrading the quality of the digital con-
tent, the stronger copy protection mechanism
can be achieved.

Playback control: Players for copyrighted con-
tent need to have a tamper resistant access cir-
cuitry that is aware of the copy protection mark-
ing, or players need to use online license servers
to check the actual marks. Before converting
digital content into audible or visible signals,
the player compares the actual marking against
the licenses or tickets, which are either built into
their access circuitry or retrieved from a license
server online, and stops if the former does not
match the latter. The exact behavior of players is
determined by access policies. There can be dif-
ferent kinds of tickets or licenses. Tickets of one
kind may represent the right of ownership of a
particular piece of content, i.e., the piece of con-
tent can be played or used as many times as the
owner wishes. Tickets of another kind may rep-
resent the right of one-time play or use (pay-per-
view). Other kinds of tickets can be defined. The
more tamper resistant the access circuitry is or
the more protected the communication with the
license server and the license server itself, the
stronger the copy protection mechanism that
can be achieved.

Marking of copyrighted content can use anything
from simple one-bit marks to XrML tags to sophis-
ticated watermarking techniques. An example of
the former is to define a new audio file format, in
which the mark is a part of the header block but
is not removable without destroying the original
signal, because part of the definition of the file for-
mat requires the mark to be therein. In this case
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the signal would not really be literally “destroyed”
but any application using this file format would
not touch it without a valid mark. Some electronic
copyright management systems (ECMS) propose
mechanisms like this. Such schemes are weak as
anyone with a computer or a digital editing work-
station would be able to convert the information to
another format and remove the mark at the same
time. Finally this new audio format would be in-
compatible with the existing one. Thus the mark
should really be embedded in the audio signal.
This is very similar to S.C.M.S. (Serial Code Man-
agement System). When Phillips and Sony intro-
duced the “S/PDIF” (Sony/Phillips Digital Inter-
change Format), they included the S.C.M.S. which
provides a way copies of digital music are regu-
lated in the consumer market. This information is
added to the stream of data that contains the mu-
sic when one makes a digital copy (a “clone”). This
is in fact just a bit saying: digital copy prohibited
or permitted. Some professional equipment are ex-
empt from having S.C.M.S. With watermarking
however, the copy control information is part
of the audiovisual signal and aims at surviv-
ing file format conversion and other transfor-
mations.

An alternative to marking is containing copy-
righted content. With this approach, the recording
industry encrypts copyrighted digital content un-
der certain encryption keys such that only players
with appropriate decryption keys can access and
playback the content.
Encrypt copyrighted content: The copyrighted

digital content itself is encrypted in order to
be accessible by authorized consumers only.
The more robust the encryption, the stronger
the copy protection mechanism that can be
achieved.

Playback control: Players for copyrighted con-
tent need to have a tamper resistant access cir-
cuitry that is aware of certain decryption keys
that are necessary to unlock the contents the
consumer wants to be played. Before converting
digital content into audible or visible signals,
the player needs to look up the respective de-
cryption keys, which are either built into the
access circuitry of the player or are retrieved
from a license server online. The exact behav-
ior of players is determined by access policies.
There can be different kinds of decrypting keys.
Decrypting keys of one kind may represent the
right of ownership of a particular piece of con-
tent, i.e., the piece of content can be played or
used as many times as the owner wishes. Tick-
ets of another kind may represent the right
of one-time play or use (pay-per-view). Other

kinds of decryption keys can be defined. The
more tamper resistant the access circuitry or the
more protected the communication with the li-
cense server and the license server itself, the
stronger the copy protection mechanism that
can be achieved.

In order to effectively prevent consumers from
copying digital content protected in this way, the
players must not allow consumers to easily ac-
cess the decrypted digital content. Otherwise, the
containing approach would not prevent consumers
from reselling, trading, or exchanging digital con-
tent at their discretion. As a first line of protection,
players should not provide a high quality output
interface for the digital content. A stronger level
of protection is achieved if the decryption mecha-
nism is integrated into the display, such that pi-
rates would only obtain signals of degraded qual-
ity. The content scrambling system (CSS) used for
digital versatile disks (DVDs) [2] is an example of
the containing approach: in CSS, each of n manu-
facturers (n being several hundreds by 2002) has
one or more manufacturer keys, and each player
has one or more keys of its manufacturer built in.
Each DVD has its own disk key dk , which is stored
n times in encrypted form, once encrypted under
each manufacturer key. The DVD content is en-
crypted under respective sector keys, which are
all derived from the disk key dk .

Copy protection mechanisms can also work
retroactively by deterring authorized users from
leaking copies to unauthorized users. This ap-
proach requires solving the following two prob-
lems.
Mark copy protected content individually:

Copy protected digital content carries informa-
tion about its origin, i.e. the original source, au-
thor, distributor, etc. in order to allow to trace
its distribution and spreading. It is like em-
bedding a unique serial number in each autho-
rized copy of protected content. The more ro-
bust the embedded marking, i.e., the harder it
is to remove it without significantly degrading
the quality of the digital content, the stronger
the copy protection mechanism that can be
achieved.

Deter from unauthorized access: Players need
to have no tamper resistant access circuitry nor
online access to license servers. Instead, each
customer who receives an authorized copy is
registered with the serial number of the copy
provided. The marking serves as forensic ev-
idence in investigations to figure out where
and when unauthorized copies of original con-
tent have surfaced. This retroactive approach
can be combined with the above mentioned
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proactive approach by using the embedded se-
rial numbers as individual watermarks, which
are recognized by players for the respective
content.

This approach can use anything from hidden
serial numbers to sophisticated fingerprinting
techniques. Fingerprints are characteristics of an
object that tend to distinguish it from other simi-
lar objects. They enable the owner to trace autho-
rized users distributing them illegally. In the case
of encrypted satellite television broadcasting, for
instance, users could be issued a set of keys to de-
crypt the video streams and the television station
could insert fingerprint bits into each packet of
the traffic to detect unauthorized uses. If a group
of users give their subset of keys to unauthorized
people (so that they can also decrypt the traffic), at
least one of the key donors can be traced when the
unauthorized decoder is captured. In this respect,
fingerprinting is usually discussed in the context
of the traitor tracing problem.

Copy protection is inherently difficult to achieve
in open systems for at least two reasons:

The requirements on watermarking are contra-
dictory. In order to build an effective large-scale
copy protection system, the vast majority of avail-
able players had to be equipped with some kind
of tamper resistant circuitry or had online ac-
cess to some license servers. Such circuitry had
to be cheap and be integrated right into the play-
ers, and such online service had to be cheap
and conveniently fast. Otherwise, the watermark-
ing had no chance to gain any significant mar-
ket share. However, tamper resistant hardware
is expensive, so the cost per player limits the
strength of the tamper resistance of its access cir-
cuitry. Online services incur communication costs
on consumers and do not give them the indepen-
dence and speed of offline access circuitry. The
way how the CSS used for DVDs was “hacked” is
just one more incident demonstrating the contra-
dicting requirements: since the encryption mech-
anism was chosen to be a weak feedback shift
register cipher, it was only a matter of time un-
til a program called DeCSS surfaced, which can
decipher any DVD. The access circuitry of play-
ers into which the deciphering algorithm is built
was not well protected against reverse engineer-
ing the algorithm, and hence, the secret algorithm
leaked, and with it the DVD keys one by one. The
watermarking scheme of the Secure Digital Mu-
sic Initiative (SDMI) [7], (a successor of MP3) was
broken by Fabien Petitcolas [6]. Later, a public
challenge of this watermarking scheme was bro-
ken by Felten et al. [3]. The SDMI consortium felt
this piece of research might jeopardize the consor-

tium’s reputation and revenue so much that the
SDMI consortium threatened to sue the authors
if they would present their work at a public con-
ference. Attacks on various other copy protection
mechanisms have been described by Anderson in
Section 20.3.30 of [1].

The requirements on fingerprinting are contra-
dictory as well. On one hand the broadcaster or
copyright holder may want to easily recognize the
fingerprint, preferably visually. This allows easy
tracing of a decoder that is used for illegal pur-
poses. This approach is very similar to the com-
monly used watermarking by means of the logo of a
TV station that is continuously visible in one of the
corners of the screen. On the other hand, the fin-
gerprint should be hidden, in order not to disturb
paying viewers with program-unrelated messages
on their screen, or to avoid any pirate detecting
and erasing the fingerprint electronically. In the
latter case, one may require specific equipment to
detect and decode a fingerprint.

Despite the inherent technical difficulties to
build effective large-scale copy protection systems,
the content industries (TV producers, movie mak-
ers, audio makers, software companies, publish-
ers) have and will continue to have a strong inter-
est in protecting their revenues against pirates.
They are trying to overcome the contradictory
requirements mentioned above by two comple-
menting approaches: they try to control the en-
tire market of media players and recorders by
contracting with the large suppliers. While they
opt for relatively weak but inexpensive access cir-
cuitry for these players, they compensate for the
weakness by promoting suitable laws that deter
consumers from breaking this access circuitry or
resorting to unauthorized players, or using unau-
thorized recorders. An example for trying to make
secure access circuitry pervasive in the PC market
is the trusted computing platform alliance (TCPA)
[8]. An example of such legislative initiative is
the digital millenium copyright act (DMCA) [4] in
the United States. It prohibits the modification of
any electronic copyright arrangement information
(CMI) bundled with digital content, such as details
of ownership and licensing, and outlaws the man-
ufacture, importation, sale, or offering for sale of
anything primarily designed to circumvent copy-
right protection technology.

It is clear that the issue of copy protection is a
special case of the more general issue of digital
rights management (DRM). Both issues bear the
risk of a few companies defining the access poli-
cies, which are enforced by the players and thus
determine what and how a vast majority of peo-
ple would be able to read, watch, listen to, or work
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with. A moderate overview of the hot debate about
content monopolies, pricing, free speech, demo-
cratic, privacy, and legislative issues, etc. is found
at [5].

Gerrit Bleumer
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CORRECTING-BLOCK
ATTACK

This attack can find collisions or (second) preim-
ages for certain classes of hash functions. It con-
sists of substituting all blocks of the input except
for one or more blocks. This attack often applies to
the last block and is then called a correcting-last-
block attack, but it can also apply to the first block
or to some blocks in the middle. For a preimage at-
tack, one chooses an arbitrary message X and finds
one or more correcting blocks Y such that h(X‖Y)
takes a certain value (here ‖ denotes concatena-
tion). For a second preimage attack on the target
message X‖Y, one chooses X′ and searches for one
or more correcting blocks Y′ such that h(X′‖Y′) =
h(X‖Y) (note that one may select X′ = X). For a col-
lision attack, one chooses two arbitrary messages
X and X′ with X′ �= X; subsequently one searches
for one or more correcting blocks denoted by Y and
Y′, such that h(X′‖Y′) = h(X‖Y).

The hash functions based on algebraic struc-
tures are particularly vulnerable to this attack,
since it is often possible to invert the compres-
sion function using algebraic manipulations [9].
A typical countermeasure to a correcting-block at-
tack consists of adding redundancy to the message
blocks in such a way that it becomes computation-
ally infeasible to find a correcting block with the
necessary redundancy. The price paid for this so-
lution is a degradation of the performance.

A first example is a multiplicative hash pro-
posed by Bosset in 1977 [1], based on GL2(GF(p)),
the group of 2 × 2 invertible matrices over
the finite field GF(p), with p = 10 007. Camion
showed how to find a second preimage using a
correcting-block attack that requires 48 correcting
blocks of 6 bits each [2].

In 1984 Davies and Price [4] proposed a hash
function with the following compression func-
tion f :

f = (Hi−1 ⊕ Xi)2 mod N ,

where Xi is the message block, Hi−1 is the chain-
ing variable, and N is an RSA modulus (see RSA
digital signature scheme). In order to preclude a
correcting block attack, the text input is encoded
such that the most (or least) significant 64 bits
of each block are equal to 0. However, Girault
[5] has demonstrated that a second preimage can
be found using the extended Euclidean algorithm
(see Euclidean algorithm); improved results can
be found in [6].

The 1988 scheme of CCITT X.509 Annex D [8]
tried to remedy this approach by distributing the
redundancy (one nibble in every byte). However,
Coppersmith [3] applied a correcting-block attack
to find two distinct messages X and X′ such that

h(X′) = 256 · h(X) .

This is a highly undesirable property, which
a.o. implies that this hash function cannot be
used in combination with a multiplicative digital
signature scheme such as RSA. In 1998, ISO has
adopted two improved schemes based on modular
arithmetic (ISO/IEC 10118-4 Modular Arithmetic
Secure Hash, MASH-1 and MASH-2 [7]), which so
far have resisted correcting-block attacks.

B. Preneel
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CORRELATION ATTACK
FOR STREAM CIPHERS

The correlation attack for stream ciphers was pro-
posed by Siegenthaler in 1985. It applies to any
running-key generator composed of several linear
feedback shift registers (LFSRs). The correlation
attack is a divide-and-conquer technique: it aims
at recovering the initial state of each constituent
LFSRs separately from the knowledge of some
keystream bits (in a known plaintext attack).
A similar ciphertext only attack can also be
mounted when there exists redundancy in the
plaintext (see [3]).

The original correlation attack presented in [3]
applies to some combination generators composed
of n LFSRs of lengths L1, . . . , Ln. It enables to
recover the complete initialization of the gen-
erator with only

∑n
i=1

(
2Li − 1

)
trials instead of

the
∏n

i=1

(
2Li − 1

)
tests required by an exhaus-

tive search. Some efficient variants of the origi-
nal correlation attack can also be applied to other
keystream generators based on LFSRs, like filter
generators (see fast correlation attack for details).

ORIGINAL CORRELATION ATTACK ON COM-
BINATION GENERATORS: The correlation attack
exploits the existence of a statistical dependence
between the keystream and the output of a single
constituent LFSR. In a binary combination gener-
ator, such a dependence exists if and only if the
output of the combining function f is correlated to
one of its inputs, i.e., if

pi = Pr[ f (x1, . . . , xn) �= xi] �= 1
2

for some i, 1 ≤ i ≤ n. It equivalently means that
the keystream sequence s = (st )t≥0 is correlated to
the sequence u = (ut )t≥0 generated by the ith con-
stituent LFSR. Namely, the correlation between
both sequences calculated on N bits

N−1∑
t=0

(−1)st +ut mod 2

(where the sum is defined over real numbers)
is a random variable which is binomially dis-
tributed with mean value N(1 − 2pi) and with
variance 4Npi(1 − pi) (when N is large enough).
It can be compared to the correlation between
the keystream s and a sequence r = (rt )t≥0 in-
dependent of s (i.e., such that Pr[st �= rt ] = 1/2).
For such a sequence r, the correlation between s
and r is binomially distributed with mean value 0
and with variance N. Thus, an exhaustive search
for the initialization of the ith LFSR can be per-
formed. The value of the correlation enables to dis-
tinguish the correct initial state from a wrong one
since the sequence generated by a wrong initial
state is assumed to be statistically independent of
the keystream. Table 1 gives a complete descrip-
tion of the attack.

In practice, an initial state is accepted if the
magnitude of the correlation exceeds a certain

Table 1. Correlation attack

Input. s0s1 . . . sN−1, N keystream bits,
pi = Pr [ f(x1, . . . , xn) �= xi ] �= 1/2.

Output. u0 . . . uLi−1, the initial state of the i-th
constituent LFSR.

For each possible initial state u0 . . . uLi−1

Generate the first N bits of the sequence u
produced by the ith LFSR from the chosen
initial state.

Compute the correlation between s0s1 . . . sN−1

and
u0u1 . . . uN−1:

α ←
N−1∑
i=0

(−1)st +ut mod 2

If α is close to N(1 − 2pi )
return u0u1 . . . uLi−1
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decision threshold which is deduced from the ex-
pected false alarm probability Pf and the non-
detection probability Pn (see [3]). The required
keystream length N depends on the probabil-
ity pi and on the length Li of the involved LFSR:
for Pn = 1.3 × 10−3 and Pf = 2−Li , the attack
requires

N �
(√

ln(2Li−1) + 3
√

2pi(1 − pi)√
2(pi − 0.5)

)2

running-key bits. Clearly, the attack performs
2Li−1 trials on average where Li is the length of
the target LFSR. The correlation attack only ap-
plies if the probability pi differs from 1/2.

CORRELATION ATTACK ON OTHER KEY-
STREAM GENERATORS: More generally, the cor-
relation attack applies to any keystream genera-
tor as soon as the keystream is correlated to the
output sequence u of a finite state machine whose
initial state depends on some key bits. These key
bits can be determined by recovering the initial-
ization of u as follows: an exhaustive search for
the initialization of u is performed, and the cor-
rect one is detected by computing the correlation
between the corresponding sequence u and the
keystream.

CORRELATION ATTACK ON COMBINATION
GENERATORS INVOLVING SEVERAL LFSRS:
For combination generators, the correlation at-
tack can be prevented by using a combining func-
tion f whose output is not correlated to any of
its inputs. Such functions are called first-order
correlation-immune (or 1-resilient in the case
of balanced functions). In this case, the run-
ning key is statistically independent of the out-
put of each constituent LFSR; any correlation
attack should then consider several LFSRs si-
multaneously. More generally, a correlation at-
tack on a set of k constituent LFSRs, namely
LFSR i1, . . . , LFSR ik, exploits the existence of
a correlation between the running-key s and
the output u of a smaller combination genera-
tor, which consists of the k involved LFSRs com-
bined by a Boolean function g of k variables (see
Figure 1). Since Pr[st �= ut ] = Pr[ f (x1, . . . , xn) �=
g(xi1 , . . . , xik )] = pg, this attack only succeeds when
pg �= 1/2. The smallest number of LFSRs that
can be attacked simultaneously is equal to m +
1 where m is the highest correlation-immunity
order of the combining function. Moreover, the
Boolean function g of (m + 1) variables which pro-
vides the best approximation of f is the affine

LFSR 1

LFSR 2

LFSR n

LFSR ik

LFSR i1

f

g

correlation

u

...

...

s

Fig. 1. Correlation attack involving several constituent
LFSRs of a combination generator

function
∑m+1

j=1 xi j + ε [1, 4]. Thus, the most effi-
cient correlation attacks that can be mounted rely
on the correlation between the keystream s and
the sequence u obtained by adding the outputs
of LFSRs i1, i2, . . . , im+1. This correlation corres-
ponds to

Pr[st �= ut ] = 1
2

− 1
2n+1

|̂ f (t)|,

where n is the number of variables of the combin-
ing function, t is the n-bit vector whose ith com-
ponent equals 1 if and only if i ∈ {i1, i2, . . . , im+1}
and f̂ denotes the Walsh transform of f (see
Boolean functions). In order to increase the com-
plexity of the correlation attack, the combining
function used in a combination generator should
have a high correlation-immunity order and a high
nonlinearity (more precisely, its Walsh coefficients
f̂ (t) should have a low magnitude for all vec-
tors t with a small Hamming weight). For an m-
resilient combining function, the complexity of the
correlation attack is 2Li1 +Li2 +···+Lim+1 . It can be sig-
nificantly reduced by using some improved algo-
rithms, called fast correlation attacks.

Anne Canteaut
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CORRELATION IMMUNE
AND RESILIENT BOOLEAN
FUNCTIONS

Cryptographic Boolean functions must be bal-
anced (i.e., their output must be uniformly
distributed) for avoiding statistical dependence
between their input and their output (such sta-
tistical dependence can be used in attacks).

Moreover, any combining function f (x) (see
combination generator), used for generating the
pseudorandom sequence in a stream cipher, must
stay balanced if we keep constant some coordi-
nates xi of x (at most m of them, where m is as large
as possible). We say that f is then m-resilient. More
generally, a (non necessarily balanced) Boolean
function, whose output distribution probability is
unaltered when any m of its input bits are kept
constant, is called mth order correlation-immune.
The notion of correlation-immune function is re-
lated to the notion of orthogonal array (see [1]).
Only resilient functions are of practical interest
as cryptographic functions.

The notion of correlation immunity was intro-
duced by Siegenthaler in [5]; it is related to an
attack on pseudorandom generators using com-
bining functions: if such combining function f is
not mth order correlation-immune, then there ex-
ists a correlation between the output of the func-
tion and (at most) m coordinates of its input; if
m is small enough, a divide-and-conquer attack
due to Siegenthaler (see correlation attack for
stream ciphers) and later improved by several au-
thors (see fast correlation attack) uses this weak-
ness for attacking the system.

The maximum value of m such that f is m-
resilient is called the resiliency order of f.

Correlation immunity and resiliency can be
characterized through the Walsh transform
f̂ (u) = ∑

x∈Fn
2
(−1) f (x)⊕x·u, see [3]: f is mth order

correlation-immune if and only if f̂ (u) = 0 for all
u ∈ F2

n such that 1 ≤ wH(u) ≤ m, where wH de-
notes the Hamming weight (that is, the num-
ber of nonzero coordinates); and it is m-resilient
if and only if f̂ (u) = 0 for all u ∈ F2

n such that
wH(u) ≤ m.

It is not sufficient for a combining function f,
used in a stream cipher, to be m-resilient with
large m. As any cryptographic function, it must

also have high algebraic degree d ◦ fand high non-
linearityNL( f ) (see Boolean functions). There are
necessary trade-offs between the number of vari-
ables, the algebraic degree, the nonlinearity, and
the resiliency order of a function.
– Siegenthaler’s bound [5] states that any m-

resilient function (0 ≤ m < n − 1) has algebraic
degree smaller than or equal to n − m − 1 and
that any (n − 1) resilient function is affine
(Siegenthaler also proved that any n-variable
mth order correlation-immune function has de-
gree at most n − m).

– The values of the Walsh transform of an n-
variable, m-resilient function are divisible by
2m+2 if m ≤ n − 2, cf. [4] (and they are divisi-

ble by 2m+2+
⌊

n−m−2
d

⌋
if f has degree d, see [2]).

These divisibility bounds have provided non-
trivial upper bounds on the nonlinearities of re-
silient functions [2, 4], also partially obtained
in [6, 7]. The nonlinearity of any m-resilient
function is upper bounded by 2n−1 − 2m+1. This
bound is tight, at least when m ≥ 0.6n, and any
m-resilient function achieving it also achieves
Siegenthaler’s bound (see [6]).
High order resilient functions with high degrees

and high nonlinearities are needed for applica-
tions in stream ciphers.

EXAMPLE [1]. Let r be a positive integer smaller
than n; denote n − r by s; let g be any Boolean
function on F2

s and let φ be a mapping from F2
s to

F2
r . Define the function:

fφ,g(x, y) = x · φ(y) ⊕ g(y) =
r⊕

i=1

xiφi(y) ⊕ g(y),

x ∈ F2
r , y ∈ F2

s, (2)

where φi(y) is the ith coordinate of φ(y). Then, if ev-
ery element in φ(F2

s) has Hamming weight strictly
greater than k, then fφ,g is m-resilient with m ≥ k.
In particular, if φ(F2

s) does not contain the null
vector, then fφ,g is balanced.

Examples of m-resilient functions achieving the
best possible nonlinearity 2n−1 − 2m+1 (and thus
the best degree) have been obtained for n ≤ 10 and
for every m ≥ 0.6n (n being then not limited, see
[6]). They have been constructed by using the fol-
lowing methods permitting to construct resilient
functions from known ones:
� [1, 5] Let g be a Boolean function on F2

n.
Consider the Boolean function on F2

n+1:
f (x1, . . . , xn, xn+1) = g(x1, . . . , xn) ⊕ xn+1. Then,
NL( f ) = 2NL(g) and d ◦ f = d ◦ g if d ◦ g ≥ 1.
If g is m-resilient, then f is (m + 1)-resilient.
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� [5] Let g and h be two Boolean functions on
F2

n. Consider the function f (x1, . . . , xn, xn+1) =
xn+1g(x1, . . . , xn) ⊕ ‘(xn+1 ⊕ 1)h(x1, . . . , xn) on
F2

n+1. Then, NL f ≥ NLg + NLh (moreover, if g
and h are such that, for every word a, at least
one of the numbers ĝ(a), ĥ(a) is null, thenNL( f )
equals 2n−1 + min(NL(g),NL(h))).

If the algebraic normal forms of g and h do
not have the same monomials of highest degree,
then d ◦ f = 1 + max(d ◦ g, d ◦ h).

If g and h are m-resilient, then f is m-
resilient (moreover, if for every a ∈ F2

n of weight
m + 1, we have ĝ(a) + ĥ(a) = 0, then f is (m +
1)-resilient; this happens with h(x) = g(x1 ⊕
1, . . . , xn ⊕ 1) ⊕ ε, where ε = m mod 2, see [1]).

� [6] Let g be any Boolean function on F2
n.

Define the Boolean function f on F2
n+1 by

f (x1, . . . , xn, xn+1) = xn+1 ⊕ g(x1, . . . , xn−1, xn ⊕
xn+1). Then, NL( f) = 2 NL(g) and d ◦ f =
d ◦ g if d ◦ g ≥ 1. If g is m-resilient, then
f is m-resilient (and it is (m + 1)-resilient
if ĝ(a1, . . . , an−1, 1) is null for every vector
(a1, . . . , an−1) of weight at most m).

Claude Carlet
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COVERT CHANNELS

Lampson [8, p. 614] informally specified a special
type of communication being:

Covert channels, i.e. those not intended for in-
formation transfer at all, such as the service
program’s effect on the system load.

A more general definition can be found in [14,
p. 110].

Covert channels often involve what is called tim-
ing channels and storage channels. An example
of a timing channel is the start-time of a pro-
cess. The modulation of disc space is an example
of a storage channel. Methods that describe how
covert channels can be fought can, e.g., be found
in [9]. For more information about covert channels,
see [1].

Simmons [10] introduced the research on covert
channels to the cryptographic community by in-
troducing a special type of channel, which he
called a subliminal channel. (Simmons did not
regard these channels as fitting the definition
of a covert channel.) He observed that covert
data could be hidden within the authenticator
of an authentication code [10]. The capacity of
this channel was not large (a few bits per au-
thenticator), but as Simmons disclosed 10 years
later [12, pp. 459–462] (see also [13]), the poten-
tial impact on treaty verification and on the na-
tional security of the USA could have been catas-
trophic.

In 1987 the concept of subliminal channel was
extended to be hidden inside a zero-knowledge
interactive proof [6]. The concept was generalized
to a hidden channel inside any cryptographic sys-
tem [3,4]. Mechanisms to protect against sublim-
inal channels were also presented [3, 4] and rein-
vented 5 years later [11]. Problems with some of
these solutions were discussed in [5] (see [2]) for a
more complete discussion.

A subliminal channel in a key-distribution
scheme (see key management) could undermine
key escrow, as discussed in [7]. Kleptography is
the study of how a designer, making a black box
cipher, can leak the user’s secret key subliminally
to the designer (see, e.g., [15]).

Yvo Desmedt
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CPS, CERTIFICATE
PRACTICE STATEMENT

A Certification Authority (CA) describes in a Cer-
tificate Practice Statement (CPS) the procedures
and practices that it employs when managing cer-
tificates (issuing, revoking, renewing, and rekey-
ing). The CPS describes manual processes for se-
curely operating the CA and contains information
on cryptographic aspects, including management
of the keys used by the CA (see also key manage-
ment). The certificate authority documents in its
CPS that it manages certificates according to some
certificate policy (see trust model). The certificate
policy lists the requirements for the management
of certificates by the CA and defines the applica-
bility of a certificate issued under this policy. The
policy might for example indicate that the certifi-
cate may be used for authenticating the subject
(holder) in certain types of business transactions.
The certificate policy under which a certificate
is issued may be indicated in the certificate. For
X.509 certificates a specific extension is defined for
this purpose. This information allows relying par-
ties to decide whether the certificate may be used
in a given situation without knowing the CPS of
the CA issuing the certificate.

Whereas the policy lists the requirements for
the CA, the CPS describes how the CA meets these
requirements. Thus the two documents will often
have similar structures. The certificate policy may
in particular define the rules for approving that a
given CPS satisfies the policy and for validating
that the CA continuously follows the CPS. It may,
for example, be required that an independent au-
ditor initially approves that the CPS complies with
the certificate policy and yearly reviews the pro-
cedures actually followed by the CA against the
CPS.

As a consequence, different certification author-
ities following different certificate practice state-
ments may issue certificates under the same policy
as long as their CPS satisfies the policy.

Torben Pedersen
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CRAMER–SHOUP PUBLIC
KEY SYSTEM

The Cramer–Shoup cryptosystem [6,8] is the first
public-key cryptography system that is efficient
and is proven to be chosen ciphertext secure with-
out the random oracle model using a standard
complexity assumption. Before describing the sys-
tem we give a bit of history.

The standard notion of security for a public-key
encryption system is known as semantic security
under an adaptive chosen ciphertext attack and
denoted by IND-CCA2. The concept is due to
Rackoff and Simon [12] and the first proof that
such systems exist is due to Dolev et al. [9]. Several
efficient constructions for IND-CCA2 systems exist
in the random oracle model. For example, OAEP is
known to be IND-CCA2 when using the RSA trap-
door permutation [2, 10]. Until the discovery of
the Cramer–Shoup system, there were no effi-
cient IND-CCA2 systems that are provably se-
cure under standard assumptions without random
oracles.

The Cramer–Shoup system makes use of a
group G of prime order q. It also uses a hash
function H : G3 → Zq (see also modular arith-
metic). We assume that messages to be encrypted
are elements of G. The most basic variant of the
systems works as follows:
Key Generation. Pick an arbitrary generator g

of G. Pick a random w in Z
∗
q and random x1, x2,

y1, y2, z in Zq . Set ĝ = gw, e = gx1 ĝx2 , f = gy1 ĝy2 ,

h = gz. The public key is (g, ĝ, e, f, g, G, q, H)
and the private key is (x1, x2, y1, y2, z, G, q, H).

Encryption. Given the public key
(g, ĝ, e, f, h, G, q, H) and a message m ∈ G:
1. Pick a random u in Zq .
2. Set a = gu, â = ĝu, c = hu · m, v = H(a, â, c),

d = eu fuv.
3. The ciphertext is C = (a, â, c, d) ∈ G4.

Decryption. To decrypt a ciphertext C =
(a, â, c, d) using the private key (x1, x2, y1, y2,

z, G, q, H):
1. Test that a, â, c, d belong to G; output ‘reject’

and halt if not.
2. Compute v = H(a, â, c) ∈ Zq . Test that d =

ax1+vy1 âx2+vy2 ; output ‘reject’ and halt if not.
3. Compute m = c/az ∈ G and output m as the

decryption of C.

Cramer and Shoup prove that the system is
IND-CCA2 if the DDH assumption [3] (see Deci-
sional Diffie–Hellman problem) holds in G and
the hash function H is collision resistant. They
show that if a successful IND-CCA2 attacker ex-
ists, then (assuming H is collision resistant) one
can construct an algorithm B, with approximately
the same running as the attacker, that decides if
a given 4-tuple g, ĝ, a, â ∈ G is a random DDH tu-
ple or a random tuple in G4. Very briefly, Algo-
rithm B works as follows: it gives the attacker
a public key for which B knows the private key.
This enables B to respond to the attacker’s de-
cryption queries. The given 4-tuple is then used to
construct the challenge ciphertext given to the at-
tacker. Cramer and Shoup show that if the 4-tuple
is a random DDH tuple, then the attacker will win
the semantic security game with non-negligible
advantage. However, if the input 4-tuple is a ran-
dom tuple in G4, then the attacker has zero advan-
tage in winning the semantic security game. This
behavioral difference enables B to decide whether
the given input tuple is a random DDH tuple
or not.

We briefly mention a number of variants of the
system. Ideally, one would like an IND-CCA2 sys-
tem that can be proven secure in two different
ways: (i) without random oracles it can be proven
secure using the decisional Diffie–Hellman as-
sumption, and (ii) with random oracles it can be
proven secure using the much weaker computa-
tional Diffie–Hellman assumption. For such a sys-
tem, the random oracle model provides a hedge in
case the DDH assumption is found to be false. A
small variant of the Cramer–Shoup system above
can be shown to have this property [8].

Occasionally, one only requires security against
a weak chosen ciphertext attack in which the at-
tacker can only issue decryption queries before be-
ing given the challenge ciphertext [1, 11]. A sim-
pler version of the Cramer–Shoup system, called
CS-Lite, can be shown to be secure against this
weaker chosen ciphertext attack assuming DDH
holds in G. This variant is obtained by computing
d as d = eu. There is no need for y1, y2, f, or the
hash function H. When decrypting we verify that
d = ax1 âx2 in step 2.

Finally, one may wonder how to construct
efficient IND-CCA2 systems using an assump-
tion other than DDH. Cramer and Shoup [7]
showed that their system is a special case of a
more general paradigm. Using this generaliza-
tion they construct a CCA2 system based on the
Quadratic Residuosity assumption modulo a com-
posite. They obtain a more efficient system us-
ing a stronger assumption known as the Pal-
lier assumption. Other constructions for efficient
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IND-CCA2 systems are given in [4, 5]. Finally, we
note that Sahai and Elkind [13] show that the
Cramer–Shoup system can be linked to the Naor–
Yung double encryption paradigm [11].

Dan Boneh
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CREDENTIALS

In a general sense, credentials are something that
gives a title to credit or confidence. In computer
systems, credentials are descriptions of privileges
that are issued by an authority to a subject. The
privilege may be an access right, an eligibility,
or membership (see also privilege management
and access control). Examples from real life are
driver’s licenses, club membership cards, or pass-
ports. A credential can be shown to a verifier in or-
der to prove one’s eligibility or can be used toward
a recipient in order to exercise the described privi-
lege or receive the described service. The integrity
of a credential scheme relies on the verifiers being
able to effectively check the following three condi-
tions before granting access or providing service:
1. The credential originates from a legitimate au-

thority. For example, the alleged authority is
known or listed as an approved provider of cre-
dentials for the requested service.

2. The credential is legitimately shown or used by
the respective subject.

3. The privilege described is sufficient for the ser-
vice requested.

In centralized systems, credentials are called ca-
pabilities, i.e., descriptions of the access rights
to certain security critical objects (see access
control). The centralized system manages the is-
suing of capabilities to subjects through a trusted
issuing process, and all attempts of subjects to ac-
cess objects through a trusted verifier, i.e., the ac-
cess enforcement mechanism. If the subject has
sufficient capabilities assigned, it is allowed to ac-
cess the requested object, otherwise the access is
denied. The capabilities and their assignment to
subjects are stored in a central trusted repository,
where they can be looked up by the access enforce-
ment mechanism. Thus, in centralized systems,
the integrity requirements 1, 2, 3 are enforced by
trusted central processes.
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In distributed systems there are autonomous
entities acting as issuing authorities, as users who
get credentials issued or show/use credentials, or
as verifiers. Distributed credentials need to sat-
isfy the above integrity requirements even in the
presence of one or more cheating users, possi-
bly collaborating. In addition, one can be inter-
ested in privacy requirements of users against
cheating issuers and verifiers, possibly collabo-
rating. David Chaum introduced credentials in
this context of distributed systems in [8]. Dis-
tributed credentials have been proposed to repre-
sent such different privileges as electronic cash,
passports, driver’s licenses, diplomas, and many
others. Depending on what privilege a credential
represents, its legitimate use must be restricted
appropriately (see integrity requirement 3 above).
The following atomic use restrictions have been
considered in the literature.
Nontransferable credentials cannot be (suc-

cessfully) shown by subjects to whom they have
not been issued in the first place. Such creden-
tials could represent nontransferable privileges
such as diplomas or passports.

Revocable credentials cannot be (successfully)
shown after they have expired or have been
revoked. Such credentials could represent re-
vocable privileges such as driver’s licenses or
public key certificates commonly used in public
key infrastructures (PKI).

Consumable credentials cannot be (success-
fully) shown after they have been used a spec-
ified number of times. Such credentials could
represent privileges that get consumed when
you use them, e.g., electronic cash.

More complex use restrictions can be defined
by combining these atomic use restrictions in
Boolean formulae. For example, revocable non-
transferable credentials could be used as driver’s
licenses that expire after a specified period of, e.g.,
2 years.

A credential scheme is called online if its cre-
dentials can be shown and used only by involv-
ing a central trusted authority that needs to clear
the respective transactions. If the holder and ver-
ifier can do so without involving a third party, the
credentials scheme is called offline. Online cre-
dential schemes are regarded as more secure for
the issuers and verifiers, while offline credential
schemes are regarded as more flexible and conve-
nient to customers.

Credentials and their use could carry a lot of per-
sonal information about their holders. For exam-
ple, consider an automated toll system that checks
the driver’s license of each car driver frequently
but conveniently via wireless road check points.

Such a system would effectively ban drivers with-
out a valid license, but it could also effectively
monitor the moving of all honest drivers. Consid-
erations like this led Chaum [8] to look for privacy
in credentials:
Unlinkable credentials can be issued and

shown/used in such a way that even a coalition
of cheating issuers and verifiers has no chance
to determine which issuing and showing/using
or which two showings/usings originate from the
same credential (see unlinkability).

Unlinkable credentials also leave the holders
anonymous, because if transactions on the same
credential cannot be linked, neither can such
transactions be linked to the credential holder’s
identity. (Otherwise, they were no longer unlink-
able.)

In the cryptographic literature, the term cre-
dential is most often used for nontransferable
and unlinkable credentials, i.e., those that are
irreversibly tied to human individuals, and pro-
tecting the privacy of users. Numerous crypto-
graphic solutions have been proposed both for con-
sumable credentials and for personal credentials
alike. Chaum et al. [14] kicked off the develop-
ment of consumable credentials. Improvements
followed by Chaum et al. [10–12], Chaum and
Pedersen [15], Cramer and Pedersen [17], Brands
[2], Franklin and Yung [21], and others. Brands so-
lution achieves overspending prevention by using
a wallet-with-observer architecture (see [19] and
electronic wallet), overspender detection without
assuming tamper resistant hardware, and uncon-
ditional unlinkability of payments also without
assuming tamper resistant hardware. Brands so-
lution satisfied almost all requirements that had
been stated by 1992 for efficient offline consum-
able credentials (e-cash) in a surprisingly efficient
way.

Naccache and von Solms [23] pointed out later
that unconditional unlinkability (which implies
payer anonymity) might be undesirable in practice
because it would allow blackmailing and money
laundering. They suggested to strive for a better
balance between the individuals’ privacy and law
enforcement. This work triggered a number of pro-
posals for consumable credentials with anonymity
revocation by Stadler et al. [24], Brickell et al. [4],
Camenisch et al. [7], and Frankel et al. [20].

About the same amount of work has been
done on developing personal credential schemes.
Quite surprisingly, the problem of nontransfer-
ability between cheating collaborating individu-
als was neglected in many of the early papers
by Chaum and Evertse [8, 9, 13] and Chen [16].
Chen’s credentials are more limited than Chaum’s
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and Evertse’s because they can be shown only
once. Damård [18] stated nontransferability as a
security requirement but the proposed solution
did not address nontransferability. Chaum and
Pedersen [15] introduced the wallet-with-observer
architecture and proposed personal credentials to
be kept inside wallet databases, i.e., decentral-
ized databases keeping all the privileges of their
respective owners. Their proposal only partially
addressed nontransferability by suggesting “dis-
tance bounding protocols” (Brands and Chaum [3])
in order to ensure the physical proximity of a
wallet-with-observer during certain transactions.
Distance bounding protocols can prevent Mafia
frauds, where the individual present at an organi-
zation connects her device online to the wallet of
another remote individual who holds the required
credential and then diverts the whole communica-
tion with the organization to that remote wallet.
Distance bounding cannot, however, discourage
individuals from simply lending or trading their
wallets. Lysyanskaya et al. [22] proposed a general
scheme based on one-way functions and general
zero-knowledge proofs, which is impractical, and
a practical scheme that has the same limitations
as Chen’s: credentials can be shown only once.

The fundamental problem of enforcing non-
transferability is simply this: the legitimate use
of personal credentials (in contrast to consumable
credentials) can neither be detected nor prevented
by referring only to the digital activity of individ-
uals. There must be some mechanism that can
distinguish whether the individual who shows a
personal credential is the same as the individ-
ual to whom that credential has been issued be-
fore. Since personal devices as well as personal
access information such as PINs and passwords
can easily be transferred from one individual to
another, there is no other way to make this dis-
tinction but by referring to hardly transferable
characteristics of the individuals themselves, for
example, through some kind of (additional) bio-
metric identification (see biometrics) of individu-
als. Then, illegitimate showing can be recognized
during the attempt and thus can be prevented
effectively, however, at the price of assuming
tamper resistant biometric verification hardware.
Bleumer proposed to enhance the wallet-with-
observer architecture of Chaum and Pedersen [15]
by a biometric recognition facility embedded into
the tamper resistant observer in order to achieve
transfer prevention [1].

Camenisch and Lysyanskaya [5] have proposed
a personal credential scheme which enforces non-
transferability by deterring individuals who are
willing to transfer, pool, or share their creden-

tials. Individuals must either transfer all their
credentials or none (all-or-nothing nontransfer-
ability). They argue that even collaborating at-
tackers would refrain from granting each other
access to their credit card accounts, when they
are collaborating only to share, e.g., a driver’s li-
cense. Obviously, this deterrence from not trans-
ferring credentials is quickly neutralized if two or
more participants mutually transfer credentials
to each other. If any of them misuses a credit card
account of the other, he may experience the same
kind of misuse with his own credit card account as
a matter of retaliation. It appears as if this con-
cept promotes and protects closed groups of crim-
inal credential sharers. In addition, it would be
hard in practice to guarantee that for each in-
dividual the risk of sharing any particular cre-
dential is significantly higher than the respective
benefits. Thus, for most real-world applications
such as driver’s licenses, membership cards, or
passports, this deterrence approach to nontrans-
ferability would face severe acceptance problems
from the issuers’ and verifiers’ perspective. Their
scheme also supports anonymity revocation as an
option, but at the cost of about a 10-fold increase
of computational complexity. Subsequent work by
Camenisch and Lysyanskaya [6] also shows how
to revoke their anonymous credentials on demand.
The price of this feature is an even higher compu-
tational complexity of the showing of credentials.

It appears that detecting a cheating individ-
ual who has lent his personal credentials to an-
other individual, or who has borrowed a personal
credential from another individual is technically
possible, but is often unacceptable in practice.
Unauthorized access may lead to disastrous or
hard-to-quantify damage, which cannot be com-
pensated after the access has been made regard-
less how individuals are persecuted and what
measures of retaliation are applied.

The wisdom of more than 20 years of research
on credentials is that in offline consumable creden-
tials overspender detection can be achieved by dig-
ital means alone while overspending prevention
can only be achieved by relying on tamper resis-
tant hardware. In online consumable credentials,
both overspender detection and overspending pre-
vention can be achieved without relying on tamper
resistant hardware.

In personal credentials, one is interested in
transfer prevention, which we have called non-
transferability. Considering a separate integrity
requirement of transferer detection makes lit-
tle sense in most applications because the po-
tential damage caused by illegitimately trans-
ferring credentials is hard to compensate for.
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Nontransferability can be achieved in a strict
sense only by relying on tamper resistant biomet-
ric verification technology, regardless if it is an
online or offline scheme. Nontransferability can
be approximated by deterrence mechanisms inte-
grated into the personal credential schemes, but it
remains to be analyzed for each particular appli-
cation how effective those deterrence mechanisms
can be.

Gerrit Bleumer
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CROSS-CORRELATION

Let {at } and {bt } be two sequences of period n (so
at = at+n and bt = bt+n for all values of t) over an
alphabet being the integers mod q (see modular
arithmetic). The cross-correlation between the se-
quences {at } and {bt } at shift τ is defined as

C(τ ) =
n−1∑
t=0

ωat+τ −bt ,

where ω is a complex qth root of unity. Note that
in the special case of binary sequences, q = 2 and
ω = −1.

In the special case when the two sequences are
the same, the cross-correlation is the same as
the auto-correlation. Many applications in stream
ciphers and communication systems require large
families of cyclically distinct sequences with a low
maximum nontrivial value of the auto- and cross-
correlation between any two sequences in the
family.

Tor Helleseth
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CRYPTANALYSIS

Cryptanalysis is the discipline of deciphering a ci-
phertext without having access to the keytext (see
cryptosystem), usually by recovering more or less
directly the plaintext or even the keytext used, in
cases favorable for the attacker by reconstructing
the whole cryptosystem used. This being the worst
case possible for the attacked side, an acceptable
level of security should rest completely in the key
(see Kerckhoffs’ and Shannon’s maximes). “A sys-
tematic and exact reconstruction of the encryp-
tion method and the key used” (Hans Rohrbach,
1946) is mandatory if correctness of a cryptana-
lytic break is a to be proved, e.g., when a cryptan-
alyst is a witness to the prosecution.

TERMINOLOGY: Cryptanalysis can be passive,
which is the classical case of intercepting the mes-
sage without giving any hint that this was done,
or active, which consists of altering the message
or retransmitting it at a later time, or even of in-
serting own messages (some of these actions may
be detected by the recipient).

A compromise is the loss (or partial loss) of se-
crecy of the key by its exposure due to crypto-
graphic faults. We shall describe various kinds of
key compromises.

A plaintext-ciphertext compromise is caused by
a transmission of a message in ciphertext followed
(e.g., because the transmission was garbled) by
transmission of the same message in plaintext. If
information on the encryption method is known
or can be guessed, this results in exposure of the
key. This attack may be successful for a plaintext
of several hundred characters.

A plaintext-plaintext compromise is a transmis-
sion of two isologs, i.e., two different plaintexts,
encrypted with the same keytext. If the encryp-
tion method is such that the encryption steps form
a group (see key group and pure crypto-system),
then a “difference” p1 − p2 of two plaintexts p1, p2
and a “difference” c1 − c2 of two plaintexts c1, c2
may be defined and the role of the keytext is can-
celled out: c1 − c2 = p1 − p2. Thus, under suitable
guesses on the plaintext language involved, e.g.,
on probable words and phrases, a “zig-zag” method
(see below), decomposing c1 − c2, gives the plain-
texts and then also the keytext. This compromise
is not uncommon in the case of a shortage of key-
ing material. It is even systemic if a periodic key
is used.

A ciphertext-ciphertext compromise is a trans-
mission of two isomorphs, i.e., the same plain-
text, encrypted with two different keytexts.
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Exchanging the role of plaintext and keytext, this
case is reduced to and can be treated as a plaintext-
plaintext compromise. This compromise is even
systematic in message sets, where the same mes-
sage is sent in different encryption to many
places, such as it is common in public key crypto-
systems.

One speaks of a brute force attack or exhaus-
tive key search if all possible keytexts are tried
out to decrypt a ciphertext (knowing or guessing
the cryptosystem used). At present, with the still
growing speed of supercomputers, every 10 years
the number of trial and error steps that is feasible
is increased by a factor of roughly 25.

Further commonly used terminology will be
given now. In a ciphertext-only attack, only one
or more ciphertexts under the same keytext
are known. In a known-plaintext attack one
knows one or more matching pairs of plaintext–
ciphertext. Frequently, this attack is carried out
with rather short fragments of the plaintext
(e.g., probable words and phrases). In a chosen-
plaintext attack one can choose plaintexts and
obtain the corresponding ciphertexts. Sometimes
this can be done with the proviso that the plain-
texts may be chosen in a way that depends on
the previous encryption outcomes. How to foist the
plaintext on the adversary is not a cryptographer’s
problem, but is a problem of misleading the adver-
sary and is to be executed by the secret services.
Finally, in a chosen-ciphertext attack there is the
possibility to choose different ciphertexts to be de-
crypted, with the cryptanalyst having access to the
decrypted plaintext. An example may be the inves-
tigation of a tamperproof decryption box, with the
hope of finding the key.

STATISTICAL APPROACHES TO CLASSICAL
CRYPTOSYSTEMS: We shall now discuss some
statistical methods that can be used by the
cryptanalist.

Frequency matching is a cryptanalytic method
for breaking monoalphabetic (Cæsar type) encryp-
tions. One determines the frequency of the char-
acters in a ciphertext and compares them with the
frequency of the characters in a language known
or assumed to be used for the plaintext. To give

an example: the frequency profile of the English
language looks like

a y  zb c d e f g h i j k l m n o p q r s t u v w x

If a ciphertext of 349 characters has the follow-
ing distribution:

A ZB C D E F G H I J K L M N O P Q R S T U V W X
1 0 5 36 9 910 9 10 1054 2123 1 8 8 41 3 4 19 22 24 18 00 4

Y

it is easy to guess a Cæsar encryption that counts
down three letters in the standard alphabet: a .=
D, b .= E, c .= F, . . . , z .= C. More difficult is the
situation if a mixed alphabet is to be expected.
Then the first step is to group the letters in cliques:
the most frequent ones, the very rare ones, and
some in between

{etaoin} {srh} {ld} {cumfpgwyb} {vk} {xjqz},

and to refine the decryption within these cliques
by trial and error.

Depth is a notion used in connection with the
cryptanalysis of polyalphabetic encryptions. It
means the arrangement of a number of ciphertexts
supposedly encrypted with the same keytext—for
periodic polyalphabetic encryption broken down
according to the assumed period.

Example: a depth of five lines:

T C C V L E S K P T X M P V W H Y M V G X B O R V C W A R F
V L L B V C K W F P E H E C F C G N Z E K K K V I H D D I D
M Y Y R D M J W M C U I G L O K M X L R E W H X M T J H A S
B K Q T Z B Z W K W Z X G Z O V T B A T K W M G M R J K L P
M Y Y V H B W J D X C P C Z O H V T S I V M E B S O H R A U.

The lines of a depth are isologs: they are en-
crypted with the same key text and represent a
plaintext–plaintext compromise.

By forming differences of the elements in se-
lected columns, a reduction of depth to a monoal-
phabetic (Cæsar type) encryption is accomplished.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

Cryptanalysis 115

This makes it possible to derive the keytext

TRUTH ISSOP RECIO USTHA TITNE EDSAB

which decrypts the depth (by means of the
Vigenère table) to

a l i c e w a s b e g i n n i n g t o g e t v e r y t i r e
c u r i o u s e r a n d c u r i o u s e r c r i e d a l i c
t h e y w e r e i n d e e d a q u e e r l o o k i n g p a r
i t w a s t h e w h i t e r a b b i t t r o t t i n g s l o
t h e c a t e r p i l l a r a n d a l i c e l o o k e d a t.

Forming a depth is possible as soon as the value
of the period of the periodic polyalphabetic encryp-
tion has been found, for instance by the Kasiski
method below. Forming a depth is not possible,
if the key is non-periodic. But even for periodic
polyalphabetic encryptions, forming a depth of suf-
ficiently many elements (usually more than six) is
not possible if the keytext is short enough.

When the alphabets used in a polyalphabetic
periodic substitution are a mixed alphabet and a
shifted version of it, symmetry of position is the
property that for any pair of letters their distance
is the same in all rows of the encryption table.
For a known period, it may allow, after forming a
depth, the complete reconstruction of the substi-
tution (Auguste Kerckhoffs, 1883).

Kasiski’s method. If in a periodic polyalphabetic
encryption the same plaintext sequence of char-
acters happens to be encrypted with the same
sequence of key characters, the same ciphertext
sequence of characters will occur. Thus, in order
to determine the period of a periodic polyalpha-
betic encryption, the distance between two “par-
allels” in the ciphertext (pairs, triples, quadru-
ples etc. of characters) is to be determined; the
distance of genuine parallels will be a multiple
of the period. The greatest common divisor of
these distances is certainly a period—it may, how-
ever, not be the smallest period. Moreover, the pe-
riod analysis may be disturbed by faked parallels.
Kasiski developed this fundamental test for key
periodicity in 1863 and shattered the widespread
belief that periodic polyalphabetic encryption is
unbreakable.

The Kappa test is based on the relative fre-
quency κ(T, T′) of pairs of text segments T =
(t1, t2, t3, . . . , tM), T′ = (t ′

1, t ′
2, t ′

3, . . . , t ′
M) of equal

length, M ≥ 1, with the same characters at the
same positions (that is why this method is also
called the index of coincidence, often abbreviated
to I.C., William F. Friedman, 1925). The value
of Kappa is rather typical for natural languages,
since the expected value of κ(T, T′) is

∑N
i=1 p2

i ,
where pi is the probability of occurrence of the
ith character of the vocabulary to which T and T′

belong. For sufficiently long texts, it is statistically
roughly equal to 1/15 = 6.67% for the English lan-
guage and 1/12.5 = 8% for the French language
and the German language. Most importantly, it
remains invariant if the two texts are polyalpha-
betically encrypted with the same keytext. If, how-
ever, they are encrypted with different keytexts
or with the same key sequence, but with differ-
ent starting positions, the character coincidence
is rather random and the value of Kappa is sta-
tistically close to 1/N, where N is the size of the
vocabulary. The Kappa test applied to a ciphertext
C and cyclically shifted versions C(u) of the cipher-
text, where u denotes the number of shifts, yields
the value κ(C, C(u)). If the keytext is periodic with
period d, then for u = d and for all multiples of d,

a value significantly higher than 1/N will occur,
while in all other cases a value close to 1/N will be
found. This is the use of the Kappa examination
for finding the period; it turned out to be a more
accurate instrument than the Kasiski method.

The Kappa test may also be used for adjust-
ing two ciphertexts C, C′ which are presumably
encrypted with the same keytext, but with dif-
ferent starting positions (called superimposition).
By calculating κ(C(u), C′), a shift d, determined
as a value of u, for which κ(C(u), C′) is high,
brings the two ciphertexts C(d) and C′ “in phase”,
i.e., produces two isologs. In this way, a depth of
n texts can be formed by superimposition from
a ciphertext–ciphertext compromise of n cipher-
texts.

The De Viaris attack is a cryptanalytic method
invented by Gaëtan Henri Léon de Viaris in 1893
to defeat a polyalphabetic cryptosystem proposed
by Étienne Bazeries, in which the alphabets did
not form a Latin square. (A Latin square for a vo-
cabulary of N characters is an N × N matrix over
this alphabet such that each character occurs just
once in every line and in every column.)

Pattern finding is a cryptanalytic method that
can be applied to monoalphabetic encryptions. It
makes use of patterns of repeated symbols. For ex-
ample, the pattern 1211234322 with “signature”
4 + 3 + 2 + 1 (four twos, three ones, two threes and
one four) most likely allows in English nothing
but peppertree, the pattern 1213143152 with the
signature 4 + 2 + 2 + 1 + 1 nothing but initiation
(Andree 1982, based on Merriam-Webster’s Dictio-
nary).

Noncoincidence exhaustion. Some cryptosys-
tems show peculiarities: genuine self-reciprocal
permutations never encrypt a letter by itself. Porta
encryptions even always encrypt a letter from the
first half of the alphabet by a letter from the
second half of the alphabet and vice versa. Such
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properties may serve to exclude many positions
of a probable word (a probable word is a word or
phrase that can be expected to be present in a mes-
sage according to the context; it may form the basis
for a known-plaintext attack).

Zig-zag exhaustion. For encryptions with a key
group (see key), the difference of two plaintexts
is invariant under encryption: it equals the dif-
ference of the corresponding ciphertexts. Thus in
case of a plaintext–plaintext compromise (with a
depth of 2), the difference of the ciphertexts can be
decomposed into two plaintexts by starting with
probable words or phrases in one of the plaintexts
and determining the corresponding plaintext frag-
ment in the other plaintext, and vice versa. This
may lead in a zig-zag way (“cross-ruff”) to complete
decryption.

Theoretically, the decomposition is unique pro-
vided the sum of the relative redundancies of the
two texts is at least 100%. For the English lan-
guage, the redundancy (see information theory) is
about 3.5 [bit/char] or 74.5% of the value 4.7 ≈
log226 [bit/char].

Multiple anagramming is one of the very few
general methods for dealing with transposition ci-
phers, requiring nothing more than two plaintexts
of the same length that have been encrypted with
the same encryption step (so the encrypting trans-
position steps have been repeated at least once).
Such a plaintext–plaintext compromise suggests a
parallel to Kerkhoffs’ method of superimposition.
The method is based on the simple fact that equal
encryption steps perform the same permutation of
the plaintext letters. The ciphertexts are therefore
written one below the other and the columns thus
formed are kept together.

Friedrich L. Bauer
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CRYPTO MACHINES

These are machines for automatic encryption us-
ing a composition of mixed alphabet substitutions
often performed by means of rotors. Examples
are: Enigma (Germany), Hebern Electric Code
Machine (USA), Typex (Great Britain), SIGABA =̂
M-134-C (USA), and NEMA (Switzerland).

Rotor: wheel, sitting on an axle and having on
both sides a ring of contacts that are internally
wired in such a way that they implement a per-
mutation.

The Enigma machine (Figures 1 and 2) was in-
vented by the German Arthur Scherbius. In 1918,
he filed a patent application for an automatic,
keyboard-operated electric encryption machine
performing a composition of a fixed number of
polyalphabetic substitution (see substitutions and
permutations) steps (four in the early commercial
models) with shifted mixed alphabets performed
by wired keying wheels (called rotors).

The key sequence was generated by the cyclo-
metric, “counter-like” movement of the wheels.
The fixed substitutions of the rotors were to be
kept secret, the starting point of the key sequence
was to be changed at short intervals. Later “im-
provements” were a reflector (Willi Korn, 1925)
which made the encryption self-reciprocal (and
opened a way of attack) and (by request from
the German Armed Forces Staff) a plugboard per-
forming a substitution that could be changed at

e

m

E

M

+4V

Fig. 1. Electric current through a three-rotor Enigma
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Fig. 2. Cipher machine Enigma (four-rotor version)

short intervals (which in fact helped to avoid cer-
tain manifest attacks). The German Wehrmacht
Enigma had three rotors (to be selected out of up
to eight) and a reflector (to be selected out of two).
In the Navy variant of 1942 the reflector was not
fixed. Certain weaknesses of the Enigma encryp-
tion were not caused by the machine itself, but by
cryptographic blunders in operating it.

An exceptional role was played by the German
Abwehr, the Intelligence Service of the German
Armed Forces, as far as ENIGMA goes: It used a
variant of the old ENIGMA D with a pinion/tooth
wheel movement of the rotors, with 11, 15, and 17
notches on the wheels (‘11-15-17 ENIGMA’), and
naturally without plugboard—following rather
closely Willi Korn’s German Patent No. 534 947,
filed November 9, 1928, US Patent No. 1,938,028
of 1933.

A few specimens of a three-rotor-ENIGMA
(‘ENIGMA T’), likewise without plugboard, but
with five-notched rotors, were destined for the
Japanese Navy, but did not get out of the harbor
and were captured by the Allies near Lorient, in
Brittany.

In England, too, rotor machines were built dur-
ing the Second World War: TYPEX was quite
an improved ENIGMA (instead of the plugboard
there was an entrance substitution performed by
two fixed rotors which was not self-reciprocal).

In the USA, under the early influence of William
Friedman (1891–1969) and on the basis of the
Hebern development, there was in the early 1930s

a more independent line of rotor machines, lead-
ing in 1933 to the M-134-T2, then to the M-134-A
(SIGMYC), and in 1936 to the M-134-C (SIGABA)
of the Army, named CSP889 (ECM Mark II) by the
Navy. The Germans obviously did not succeed in
breaking SIGABA, which had five turning cipher
rotors with irregular movement. It had been made
watertight by Frank Rowlett (1908–1998), an aide
of Friedman since 1930.

An interesting postwar variant of the ENIGMA
with seven rotors and a fixed reflector was built
and marketed by the Italian company Ottico Mec-
canica Italiana (OMI) in Rome.

The Swiss army and diplomacy used from 1947
on an ENIGMA variant called NEMA (‘Neue Mas-
chine’) Modell 45. It was developed by Hugo
Hadwiger (1908–1981), Heinrich Weber (1908–
1997), and Paul Glur, and built by Zellweger A.G.,
Uster. It had ten rotors, six of which were active
ones, while the others served for rotor movement
only. The use of a reflector was unchanged.

Based on US-American experiences and simi-
lar to TYPEX was the rotor machine KL-7 of the
NATO, in use until the 1960s.

The Swedish inventor Boris Hagelin created the
Hagelin machine (Figure 3) in 1934. It was an

Fig. 3. The M-209 Hagelin machine
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automatic mechanical encryption machine, with
alphabet-wheel input and a printing device, per-
forming by a “lug cage” adder a Beaufort substi-
tution (see Beaufort encryption) controlled by five
keying wheels with 17, 19, 21, 23, and 25 teeth
according to a pre-chosen “step figure.” The lug
matrix and the step figure can be changed by acti-
vating suitable pins. This model, called C-35, was
followed by a C-36, with six keying wheels and 17,
19, 21, 23, 25, and 26 teeth. Under the cover name
M-209, C-36 was built by Smith-Corona for the US
Army, Navy and Air Forces, altogether accounting
for 140 000 machines. The Hagelin machines were
less secure than the Enigma.

Friedrich L. Bauer
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CRYPTOLOGY

Cryptology is the discipline of cryptography and
cryptanalysis and of their interaction. Its aim is
secrecy or confidentiality: the practice of keep-
ing secrets, maintaining privacy, or concealing
valuables. A further goal of cryptology is in-
tegrity and authenticity, usually given by a mes-
sage authentication code (see MAC algorithms) or
digital signature unique to the sender and serving
for his identification.
Cryptography: the discipline of writing a message

in ciphertext (see cryptosystem), usually by a
translation from plaintext according to some
(frequently changing) keytext, with the aim of
protecting a secret from adversaries, intercep-
tors, intruders, interlopers, eavesdroppers, op-
ponents or simply attackers, opponents, ene-
mies. Professional cryptography protects not
only the plaintext, but also the key and more
generally tries to protect the whole crypto-
system.

Steganography: counterpart of cryptography, com-
prising technical steganography (working with
invisible inks and hollow heels, etc.) and linguis-
tic steganography, the art of hiding information
by linguistic means. Of the later, we mention
semagrams, open code, comprising jargon code
(masked secret writing, e.g., cues), and conceal-

Fig. 1. Semagram. The message is in Morse code, formed
by the short and long stalks of grass to the left of
the bridge, along the river bank and on the garden
wall. It reads: “compliments of CPSA MA to our chief
Col. Harold R. Shaw on his visit to San Antonio May
11, 1945.” (Shaw had been head of the Technical Oper-
ations Division of the US government’s censorship divi-
sion since 1943)

ment ciphers (veiled secret writings, like the
null cipher and grilles (see substitutions and
permutations)). Linguistic steganography has
close connections with cryptography, e.g., the
uses of grilles and transposition ciphers (see
substitutions and permutations) are related.

Semagram: a picture or grapheme hiding a mes-
sage behind innocent looking, frequently minute
graphic details (Figure 1).

Open code: a class of linguistic steganography, se-
lected words or phrases made to appear innocent
in the surrounding text.

Cue: a short, prearranged jargon-code message,
usually a word or phrase. The importance of the
message is strongly linked to the time of trans-
mission. Famous is the encrypted Japanese mes-
sage HIGASHI NO KAZE AME (“east wind, rain”) on
December 7, 1941, a cue with the meaning “war
with the USA.”
Null cipher, where only certain letters are sig-

nificant (the others being nulls):
� encryption rules of the type “the nth charac-

ter after a particular character,” specifically “the
next character after a space” (acrostics),

� or rules for inserting a null between syllables
(Tut Latin: TUT) or after phonetic consonants
(Javanais: chaussure �→ CHAVAUSSAVURAVE)

� or rules for suffixing nulls, e.g., un fou �→
UNDREQUE FOUDREQUE (Metz 1670), also com-
bined with shuffling of some letters (largonjem:
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boucher �→ LOUCHERḂEM, pig Latin: third �→
IRDṪḢAY);

� a borderline case is pure transposition: revers-
ing letters of a word (back slang), e.g., tobacco
�→ OCCABOT).

Friedrich L. Bauer
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CRYPTOSYSTEM

A cryptosystem (or cipher system) is a system con-
sisting of an encryption algorithm, a decryption
algorithm, and a well-defined triple of text spaces:
plaintexts, ciphertexts, and keytexts. For a given
keytext the encryption algorithm will map a plain-
text to a (usually uniquely determined) ciphertext.
For the corresponding keytext, the decryption al-
gorithm will map the ciphertext to the (usually
uniquely determined) plaintext. The cryptosystem
may be performed by hand methods (“hand ci-
pher”), by machine methods (“machine cipher”),
or by software (see also Shannon’s model).
Plaintext: text in an open language that is com-

monly understood among a larger group of peo-
ple.

Ciphertext: text (“cryptogram”) in a secret lan-
guage that is understood only by few, autho-
rized people, usually after decryption by hand or
machine.
We mention two special properties: an endomor-

phic cryptosystem is a cryptosystem with iden-
tical plaintext and ciphertext space. Example:
{a, b, c, . . . , z} −→ {a, b, c, . . . , z}. A pure cryptosys-
tem is a cryptosystem that has the following prop-
erty: whenever enciphering Ek with key k, followed
by decipheringD j with key j, followed by encipher-
ing Ei with key i is performed, there is a key �

such that E� has the same effect: EiD jEk = E�. In
a pure cryptosystem, the mappings D jEk (“Ek fol-
lowed by D j”) form a group, with DkEk being the
identity.

An endomorphic cryptosystem is pure if and
only if its encipherings are closed under compo-
sition (Shannon), that is if its keys form a group,
the key group (see key).

Friedrich L. Bauer
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CRYPTREC

CRYPTREC was initially an abbreviation of
Cryptography Research and Evaluation Commit-
tee, which was set up in 2000 by METI (Ministry
of Economy, Trade and Industry, Japan) for the
purpose of evaluating cryptographic techniques to
assure their security for e-Government applica-
tions. However, since the CRYPTREC Advisory
Committee was founded by MPHPT (Ministry
of Public Management, Home Affairs, Posts and
Telecommunications, Japan) and METI in 2001 to
perform a policymaking study on the application of
cryptographic techniques, it has been interpreted
as the name of the organization of committees
involved in the project for evaluation of crypto-
graphic techniques available for the Japanese e-
Government. The project itself is now referred
to as CRYPTREC. From 2000 to 2002 the main
goal of CRYPTREC was to publish a list of recom-
mended ciphers for e-Government use. In March
2003 the list was published and established as
the guiding principle in the usage of cryptographic
techniques in the Japanese government ministries
and agencies.

EVALUATION TARGETS: In the fiscal years 2000
and 2001, CRYPTREC Evaluation Commit-
tee called for the submission of the cryptographic
techniques in order to compile a list of crypto-
graphic techniques that could be employed for e-
Government. In the public request for proposals,
the CRYPTREC Evaluation Committee did not
impose any restrictions on the national origin or
the organization of the applicant in order to pro-
vide an opportunity for impartial evaluation for
all applicants.

The CRYPTREC Evaluation Committee
specified several cryptographic techniques as
“indispensable cryptographic techniques.” The
CRYPTREC Evaluation Committee also evalu-
ated several cryptographic techniques as “specific
evaluation” target ciphers for special reasons such
as requests from standardization organizations
and the Law concerning Electronic Signatures
and Certification.

Basically, the evaluation targets can be catego-
rized into the following three types: “submitted
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cryptographic techniques,” “cryptographic tech-
niques for specific evaluation,” and “indispensable
cryptographic techniques.”

Submitted Cryptographic Techniques

Cryptographic techniques in the categories of
(1) digital signature, authentication, confidential-
ity, and key agreement for public-key cryptogra-
phy, (2) 64-bit block ciphers, 128-bit block ciphers,
and stream ciphers for symmetric-key cryptogra-
phy, and (3) hash functions and pseudorandom
number generators were sought for evaluation.
The applicants who submitted techniques were
asked to make their cryptographic techniques
procurable by the end of the fiscal year 2002.
CRYPTREC Evaluation Committee received a to-
tal of 63 applications in both fiscal years 2000 and
2001.

Indispensable Cryptographic Techniques

In addition to the cryptographic techniques sub-
mitted by the applicants, the CRYPTREC Evalua-
tion Committee has selected techniques that were
considered to be indispensable in the construc-
tion of e-Government systems. Such cryptographic
techniques must have either comparatively long
track records of use and evaluation, or have a long
history of usage. These targets were selected for
evaluation as “indispensable cryptographic tech-
niques” whether or not an applicant submitted
them.

Cryptographic Techniques for
Specific Evaluation

“Cryptographic techniques for specific evaluation”
are the cryptographic techniques that were eval-
uated by CRYPTREC on the basis of a special re-
quest, independent of their submission by an ap-
plication and independent from a specification as
“indispensable cryptographic techniques.” Crypto-
graphic techniques for specific evaluation in the
fiscal years 2000 and 2001 are classified into
the following three categories: (1) cryptographic
techniques specified in Guidelines on the Law
concerning Electronic Signatures and Certifica-
tion Services, (2) cryptographic techniques used in
SSL3.0/TLS1.0, and (3) contributions to ISO/IEC
JTC1/SC27.

EVALUATION AND SELECTION OF CRYPTO-
GRAPHIC TECHNIQUES: CRYPTREC has per-
formed security evaluations in order to select

cryptographic techniques that satisfy the level of
security sufficient for e-Government usage. CRYP-
TREC has also performed software and hardware
implementation evaluations to measure the pro-
cessing speed and amount of system resources
required.

In order to ensure that the technical evalu-
ations are impartial and adequate, CRYPTREC
has requested several specialists, besides its own
members, to conduct evaluations (referred to as
external evaluations).

In order to ensure that evaluations are fair for
all the cryptographic techniques in the same cat-
egory, CRYPTREC has applied the same evalua-
tion methods as much as possible to allow relative
comparisons.

Evaluation Items

The evaluation in CRYPTREC progressed gradu-
ally and in parallel to get a good understanding
of algorithm properties and characteristics such
as security and performance; the evaluation also
assessed how easy it was to develop efficient im-
plementations. There were four stages of the eval-
uation:
(1) Screening evaluation. Submitted documents

were studied to investigate whether the tar-
get cryptographic technique had any problems
in the design concept, design policies, security,
or implementation.

(2) Full evaluation. The following items were in-
vestigated: (a) whether known attacks are ap-
plicable or not, (b) computational cost required
for a known attack to succeed, (c) validity of
provable security, (d) validity of parameter/
key generating methods, (e) selection of auxil-
iary functions and methods used to implement
them in the scheme, (f) anticipated problems
of submitted cryptographic techniques in real
systems, and (g) whether any attack can be
mounted or not using the evaluators’ expertise.

The techniques were also compared with
other cryptographic techniques in order to as-
sess relative strengths and weaknesses.

(3) Software implementation evaluation. The com-
patibility and portability with respect to
computing resources and environments was
verified by checking whether the software op-
erated as described in the submitted docu-
ments in the following environments: (a) gen-
eral PC environment, (b) most popular server
environment, and (c) high-performance, high-
end environment.

(4) Hardware implementation evaluation. It was
investigated whether a third party could
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design the hardware using the submitted doc-
uments only.

Evaluation Criteria

The following criteria were set for evaluation
of cryptographic techniques according to the
categories.
(1) Public-key cryptographic techniques. If a

public-key cryptographic technique has a solid
track record of operation and evaluation over a
relatively long period of time and its specifica-
tions cannot be changed easily from the stand-
point of interoperability, the following condi-
tions must be satisfied:
(a) The cryptographic techniques must have

been evaluated and researched thoroughly
by a number of researchers.

(b) No security problem has been reported in
a realistic system.

Relatively new public-key cryptographic
techniques were required to have at least
“provable security.” A comprehensive secu-
rity evaluation was carried out in addition
to checking the provable security, including
issues such as the validity of number theo-
retic problems, the method of selecting recom-
mended parameters, and the method of using
auxiliary functions in a scheme.

(2) Symmetric cryptography techniques. Sym-
metric-key cryptographic techniques must
satisfy either of the following conditions:
(a) Even with the best attacking technique

available to date, a computational cost
of 2128 or more (i.e., exhaustive search
for a secret key) is required to break
symmetric-key cryptographic techniques.
It is necessary to show at the techniques
are secure against typical cryptanalytic at-
tacks such as differential and linear crypt-
analysis.

(b) Widely used symmetric-key cryptographic
techniques that have been evaluated in de-
tails and have no security problems in a
realistic system are selected. In this case,
a computational cost of 2100 or more is re-
quired to break them.

(3) Hash functions. Hash functions must satisfy
either of the following conditions:
(a) Even with the best attacking technique

available to date, the computational cost
to find the input value for a specific output
value is not less than the computational
cost required for an exhaustive search.
Also, even if the best attacking technique is
used, the computational cost to find a pair

of different input values with the same out-
put value is 2128 or more.

(b) Widely used hash functions that have no
security problems in realistic systems and
with a hash length of 160 bits or more are
selected.

(4) Pseudorandom number generators: Pseudo-
random number generators must satisfy all
the following conditions:
(a) The statistical properties are close to that

of a true random number. A past or future
unknown output bit is hard to predict from
the known output bit history.

(b) The seed size must be large enough to be
secure against an exhaustive key search
of the system that uses a pseudorandom
number generator.

(c) The statistical properties of pseudorandom
number generators must pass a typical sta-
tistical test suite for randomness such as
SP800-22.

Requirements for the Draft of the
e-Government Recommended
Ciphers List

The CRYPTREC Advisory Committee has re-
quested the CRYPTREC Evaluation Committee to
evaluate the candidates for e-Government ciphers,
cryptographic techniques that allow authentica-
tion, key agreement, confidentiality, and electronic
signature functions in the e-Government sys-
tem, and prepare an e-Government recommended
ciphers list considering the following three
points:
(1) Select several cryptographic techniques with

sufficient security for use in the e-Government
system (security guaranteed roughly 10
years).

(2) Select for each category at least one crypto-
graphic technique that is being-incorporated
or likely to be incorporated in commercial soft-
ware (to be used by the general public).

(3) Confirm the specifications of cryptographic
techniques recommended for e-Government to
guarantee that ciphers satisfying these speci-
fications can be procured.

E-GOVERNMENT RECOMMENDED CIPHERS
LIST: As a three-year comprehensive project, the
“e-Government recommended ciphers list
(draft)” authored by the CRYPTREC Evaluation
Committee was submitted to the CRYPTREC
Advisory Committee for review. Then, MPHPT
and METI invited comments from the general



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg March 9, 2005 21:5

122 Cryptrec

Table 1. e-Government recommended ciphers list (draft) (prepared in November 2002)

Category Name

Public-key Signature DSA
ciphers ECDSA

RSASSA-PKCS1-v1 5
RSA-PSS

Confidentiality RSA-OAEP
RSAES-PKCS1-v1 51

Key agreement DH
ECDH
PSEC-KEM2

Symmetric-key 64-bit block ciphers3 CIPHERUNICORN-E
ciphers Hierocrypt-L1

MISTY1
3-key Triple DES4

128-bit block ciphers AES
Camellia
CIPHERUNICORN-A
Hierocrypt-3
SC2000

Stream ciphers MUGI
MULTI-S01
128-bit RC45

Others Hash function RIPEMD-1606

SHA-16

SHA-256
SHA-384
SHA-512

Pseudorandom number PRNG based on SHA-1 in ANSI X9.42-2001 Annex C.1
generator7 PRNG based on SHA-1 for general purpose in FIPS 186-2

(+ change notice 1) Appendix 3.1
PRNG based on SHA-1 for general purpose in FIPS 186-2

(+ change notice 1) revised Appendix 3.1

Notes:
1 Use of this is permitted for the time being because it was used in SSL3.0/TLS1.0.
2 On the assumption that this is used in the KEM (Key Encapsulation Mechanism)-DEM (Data Encapsulation

Mechanism) construction.
3 When constructing a new e-Government system, 128-bit block ciphers are preferable if possible.
4 Using 3-key Triple DES is permitted for the time being under the following conditions:

(1) It is specified as FIPS 46-3.
(2) It is positioned as the de facto standard.

5 It is assumed that the 128-bit RC4 will be used only in SSL3.0/TLS(1.0 or later). If any other cipher listed
above is available, it should be used instead.

6 If any hash functions with a longer hash value are available when constructing a new e-Government system,
it is preferable that a 256-bit (or more) hash function be selected. However, this does not apply in cases where
the hash function to be used has already been designated according to the public-key cryptographic
specifications.

7 Since pseudorandom number generators do not require interoperability due to their usage characteristics, no
problems will be created by using a cryptographically secure pseudorandom number generating algorithm.
Therefore, these algorithms are examples.

public. Finally, the draft was authorized as the
“e-Government recommended ciphers list”.

In Table 1, we show the e-Government rec-
ommended ciphers list. The notes are added to

remind uses that some cryptographic techniques
require in employing them for e-Government ap-
plications. For more details, the reader is referred
to the CRYPTREC Web site [1].
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OTHER ACTIVITIES

Revision of Guidelines on the Law
Concerning Electronic Signatures
and Certification Services

Guidelines on the Law concerning Electronic Sig-
natures and Certification Services were revised
corresponding to the CRYPTREC evaluation re-
sults in the fiscal year 2001.

SSL/TLS Evaluation Report

CRYPTREC evaluated the security of SSL/TLS
(see Secure Socket Layer (SLS) and Transport
Layer Security (TLS)) and reported as follows:
SSL/TLS is secure against all known attacks. Us-
ing SSL/TLS, one needs to ensure that patches
are applied and that parameters are properly se-
lected. SSL/TLS is considered to offer an adequate
security level for practical use. The functionality
of TLS is still being extended. New security weak-
nesses can emerge as a result of these extensions.
Therefore, it is necessary to monitor the status
and progress of TLS and to keep investigating its
security.

Publicizing External Evaluation Reports

CRYPTREC considers it important to publicize
the cryptographic technique evaluation results in
order to improve the reliability of security evalu-
ations. All external evaluation reports that were
compiled as a part of the evaluation activities of
CRYPTREC are available on the CRYPTREC Web
site [1].

Monitoring and Other Evaluations

After publishing the e-Government recommended
ciphers list, the main responsibility of CRYPTREC
has moved to monitoring the security of crypto-
graphic techniques in the list. CRYPTREC also
has started the evaluation of cryptographic mod-
ules and protocols.

Hideki Imai
Atsuhiro Yamagishi
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CUT-AND-CHOOSE
PROTOCOL

CUT-AND-CHOOSE PROTOCOLS: A cut-and-
choose protocol is a two-party protocol in which
one party tries to convince another party that
some data he sent to the former was honestly con-
structed according to an agreed upon method. Im-
portant examples of cut-and-choose protocols are
interactive proofs [4], interactive arguments [1],
zero-knowledge protocols [1, 3, 4] and witness in-
distinguishable and witness hiding protocols [2]
for proving knowledge of a piece of information
that is computationally hard to find. Such a pro-
tocol usually carries a small probability that it is
successful despite the fact that the desired prop-
erty is not satisfied.

The very first instance of such a cut-and-choose
protocol is found in the protocol of Rabin [5] where
the cut-and-choose concept is used to convince a
party that the other party sent him an integer n
that is a product of two primes p, q, each of which
is congruent to 1 modulo 4. Note that this protocol
was NOT zero-knowledge.

The expression cut-and-choose was later intro-
duced by Chaum [1] in analogy to a popular cake
sharing problem: given a complete cake to be
shared among two parties distrusting each other
(for reasons of serious appetite). A fair way for
them to share the cake is to have one of them cut
the cake in two equal shares, and let the other one
choose his favourite share. This solution guaran-
tees that it is in the former’s best interest to cut
the shares as evenly as possible.

Claude Crépeau
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CYCLIC CODES

INTRODUCTION: For a general presentation of
cyclic codes, our main reference is the Handbook
of Coding Theory, especially the first chapter [4]
(but also Chapters 11, 13, 14, and 19).

Cyclic codes were introduced as a particular
practical class of error-correcting codes (ECC).
Codes are devoted to the following fundamental
problem: how to determine what message has been
sent when only an approximation is received, due
to a noisy communication channel. Cyclic codes
belong to the class of block codes since here all
messages have the same length k. Each of them
is encoded into a codeword of length n = k + r. A
t-error-correcting code is a well-chosen subset C of
An. Its elements are called codewords and have the
property that each pair of them differs in at least
2t + 1 coordinates. If the noisy channel generates
not more than t errors during one transmission,
the received vector will still lie closer to the orig-
inally transmitted codeword than any other code-
word. This means that code C is able to correct t
positions in each codeword.

A codeword will be denoted by

c = (c0, c1, . . . , cn−1), ci ∈ A.

When the encoder is systematic, the first k sym-
bols are called information symbols (they are the
message) and the last r symbols are the redun-
dancy symbols (added to help recover the mes-
sage if errors occur). We consider here linear codes,
meaning that A is a finite field and that C is a
k-dimensional linear subspace of An.

The (Hamming) distance between two code-
words, c and c′, is defined by:

d(c, c′) = card {i ∈ [0, n − 1] | ci �= c′
i}.

The minimum distance d of a code C is the small-

est distance between different codewords; it de-
termines the error correcting capabilities of C. In-
deed, C can correct t = �(d − 1)/2� errors. Since
we focus on cyclic codes and on the most useful of
them, the alphabet A will be a finite field Fq of
characteristic 2, i.e., q = 2e for some integer e ≥ 1.
Moreover, the length of the codes will be generally
2m − 1, where e divides m; these codes are said
primitive.

DEFINITION 1. Consider the linear space Fn
q of all

n-tuples over the finite field Fq . An [n, k, d] linear
code C over Fq is a k-dimensional subspace of Fn

q
with minimum distance d.

By definition, a k-dimensional linear code C is
fully determined by a basis over Fq . When we put
the k vectors of a basis as rows in a k × n matrix G,
we get a generator matrix of C. Indeed, C is given
by {avG | a ∈ Fk

q}.
The Hamming weight wt(u) of any word u in

Fn
q is the number of its nonzero coordinates. Note

that wt(u) = d(u, 0). Obviously, for linear codes,
the minimum distance is exactly the minimum
weight of nonzero codewords.

PROPOSITION 1. Let C be any [n, k, d] linear code
over Fq . Then

d = min{wt(c) | c ∈ C \ {0}}.

The dual code of C is the [n, n − k] linear code:

C⊥ = {y ∈ Fn
q | c · y = 0, for all c ∈ C},

where “·” denotes the ordinary inner product of
vectors: c · y = ∑n−1

i=0 ci yi . An (n − k) × n generator
matrix of C⊥ is called a parity check matrix H for
C. Note that C = {y ∈ Fn

q | HyT = 0T}.
When studying cyclic codes, it is convenient

to view the labeling of the coordinate posi-
tions 0, 1, . . . , n − 1 as integers modulo n (see
modular arithmetic). In other words, viewing
these coordinate positions as forming a cycle with
n − 1 being followed by 0.

DEFINITION 2. A linear code C of length n over
Fq is cyclic if and only if it satisfies for all c =
c0 · · · cn−2cn−1 in C:

(c0, . . . , cn−2, cn−1) ∈ C =⇒ (cn−1, c0, . . . , cn−2) ∈ C.

The vector cn−1c0 · · · cn−2 is obtained from c by the
cyclic shift of coordinates i �→ i + 1.

EXAMPLE 1. The generator matrix G below defines
an [8, 4, 2] binary cyclic code (length 8, dimension
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4, and minimum weight 2):

G =




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


.

Cyclic codes are some of the most useful
codes known. The involvement of Reed–Solomon
(RS) codes and of Bose–Chaudhury–Hocquen-
ghem (BCH) codes in a number of applications is
well known. On the other hand, the Golay codes
and the Reed–Muller (RM) codes, which are fun-
damental linear codes, can be represented as cyclic
codes.

CONSTRUCTIVE DEFINITION: It seems difficult
to construct a cyclic code C by means of Definition
2. So, useful definitions of cyclic codes are now con-
sidered.

An efficient definition is established by identify-
ing each vector c = (c0, c1, . . . , cn−1) with the poly-
nomial c(x) = c0 + c1x + · · · + cn−1xn−1. The fact
that C is invariant under a cyclic shift is then ex-
pressed as follows:

c(x) ∈ C =⇒ xc(x) (mod xn − 1) ∈ C.

Thus the proper context for studying cyclic codes
of length n over Fq is the residue class ring

Rn = Fq [X]/(xn − 1).

It is well known that Rn is a principal ideal ring.
This means that any ideal I in Rn is generated
by a single element g in I, i.e., I = {ag | a ∈ Rn}.
(An ideal in Rn is a subset I of Rn satisfying the
properties: (1) for all i1, i2 in I also i1 − i1 ∈ I and
(2) for any i ∈ I and a ∈ Rn also ai ∈ I.)

An alternative definition of a cyclic code can now
be given.

DEFINITION 3. A cyclic code C of length n over Fq
is a principal ideal of the ring Rn. The codewords
are polynomials in Fq [x] of degree less than n. Mul-
tiplication is carried out modulo xn − 1.

The next theorem, which is given in [4, Theorem
5.2], allows to determine the main parameters of
any cyclic code of Rn. We first recall some basic
definitions.

DEFINITION 4. Let α be a primitive nth root of
unity in some extension field of Fq . This means
that 1, α, . . . , αn−1 are all different and αn = 1. For
each integer s with 0 ≤ s < n, denote by c�(s) the
q-cyclotomic coset of s modulo n:

c�(s) = {s, qs, . . . , qm−1s (mod n)},

where m is the smallest positive integer such that
n divides qm − 1 (so α ∈ Fqm).

The minimal polynomial of αs over Fq is

Mαs (x) =
∏

i∈c�(s)

(x − αi),

where the αi, i ∈ c�(s), are called the conjugates
of αs .

If ω is a primitive element of Fqm , then one can
take α = ω(qm−1)/n. Note that Mαs (x) is a polynomial
over Fq while α ∈ Fqm .

THEOREM 1. Let C be a nonzero cyclic code of
length n over Fq . There exists a polynomial g(x) ∈
C, called the generator polynomial of C, with the
following properties:

(i) g(x) is the unique monic polynomial of mini-
mum degree in C;

(ii) g(x) is a generator of the ideal C in Rn:

C = 〈g(x)〉 = {a(x)g(x) (mod xn − 1) |
a(x) ∈ Fq [x]};

(iii) g(x) divides xn − 1.
Let r = deg(g), and let g(x) = ∑r

i=0 gi xi where
gr = 1. Then

(iv) the dimension of C is k = n − r; moreover the
polynomials

g(x), xg(x), . . . , xk−1g(x)

form a basis of C. The corresponding generator
matrix is given by:

G =




g0 g1 · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k 0
...

. . . . . . . . .
...

0 · · · 0 g0 g1 · · · gn−k


 .

(v) Let α be a primitive nth root of unity in some
extension field of Fq . Denote by Mαs the mini-
mal polynomial of αs over Fq ; then

g(x) =
∏
s∈I

Mαs (x)

where I is a subset of representatives of the
q-cyclotomic cosets modulo n.

The dual code of any cyclic code is cyclic too. The
description of C⊥ can be directly obtained from
Theorem 1.

COROLLARY 1. Let C be a cyclic code of length n
over Fq , with generator polynomial g(x). Let h(x)
denote the parity check polynomial of C, defined by
xn − 1 = h(x)g(x). Then the generator polynomial
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of C⊥ is the polynomial

h̃(x) = xk

h0
h(x−1), where k = n − deg(g).

EXAMPLE 2. Construction of the binary Hamming
code of length n = 15.

x15 − 1 = (x4 + x3 + 1)(x4 + x + 1)(x4 + x3

+ x2 + x + 1)(x + 1)(x2 + x + 1).

Since x4 + x + 1 is a primitive polynomial (mean-
ing that its zeros are primitive elements), its root
α is a generator of the cyclic group of the field F16.
The polynomial x4 + x + 1 is the minimal polyno-
mial of α and has α and its conjugates as zeros.
Consider the cyclic code C with generator polyno-
mial:

g(x) = (x − α)(x − α2)(x − α4)(x − α8)
= x4 + x + 1.

The dimension of C is 15 − deg(g) = 11. Thus the
code C is a [15, 11, 3] cyclic code. The minimum
distance of C is exactly 3 since wt(g) = 3 and no
smaller weight can appear, as can be checked us-
ing a generator matrix G of C. According to Theo-
rem 1, G is an 11 × 15 binary matrix whose lines
are g(x)

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

g(x) 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

and the 10 shifts of g(x). The parity check polyno-
mial of C and the generator polynomial of C⊥ are
given by:

h(x) = x15 − 1
x4 + x + 1

= x11 + x8 + x7 + x5 + x3 + x2 + x + 1.

resp.

h̃(x) =
11∑

i=0

h11−i xi

= x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1.

We then obtain a parity check matrix for C:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

.

We explained here, by means of an example, the
general definition of the binary Hamming code of
length 2m − 1. It is a code whose parity check ma-
trix has as columns all the nonzero vectors of Fm

2 .
It is a [2m − 1, 2m − m − 1, 3] code.

SOME CYCLIC CODES: From now on q = 2e and
n = qm − 1. Let C be any cyclic code of length n
over Fq with generator polynomial g(x). The roots
of g(x) are called the zeros of the cyclic code C.
Thus, the code C is fully defined by means of its
zero’s set; this leads to the classical definition of
the BCH codes and of other important families.

DEFINITION 5. Let q = 2 and n = 2m − 1; denote
by α a primitive nth root of unity in F2m. Let δ be
an integer with 2 ≤ δ ≤ n.

The binary BCH code of length n and de-
signed distance δ is the cyclic code with zero’s set:
α, α2, . . . , αδ−1 and their conjuguates. In other
words, the generator polynomial of this code is

g(x) = l cm{Mα(x), Mα2 (x), . . . , Mαδ−1 (x)}.

EXAMPLE 3. Binary BCH codes of length 15. As in
Example 2, we denote by α any root of the primi-
tive polynomial x4 + x + 1. Now the factorization
of x15 − 1 into minimal polynomials is as follows:

x15 − 1 = (x − 1) (x4 + x + 1)︸ ︷︷ ︸
M(α)

(x4 + x3 + x2 + x + 1)︸ ︷︷ ︸
M(α3)

(x2 + x + 1)︸ ︷︷ ︸
M(α5)

(x4 + x3 + 1)︸ ︷︷ ︸
M(α7)

.

There are three nontrivial BCH codes, whose
zero’s sets Sδ are as follows:
� S3 = {αi | i = 1, 2, 4, 8} for the [15, 11, 3] BCH

code;
� S5 = S3 ∪ {αi | i = 3, 6, 9, 12} for the [15, 7, 5]

BCH code;
� S7 = S5 ∪ {αi | i = 5, 10} for the [15, 5, 7] BCH

code.
For these codes, the designed distance δ is exactly
the minimum distance; this property does not hold
for any BCH code.

DEFINITION 6. A Reed–Solomon code over Fq is a
BCH code of length n = q − 1.

RS codes appear in several cryptosystems. They
determine, for instance, some secret-sharing sch-
emes [3]. It is important to note that for RS codes,
the designed distance is exactly the minimum
distance. Moreover, the RS code with designed dis-
tance δ is an [n, k, δ] code with k = n − δ + 1. Since
this k attains the maximum value by the Single-
ton bound (see [4]), one says that RS codes are
maximum distance separable (MDS) code.

DEFINITION 7. Let α be a primitive root of F2m.
Any integer s ∈ [0, 2m − 1] can be identified by its
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binary expansion in Fm
2 :

s =
m−1∑
i=0

si2i, si ∈ {0, 1} =⇒ s = (s0, . . . , sm−1).

The cyclic Reed–Muller code of length 2m − 1 and
order r, usually denoted by R∗(r, m), is the binary
cyclic code with zero set:

Sr = { αs | 1 ≤ wt(s) < m − r },
where wt(s) is the Hamming weight of s.

Note that if one extends all codewords in the
cyclic Reed–Muller code above with an overall-
parity check symbol, one obtains the regular
Reed–Muller code.

Binary cyclic codes are related to the study
and the construction of cryptographic primitives,
mainly through Reed–Muller codes because of the
large field of applications of Boolean functions and
binary sequences in cryptography. They play a
role in the study of cryptographic mapping on fi-
nite fields in general. One well-known application
is the construction of almost bent (AB) mappings
(see nonlinearity of Boolean functions), which re-
sist both differential and linear cryptanalysis [1,2]
(see next example). These connections are more
explicit when using the trace representation of bi-
nary codewords of length n = 2m − 1. We now la-
bel the coordinate positions by α0, α1, . . . , αn−1,
where α is a primitive nth root of unity. Let c(x)
be any codeword of some binary cyclic code C of
length n. Define

Tc(x) =
n−1∑
s=0

c(αn−s)xs . (1)

This commonly known Fourier transform of c is
called the Mattson–Solomon polynomial of c in al-
gebraic coding theory. It follows that Tc(α j) = c j
and Tc(x) is a sum of traces from some subfields of
F2m to F2.

The mapping x �→ Tc(x) is a Boolean function.
On the other hand, any binary sequence of pe-
riod n can be represented in this way (see entries
Boolean functions and Sequences).

EXAMPLE 4. Consider any binary cyclic code of
length n = 2m − 1 whose generator polynomial
is the product of two minimal polynomials,
say Mαr (x)Mαs (x). These codes are said to be
cyclic codes with two zeros and usually denoted
by Cr,s .

Now assume that r = 1 and gcd(s, 2m − 1) = 1.
Then C1,s is an [n, 2m, d] cyclic code; the dual
of C1,s is a cyclic code which has two nonzeros
only: αn−1 and αn−s (apart from their conjugates).
According to (1), C⊥

1,s is the set of binary codewords
of length n defined as follows: each pair (a, b) of
elements of F2m provides the ordered sequence of
values

x ∈ {1, α, . . . , αn−1} �−→ Tr(ax + bxs),

where the Trace function Tr is defined by Tr(β) =
β + β2 + · · · + β2m−1

. The power function x �→ xs is
a permutation on F2m . It is said to be almost per-
fect nonlinear [1] when C1,s has minimum dis-
tance 5. It is said to be an AB function when the
nonzero weights of codewords of C⊥

1,s are either
2m−1 or 2m−1 ± 2(m−1)/2; this is possible for odd m
only.

Pascale Charpin
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D
DATA ENCRYPTION
STANDARD (DES)

The Data Encryption Standard (DES) [31] has
been around for more than 25 years. During this
time the standard was revised three times: as
FIPS-46-1 in 1988, as FIPS-46-2 in 1993 and
as FIPS-46-3 in 1999. DES was an outcome of a
call for primitives in 1974, which did not result
in many serious candidates except for a prede-
cessor of DES, Lucifer [15, 36] designed by IBM
around 1971. It took another year for a joint IBM–
NSA effort to turn Lucifer into DES. The struc-
ture of Lucifer was significantly altered: since
the design rationale was never made public and
the secret key size was reduced from 128-bit to
56-bits, this initially resulted in controversy, and
some distrust among the public. After some de-
lay, FIPS-46 was published by NBS (National
Bureau of Standards)—now NIST (National In-
stitute of Standards and Technology)—on Jan-
uary 15, 1977 [31] (see [35] for a discussion of the
standardization process).

However, in spite of all the controversy it is hard
to underestimate the role of DES [31]. DES was
one of the first commercially developed (as opposed
to government developed) ciphers whose structure
was fully published. This effectively created a com-
munity of researchers who could analyse it and
propose their own designs. This lead to a wave of
public interest in cryptography, from which much
of the cryptography as we know it today was born.

DESCRIPTION OF DES: The Data Encryption
Standard, as specified in FIPS Publication 46-
3 [31], is a block cipher operating on 64-bit data
blocks. The encryption transformation depends on
a 56-bit secret key and consists of sixteen Feistel
iterations surrounded by two permutation layers:
an initial bit permutation IP at the input, and its
inverse IP−1 at the output. The structure of the
cipher is depicted in Figure 1. The decryption pro-
cess is the same as the encryption, except for the
order of the round keys used in the Feistel iter-
ations. As a result, most of the circuitry can be
reused in hardware implementations of DES.

The 16-round Feistel network, which consti-
tutes the cryptographic core of DES, splits the 64-
bit data blocks into two 32-bit words (denoted by
L0 and R0). In each iteration (or round), the second

word Ri is fed to a function f and the result is
added to the first word Li . Then both words are
swapped and the algorithm proceeds to the next
iteration.

The function f is key-dependent and consists
of four stages (see Figure 2). Their description is
given below. Note that all bits in DES are num-
bered from left to right, i.e., the leftmost bit of a
block (the most significant bit) is bit 1.
1. Expansion (E). The 32-bit input word is first

expanded to 48 bits by duplicating and reorder-
ing half of the bits. The selection of bits is spec-
ified by Table 1. The first row in the table refers
to the first 6 bits of the expanded word, the sec-
ond row to bits 7–12, and so on. Thus bit 41 of
the expanded word, for example, gets its value
from bit 28 of the input word.

2. Key mixing. The expanded word is XORed
with a round key constructed by selecting 48
bits from the 56-bit secret key. As explained be-
low, a different selection is used in each round.

INPUT

INITIAL PERMUTATION

INVERSE INITIAL PERM

LO

L1 = R0

L2 = R1

L15 = R14

L16 = R15

RO

+

R1 = L0         f(RO, K1)+

R2 = L1         f(R1, K2)+

R15 = L14         f(R14, K15)+

R16 = L15        f(R15, K16)+

OUTPUT

PERMUTED
INPUT

PREOUTPUT

K16

Kn

K2

K1

+

+

+

f

f

f

f

Fig. 1. The encryption function
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+

E

S1 S2 S3 S4 S5 S6 S7 S8

48 BITS K (48 BITS)

R (32 BITS)

32 BITS

P

Fig. 2. The function f

3. Substitution. The 48-bit result is split into
eight 6-bit words which are substituted in eight
parallel 6 × 4-bit S-boxes. All eight S-boxes,
called S1, S2, . . . , S8, are different but have the
same special structure, as appears from their
specifications in Table 2. Each row of the S-
box tables consists of a permutation of the 4-bit
values 0, . . . , 15. The 6-bit input word is sub-
stituted as follows: first a row is selected ac-
cording to the value of the binary word formed
by concatenating the first and the sixth input
bit. The algorithm then picks the column given
by the value of the four middle bits and outputs
the corresponding 4-bit word.

4. Permutation (P). The resulting 32 bits are re-
ordered according to a fixed permutation spec-
ified in Table 1 before being sent to the output.
As before, the first row of the table refers to the
first four bits of the output.
The selection of key bits in each round is deter-

mined by a simple key scheduling algorithm. The
algorithm starts from a 64-bit secret key which in-
cludes 8 parity bits that are discarded after verifi-
cation (the parity of each byte needs to be odd). The
remaining 56 secret key bits are first permuted

Table 1. Expansion E and permutation P

E P

32 1 2 3 4 5 16 7 20 21
4 5 6 7 8 9 29 12 28 17
8 9 10 11 12 13 1 15 23 26

12 13 14 15 16 17 5 18 31 10
16 17 18 19 20 21 2 8 24 14
20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

according to a permutation PC1 (see Table 4). The
result is split into two 28-bit words C0 and D0,
which are cyclically rotated over 1 position to the
left after rounds 1, 2, 9, 16, and over 2 positions af-
ter all other rounds (the rotated words are denoted
by Ci and Di). The round keys are constructed
by repeatedly extracting 48 bits from Ci and Di
at 48 fixed positions determined by a table PC2
(see Table 4). A convenient feature of this key
scheduling algorithm is that the 28-bit words C0
and D0 are rotated over exactly 28 positions after
16 rounds. This allows hardware implementations
to efficiently compute the round keys on-the-fly,
both for the encryption and the decryption.

CRYPTANALYSIS OF DES: DES has been sub-
ject to very intensive cryptanalysis. Initial at-
tempts [16] did not identify any serious weak-
nesses except for the short key-size. It was noted
that DES has a complementation property, i.e.,
given an encryption of the plaintext P into the
ciphertext C under the secret key K: EK(P) = C,
one knows that the complement of the plaintext
will be encrypted to the complement of the cipher-
text under the complement of the key: EK̄(P) =
C (by complement we mean flipping of all the
bits). Another feature was the existence of four
weak keys, for which the cipher is an involution:
EK(EK(m)) = m (for these keys the contents of the
key-schedule registers C and D is either all zeros
or all ones), and six additional pairs of semi-weak
keys for which EK1(EK2(m)) = m. The complemen-
tation and the weak-key properties are the result
of interaction of the key-schedule, which splits the
key-bits into two separate registers and the Feistel
structure of the cipher. A careful study of the cycle
structure of DES for weak and semi-weak keys has
been given by Moore and Simmons [30]. See the
book of Davies and Price [11] for a more detailed
account on these and other features of DES iden-
tified prior to 1989. The properties of the group
generated by DES permutations have also been
studied intensively. Coppersmith and Grossman
have shown [9] that in principle DES-like com-
ponents can generate any permutation from the
alternating group A264 (all even permutations, i.e.,
those that can be represented with an even num-
ber of transpositions). However, DES implements
only 256 permutations, which is a tiny fraction of
all the even permutations. If the set of 256 DES
permutations was closed under composition, then
multiple encryption as used, for example in Triple-
DES would be equivalent to single encryption and
thus would not provide any additional strength.
A similar weakness would be present if the size
of the group generated by the DES permutations
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Table 2. DES S-boxes

S1 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 : 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 : 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 : 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 : 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 : 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 : 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 : 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 : 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 : 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 : 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 : 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 : 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 : 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 : 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 : 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 : 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 : 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 : 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 : 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 : 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 : 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 : 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 : 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 : 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 : 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Table 3. Initial and final permutations

IP IP−1

58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 6 38 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37 5 45 13 53 21 61 29
57 49 41 33 25 17 9 1 36 4 44 12 52 20 60 28
59 51 43 35 27 19 11 3 35 3 43 11 51 19 59 27
61 53 45 37 29 21 13 5 34 2 42 10 50 18 58 26
63 55 47 39 31 23 15 7 33 1 41 9 49 17 57 25

Table 4. DES key schedule bit selections

PC1 PC2

57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10

10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55

7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

were small. Using the special properties of the
weak keys it has been shown that DES generates
a very large group, with a lower-bound of 22499

permutations [7, 8], which is more than enough
to make the closure attacks [18] impractical.

In the two decades since its design three impor-
tant theoretical attacks capable of breaking the
cipher faster than exhaustive search have been
discovered: differential cryptanalysis (1990) [5],
linear cryptanalysis (1993) [22], and the improved
Davies’ attack [3, 12]. An interesting twist is that
differential cryptanalysis was known to the de-
signers of DES and DES was constructed in par-
ticular to withstand1 this powerful attack [8]. This
explains why the cipher’s design criteria were kept
secret. Many of these secrets became public with
the development of differential cryptanalysis and
were later confirmed by the designers [33]. Both
differential and linear attacks as well as Davies’
attack are not much of a threat to real-life applica-
tions since they require more than 240 texts for the
analysis. For example: a linear attack requires 243

known plaintexts to be encrypted under the same
secret key. If the user changes the key every 235

blocks the success probability of the attack would

1 Note that DES is strong but not optimal against linear crypt-
analysis or improved Davies’ attack, for example simple re-
ordering of the S-boxes would make the cipher less vulnerable
to these attacks without spoiling its strength against the dif-
ferential attack [24]. This could indicate that the designers of
DES did not know about such attacks.

be negligible. Nevertheless, linear attacks were
tested [23] in practice, run even slightly faster
than theoretically predicted [17], and can poten-
tially use twice less data in a chosen plaintext sce-
nario [20]. In the case of the differential attack 247

chosen plaintexts are required, though the attack
would still work if the data is coming from up to
233 different keys. However, the huge amount of
chosen plaintext makes the attack impractical. In
the case of Davies’ attack the data requirement is
250 known plaintexts, which is clearly impractical.

Although differential and linear attacks are
hard to mount on DES, they proved to be very pow-
erful tools for cryptanalysis; many ciphers which
were not designed to withstand these attacks have
been broken, some even with practical attacks. See
for example the cipher FEAL [28, 29, 34]. In fact
both attacks have been discovered while studying
this cipher [4, 25], which was proposed as a more
secure alternative to DES.

Exhaustive key search currently remains the
biggest threat to the security of DES [31]. It was
clear from the very beginning that a 56-bit key
can be found in practical time by using a practi-
cal amount of resources. In 1977 a design for a
key-search machine was proposed by Diffie and
Hellman [13] with a cost of US$ 20 million and
the ability to find a solution in a single day.
Later Hellman proposed a chosen plaintext time-
memory tradeoff approach, which would allow to
build an even cheaper machine, assuming that
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a precomputation of 256 encryption steps is done
once for a single chosen plaintext. An effective and
complete ASIC design for a key-search machine
has been proposed by Wiener in 1993 [38]. It was
shown that the US$ 1 million machine would run
through the full key-space in 7 hours. It became
clear in 1993 that DES had to be upgraded to
triple-DES or be replaced; however NIST decided
to reconfirm the FIPS standard a second time in
1993 for another five years (as FIPS 46-2). In 1998
the Electronic Frontier Foundation (EFF) built a
working dedicated hardware machine which cost
less than US$ 250,000 and could run through the
full key-space in four days [14]. In a parallel de-
velopment it was shown that a network of tens of
thousands of PCs (a computational power easily
available to a computer virus, for example) could
do the same work in several weeks. At that time
the AES competition had been started. As a re-
sult of this effort DES has been replaced by a
successor, AES, which is based on a 128-bit block
128/192/256-bit key cipher Rijndael/AES.

EXTENSIONS OF DES: So where is DES to-
day? DES is not obsolete. Due to substantial
cryptanalytic effort and the absence of any practi-
cal cryptanalytic attack, the structure of DES has
gained public trust. There have been several pro-
posals to remedy the short key size problem plagu-
ing the cipher:
� Triple-DES (Diffie–Hellman [13]). The idea

is to multiple encrypt the block using DES three
times with two or three different keys. This
method gains strength both against cryptan-
alytic attacks as well as against exhaustive
search. It is weak against related key attacks,
however, and the speed is three times slower
than single DES [31]. A two-key variant in the
form of Encrypt-Decrypt-Encrypt (E-D-E), i.e.,
EK1 (DK2 (EK1 (m))) has been proposed by IBM
(Tuchman, 1978) and is still in wide use by the
banking community. The convenience of this op-
tion is that it is backward compatible with a sin-
gle DES encryption, if one sets K1 = K2.

� Independent subkeys (Berson [1]). The idea
is to use independently generated 48-bit sub-
keys in each round. The total key-size is 768 bits,
which stops the exhaustive search attack. How-
ever, the cryptanalytic attacks like differential
or linear do work almost as good as for DES [31].
The speed of this proposal is as for single DES,
but it has a slower key-schedule.

� Slow key-schedule (Quisquater et al. [32]
or Knudsen [10]). Exhaustive search is
stopped by loosing key-agility of a cipher.

� DES-X (Rivest, 1984). The idea is to XOR addi-
tional 64-bits of secret key material at the input
and at the output of the cipher. See the article
on DES-X for more details. This is very effective
against exhaustive search, but does not stop old
cryptanalytic attacks on DES, and allows new
related key attacks. This approach allows the
reuse of old hardware. The speed is almost the
same as that of a single DES.

� Key-dependent S-boxes (Biham-
Biryukov [2]). The idea is similar to DES-X,
but the secret key material is XORed before
and after the S-boxes. S-boxes are reordered to
gain additional strength. The result is secure
against exhaustive search and improves the
strength against cryptanalytic attacks (with
the exception of related key attacks). This
approach applies to software or to hardware
which permits the loading of new S-boxes.
The speed is the same as that of a single
DES.
As of today two-key and three-key triple DES

is still in wide use and is included in NIST
(FIPS 46-3, the 1999 edition [31]) and ISO stan-
dards. However, two-key triple DES variants are
not recommended for use due to dedicated meet-
in-the-middle attack by Oorschot and Wiener [37]
with complexity 2120−log n steps given O(n) known
plaintexts and memory. For example, if n = 240,
complexity of attack is 280 steps. This attack
is based on an earlier attack by Merkle and
Hellman [27] which required 256 chosen plain-
texts, steps, and memory. These attacks are hard
to mount in practice, but they are an important
certificational weakness.

The recommended usage mode for triple-DES
is Encrypt-Encrypt-Encrypt (E-E-E) (or Encrypt-
Decrypt-Encrypt (E-D-E)) with three indepen-
dently generated keys (i.e. 168 key bits in to-
tal), for which the best attacks are the classical
meet-in-the-middle attack with only three known
plaintexts, 256 words of memory and 2111 analysis
steps; and the attack by Lucks [21] which requires
2108 time steps and 245 known plaintexts. These
attacks are clearly impractical.

The DES-X alternative is also in popular use due
to its simplicity and almost no speed loss. Thor-
ough analysis of a generic construction is given
in [19] and the best currently known attack is a
slide attack [6] with complexity of n known plain-
texts and 2121−log n analysis steps (for example: 233

known plaintexts and memory and 287 analysis
steps).

Alex Biryukov
Christophe De Cannière
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DATA REMANENCE

Data remanence is the ability of computer memory
to retain previously stored information beyond its
intended lifetime. With many data storage tech-
niques, information can be recovered using spe-
cialized techniques and equipment even after it
has been overwritten. Examples:
� Write heads used on exchangeable media (e.g.,

floppy disks, magstripe cards) differ slightly in
position and width due to manufacturing toler-
ances. As a result, one writer might not over-
write the entire area on a medium that had
previously been written to by a different de-
vice. Normal read heads will only give access to
the most recently written data, but special high-
resolution read techniques (e.g., magnetic-force
microscopy) can give access to older data that
remains visible near the track edges.

� Even with a perfectly positioned write head,
the hysteresis properties of ferromagnetic me-
dia can result in a weak form of previous data
to remain recognizable in overwritten areas.
This allows the partial recovery of overwrit-
ten data, in particular with older low-density
recording techniques. Protection measures that
have been suggested in the literature against
such data remanence include encryption, mul-
tiple overwriting of sensitive data with alter-
nating or random bit patterns, the use of spe-
cial demagnetization (“degaussing”) equipment,
or even the physical destruction (e.g., shred-
ding, burning) of media at the end of its life
time.

� The CMOS flip-flop circuits used in static RAM
have been observed to retain data for minutes,
at low temperatures in some cases even for
hours, after the supply voltage has been re-
moved [4]. The data remanence of RAM can po-
tentially be increased where memory cells are
exposed to constant data for extended periods
of time or in the presence of ionizing radia-
tion (“burn in”). Protection measures that are
used in some commercial security modules in-
clude sensors for low temperature and ioniz-
ing radiation. These have to be connected to
battery-powered alarm circuits that purge se-
curity RAM instantly in unusual environments.
Another protection technique inverts or rotates
bit patterns every few seconds, to avoid long-
term exposure of memory cells to a constant
value (“RAM saver”).

� File and database systems do not physically
overwrite (“purge”) data when it is deleted by
the user, unless special data purging functions
designed for security applications are used.
When objects are deleted, normally their stor-
age area is only marked as available for real-
location. This leaves deleted data available for
recovery with special undelete software tools,
until the time when the respective memory lo-
cation is needed to store new data.

Markus Kuhn
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DAVIES–MEYER
HASH FUNCTION

The Davies–Meyer hash function is a construction
for a hash function based on a block cipher, where
the length in bits of the hash result is equal to the
block length of the block cipher. A hash function
is a cryptographic algorithm that takes input
strings of arbitrary (or very large) length and
maps these to short fixed length output strings.
The Davies–Meyer hash function is an unkeyed
cryptographic hash function which may have the
following properties: preimage resistance, second
preimage resistance and collision resistance;
these properties may or may not be achieved de-
pending on the properties of the underlying block
cipher.

In the following, the block length and key length
of the block cipher will be denoted with n and k
respectively. The encryption with the block cipher
E using the key K will be denoted with EK(·).

The Davies–Meyer scheme is an iterated hash
function with a compression function that maps
k + n bits to n bits:

Hi = EXi (Hi−1) ⊕ Xi . (1)

By iterating this function in combination with
MD-strengthening (see hash functions) one can
construct a hash function based on this compres-
sion function; this hash function is known as the
Davies–Meyer hash function. It has been shown
by Black and Rogaway [1] that in the black-box
cipher model, if k ≥ n finding a (second) preim-
age requires approximately 2n encryptions and
finding a collision requires approximately 2n/2

encryptions.
In order to achieve an acceptable security level

against (2nd) preimage attacks, the block length
n needs to be at least 80 bits (in 2004); for collision
resistance, the block length should be at least
160 bits (in 2004). This means that this scheme
should not be used with 64-bit block ciphers (e.g.,
CAST-128, Data Encryption Standard (DES),
FEAL, GOST, IDEA, KASUMI/MISTY1); it
should only be used for (2nd) preimage resistance
with 128-bit block ciphers (e.g., Rijndael/AES,
Camellia, CAST-256, MARS, RC6, TWOFISH,

and SERPENT). Very few 256-bit block ciphers
exist; one exception is the 256-bit version of RC6.

It is also important to note that a block cipher
may have properties which pose no problem at all
when they are used only for encryption, but which
may result in the Davies–Meyer construction of
the block cipher to be insecure [3, 4]. A typical
example are the complementation property and
weak keys of DES; it is also clear that the Davies–
Meyer construction based on DES-X is highly inse-
cure. The fact that the key is known to an opponent
may also result in security weaknesses (e.g., differ-
ential attacks of Rijmen and Preneel [5]). Hirose
defines a block cipher secure against a known
plaintext attack for which the Davies–Meyer hash
function is not 2nd preimage resistant [2].

Since there are very few block ciphers with a
256-bit block length, the Davies–Meyer construc-
tion is rarely used to obtain collision resistant
hash functions. However, this construction is very
popular in custom designed hash functions such
as MD4, MD5, and the SHA family. Indeed, the
compression functions of these hash functions are
designed using an internal block cipher struc-
ture; the compression functions are made non-
invertible by applying the Davies–Meyer construc-
tion to these internal block ciphers.

Bart Preneel
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DC NETWORK
The DC-Network is a synchronous network pro-
tocol by which the participants can broadcast
messages anonymously and unobservably (see
anonymity). A DC-Network can achieve sender
and recipient anonymity even against computa-
tionally unrestricted attackers. The DC-Network
protocol itself requires a network with a broad-
cast service. It was invented by David Chaum in
1984 [2–4] (hence the name DC-Network) and was
somewhat re-discovered by Dolev and Ostrovsky
in [5]. Messages can be addressed to one or more
intended participants by encrypting them with
their respective public encryption keys.

The basic DC-Network protocol allows one par-
ticipant at a time to broadcast a message. In or-
der to allow each participant to send at any time,
the broadcast channel of the basic DC-Network
needs to be allocated in a randomized fashion to
all requesting senders. This can be achieved by
well known contention protocols such as (slotted)
ALOHA [8].

Consider the basic DC-Network protocol of n
participants: P1, P2, . . . , Pn. Messages are strings
of k bits. As a preparation, all participants agree
on pairwise symmetric keys, i.e., randomly chosen
bitstrings of k bit length. Let us denote the key
between Pi and Pj as ki, j. Assume participant P1
wants to send a message m anonymously to all
other participants (anonymous broadcast). This
can be achieved by the basic DC-Network proto-
col, which works as follows:
Compute partial sums: Each participant Pi (1 ≤

i ≤ n) computes the XOR sum si of all the keys
ki, j (1 ≤ j ≤ n) it has exchanged with each other
participant Pj ( j �= i), such that si = ∑

j�=i ki, j.
Participant P1 also adds his message m into his
partial sum such that s1 = m + ∑

j�=1 ki, j.
Broadcast partial sums: Each participant Pi

broadcasts its partial sum si .
Compute global sum: Each participant Pi

computes the global sum s = ∑n
i=1 si = m +∑n

i=1
∑

j�=i ki, j = m in order to recover the mes-
sage m. Note that because ki, j = kj,i , all the keys
cancel out leaving only m standing out of the
global sum.

The basic DC-Network protocol is computationally
efficient but requires n reliable broadcasts for each
message, and even more in case of resolving mes-
sage collisions where two or more participants are
sending their messages in the same round.

The basic DC-Network protocol runs on any
network architecture. If all participants are hon-
est, everyone obtains the message m. Chaum
[4] has proved that the basic DC-Network pro-

tocol achieves sender anonymity and recipient
anonymity even against computationally unre-
stricted attackers. However, the proof for recipi-
ent anonymity implicitly assumes that the partial
sums are broadcast reliably, i.e., each message of
an honest participant is broadcast to all partici-
pants without being modified [9].

DC-Network is the continued execution of the
basic DC-Network protocol. In this case, uncondi-
tional sender anonymity can be maintained only
by using fresh pairwise keys in each round, which
is a similar situation as for the one-time pad (see
key). Waidner has proposed to choose the pairwise
keys for each round of the basic DC-Network pro-
tocol based on a pseudo-random number generator
seeded with a selection of messages exchanged in
previous rounds of the basic DC-Network proto-
col. This is more practical, but results in sender
anonymity that holds only against computation-
ally restricted attackers [9].

The core idea behind the DC-Network is to sub-
stantially involve more participants in each com-
munication than just the intended sender and
recipient in order to conceal their sending and
receiving within the set of participants. This ap-
proach introduces an inevitable vulnerability in
case not all of the participants honestly follow the
protocol. In fact, the service of a DC-Network can
be easily disrupted by one or more cheating par-
ticipants, who either stop sending their partial
sums or sending wrong partial sums or sending too
many messages (denial-of-service attack). Disrup-
tions of the DC-Network have been considered by
Chaum [1], Bos and den Boer [4] and Waidner [9].

The key graph of a DC-Network is the graph
where each participant is represented by a vertex
and each pairwise key ki, j is represented by an
edge connecting the vertices representing Pi and
Pj. If the key graph is complete as in the exam-
ple above, no coalition of non-senders except all
of them together gains any information about who
sent m. Less complete key graphs can be used in or-
der to reduce the amount of pairwise keys. On the
other hand, the less complete the key graph is cho-
sen, the more vulnerable the basic DC-Network
protocol is against cheating participants who may
collude and exchange their views in and after the
basic DC-Network protocol in order to strip away
the honest participants’ anonymity. Collusions of
cheating participants can be represented in the
key graph by eliminating their mutual pairwise
keys. That is if Pi, Pj are cheating, then we re-
move the key ki, j from the key graph, which may
lead to an unconnected graph. Any participant
represented by an unconnected vertex is entirely
stripped of its anonymity. Such a participant is
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fully observable by the collusion of cheating partic-
ipants. It is worth noting that the key graph can be
chosen independently of the underlying network
topology (ring, star, bus, etc.).

Waidner points out in [9] that reliable broadcast
is probably an unrealistic assumption because it
cannot be achieved by cryptographic means alone
as there is no byzantine agreement against compu-
tationally unrestricted active attackers who may
arbitrarily control many participants [6]. Further-
more, Waidner has shown how to achieve recipient
anonymity against computationally unrestricted
active attackers by replacing the reliable broad-
cast by a fail-stop broadcast, where honest partic-
ipants stop as soon as they receive inconsistent in-
puts. Fail-stop broadcast can be realized by O(n)
messages, each signed by an unconditionally se-
cure authentication code, or more efficiently by a
fail-stop signature [10].

Interestingly, no widely accepted formal defi-
nitions of sender and recipient anonymity in a
network, i.e., continued transmission service, has
come up yet. Thus, a fully formal treatment of DC-
Network protocols is not possible to date. A new
approach in this direction was proposed by Schnei-
der and Sidiropoulos [7] based on the CSP process
algebra (Communicating Sequential Processes).

Compared to MIX-Networks, DC-Networks
achieve sender anonymity even against computa-
tionally unrestricted active attackers, while MIX
networks only achieve sender anonymity against
computationally restricted attackers.

Gerrit Bleumer
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DEBRUIJN SEQUENCE

A k-ary deBruijn sequence of order n is a se-
quence of period kn which contains each k-
ary n-tuple exactly once during each period.
DeBruijn sequences are named after the Dutch
mathematician Nicholas deBruijn. In 1946 he dis-
covered a formula giving the number of k-ary de-
Bruijn sequences of order n, and proved that it
is given by ((k − 1)!)kn−1 · kkn−1−n. The result was,
however, first obtained more than 50 years ear-
lier, in 1894, by the French mathematician C. Flye-
Sainte Marie.

For most applications binary deBruijn se-
quences are the most important. The number of
binary deBruijn sequences of period 2n is 22n−1−n.
An example of a binary deBruijn sequence of pe-
riod 24 = 16 is {st } = 0000111101100101. All bi-
nary 4-tuples occur exactly once during a period
of the sequence. In general, binary deBruijn se-
quences are balanced, containing the same num-
ber of 0’s and 1’s in a period, and they satisfy many
randomness criteria, although they may be gen-
erated using deterministic methods. They have
been used as a source of pseudo-random num-
bers and in key-sequence generators of stream
ciphers.
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A deBruijn sequence can be generated by a
nonlinear feedback function in n-variables. From
the initial state (s0, s1, . . . , sn−1) and a nonlinear
Boolean function f (z0, z1, . . . , zn−1) one can gener-
ate the sequence

st+n = f (st , st+1, . . . , st+n−1), for t = 0, 1, 2, . . ..

This can be implemented using an n-stage non-
linear shift register. For example the binary de-
Bruijn sequence above of period 16 = 24 can be
generated by st+4 = f (st , st+1, st+2, st+3), using the
initial state (0000) and the Boolean function

f (z0, z1, z2, z3) = 1 + z0 + z1 + z1z2z3.

The binary deBruijn graph Bn of order n is a
directed graph with 2n nodes, each labeled with
a unique binary n-tuple and having an edge from
node S = (s0, s1, . . . , sn−1) to T = (t0, t1, . . . , tn−1) if
and only if (s1, s2, . . . , sn−1) = (t0, t1, . . . , tn−2). The
successive n-tuples in a deBruijn sequence there-
fore form a Hamiltonian cycle in the deBruijn
graph, meaning that a full cycle visits each node
exactly once.

There are many algorithms for constructing de-
Bruijn sequences. The following is perhaps one of
the easiest to describe. Start with n zeros and ap-
pend a one whenever the n-tuple thus formed has
not appeared in the sequence so far, otherwise ap-
pend a zero. The sequence of length 24 = 16 above
is an example of a deBruijn sequence constructed
in this way. It is known that the decision of which
bit to select next can be based on local considera-
tions and storage requirements can be reduced to
only 3n bits.

Any Boolean function f such that the mapping

(z0, z1, . . . , zn−1) → (z1, z2, . . . , zn−1,

f (z0, z1, . . . , zn−1))

is a permutation of the set of binary n-tuples is
called a nonsingular Boolean function. It can be
written in the form,

f (z0, z1, . . . , zn−1) = z0 + g(z1, z2, . . . , zn−1)
(mod 2).

The truth table of a Boolean function f (z0,

z1, . . . , zn−1) is a list of the values of f (z0, z1, . . . ,

zn−1) for all binary n-tuples. The weight of the
truth table of f is the number of ones in this list.

Large classes of deBruijn sequences can be con-
structed by starting with a nonsingular Boolean
function f that decomposes the deBruijn graph
into several shorter disjoint cycles and then join-
ing the cycles one by one until one arrives at a de-
Bruijn sequence. To join two cycles one can find an
n-tuple (z0, z1, . . . , zn−1) on a cycle (where we have

(z1, z2, . . . , zn−1, f (z0, z1, . . . , zn−1)) on the same cy-
cle) and (z1, z2, . . . , zn−1, 1 + f (z0, z1, . . . , zn−1)) on
a different cycle. Then the two cycles will be joined
after changing(complementing) g(z1, z2, . . . , zn−1)
(leading to two changes of the truth table of f).

One common starting function is the non-
singular function corresponding to g = 0, i.e.,
f (z0, z1, . . . , zn−1) = z0, that is known to decom-
pose Bn into the Pure Circulating Register(PCR),
consisting of all cycles of period dividing n.
This is known to contain Z(n) = 1

n

∑
d|n φ(d)2n/d

cycles. For n = 4 the PCR consists of the cycles
(0), (1), (01), (0001), (0011), and (0111). Another
popular starting function is the Complemen-
tary Circulating Register(CCR) correspond-
ing to g = 1, i.e., f (z0, z1, . . . , zn−1) = z0 + 1
(mod 2). This is known to contain Z∗(n) =
1
2 Z(n) − 1

2n

∑
2d|n φ(2d)2n/2d cycles.

Another method to construct deBruijn se-
quences is to use recursive algorithms. There exist
algorithms that take as input two deBruijn se-
quences of period 2n−1 and produce a deBruijn se-
quence of period 2n.

The linear complexity of a deBruijn sequence is
defined as the length of the shortest linear shift
register that can be used to generate the sequence.
The linear complexity L of a binary deBruijn se-
quence of period 2n, n ≥ 3, satisfies the double in-
equality,

2n−1 + n ≤ L ≤ 2n − 1.

There exist deBruijn sequences that meet the
upper and lower bounds with equality.

The quadratic complexity of a deBruijn sequence
is the length of the shortest shift register that gen-
erates the sequence where the feedback function f
is allowed to have quadratic terms. The quadratic
complexity Q of a binary deBruijn sequence of pe-
riod 2n, n ≥ 3, satisfies the double inequality

n + 2 ≤ Q ≤ 2n −
(

n
2

)
− 1.

It is known that for any nonsingular Boolean
function f, the number of cycles that it decomposes
Bn into has the same parity as the weight of the
truth table of g. Therefore for a deBruijn sequence
the truth table of g has odd weight. It is further
known that for a deBruijn sequence, the weight w
of the truth table of g obeys,

Z(n) − 1 ≤ w ≤ 2n−1 − Z∗(n) + 1.

The lower bound can be achieved by starting
with the PCR and joining cycles one at a time un-
til we arrive at a deBruijn sequence. Each joining
step will in this case increase the weight of the
truth table of g by 1. Similarly we can construct
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deBruijn sequences of maximal weight by start-
ing with the CCR and joining the cycles one by
one, each joining step will in this case reduce the
weight of the truth table of g by 1. For values n < 7
the number of deBruijn sequences of each possible
weight of the truth table of g is known.

Tor Helleseth
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DECISIONAL DIFFIE–
HELLMAN ASSUMPTION

The difficulty in computing discrete logarithms in
some large finite groups has been the basis for
many cryptographic schemes and protocols in the
past decades, starting from the seminal Diffie–
Hellman key agreement protocol [8], and continu-
ing with encryption and digital signature schemes
with a variety of security properties, as well as
protocols for numerous other applications. Ideally,
we would have liked to prove unconditional state-
ments regarding the computational difficulty in
computing discrete logarithms. However, since the
current state of knowledge does not allow us to
prove such claims, we formulate instead mathe-
matical assumptions regarding the computational
difficulty of this set of problems, and prove prop-
erties of the protocols we develop based on these
assumptions.

A first assumption that is closely related to
the Diffie–Hellman key exchange is the Compu-
tational Diffie–Hellman assumption (see Diffie–
Hellman problem for more detail):
The Computational Diffie–Hellman (CDH)

Problem: Given a group G, a generator g of G,
and two elements a = gx, b = gy ∈ G, where x
and y are unknown, compute the value c = gxy ∈
G.

The Computational Diffie–Hellman (CDH)
Assumption: Any probabilistic polynomial
time algorithm solves the CDH problem only
with negligible probability.

Notes:
(1) The probability is taken over the random

choices of the algorithm. The probability is

said to be negligible if it decreases faster than
any inverse polynomial in the length of the
input.

(2) As usual, the algorithm must run in time that
is polynomial in the length of its input, namely
in time that is polylogarithmic in the size of G.
Also, a solution to the CDH problem is an al-
gorithm that works for all inputs. Thus, the
CDH assumption implies that there exists an
infinite sequence of groups G for which no poly-
time algorithm can solve the CDH problem
with probability that is not negligible. (Still,
it is stressed that there exist infinite families
of groups for which the CDH problem is in fact
easy.)

(3) The assumption can be made with respect
either to uniform-complexity or non-uniform
complexity algorithms (i.e., circuit fami-
lies.)

Indeed, the CDH assumption is very basic in
cryptography. However, in many cases researchers
were unable to prove the desired security prop-
erties of protocols based on the CDH assumption
alone. (A quintessential example is the Diffie–
Hellman key exchange protocol itself.) Further-
more, it appears that, at least in some groups, the
CDH assumption captures only a mild flavor of
the intractability of the Diffie–Hellman problem.
Therefore the Decisional Diffie–Hellman assump-
tion was formulated, as follows:
The Decisional Diffie–Hellman (DDH) Prob-

lem: Given a group G, a generator g of G, and
three elements a, b, c ∈ G, decide whether there
exist integers x, y such that a = gx, b = gy, and
c = gxy.

The Decisional Diffie–Hellman (DDH) As-
sumption (Version I): Any probabilistic poly-
nomial time algorithm solves the DDH problem
only with negligible probability.
The above formulation of the DDH assumption

treats the problem as a worst-case computational
problem (that is, an algorithm that solves the prob-
lem must work on all inputs. This formalization
provides a useful comparison with the CDH prob-
lem. A much more useful alternative formulation
of the DDH assumption only discusses the case
where the inputs are taken from certain distribu-
tions. It is stated as follows:
The Decisional Diffie–Hellman (DDH) As-

sumption (Version II): The following two dis-
tributions are computationally indistinguish-
able:
� G, g, gx, gy, gxy

� G, g, gx, gy, gz

where g is a generator of group G and x, y, z are
chosen at random from {1, . . . , |G|}.
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Note: More formally, the above two distributions
are actually two distribution ensembles, namely
two families of distributions where each distribu-
tion in a family is parameterized by the group G
and the generator g. Recall that two distribution
ensembles are computationally indistinguishable
if, given a set of parameters (in our case, given G
and g), no polytime algorithm can tell whether its
input is drawn from the first ensemble or from the
second. See more details in [10].

This version is useful since it asserts that, even
when gx and gy are known, the value gxy appears
to be a “freshly chosen” random and indepen-
dent number for any computationally bounded at-
tacker. This holds in spite of the fact that the value
gxy is uniquely determined by gx and gy, thus its
“entropy” (in the information-theoretic sense) is in
fact zero. As shown in [12,14], the two versions of
the DDH assumption are equivalent. (Essentially,
equivalence holds due to the random self reducibil-
ity property of the discrete logarithm problem.)

Clearly, the DDH assumption implies the CDH
assumption. Furthermore, it appears to be consid-
erably stronger. In fact, there are groups where
DDH is clearly false, but CDH may still hold. Still,
there exist groups where DDH is believed to hold,
for instance multiplicative groups of large prime
order. A quintessential example is the subgroup
of size q of Z∗

p (see modular arithmetic) where p =
2q + 1 and p, q are primes. (In this case the larger
prime p is called a safe prime, and the smaller
prime q is called a Sophie-Germain prime.)

Note: To see an example of a family of groups
where DDH does not hold but CDH may still
hold, consider a group G where it is easy to check
whether an element is a quadratic residue (e.g., let
G = Z∗

p where p is prime and |Z∗
p| = p− 1 is even).

Here, the CDH assumption may hold, yet DDH is
false: If the input is drawn from G, g, gx, gy, gxy

then it is never the case that the last element is
a quadratic non-residue but the preceding two el-
ements are quadratic residues. In contrast, if the
input is taken from G, g, gx, gy, gz then the above
event happens with significant probability. Other
examples of such groups also exist. Here let us
mention in particular the case of bilinear and mul-
tilinear pairings in Elliptic-Curve groups, which
have been recently shown to be useful in cryptog-
raphy. See identity based cryptosystem and for ex-
ample [3].

SOME APPLICATIONS OF DDH: The DDH as-
sumption proves to be very useful in cryptographic
analysis of protocols. It is immediate to show based

on DDH that the Diffie–Hellman key exchange
results in a “semantically secure” key, i.e., a key
that is indistinguishable from random. (It is not
known how to prove this statement based on CDH
alone.) Similarly, it implies the semantic security
of ElGamal public key encryption. In addition, it
is used in proving the security of efficient pseudo-
random functions [12], chosen-ciphertext-secure
encryption [6], commitment and zero-knowledge
protocols [7,13], and many more.

VARIANTS OF DDH: The DDH assumption is
only one of many assumptions that can be made on
the intractability of the discrete logarithm prob-
lem. Several variants have been considered in
the literature, some of which are stronger (allow-
ing to prove stronger security properties of pro-
tocols), and some are weaker (and are believed to
hold even in cases where DDH does not). Of the
stronger ones, let us mention variants that allow
the exponents x, y to be chosen from distributions
other than uniform (or even in a semi-adversarial
way) [5]. Other stronger variants are formalized
in [3,9,11]. Of the weaker ones, we mention vari-
ants that give the distinguisher access only to a
hashed version of the last element (either gxy or
gz) e.g., [1].

BIBLIOGRAPHIC NOTE: The DDH assumption is
implicit in many early works based on the Diffie–
Hellman problem (starting with [8]). To the best of
our knowledge, it was first formalized by Brands
in [4] (in the context of undeniable signatures). It
was further studied in [12, 14] and is widely used
since. For further reading, see Boneh’s survey [2].

Ran Canetti
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DECRYPTION EXPONENT

The exponent d in the RSA private key (n, d). See
RSA public key encryption.

Burt Kaliski

DENIABLE ENCRYPTION

Suppose Alice sends a message to Bob in an
informal chat conversation. If a typical encryp-
tion scheme as the ElGamal public key encryption
scheme or Rijndael/AES is used, an authority can
ask Alice to reveal what she sent Bob. Indeed, in
the case of ElGamal, when Alice sends (C1, C2) =
(gr , myr ) and is forced to reveal her randomness r
used, anybody can obtain m. So, one can view the
ciphertext as some commitment to the message. In
the case of AES, when Alice is forced to reveal the
key she shares with Bob, the authority again can
obtain the message. (Using zero-knowledge, Alice
is not required to reveal the key.)

The goal of deniable encryption [1] is that Alice
can send a private message to Bob, without hav-
ing the ciphertext result in a commitment. This
can be viewed as allowing her to deny having sent
a particular message. A scheme satisfying this
condition is called a sender-deniable encryption
scheme.

There is a similar concern from Bob’s viewpoint.
Can Bob be forced to open the received cipher-
text? Again if the ElGamal public key encryption
scheme is used, then using his secret key, Bob can
help the authority to decipher the message. So,
Bob “cannot deny” having received the message.
A scheme that solves this issue is called a receiver-
deniable encryption scheme.

An example of a sender-deniable scheme ex-
plained informally, works as follows. Suppose
the sender (Alice) and the receiver (Bob) have
agreed on some pseudorandomness, such that
both can distinguish it from true randomness.
When Alice wants to send a message bit 1, she
will send some pseudorandom string, otherwise
she sends true randomness. Since the authority
cannot distinguish the pseudorandom from the
real random, Alice can pretend she sent the op-
posite bit of what she did. For further details,
see [1].

Canetti–Dwork–Naor–Ostrovsky demonstrated
that a sender-deniable encryption scheme can
be transformed into a receiver-deniable one, as
follows:
Step 1. The receiver (Bob) sends the sender (Alice)

a random r using a sender-deniable encryption
scheme.

Step 2. The sender Alice sends Bob the ciphertext
r ⊕ m, where ⊕ is the exor.

A receiver-deniable scheme can also be trans-
formed into a sender deniable one, as explained
in [1].

Yvo Desmedt
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DENIAL OF SERVICE

In the most literal sense, whenever a legitimate
principal is unable to access a resource for any
reason, it can be said that a denial of service has
occurred. In common practice, however, the term
Denial of Service (DoS) is reserved only to refer to
those times when an interruption in availability is
the intended result of a deliberate attack [3]. Of-
ten, especially in the press, DoS is used in an even
more narrow sense, referring specifically to remote
flooding attacks (defined below) against network
services such as web servers. When attempting
to prevent access to a target service, the target
itself can be attacked, or, equally effectively, an-
other service upon which the target depends can
be attacked. For example, to cause a DoS of a web
server, the server program could be attacked, or
the network connection to the server could be at-
tacked instead.

DoS attacks can be categorized as either lo-
cal Denial of Service attacks or remote Denial of
Service attacks. Local DoS attacks are a type of
privilege escalation, where a principal with legit-
imate access to a service is able to deny others
access to it. In many older UNIX-like operating
systems, for example, when a user goes to change
their password, the system first locks the global
password file before asking the user for their new
password; until the user enters their new pass-
word, the file remains locked and no other users
are able to change passwords. Remote DoS at-
tacks, on the other hand, often require no spe-
cial rights for the attacker, or are against ser-
vices which do not require any authentication at
all. Flooding a web server with millions of re-
quests is an example of a common remote DoS
attack.

Some DoS attacks, referred to as logic attacks
in [7], work by exploiting programming bugs in
the service being attacked, causing it to immedi-
ately exit or otherwise stop responding. Examples
of these types of attacks include the Windows 95
Ping-of-Death, BIND nameserver exit-on-error at-
tacks, and countless buffer overflow attacks which

crash, but do not compromise,1 services. These
kinds of DoS attacks are the easiest to prevent,
since the attack is caused by invalid behavior that
would not be expected from legitimate principals.
By fixing bugs and more carefully filtering out bad
input, these types of DoS attacks can be prevented.
The attacks are also very asymmetric however,
making them very dangerous until all vulnerable
services have been upgraded. With these attacks,
very little effort on the part of the attacker (a sin-
gle malformed message typically) leads to a com-
plete Denial of Service. An attacker with limited
resources is able to quickly cause a great deal of
damage with these attacks.

In contrast, flooding DoS attacks work by con-
suming limited resources on the server. Resources
commonly targeted by these attacks include mem-
ory, disk space, CPU, and network bandwidth.
Simple local DoS attacks such as acquiring and
never releasing a shared lock also fall into this
group. With these attacks, the problem lies in the
rate the attacker does something, not in what they
do. These attacks take a normal, acceptable activ-
ity such as forking a new process or requesting a
web page, and raise it to an attack by performing
the activity to excess.

Because these attacks involve behavior that
would normally be perfectly acceptable, there is
typically no way to tell with certainty that a re-
quest to a service is part of an attack. In some
cases, particularly local DoS attacks, the consump-
tion of resources can be limited by placing caps
on how much of the resource any single user can
consume. Limits can be placed on how much mem-
ory, disk space, or CPU a single user can use, and
timeouts can be set whenever an exclusive lock
is given out. The difficulty with using limits to
prevent these attacks is that if a user needs to
exceed one of these caps for legitimate purposes,
they are unable to; the solution to the first DoS
attack causes a Denial of Service of a different
kind. Because most solutions to flooding attacks
rely on some heuristic to determine when behavior
is malicious, there are always some false positives
which cause the prevention to be a DoS itself.

As with logic attacks, some flooding attacks are
also highly asymmetric. In particular, many stan-
dard protocols (such as IP, TCP (see firewall) and
SSL/TLS (see Secure Socket Layer and Transport
Layer Security)) allow for asymmetric attacks be-
cause they require the service to keep state or
perform expensive computations for the attacker.

1 Technically, if an attack’s primary purpose is to compromise
a service, and, as a side effect, it crashes the service, this is not
considered a DoS attack [3].
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If an attacker begins many protocol sessions but
never completes them, resources can quickly be
exhausted. TCP SYN flood and incomplete IP
fragment attacks both work by exhausting avail-
able buffers within the server’s networking stack.
When beginning SSL/TLS sessions the server
must perform CPU-intensive public key crypto-
graphy operations which take orders of magni-
tude longer than it takes an attacker to send a re-
quest. To remove the asymmetry of these attacks,
techniques that reduce or remove the state the
server must keep [6] or force the client to perform a
comparable amount of computation [1] have been
proposed.

Flooding attacks which have similar resource
requirements for the attacker and victim comprise
the final group of common DoS attacks. While the
previous attacks described have had an element
of skill to them, finding and exploiting some pro-
gramming error or imbalance in protocol design,
these attacks are nothing more than a shoving
match, with the participant with the most of the
resource in question winning. Smurf attacks and
DNS flooding are well known examples of these
brute-force DoS attacks.

Often, the attacker does not have an excess of
the resource (usually network bandwidth) them-
selves. Instead, to carry out their attack they first
compromise a number of other hosts, turning them
into zombies, and then have their zombies attack
the service simultaneously. This type of attack is
known as a Distributed Denial of Service (DDoS)
attack, and has proven very effective in the past
against a number of popular and very well con-
nected Internet servers such as Yahoo! and eBay.

With all types of remote flooding attacks, if the
source of the flood can be identified, it can be
blocked with minimal disruption to non-attack
traffic. With DDoS attacks, this identification is
the main difficulty, since no single zombie pro-
duces an exceptionally large number of requests.
Blocking the wrong source results in a DoS it-
self. Further complicating identification, many at-
tackers mask themselves by forging, or spoofing,
the source of requests. Traceback techniques [2,8]
can be used to identify the true source, but their
accuracy degrades as more sources are present.
Egress filtering, which blocks packets from leaving
edge networks if they claim to have not originated
from that network, can prevent spoofing. Unfortu-
nately, all networks must employ egress filtering
before it is an adequate solution. Since most DoS
attacks employ spoofing, Backscatter analysis [7]
actually takes advantage of it, looking at replies
from victims to the spoofed sources to determine
world-wide DoS activity.

Once the true source of a flood has been iden-
tified, filters can be installed to block the attack.
With bandwidth floods in particular, this block-
ing may need to occur close to the attacker in the
network in order to fully block the DoS. This can
either be arranged manually, through cooperation
between network administrators, or automatically
through systems like Pushback [5].

As seen above, many Denial of Service attacks
have no simple solutions. The very nature of
openly accessible services on the Internet leaves
them vulnerable from these attacks. It is an inter-
esting and rapidly evolving type of security attack.
The list of resources at [4] is updated periodically
with pointers to new attacks and tools for protect-
ing services, and makes a good starting point for
further exploring the causes and effects of DoS at-
tacks, and the state of the art techniques in dealing
with them.

Eric Cronin
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DERIVED KEY

A derived key is a key, which may be calculated
(derived) by a well-defined algorithm from a in-
put consisting of public as well as secret data. As
an example, the initial secret data might be a ran-
dom seed, i.e., a string of random bits (see modular
arithmetic), which is then exponentiated modulo,
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e.g., an RSA-modulus (say both of length 1024; see
RSA public key encryption), after which the de-
rived key may be the lower 128 bits of the result
R (current seed), which is kept and exponentiated
again for the derivation of the next key. The advan-
tage is that if two parties share the same initial
seed, they may independently of each other calcu-
late identical derived keys by keeping track of the
number of iterations.

Peter Landrock

DESIGNATED CONFIRMER
SIGNATURE

Designated confirmer signatures (or sometimes
simply ‘confirmer signatures’) are digital signa-
tures that can be verified only by some help of a
semi-trusted designated confirmer. They were in-
troduced by Chaum in [3] as an improvement of
convertible undeniable signatures. Unlike an or-
dinary digital signature that can be verified by
anyone who has access to the public verifying key
of the signer (universal verifiability), a designated
confirmer signature can only be verified by engag-
ing in a—usually interactive—protocol with the
designated confirmer. The outcome of the protocol
is an affirming or rejecting assertion telling the
verifier whether the signature has originated from
the alleged signer or not.

The main difference to (convertible) undeni-
able signatures is that the capabilities to pro-
duce signatures and to confirm signatures are laid
into different hands, which has several advan-
tages. Designated confirmer signatures improve
the availability and reliability of the confirma-
tion services for verifiers. Verifiers can rely on
a designated confirmer instead of having to rely
on the signers themselves. The designated con-
firmer can be organized as one or more author-
ities with a higher availability than each signer
can afford to provide, and the designated con-
firmer can provide confirmation services according
to a clearly stated confirmation policy, which can
also be subject to independent audit on a regular
basis. In practice, a designated confirmer would
conceivably contract multiple signers and provide
confirmation services to all their respective veri-
fiers. Another way of increasing the availability of
the confirmation services is by using an undeni-
able signature scheme with distributed provers as
proposed by Pedersen [7]. Another advantage of
designated confirmer signatures is that they alle-
viate the problem of coercable signers. In undeni-

able signature schemes, the signer may be black-
mailed or bribed to confirm or disavow an alleged
signature. This may be harder to accomplish with
a designated confirmer organized as an authority
with proper checks and balances.

Designated confirmer signatures are a useful
tool to construct protocols for contract signing [1].
The trusted third party in contract signing takes
the role of a designated confirmer. Each partici-
pant produces a designated confirmer signature
of his statement and distributes it to all other par-
ticipants and to the trusted third party. After the
trusted third party has collected the statements
and corresponding designated confirmer signa-
tures from all participants, it converts them into
ordinary digital signatures and circulates them to
all participants according to a predefined policy.
Designated confirmer signatures are also useful to
construct verifiable signature sharing schemes [4].

A designated confirmer signature scheme has
three operations: (i) An operation for generating
double key pairs, one key pair of a private signing
key with a public verifying key and another key
pair of a private confirmer key with a public con-
firmer key, (ii) an operation for signing messages,
and (iii) a confirming operation for proving signa-
tures valid (confirmation) or invalid (disavowal).
The private signing key is known only to the
signer, the private confirmer key is known only to
the confirmer, and the public verifying key as well
as the public confirmer key are publicly accessi-
ble through authenticated channels, e.g., through
a public key infrastructure (PKI). The signing op-
eration is between a signer using the private sign-
ing key and a verifier using the public verifying
key. The verifying operation is between the des-
ignated confirmer using its private confirmer key
and a verifier using the public confirmer key. Fur-
thermore, there is (iv) an individual conversion op-
eration for converting individual designated con-
firmer signatures into ordinary digital signatures,
and (v) a universal verifying operation to verify
such converted signatures.

The characteristic security requirements of a
designated confirmer signature scheme are sim-
ilar to those of a convertible undeniable signature
scheme [2]:
Unforgeability: Resistance against existential

forgery under adaptive chosen message attacks
by computationally restricted attackers.

Invisibility: A cheating verifier, given a signer’s
public verifying key, public confirmer key, a
message, a designated confirmer signature and
oracle access to the signer, cannot decide with
probability better than pure guessing whether
the signature is valid for the message with
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respect to the signer’s verifying key or not. (This
implies non-coercibility as described above.)

Soundness: A cheating designated confirmer
cannot misuse the verifying operation in order
to prove a valid signature to be invalid (non-
repudiation), or an invalid signature to be valid
(false claim of origin).

Non-transferability: A cheating verifier obtains
no information from the confirming operation
that allows him to convince a third party that
the alleged signature is valid or invalid, regard-
less if the signature is valid or not.

Validity of Conversion: A cheating designated
confirmer with oracle access to a signer cannot
fabricate a converted signature valid for a mes-
sage m with respect to the signer’s public veri-
fying key unless that signer has produced a des-
ignated confirmer signature for m before.

Practical constructions have been proposed by
Chaum [3], Okamoto [6], Michels and Stadler [5],
and by Camenisch and Michels [2]. All of them pro-
pose an individual conversion operation, but none
of them discusses a universal conversion opera-
tion analogous to that of convertible undeniable
signatures. Michels and Stadler [5] have dis-
cussed designated confirmer signatures that can
be converted into well known ordinary signatures
such as RSA digital signatures, Schnorr digital
signatures, Fiat and Shamir signatures, or ElGa-
mal digital signatures.

Designated confirmer signatures are a rela-
tively young concept, which have not yet been
blended with other interesting types of sig-
nature schemes such as threshold signatures,
group signatures, or fail-stop signatures.

Gerrit Bleumer
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DES-X (OR DESX)

DES-X is a 64-bit block cipher with a 2 × 64 +
56 = 184-bit key, which is a simple extension of
DES (see Data Encryption Standard). The con-
struction was suggested by Rivest in 1984 in or-
der to overcome the problem of the short 56-
bit key-size which made the cipher vulnerable
to exhaustive key search attack. The idea is just
to XOR a secret 64-bit key K1 to the input of
DES and to XOR another 64-bit secret key K2
to the output of DES: C = K2 ⊕ DESK(P ⊕ K1).
The keys K1, K2 are called whitening keys and
are a popular element of modern cipher design.
The construction itself goes back to the work of
Shannon [6, p. 713], who suggested the use of a
fixed mixing permutation whose input and out-
put are masked by the secret keys. This construc-
tion has been shown to have provable security by
Even–Mansour [2] if the underlying permutation
is pseudorandom (i.e., computationally indistin-
guishable from a random permutation). A thor-
ough study of DES-X was given in the work of
Kilian–Rogaway [3], which builds on [2] and uses a
blackbox model of security. Currently, the best at-
tack on DES-X is a known-plaintext slide attack
discovered by Biryukov–Wagner [1] which has
complexity of 232.5 known plaintexts and 287.5 time
of analysis. Moreover the attack is easily con-
verted into a ciphertext-only attack with the same
data complexity and 295 offline time complexity.
These attacks are mainly of theoretical interest
due to their high time complexities. However, the
attack is generic and would work for any cipher F
used together with post- and pre-whitening with
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complexity 2(n+1)/2 known plaintexts and 2k+(n+1)/2

time steps (here n is the block size, and k is the key-
size of the internal cipher F). A related key-attack
on DES-X is given in [4]. Best conventional at-
tack, which exploits the internal structure of DES,
would be a linear cryptanalysis attack, using 261

known plaintexts [3].

Alex Biryukov
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DICTIONARY ATTACK (I)

Dictionary attack is an exhaustive cryptanaly-
sis approach in which the attacker computes
and stores a table of plaintext–ciphertext pairs
(P, Ci = EKi (P), Ki) sorted by the ciphertexts Ci .
Here the plaintext P is chosen in advance among
the most often encrypted texts like “login:”, “Hello
John”, etc. and the key runs through all the pos-
sible keys Ki . If P is encrypted later by the user
and the attacker observes its resulting ciphertext
Cj, the attacker may search his table for the corre-
sponding ciphertext and retrieve the secret key Kj.

The term dictionary attack is also used in the
area of password guessing, but with a different
meaning.

Alex Biryukov

DICTIONARY ATTACK (II)

A dictionary attack is a password [1] guessing
technique in which the attacker attempts to de-
termine a user’s password by successively trying
words from a dictionary (a compiled list of likely
passwords) in the hope that one of these pass-
word guesses will be the user’s actual password.
In practice, the attacker’s dictionary typically is
not restricted to words from a traditional natural-
language dictionary, but may include one or more
of the following:
� variations on the user’s first or last name, ini-

tials, account name, and other relevant per-
sonal information (such as address and tele-
phone number, pet’s name, and so on);

� words from various databases such as male and
female names, places, cartoon characters, films,
myths, and books;

� spelling variations and permutations of the
above words, such as replacing the letter “o”
with the number “0”, using random capitaliza-
tion, and so on;

� common word pairs.
Dictionary attacks can be quite successful in many
environments because of the tendency of users to
make poor password choices (unfortunately, pass-
words that are easily memorized by a legitimate
user are also easily guessed by an attacker). These
attacks can be performed in online mode (trying
successive passwords until a login is successful) or
offline mode (hashing or encrypting a dictionary of
words and looking for any matches in a copied sys-
tem file of hashed or encrypted user passwords).
Server limits on the number of unsuccessful login
attempts can help to thwart online attacks and the
use of “salt” [see salt] can help to thwart offline
attacks.

Carlisle Adams
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DIFFERENTIAL
CRYPTANALYSIS

Differential cryptanalysis is a general technique
for the analysis of symmetric cryptographic
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primitives, in particular of block ciphers and hash
functions. It was first publicized in 1990 by Biham
and Shamir [3, 4] with attacks against reduced-
round variants of the Data Encryption Standard
(DES) [14], and followed in 1991 by the first attack
against DES which was faster than exhaustive
key search [6].

Let P be a plaintext, and let C be the cor-
responding ciphertext encrypted under the (un-
known) key K, such that C = EK(P). Let P∗ be a
second plaintext, and let C∗ be the corresponding
ciphertext under the same (unknown) key K, C∗ =
EK(P∗). We define the difference of the plaintexts
as P′ = P ⊕ P∗, and the difference of the cipher-
texts as C′ = C ⊕ C∗. Also for any intermediate
data X during encryption (for example, the data
after the third round, or the input to some opera-
tion in the fifth round), let the corresponding data
during the encryption of P∗ be denoted by X∗, and
let the difference be X′ = X ⊕ X∗.

Differential cryptanalysis studies the differ-
ences, usually by means of exclusive-or (XOR), as
they evolve in the various rounds and various oper-
ations of the cipher. Linear and affine operations
do not affect the differences, or affect the differ-
ences in a predictable way: bit-permutation op-
erations (that reorder the bits of the data X to
P(X)) reorder the differences in the same way (i.e.,
to P(X′) = P(X) ⊕ P(X∗)); selections (that select
some of the bits of the data) also select the bits
of the differences; and XOR operations of two val-
ues X ⊕ Y, also XOR the differences of the values
to X′ ⊕ Y′ = (X ⊕ Y) ⊕ (X∗ ⊕ Y∗). An important ob-
servation is that mixing subkeys into the data
may be discarded by means of differences: if the
mixing of subkeys to the data is performed us-
ing an XOR operation by Y = X ⊕ K, then in the
second encryption it is Y∗ = X∗ ⊕ K, and the out-
put difference of the key mixing is Y′ = Y ⊕ Y∗ =
(X ⊕ K) ⊕ (X∗ ⊕ K) = X′, which is independent of
the subkey. Key mixings may thus be ignored in
the predictions of the differences.

For non-linear operations (such as S boxes) we
can also study the evolvement of the differences.
Certainly, when the difference of the input is 0,
the two inputs are equal, and thus also the two
outputs are equal, having a difference 0 as well.
When the input difference is nonzero, we cannot
predict the output difference, as it may have many
different output differences for any input differ-
ence. However, it is possible to predict statistical
information on the output difference given the in-
put difference. Take for example S box S1 of DES.
This S box has 6 input bits and 4 output bits.
For each input difference X′ there are 64 possi-
ble pairs of inputs with this difference (for any

possible input X, the second input is computed
by X∗ = X ⊕ X′). These 64 pairs may have vari-
ous output differences. The main observation is
that the output differences are not distributed uni-
formly. For example, for the input difference 34x
(the subscript x denotes that the number is in
hexadecimal notation), no pair has output differ-
ence 0, nor 5 nor 6, and several other output dif-
ferences; two pairs have output difference 4, eight
pairs have output difference 1, and 16 of the 64
pairs with this input difference have output dif-
ference 2. For this input difference, a cryptanalyst
can thus predict with probability 1/4 that the out-
put difference is 2. A difference distribution table
of an S box (or operation) is a table that lists the
number of pairs which fulfill the input and out-
put differences for each possible input and output
differences, where the rows denote all the possi-
ble input differences, the columns all the output
differences, and each entry contains the number
of pairs with the corresponding differences. In the
example above, the difference distribution table of
S1 of DES has value 16 in row 34x column 2.

Differential cryptanalysis defines characteris-
tics that describe possible evolvements of the dif-
ferences through the cipher. Each characteristic
has a plaintext difference for which it predicts the
differences in the following rounds. A pair of plain-
texts for which the differences of the plaintexts
and the intermediate data (when encrypted under
the used key) are exactly as predicted by the char-
acteristic are called right pairs (all other pairs are
called wrong pairs). The probability that a char-
acteristic succeeds to predict the differences (i.e.,
that a random pair is a right pair, given that the
plaintext difference is as required by the charac-
teristic) depends on the probabilities induced by
the input and output differences for each S box
(or each operation), where the total probability is
the product of the probabilities of the various op-
erations (assuming that the probabilities are inde-
pendent, which is usually the case; otherwise the
product is usually a good approximation for the
probability).

Given the expected difference for the intermedi-
ate data before the last round (or more generally
in some round near the end of the cipher), it may
be possible to deduce the unknown key by a sta-
tistical analysis. The attack is a chosen plaintext
attack that is performed in two phases: In the data
collection phase the attacker requests encryption
of a large number of pairs of plaintexts, where the
differences of all the plaintext pairs are selected
to have the plaintext difference of the character-
istic. In the data analysis phase the attacker then
recovers the key from the collected ciphertexts.
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Assume that the probability of the characteristic
is p (i.e., a fraction p of the pairs are expected to
be right pairs). It is then expected that for a frac-
tion pof the pairs, the difference of the data before
the last round is as predicted by the characteristic.
An (inefficient) method for deriving the subkey of
the last round is then to try all the possibilities
of the subkey of the last round. For each possible
subkey partially decrypt all the ciphertexts by one
round, and for each pair compute the differences
of the data before the last round, by XORing the
data resulting from the partial decryptions. For
wrong guesses of the subkey it is expected that
the difference predicted by the characteristic ap-
pears rarely, and for the correct value of the sub-
key it is expected that this difference appears for
a fraction p or more of the pairs (as there is a frac-
tion of about p of right pairs that are assured to
suggest this difference, and as wrong pairs may
also suggest this difference). In particular, if the
probability p is not too low, it is expected that the
correct subkey is the one which gives the expected
difference most frequently. It should be noted that
the derivation of the last subkey is usually much
more efficient than (but equivalent in results to)
this described algorithm, using the information of
the input and output differences for each S box
(or operation) in the last round. It should also be
noted that in many cases characteristics shorter
by more than one round than the cipher (usually
up to three rounds shorter) can also be used for
differential attacks.

Differential cryptanalysis usually requires a
small multiple of 1/p pairs of chosen plaintexts,
when using a characteristic with probability p,
in order to ensure that sufficiently many right
pairs appear in the data. This amount of encrypted
data may be very large (about 247 chosen plaintext
blocks in the case of DES), making the complexity
of the data collection phase larger than the com-
plexity of the data analysis phase in most cases.
The large number of chosen plaintexts may by it-
self make the attack impractical, as it transfers
the responsibility of computing the major part of
the attack from the attacker to the attacked party,
who is required to encrypt a large number of cho-
sen plaintexts for the attacker to be able to mount
his attack. It is therefore common in such cases to
quote the complexity of a differential attack to be
the number of required chosen plaintexts.

After the publication of the differential crypt-
analysis attack on DES, whose complexity is 247

(it requires 247 chosen plaintexts and the time of
analysis is less than 240), IBM announced that
they were aware of differential cryptanalysis when
they designed DES, and actually designed it to

withstand differential attacks. Moreover, differen-
tial attacks (to which they called the T method)
were classified as top secret for purposes of US
national security, and IBM were requested by the
NSA not to publish any information on them.

There are various improvements of differential
cryptanalysis aimed to reduce the complexity of
differential attacks. One simple method is a combi-
nation of several characteristics in a single larger
structure. In case two characteristics are used,
such a structure is called a quartet. It contains
four plaintexts of the form P, P ⊕ �1

p, P ⊕ �2
p,

P ⊕ �1
p ⊕ �2

p, for the plaintexts differences �1
p and

�2
p. It can easily be seen that in such a quartet

each difference appears twice: the first difference
appears as the difference of the first two plain-
texts, and also as the difference of the other two
plaintexts; the second difference appears as the
difference of the first and third plaintexts, and also
as the difference of the second and fourth plain-
texts. Thus, a total of four pairs are contained in
a quartet; without using quartets only two pairs
are contained in the same number of plaintexts.
Larger structures of eight plaintexts using three
different characteristics contain 12 pairs. Such
structures are useful when there are several high-
probability characteristics that can be used for an
attack, as if the second best characteristic has a
relatively low probability, the benefit of getting
pairs with such a difference is quite low.

Another improvement (which was also men-
tioned in the original publication on differential
cryptanalysis) is using an extended form of differ-
ences, in which not all the bits of the difference
are fixed. This type of differences was later called
truncated differences [10]. An important type of
truncated differences (in most cases truncated dif-
ferences refer to this type) is the word-wise trun-
cated differences. Word-wise truncated differences
are differences in which the difference itself is not
considered, but instead the differences are divided
into two classes, namely zero differences and non-
zero differences. In these cases the data blocks
are divided to words (either 8-bit bytes, or 16-bit
words, or words of a different size depending on
the native structure of the cipher), and the anal-
ysis only considers whether the difference of a
word is expected to be zero or not. Such consid-
eration is useful when non-zero differences evolve
to other (unknown in advance) non-zero differ-
ences, so that the information on the zero/non-
zero difference evolve through many rounds of the
cipher.

A third extension defines non-XOR differences,
such as subtraction of integers (useful for cases
where the native operation in the cipher is
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addition), or differences of division modulo a prime
(useful for cases where the native operation in the
cipher is multiplication modulo a prime, such as
in IDEA [11]). Also a combination of different dif-
ferences for different parts of the block, or for dif-
ferent rounds of the cipher is considered. For such
cases, difference distribution tables where the in-
put differences are defined with one operation and
the output differences with another, are very use-
ful (especially when the operation natively trans-
forms one operation to another, such as in cases of
exponentiation S boxes, or logarithm S boxes).

Higher-order differences [12] consider deriva-
tives of a second or a higher order. Higher-order
differences are shown successful in several cases
where differential cryptanalysis is not applicable
due to low probabilities of characteristics; in some
of these cases higher-order differences prove the
most successful attack. However, higher-order at-
tacks are successful mainly against ciphers with
a small number of rounds.

It was also observed that in most differential
attacks, the intermediate differences predicted by
the characteristics are not used, and thus can be
ignored [11]. In such cases, the considered dif-
ferences are only the plaintext differences and
the difference after the final round of the char-
acteristic. In most cases there are many different
characteristics with the same plaintext difference
and the same final difference; these characteris-
tics sum up to one differential, whose probability
is the sum of their probabilities.

The major method for protection against differ-
ential cryptanalysis is by bounding the probabil-
ity of the best characteristic (or differential) to be
very low. Whenever the designer wishes to prove
that differential cryptanalysis is not applicable,
he bounds the probability p of the best character-
istic (or differential) such that 1/p is larger than
the required complexity, or even larger than the
size of the plaintext space (in which case even
choosing the whole plaintext space is not sufficient
for mounting an attack). These bounds were for-
malized into various theories of provable security
against differential cryptanalysis.

A specially interesting theory for provable se-
curity against differential cryptanalysis (and also
linear cryptanalysis) is the theory of decorrela-
tion [16], which makes it possible to prove security
of block ciphers against certain (restricted) kinds
of attacks, including basic variants of differential
and linear cryptanalysis.

Although the usual claims for security against
differential cryptanalysis say that the probabil-
ities of the highest-probability differentials are
very low, and thus differential attacks require

a huge amount of data and complexity, it was
observed that even differentials with probability
zero (i.e., that cannot occur—there are no right
pairs under any key) can be used for attacks [1,9].
This kind of attacks is called differential crypt-
analysis using impossible differentials (or shortly
impossible cryptanalysis). The main idea is to se-
lect a large set of pairs with the plaintext differ-
ence of an impossible differential with n − 1 (or
slightly less) rounds, where n is the number of
rounds of the block cipher, and to try all the pos-
sible subkeys of the extra round(s). If it appears
that for some value of the subkey, decryption of
the ciphertexts by one round (or the few rounds)
leads to the impossible difference in any one of
the pairs, then we are assured that the subkey is
wrong, and thus can be discarded. After discarding
sufficiently many subkeys, the attacker reduces
his list of possible values of the subkeys to a short
list (or even to one subkey), and he is assured that
the correct subkey is in the list. Depending on the
design of the cipher and the key schedule, for some
ciphers it would be more efficient to try reducing
the number of possible subkeys to 1 (i.e., only the
correct subkey), while for others it would be more
efficient to reduce the size of the short list to some
larger size, and then perform an exhaustive search
of the remaining possible keys.

There are also attacks that use differentials as
their building blocks, while combining differen-
tials in various ways. The most promising ones
are boomerang [17], amplified boomerang [8], and
rectangle [2] attacks. The main idea in all these at-
tacks are the combination of four plaintexts, which
for simplicity of description we assume are located
on the corners of a square, where one short differ-
ential is used in both pairs for the first few rounds
(the horizontal edges), while a second short differ-
ential is used for the rest of the rounds but on the
orthogonal pairs (the vertical edges). Although the
probabilities of the total structure are p2q2 where
p and q are the probabilities of the two differen-
tials, it appears that it is much easier in various
cases to find good short differentials, than to find
one full differential of a comparable probability.

Although differential cryptanalysis is basically
a chosen plaintext attack (as the attacker needs
to choose the plaintext differences), the attacker
usually does not need to choose the exact values
of the plaintexts. This observation allows conver-
sion of chosen plaintext differential cryptanaly-
sis attacks into known plaintext attacks [3], using
the fact that in a sufficiently large set of random
plaintexts there are many pairs whose difference
is as required by the chosen plaintext attack. Once
these pairs of plaintexts are identified, the original
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chosen plaintext attack may be performed on these
pairs. This variant usually requires a huge num-
ber of known plaintexts, which is about

√
m2n+1

where n is the size of the plaintext in bits and m is
the number of chosen plaintext pairs required by
the chosen plaintext attack. On some ciphers this
is the best published known-plaintext attack.

In some cases it is also possible to convert dif-
ferential cryptanalysis to ciphertext-only attacks.
For more information on these conversions see [7].

Differential cryptanalysis was originally devel-
oped on FEAL-8 [13,15], a block cipher which was
claimed to be faster and more secure than DES.
It was then generalized and extended to DES and
other schemes. Feal-8 was broken using a few hun-
dred chosen plaintexts. Given the corresponding
ciphertexts, it takes less than a minute on a per-
sonal computer to recover the key [5]. The first
results on DES [4] showed that DES reduced to
15 rounds was vulnerable to a differential attack,
while the full 16-round DES required 258 chosen
plaintexts for a successful attack, whose genera-
tion is slower than exhaustive search. In the fol-
lowing year an improvement of the technique was
invented [6]. The main trick in the improved at-
tack was the ability to receive the first round for
free, using large specially designed structures, set-
ting the characteristic from the second round on.
This improvement made it possible to apply the
15-round attack on the full 16 rounds. Another im-
provement allowed to find the key when the first
right pair is analyzed, rather than to wait till suffi-
ciently many right pairs are found. This improve-
ment is applicable when the attack considers all
the key bits (or almost all the key bits) in a sin-
gle counting phase. As a result, the improved at-
tack could analyze the full 16-round DES given 247

chosen plaintext and their corresponding cipher-
texts, whose complexity of analysis was smaller
than 240.

Eli Biham
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DIFFERENTIAL–LINEAR
ATTACK

Differential–Linear attack is a chosen plaintext
two-stage technique of cryptanalysis (by analogy
with two-stage rocket technology) in which the
first stage is covered by differential cryptanalysis,
which ensures propagation of useful properties
midway through the block cipher. The second
stage is then performed from the middle of
the cipher and to the ciphertext using linear
cryptanalysis. The technique was discovered and
demonstrated on the example of 8-round DES
(see Data Encryption Standard) by Langford and
Hellman [4]. Given a differential characteristic
with probability p for the rounds 1, . . . , i and the
linear characteristic with bias q for the rounds
i + 1, . . . , R, the bias of resulting linear approx-
imation would be 1/2 + 2pq2 and the data com-
plexity of the attack will be O(p−2q−4) [3, p. 65].
Thus the attack would be useful only in special
cases when there are good characteristics or linear
approximations half-way through the cipher, but
no good patterns for the full cipher. Their attack
enhanced with such refinements as packing data
into structures and key-ranking (or list decoding)
can recover 10-bits of the secret key for 8-round
DES using 512 chosen plaintexts. In [1] the same
technique is used to break 8-round FEAL with 12
chosen plaintexts and expensive analysis phase.
Further applications and refinements of the tech-
nique are given in [2].
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DIFFERENTIAL POWER
ANALYSIS

Differential Power Analysis utilizes power con-
sumption of a cryptographic device such as a
smartcard as side-channel information. In Simple
Power Analysis (SPA) an attacker directly ob-
serves a device’s power consumption. It is known
that the amount of power consumed by the device
varies depending on the data operated on and the
instructions performed during different parts of
an algorithm’s execution. Define a power trace as
a set of power consumption measurements during
a cryptographic operation. By simply examining
power traces, it is possible to determine major
characteristic details of a cryptographic device
and the implementation of the cryptographic algo-
rithm being used. SPA can therefore be used to dis-
cover implementation details, such as DES rounds
(see Data Encryption Standard) and RSA opera-
tions (see RSA public key encryption). Moreover,
SPA can reveal differences between multiplication
and squaring operations, which can be used to
recover the private key in RSA implementations.
SPA can also reveal visible differences within
permutations and shifts in DES implementations,
which might lead to recovering the secret DES
key.

While SPA attacks use primarily visual inspec-
tion to identify relevant power fluctuations, Dif-
ferential Power Analysis (DPA) exploits character-
istic behavior (e.g., power consumption behavior
of transistors and logic gates) [2]. DPA uses an
attacking model and statistical analysis to ex-
tract hidden information from a large sample of
power traces obtained during “controlled” crypto-
graphic computations. In case of SPA, direct ob-
servations of a device’s power consumption would
not allow identifying the effects of a single tran-
sistor switching. The use of statistical methods
in a controlled DPA environment allows iden-
tifying small differences in power consumption,
which can be used to recover specific information
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such as the individual bits in a secret key.
This means secret key material can be recovered
from tamper-resistant devices such as smartcards
(smartcard tamper resistance). To execute an at-
tack based on DPA, an attacker does not need to
know as many details about how the algorithm is
implemented.

The basis of a DPA attack is the use of an
abstract model based on the power consumption
characteristics of the logic that includes the noise
components. When measuring the power con-
sumption, various noise components are superim-
posed on the power traces. The main noise sources
are external, intrinsic, quantization and algorith-
mic noise. Intrinsic and quantization noise are
small compared to the power consumption. The ex-
ternal noise can be reduced by careful use of the
measurement equipment. The algorithmic noise
can be averaged out by the DPA strategy itself.
To reduce the influence of noise in DPA one can
increase the number of samples required to detect
variations. Analysis can take place in the time and
frequency domain.

The basis DPA technique is as follows. Assume
that a sufficient number N of random power traces
have been collected (e.g., N samples of cipher-
texts obtained using the same encryption key).
Each power trace is a collection of power samples
PS(n, t), which represent the power consumption
at time t in trace n as the sum of the power dis-
sipated by all circuitry. In practice, the number
of measurements t in each power trace depends
on the sampling rate and the memory capacity as
well as the duration of the cryptographic opera-
tion. Next, partition the power samples PS(n, t)
into two sets S0 and S1 according to the outcome
0 or 1 of a partitioning or discrimination function
D. The outcome value of the partitioning function
D can be simply the value of a specific ciphertext
bit. In general, the size of set S0 will be roughly
the same as the size of S1. Next, compute the av-
erage power signal for each set Sat time t . By sub-
tracting the two averages, we obtain the DPA bias
signal B(t). Selecting an appropriate D-function
will result in a DPA bias signal that an attacker
can use to verify guesses of the secret key. The
D-function is chosen such that at some point dur-
ing implementation the device needs to calculate
the value of this bit. When this occurs or any time
data containing this bit is manipulated, there will
be a slight difference in the amount of power dis-
sipated depending on whether this bit is a zero
or a one. Let ε denote this difference, and the in-
struction manipulating the D-bit occurs at time
t ′, then the value ε is equal to the expectation

difference

E[S | (D = 0)] − E[S | (D = 1)], for t = t ′.

When t �= t ′ the device is manipulating bits other
than the D-bit, and assuming that the power
dissipation is independent of the D-bit, the differ-
ence in expectation of the two sets equals zero for
sufficiently large N. Thus the bias function B(t)
will show power spikes of height ε at times t ′ and
will appear flat at all other times. If the proper
D-function was chosen, the bias signal will show
spikes whenever the D-bit was manipulated and
otherwise the resulting B(t) will not show any
bias. Using this approach an attacker can verify
guesses for the hidden key bit information using
the D-function. Repeating this approach for dif-
ferent D-bits, the secret key can be obtained bit by
bit.

Variants or improvements of the classical DPA
attack exist that use signals from multiple
sources, use different measuring techniques, com-
bine signals with different temporal offsets, use
specific and more powerful differential functions,
and apply more advanced signal processing func-
tions and models. To enlarge the peak, a multiple-
bit attack can be used.

A DPA attack involves hundreds to thousands
of samples. After processing and statistical analy-
sis, the DPA process can reconstruct the full secret
or private key within several minutes. The whole
process is easy to implement and requires only
standard measurement equipment, which cost lies
between a few hundred to a few thousand dollars.
DPA attacks are non-invasive, which makes them
difficult to detect. DPA requires little or no infor-
mation about the target device and can be auto-
mated. DPA and SPA has successfully been ap-
plied to attack a large number of smartcards and
PCMCIA cards [3]. See [1] for an approach how to
counteract Power Analysis attacks.

Tom Caddy
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DIFFIE–HELLMAN
KEY AGREEMENT

The Diffie–Hellman protocol is a type of key agree-
ment protocol. It was originally described in Diffie
and Hellman’s seminal paper on public key cryp-
tography.

This key agreement protocol allows Alice and
Bob to exchange public key values, and from these
values and knowledge of their own corresponding
private keys, securely compute a shared key K, al-
lowing for further secure communication. Know-
ing only the exchanged public key values, an eav-
esdropper is not able to compute the shared key.

As a preamble to the protocol, the following pub-
lic parameters are assumed to exist (see Number
Theory): a large prime number p such that dis-
crete logarithms in the multiplicative group of in-
tegers from 1 to p− 1 (Z ∗

p) are intractable; and a
generator g of Z ∗

p . Alice randomly selects a value
0 < a < p− 1 and computes r = ga mod p. Alice
sends r to Bob. Similarly, Bob selects a value 0 < b
< p− 1 and computes s = gb mod p. Bob sends s to
Alice. Given a and s, Alice computes K = sa mod
p ≡ gab (mod p). Similarly, given b and r , Bob com-
putes K = rb mod p ≡ gab (mod p). Thus, Alice and
Bob are able to compute the same key value, K.

Now consider the information available to an
eavesdropper. This includes g, p, r and s. Thus,
the eavesdropper must attempt to compute K ≡
gab (mod p) given ga mod p and gb mod p. This is
known as the decisional Diffie–Hellman problem
and for appropriately chosen g and p, it is believed
to be very difficult to solve.

Several variations to this simple protocol exist
(see Key Agreement). Of particular note is the fact
that the above protocol does not provide for the
authentication of Alice and Bob. The Station-to-
Station protocol provides one variation to this pro-
tocol that authenticates Alice and Bob.
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DIFFIE–HELLMAN
PROBLEM

In their pioneering paper Diffie and Hellman [15]
proposed an elegant, reliable, and efficient way to
establish a common key between two communicat-
ing parties. In the most general settings their idea
can be described as follows (see Diffie–Hellman
key agreement for further discussion). Given a
cyclic group G and a generator g of G, two com-
municating parties Alice and Bob execute the fol-
lowing protocol:
� Alice selects secret x, Bob selects secret y;
� Alice publishes X = gx, Bob publishes Y = gy;
� Alice computes K = Yx, Bob computes K = Xy.

Thus at the end of the protocol the values
X = gx and Y = gy have become public, while the
value K = Yx = Xy = gxy supposedly remains pri-
vate and is known as the Diffie–Hellman secret key.

Thus the Diffie–Hellman Problem, DHP, with re-
spect to the group G is to compute gxy from the
given values of gx and gy.

Certainly, only groups in which DHP is hard are
of cryptographic interest. For example, if G is an
additive group of the residue ring Zm modulo m,
see modular arithmetic, then DHP is trivial: using
additive notations the attacker simply computes
x ≡ X/g (mod m) (because g is a generator of the
additive group of Zm, we have gcd(g, m) = 1) and
then K ≡ xY (mod m).

On the other hand, it is widely believed that us-
ing multiplicative subgroups of the group of units
Z

∗
m of the residue ring Zm modulo m yields exam-

ples of groups for which DHP is hard, provided
that the modulus m is carefully chosen. This be-
lief also extends to subgroups of the multiplica-
tive group F

∗
q of a finite field Fq of q elements. In

fact these groups are exactly the groups suggested
by Diffie and Hellman [15]. Although, since that
time the requirements on the suitable groups have
been refined and better understood, unfortunately
not too many other examples of “reliable” groups
have been found. Probably the most intriguing
and promising example, practically and theoret-
ically, is given by subgroups of point groups on
elliptic curves, which have been proposed for this
kind of application by Koblitz [24] and Miller [36].
Since the original proposal, many very important
theoretical and practical issues related to using
elliptic curves in cryptography have been investi-
gated, see [2, 17]. Even more surprisingly, elliptic
curves have led to certain variants of the Diffie–
Hellman schemes, which are not available in sub-
groups of F

∗
q or Z

∗
m, see [5, 22, 23] and references

therein.
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DIFFIE–HELLMAN AND DISCRETE LOGA-
RITHM PROBLEMS: It is immediate that if one
can find x from the given value of X = gx, that is,
solve the discrete logarithm problem, DLP, then
the whole scheme is broken. In fact, in our example
of a “weak” group G, this is exactly DLP which
can easily be solved. Thus DHP is not harder than
DLP. On the other hand, the only known (theo-
retical and practical) way to solve DHP is to solve
the associated DLP. Thus a natural question arises
whether DHP is equivalent to DLP or is strictly
weaker. The answer can certainly depend on the
specific group G.

Despite a widespread assumption that this in-
deed is the case, that is, that in any crypto-
graphically “interesting” group DHP and DLP
are equivalent, very few theoretical results are
known. In particular, it has been demonstrated
in [6, 31, 32] that, under certain conditions, DHP
and DLP are polynomial time equivalent. How-
ever, there are no unconditional results known in
this direction.

Some quantitative relations between complexi-
ties of DHP and DLP are considered in [13].

CRYPTOGRAPHICALLY INTERESTING GROUPS:
As we have mentioned, the choice of the group G is
crucial for the hardness of DHP (while the choice
of the generator g does not seem to be important at
all). Probably the most immediate choice is G = F

∗
q ,

thus g is a primitive element of Fq . However, one
can work in a subgroup of F

∗
q of sufficiently large

prime order � (but still much smaller than q and
thus more efficient) without sacrificing the secu-
rity of the protocol. Indeed, we recall that based on
our current knowledge we may conclude that the
hardness of DLP in a subgroup G ⊆ F

∗
q (at least for

some most commonly used types of fields; for fur-
ther discussion see discrete logarithm problem) is
majorised
1. by �1/2 where � is the largest prime divisor of

#G, see [35,44];
2. by Lq [1/2, 21/2] for a rigorous unconditional al-

gorithm, see [37];
3. by Lq

[
1/3, (64/9)1/3

]
for the heuristic number

field sieve algorithm, see [39,40],
where as usual we denote by Lx[t, γ ] (see
L-notation) any quantity of the form

Lx[t, γ ] = exp((γ + o(1)) (log x)t (log log x)1−t ).

It has also been discovered that some special
subgroups of some special extension fields are
computationally more efficient and also allow one
to reduce the information exchange without sac-
rificing the security of the protocol. The two most

practically and theoretically important examples
are given by LUC, see [3,43], and XTR, see [26–28],
protocols (see, more generally, subgroup crypto-
systems). Despite several substantial achieve-
ments in this area, these results are still to be
better understood and put in a more systematic
form [10].

One can also consider subgroups of the residue
ring Z

∗
m modulo a composite m ≥ 1. Although they

do not seem to give any practical advantages (at
least in the original setting of the two party key
exchange protocol), there are some theoretical re-
sults supporting this choice, for example, see [1].

The situation is more complicated with sub-
groups of the point groups of elliptic curves, and
more generally of abelian varieties. For these
groups not only the arithmetic structure of the
cardinality G matters, but many other factors also
play an essential role, see [2, 17, 19, 20, 25, 34, 38]
and references therein.

BIT SECURITY OF THE DIFFIE–HELLMAN
SECRET KEY: So far, while there are several
examples of groups in which DHP (like DLP) is
conjectured to be hard, as with other areas of cryp-
tography, the security relies on unproven assump-
tions. Nevertheless, after decades of exploration,
we have gained a reasonably high level of confi-
dence in some groups, for example, in subgroups of
F

∗
p. Of course, this assumes that p and #G are suf-

ficiently large to thwart the discrete logarithm at-
tack. Typically, nowadays, p is at least about 1024
bits, #G is at least about 160 bits. However, af-
ter the common key K = gxy is established, only a
small portion of bits of K will be used as a common
key for some pre-agreed symmetric cryptosystem.

Thus, a natural question arises: Assume that
finding all of K is infeasible, is it necessarilly in-
feasible to find certain bits of K?

In practice, one often derives the secret key from
K via a hash function but this requires an addi-
tional function, which generally must be modeled
as a black box. Moreover, this approach requires a
hash function satisfying some additional require-
ments which could be hard to prove uncondition-
ally. Thus the security of the the obtained private
key relies on the hardness of DHP and some as-
sumptions about the hash function. Bit security
results allow us to eliminate the usage of hash
functions and thus to avoid the need to make any
additional assumptions.

For G = F
∗
p, Boneh and Venkatesan [8] have

found a very elegant way, using lattice basis reduc-
tion (see lattices), to solve this question in the affir-
mative, see also [9]. Their result has been slightly
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improved and also extended to other groups
in [21]. For the XTR version of DHP it has recently
been done in [30]. The results of these papers can
be summarized as follows: “error-free” recovery
of even some small portion of information about
the Diffie–Hellman secret key K = gxy is as hard
as recovering the whole key (cf. hard-core bit).
Including the case where the recovering al-
gorithm works with only some non-negligible
positive probability of success is an extremely im-
portant open question. This would immediately
imply that hashing K does not increase the se-
curity of the secret key over simply using a short
substring of bits of K for the same purpose, at least
in an asymptotic sense.

It is important to remark that these results
do not assert that the knowledge of just a few
bits of K for particular (gx, gy) translates into the
knowledge of all the bits. Rather the statement
is that given an efficient algorithm to determine
certain bits of the common key corresponding to
arbitrary gx and gy, one can determine all of the
common key corresponding to particular gx and gy.

Another, somewhat dual problem involving
some partial information about K is studied
in [41]. It is shown in [41] that any polynomial
time algorithm which for given x and y produces a
list L of polynomially many elements of #G where
K = gxy ∈ L, can be used to design a polynomial
time algorithm which finds K unambiguously.

NUMBER THEORETIC AND ALGEBRAIC PROP-
ERTIES: As we have mentioned, getting rigorous
results about the hardness of DHP is probably in-
feasible nowadays. One can however study some
number theoretic and algebraic properties of the
map K : G × G → G given by K(gx, gy) = gxy. This
is of independent intrinsic interest and may also
shed some light on other properties of this map
which are of direct cryptographic interest.

For example, many cryptographic protocols are
based on the assumption of hardness of the deci-
sional Diffie–Hellman problem, DDHP, rather
than DHP itself. Roughly speaking, DDHP is the
problem of deciding whether a triple (u, v, w) ∈ G3

of random elements of G is of the form (gx, gy, gxy)
for some x and y. Clearly, DDHP is no harder
than DHP, and it is believed that in fact it is no
easier, see [4]. Unfortunately there are no viable
approaches to a proof of this conjecture. Motivated
by this problem, in the series of works [11,12,18]
several “statistical” results have been established,
which show that if G is a sufficiently large sub-
group of F

∗
p then at least statistically the triples

(gx, gy, gxy) behave as triples of random elements.

One can also study algebraic properties of the
set of points (gx, gy, gxy) or even just (gx, gx2

)
(which corresponds to the “diagonal” case x =
y). In particular one can ask about the degree
of polynomials F for which F(gx, gy, gxy) = 0 or
F (gx, gy) = gxy or F(gx, gx2

) = 0 or F (gx) = gx2
for

all or “many” x, y ∈ G. Certainly it is intuitively
obvious that such polynomials should be of very
large degree and have a complicated structure.
It is useful to recall the interpolation attack on
block ciphers which is based on finding polyno-
mial relations of similar spirit. It has been shown
in [14] (as one would certainly expect) that such
polynomials are of exponentially large degree, see
also [42]. Several more results of this type can also
be found in [16,33,45].

Igor E. Shparlinski
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DIGITAL SIGNATURE
SCHEMES

Digital signature schemes are techniques to as-
sure an entity’s acknowledgement of having sent
a certain message. Typically, an entity has a pri-
vate key and a corresponding public key which
is tied to the entity’s name (see also public key
infrastructure). The entity generates a string
called signature which depends on the message to
sign and his private key.

The fact that the entity acknowledged, i.e. that
he signed the message, can be verified by any-
one using the entity’s public key, the message,
and the signature. Data authentication and sig-
nature schemes are sometimes distinguished in
the sense that in the latter, verification can be
done by anyone at any time after the generation
of the signature. Due to this property, the digital
signature scheme achieves non-repudiation prop-
erty, that is, a signer cannot later deny the fact of
signing.

Some examples of digital signature schemes are
RSA digital signature scheme, ElGamal digital
signature scheme, Rabin digital signature scheme,
Schnorr digital signature scheme, Digital Signa-
ture Standard, and Nyberg-Rueppel signature
scheme.

A digital signature scheme consists of three al-
gorithms, namely the key generation algorithm,
the signing algorithm and the verification algo-
rithm. The security of digital signature is argued
as follows: no adversary, without the knowledge
of the private key, can generate a message and a
signature that passes the verification algorithm.
(See forgery for more discussions on the secu-
rity of signatures.) There are two types of signa-
ture schemes, namely ‘with appendix’ and ‘with
message recovery’. In the former, the target mes-
sage is the input of the verification algorithm;
that is, the verifier must know the message in
advance to verify the signature. In the latter,
the target message is the output of the verifica-
tion algorithm, so the message does not need to
be sent with the signature. An example of the
former is the ElGamal digital signature scheme
and of the latter is the RSA digital signature
scheme.

Kazue Sako

DIGITAL SIGNATURE
STANDARD

The Digital Signature Standard (DSS), first pro-
posed by Kravitz [2] in 1991, became a US federal
standard in May 1994. It is published as Federal
Information Processing Letters (FIPS) 186. The
signature scheme is based on the ElGamal dig-
ital signature scheme and borrows ideas from
Schnorr digital signatures for reducing signature
size. We describe a slight generalization of the al-
gorithm that allows for an arbitrary security pa-
rameter, whereas the standard only supports a
fixed parameter. The signature scheme makes use
of modular arithmetic and works as follows:
Key Generation. Given two security parameters

τ, λ ∈ Z (τ > λ) as input do the following:
1. Generate a random λ-bit prime q.
2. Generate a random τ -bit prime prime p such

that q divides p− 1.
3. Pick an element g ∈ Z

∗
p of order q.

4. Pick a random integer α ∈ [1, q] and compute
y = gα ∈ Z

∗
p.

5. Let H be a hash function H : {0, 1}∗ → Zq .
The FIPS 186 standard mandates that H be
based on the SHA-1 cryptographic hash func-
tion.

6. Output the public key (p, q, g, y, H) and the
private key (p, q, g, α, H).

Signing. To sign a message m ∈ {0, 1}∗ using the
private key (p, q, g, α, H) do:
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1. Pick a random integer k ∈ [1, q − 1].
2. Compute r = (gk mod p) mod q. We view r as

an integer 0 ≤ r < q.
3. Compute s = k−1(H(m) + αr ) mod q.
4. Output the pair (r, s) ∈ Z

∗
p as the signature

on m.
Verifying. To verify a message/signature pair

(m, (r, s)) using the public key (p, q, g, y, H) do:
1. Verify that 0 ≤ r, s < q, otherwise reject the

signature.
2. Compute u1 = H(m)/s mod q and u2 = r/s

mod q.
3. Compute v = (gu1 yu2 mod p) mod q.
4. Accept the signature if r = v mod q. Other-

wise, reject.
We first check that the verification algorithm

accepts all valid message/signature pairs. For a
valid message/signature pair we have

gu1 yu2 = gu1+αu2 = g(H(m)+αr )/s = gk (mod p).

It follows that v = (gu1 yu2 mod p) mod q = r and
therefore a valid message/signature is always
accepted.

It is not clear how to analyze the security of this
algorithm. Even the random oracle model does not
seem to help since there is no hash function in the
algorithm that can be modelled as a random ora-
cle. It is believed that this is deliberate so that the
algorithm does not infringe on existing patents.
Security analysis for a generalization of DSS is
given in [1].

To discuss signature length we fix concrete
security parameters. At the present time the
discrete-logarithm problem in the cyclic group Z

∗
p

where p is a 1024-bit prime and is considered in-
tractable [3] except for a very well funded orga-
nization. DSS uses a subgroup of order q of Z

∗
p.

When q is a 160-bit prime, the discrete log prob-
lem in this subgroup is believed to be as hard as
discrete-log in all of Z

∗
p. Hence, for the present dis-

cussion we assume p is a 1024-bit prime and q is
a 160-bit prime. Since a DSS signature contains
two elements in Zq we see that, with these param-
eters, a DSS signature is 320-bits long. This is the
same length as a Schnorr signature. We note that
BLS short signatures are half the size and provide
comparable security.

Dan Boneh
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DIGITAL
STEGANOGRAPHY

INTRODUCTION: Steganography is the art and
science of hiding information by embedding mes-
sages within other, seemingly harmless messages.
Steganography means “covered writing” in Greek.
As the goal of steganography is to hide the pres-
ence of a message and to create a covert channel,
it can be seen as the complement of cryptography,
whose goal is to hide the content of a message.

A famous illustration of steganography is
Simmons’ “Prisoners’ Problem” [10]: Alice and Bob
are in jail, locked up in separate cells far apart
from each other, and wish to devise an escape
plan. They are allowed to communicate by means
of sending messages via trusted couriers, provided
they do not deal with escape plans. But the couri-
ers are agents of the warden Eve (who plays the
role of the adversary here) and will leak all com-
munication to her. If Eve detects any sign of con-
spiracy, she will thwart the escape plans by trans-
ferring both prisoners to high-security cells from
which nobody has ever escaped. Alice and Bob are
well aware of these facts, so that before getting
locked up, they have shared a secret codeword
that they are now going to exploit for embedding a
hidden information into their seemingly innocent
messages. Alice and Bob succeed if they can ex-
change information allowing them to coordinate
their escape and Eve does not become suspicious.

According to the standard terminology of in-
formation hiding [8], a legitimate communication
among the prisoners is called covertext, and a mes-
sage with embedded hidden information is called
stegotext. The distributions of covertext and ste-
gotext are known to the warden Eve because she
knows what constitutes a legitimate communica-
tion among prisoners and which tricks they ap-
ply to add a hidden meaning to innocent looking
messages.

The algorithms for creating stegotext with an
embedded message by Alice and for decoding the
message by Bob are collectively called a stegosys-
tem. A stegosystem should hide the embedded
message at least as well as an encryption scheme
since it may be enough for the adversary to learn
only a small amount of information about the
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embedded message to conclude that Alice and Bob
are conspiring. But steganography requires more
than that. The ciphertext generated by most en-
cryption schemes resembles a sequence of random
bits, and this is very likely to raise the suspicion
of Eve. Instead, stegotext should “look” just like
innocent covertext even though it contains a hid-
den message.

This intuition forms the basis of the recently de-
veloped formal approach to steganography [2,3,5,
6, 11]. It views a stegosystem as a cryptosystem
with the additional property that its output, i.e.,
the stegotext, is not distinguishable from covertext
to the adversary.

Formally, a stegosystem consists of a triple of
algorithms for key generation, message encod-
ing, and message decoding, respectively. In the
symmetric-key setting considered here, the out-
put of the key generation algorithm is given only
to Alice and to Bob.

The covertext is modeled by a distribution C
over a given set C. The covertext may be given
explicitly as a list of values or implicitly as
an oracle that returns a sample of C upon re-
quest. A stegosystem that does not require explicit
knowledge of the covertext distribution is called
universal.

A more general model of a covertext channel has
also been proposed in the literature [5], which al-
lows to model dependencies among repeated uses
of the same covertext source. A channel consists
of an unbounded sequence of values drawn from
a set C whose distribution may depend in arbi-
trary ways on past outputs; access to the chan-
nel is given only by an oracle that samples from
the channel. The assumption is that the channel
oracle can be queried with an arbitrary prefix of
a possible channel output, i.e., its past “history,”
and it will return the next symbol according to
the channel distribution. In order to simplify the
presentation, channels are not considered further
here, but all definitions and constructions men-
tioned below can be readily extended to covertext
channels.

We borrow the complexity-theoretic notions of
probabilistic polynomial-time algorithms and neg-
ligible functions, in terms of a security parameter
n, from modern cryptography [4].

DEFINITION 1 (Stegosystem). Let C be a distri-
bution on a set C of covertexts. A stegosystem is a
triple of probabilistic polynomial-time algorithms
(SK, SE, SD) with the following properties:
� The key generation algorithm SK takes as input

the security parameter n and outputs a bit string
sk, called the [stego] key.

� The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego key sk and a message m ∈ {0, 1}l to be em-
bedded and outputs an element c of the cover-
text space C, which is called stegotext. The al-
gorithm may access the covertext distribution
C.

� The steganographic decoding algorithm SD
takes as inputs the security parameter n, the
stego key sk, and an element c of the covertext
space C and outputs either a message m ∈ {0, 1}l

or a special symbol ⊥. An output value of ⊥ in-
dicates a decoding error, for example, when SD
has determined that no message is embedded
in c.

For all sk output by SK(1n) and for all m ∈ {0, 1}l ,
the probability that SD(1n, sk, SE(1n, sk, m)) �= m
must be negligible in n.

Note that the syntax of a stegosystem as defined
above is equivalent to that of a (symmetric-key)
cryptosystem, except for the presence of the cover-
text distribution. The probability that the decod-
ing algorithm outputs the correct embedded mes-
sage is called the reliability of a stegosystem.

DEFINING SECURITY: The security of a stegosys-
tem is defined in terms of an experiment that
measures the capability of the adversary to de-
tect the presence of an embedded message. In
a secure stegosystem, Eve cannot distinguish
whether Alice is sending legitimate covertext or
stegotext.

The attack considered here is a chosen-message
attack, where the adversary may influence the em-
bedded message but has otherwise no access to the
encoding and decoding functions. It parallels the
notion of a chosen-plaintext attack against a cryp-
tosystem.

Consider an adversary defined by a pair of algo-
rithms (SA1, SA2). The experiment consists of four
stages.
1. A key sk is generated by running the key gen-

eration algorithm SK.
2. Algorithm SA1 is run with input the security

parameter n; it outputs a tuple (m∗, s), where
m∗ ∈ {0, 1}l is a message and s is some addi-
tional information which the algorithm wants
to preserve. SA1 has access to the covertext dis-
tribution C.

3. A bit b is chosen at random and a challenge
covertext c∗ is determined depending on it:
If b = 0 then c∗ ← SE(sk, m∗) (c∗ becomes a
steganographic encoding of m∗) otherwise c∗ R←
C (c∗ is chosen randomly according to C).
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4. Algorithm SA2 is run with inputs n, c∗, m∗, and
s, and outputs a bit b′. The goal of SA2 is to guess
the value of b, i.e., to determine whether the
message m∗ has been embedded in c or whether
c has simply been chosen according to C.
The adversary succeeds to distinguish stego-

text from covertext if b′ = b in the above experi-
ment. Since it is trivial to achieve Pr[b′ = b] = 1

2 ,
what actually counts is the adversary’s advantage
above randomly guessing b. Formally, we define
the advantage of adversary (SA1, SA2) to be

Pr
[
sk ← SK; (m∗, s) ← SA1(1n); b

R← {0, 1};
if b = 0 then c∗ ← SE(1n, sk, m∗)

else c∗ R← C : SA2(1n, c∗, m∗, s) = b
]

− 1
2

.

Depending on the detection capabilities as-
cribed to the adversary in terms of its computa-
tional power, and depending on its advantage in
distinguishing stegotext from covertext, one ob-
tains the following security notions for stegosys-
tems:
Perfectly secure steganography: The adver-

sary is an arbitrary, unbounded algorithm and
has advantage equal to 0.

Statistically secure steganography: The ad-
versary is an arbitrary, unbounded algorithm
and has only negligible advantage (in n).

Computationally secure steganography:
The adversary is an arbitrary probabilistic,
polynomial-time computable algorithm and has
only negligible advantage in n.
The first two notions are collectively known

as information-theoretically secure steganography.
The third notion, computational security, is dis-
cussed further on (cf., security).

This discussion has so far assumed that the
sender and the receiver share the same secret key
before communicating (cf., symmetric cryptosys-
tem). Departing from that assumption, it is also
possible to define public-key steganography with
computational security. This notion is analogous
to public-key cryptography and is the subject of
Section D (cf., asymmetric cryptosystem).

For the scope of this survey, the adversary is lim-
ited to passive attacks (see cryptanalysis). In the
Prisoners Problem, this means that the couriers
may not change the messages communicated be-
tween Alice and Bob and that Eve may not send a
message generated by herself to Bob and observe
his reaction to it. However, the adversary may in-
fluence the messages to be embedded; for example,
the warden Eve may determine the details of Alice
and Bob’s escape plan by choosing to confine them
in particular cells.

This survey is about the formal approach
to steganography and about stegosystems that
offer provable security. An overview of steganog-
raphy with heuristic security and of the his-
tory of steganography is given by Anderson and
Petitcolas [1].

What distinguishes steganography from other
forms of information hiding is the focus on
merely detecting the presence of a hidden message.
Watermarking and fingerprinting are two differ-
ent problems of information hiding, where the ex-
istence of a hidden message is public knowledge.
The focus in these areas is on hiding the mes-
sage in perceptual data from an observer that is
typically a human, and on embedding the mes-
sage robustly so that it cannot be removed without
significantly distorting the data itself. The differ-
ence between watermarking and fingerprinting is
that watermarking supplies digital objects with an
identification of origin and all objects are marked
in the same way; fingerprinting, conversely, at-
tempts to identify individual copies of an object
by means of embedding a unique marker in every
copy that is distributed to a user.

INFORMATION-THEORETICALLY SECURE STE-
GANOGRAPHY

DEFINITION 2 (Perfect Security). Given a cover-
text distribution C, a stegosystem (SK, SE, SD) is
called perfectly secure with respect to C if for
any adversary (SA1, SA2) with unbounded compu-
tational power, the advantage in the experiment
above is equal to 0.

Perfect security for a stegosystem parallels
Shannon’s notion of perfect security for a cryp-
tosystem [9] (cf., Shannon’s model). The require-
ment that every adversary has no advantage im-
plies that the distributions of the challenge c∗ are
equal in the two cases where it was generated
from SE (when b = 0) and sampled from C (when
b = 1). Hence, the adversary obtains no informa-
tion about b because she only observes the chal-
lenge c∗ and the distribution of c∗ is statistically
independent of b. Perfectly secure stegosystems
were defined by Cachin [3].

Perfectly secure stegosystems exist only for a
very limited class of covertext distributions. For
example, if the covertext distribution is uniform,
the one-time pad is a perfectly secure stegosystem
as follows.

Assume the covertext C is uniformly distributed
over the set of n-bit strings for some positive n
and let Alice and Bob share an n-bit key sk
with uniform distribution. The encoding function
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computes the bitwise XOR of the n-bit mes-
sage m and sk, i.e., SE(1n, sk, m) = m ⊕ sk; Bob
can decode this by computing SD(1n, sk, c) = c ⊕
sk. The resulting stegotext is uniformly dis-
tributed in the set of n-bit strings. The one-time
pad stegosystem is used like this in visual crypto-
graphy [7].

For covertext distributions that do not ad-
mit perfectly secure stegosystems, one may still
achieve the following security notion.

DEFINITION 3 (Statistical Security). Given a
covertext distribution C, a stegosystem (SK, SE,

SD) is called statistically secure with respect
to C if for all adversaries (SA1, SA2) with un-
bounded computational power, there exists a
negligible function ε such that the advantage in
the experiment above is at most ε(n).

Statistical security for stegosystems may equiv-
alently be defined by requiring that for any sk and
any m, the statistical distance between the proba-
bility distribution generated by SE(1n, sk, m) and
the covertext distribution is negligible.

Definition 3 was first proposed by Katzenbeisser
and Petitcolas [6]. A very similar notion was de-
fined by Cachin [3], using relative entropy between
the stegotext and covertext distributions for quan-
tifying the difference between them.

Here is a simple example of a statistically se-
cure stegosystem, adopted from [3]. It is repre-
sentative for a class of practical stegosystems that
embed information in a digital image by modify-
ing the least significant bit of every pixel repre-
sentation [1]. Suppose that the cover space C is
the set of n-bit strings with (C0, C1) being a parti-
tion of C and with distribution C such

∣∣Pr[c
R← C :

c ∈ C0] − Pr[c
R← C : c ∈ C1]

∣∣ = δ(n) for some neg-
ligible δ. Then there is a stegosystem for a one-
bit message m using a one-bit secret key sk. The
encoding algorithm SE computes s ← m ⊕ sk and
outputs c

R← Cs . Decoding works without error be-
cause m = 0 if and only if c ∈ Csk. It is easy to see
that the encoding provides perfect secrecy for m
and that the stegosystem is statistically secure.
Note, however, that finding the partition for a
given distribution is an NP-hard combinatorial op-
timization problem.

There exist also statistically secure universal
stegosystems, where the covertext distribution is
only available as a sampling oracle. Information-
theoretically secure stegosystems suffer from the
same drawback as cryptosystems with uncondi-
tional security in the sense that the secret key may
only be used once. This is not the case for compu-
tational security considered next.

COMPUTATIONALLY SECURE STEGANO-
GRAPHY

DEFINITION 4. (Computational Security).
Given a covertext distribution C, a stegosystem
(SK, SE, SD) is called computationally secure with
respect to C if for all probabilistic polynomial-time
adversaries (SA1, SA2), there exists a negligi-
ble function ε such that the advantage in the
experiment above is at most ε(n).

The notion was formalized independently by
Katzenbeisser and Petitcolas [6] and by Hopper,
Langford, and von Ahn [5]. The latter work also
presented the following construction of a com-
putationally secure, universal stegosystem. It il-
lustrates a popular encoding method that does
not rely on knowledge of the covertext distri-
bution, which is also used by some practical
stegosystems.

The encoding method is based on an algorithm
sample, which samples a covertext according to
C such that a given bit string b of length f =
O(log |C|) is embedded in it.

Algorithm sample
Input: security parameter n, a function
g : C → {0, 1} f, and a value b ∈ {0, 1} f

Output: a covertext x
1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x) = b or j = n
6: return x

Intuitively, algorithm sample returns a cover-
text chosen from distribution C, but restricted to
that subset of C which is mapped to the given b
by g. sample may also fail and return a covertext
c with g(c) �= b, but this happens only with negli-
gible probability in n.

Suppose {Gk} is a pseudorandom function fam-
ily indexed by k, with domain {0, 1} × C and range
{0, 1} f. (It can be thought of as a pair (G0, G1)
of independent pseudorandom functions.) The se-
cret key of the stegosystem consists of a randomly
chosen k. The encoding algorithm SE(1n, k, m)
for an f-bit message m first “encrypts” m to
y ← Gk(0, c0) ⊕ m for a public constant c0 ∈ C.
Note that y is the ciphertext of a symmetric-key
encryption of m and is computationally indistin-
guishable from a random f-bit string. This value
y is then embedded by computing a stegotext c ←
sample(n, Gk(1, ·), y). It can be shown that when
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C is sufficiently random, as measured in terms of
min-entropy, the output distribution of sample is
statistically close to C [2,5].

The decoding algorithm SD(1n, k, c) outputs
m′ ← Gk(1, c) ⊕ Gk(0, c0); it is easy to show that
m′ is equal to the message that was embedded us-
ing SE except with negligible probability.

This stegosystem is an extension of the example
given above for statistical security. In fact, when G
is a universal hash function and the encryption is
realized using a one-time pad, this is a universal
stegosystem with statistical security.

PUBLIC-KEY STEGANOGRAPHY: What if Alice
and Bob did not have the time to agree on a secret
key before being imprisoned? They cannot use any
of the stegosystems presented so far because that
would require them to share a common secret key.
Fortunately, steganography is also possible with-
out shared secrets, only with public keys, similar
to public-key cryptography. The only requirement
is that Bob’s public key becomes known to Alice in
a way that is not detectable by Eve.

Formally, a public-key stegosystem consists of
a triple of algorithms for key generation, message
encoding, and message decoding like a (secret-key)
stegosystem, but the key generation algorithm
now outputs a stego key pair (spk, ssk). The pub-
lic key spk is made available to the adversary and
is the only key needed by the encoding algorithm
SE. The decoding algorithm SD needs the secret
key ssk as an additional input.

DEFINITION 5 (Public-key Stegosystem). Let C
be a distribution on a set C of covertexts. A
public-key stegosystem is a triple of probabilistic
polynomial-time algorithms (SK, SE, SD) with the
following properties:
� The key generation algorithm SK takes as input

the security parameter n and outputs a pair of
bit strings (spk, ssk), called the [stego] public
key and the [stego] secret key.

� The steganographic encoding algorithm SE
takes as inputs the security parameter n, the
stego public key spk and a message m ∈ {0, 1}l

and outputs a covertext c ∈ C.
� The steganographic decoding algorithm SD

takes as inputs the security parameter n, the
stego secret key ssk, and a covertext c ∈ C, and
outputs either a message m ∈ {0, 1}l or a special
symbol ⊥.

For all (spk, ssk) output by the key generation al-
gorithm and for all m ∈ {0, 1}l , the probability that
SD(1n, ssk, SE(1n, spk, m)) �= m must be negligi-
ble in n.

Security is defined analogously to the experi-
ment of Section 2 with the difference that the
public key spk is additionally given to the ad-
versary algorithms SA1 and SA2 and that the
challenge covertext is computed using spk only.
With these modifications, a public-key stegosys-
tem (SK, SE, SD) is called secure against chosen-
plaintext attacks if it is computationally secure ac-
cording to Definition 4.

Secure public-key stegosystems can be con-
structed using the method of Section D, but with
the pseudorandom function G0 (which is used
for “encryption”) replaced by a public-key cryp-
tosystem that has almost uniform ciphertexts.
This property means that the output of the en-
cryption algorithm is computationally indistin-
guishable from a uniform bit string of the same
length.

The definition and several constructions of
public-key stegosystems have been introduced by
von Ahn and Hopper [11] and by Backes and
Cachin [2]. The latter work also goes beyond the
case of passive adversaries considered here and
models adaptive chosen-covertext attacks, which
are similar to adaptive chosen-ciphertext attacks
against public-key cryptosystems. Achieving secu-
rity against such attacks results in the strongest
security notion known today for public-key cryp-
tosystems and for public-key stegosystems.

As this brief survey of steganography shows,
the evolution of the formal approach to stegosys-
tems has gone through the same steps as the
development of formal models for cryptosystems.
The models and the formulation of correspond-
ing stegosystems that offer provable security have
greatly enhanced our understanding of this impor-
tant area of information security.

Christian Cachin
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DISCRETE LOGARITHM
PROBLEM

Let G be a cyclic group of order n, and g be a
generator for G. Given an element y ∈ G, the dis-
crete logarithm problem is to find an integer x such
that

gx = y.

The discrete logarithm problem has been of
particular interest since Diffie and Hellman (see
Diffie–Hellman key agreement) invented a cryp-
tographic system based on the difficulty of finding
discrete logarithms (a similar system was created
around the same time by Malcolm Williamson at
the Government Communications Headquarters
(GCHQ) in the UK, but not revealed until years
later). Given two people Alice and Bob who wish
to communicate over an insecure channel, each de-
cides on a private key xA and xB. Alice sends gxA to
Bob, and Bob sends gxB to Alice. Each of them can
then raise the received message to their private

key to compute

( gxA)xB = ( gxB)xA = gxAxB.

An eavesdropper Eve who only knows gxA and gxB

must figure out gxAxB. This is widely believed to
be difficult. Clearly if Eve can solve the discrete
logarithm problem, she can compute xA and xB and
so break the system.

Other systems, such as the ElGamal digital
signature scheme and the Digital Signature Stan-
dard, also depend on the difficulty of solving the
discrete logarithm problem.

Pohlig and Hellman [9], and independently Sil-
ver, observed that if G has a subgroup of order
l, then by raising g and y to the (n/l)th power we
may solve for x modulo l. Thus, the difficulty of the
discrete logarithm problem depends on the largest
prime factor of n. For the rest of this article we will
assume that n is prime.

THE DISCRETE LOGARITHM PROBLEM IN DIF-
FERENT GROUPS: Any finite group may be used
for a Diffie–Hellman system, but some are more
secure than others. The main groups used are:
� The multiplicative subgroup of a finite field

GF(q), with q a prime or a power of 2.
� The points on an elliptic curve E over a finite

field (see elliptic curves).
� The class group of a quadratic number field.

Finite fields GF(2n) were popular into the 1980s,
but attacks by Blake, Fuji-Hara, Mullin and Van-
stone, and Coppersmith showed that the fields
were easier to attack than similarly-sized prime
fields. Index calculus attacks may also be applied
to prime fields.

Hafner and McCurley [6] gave a subexponen-
tial attack for class groups of imaginary quadratic
number fields, and Buchmann [2] extended this
to real quadratic and, conjecturally, higher-degree
number fields. Most elliptic curves, on the other
hand, have no known subexponential attacks. See
the entry on elliptic curve cryptography for more
details.

GENERIC ALGORITHMS FOR DISCRETE LOGA-
RITHMS: We will first consider generic algorithms,
which do not use any special information about the
group G, but only compose elements and check
for equality. Nechaev [7] and Shoup [15] showed
that generic algorithms must take �(

√
n) time

(see O-notation). Shor [14] showed that a quantum
computer can solve a discrete logarithm problem
in any group in polynomial time, but whether a
sufficiently large quantum computer can be built
is still an open problem.
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Shanks’ Baby Step–Giant Step Method

Shanks [13] gave the first algorithm better than
a brute-force search. Let m = �√n�. We construct
two tables, one starting at 1 and taking “giant
steps” of length m:

1, gm, g2m, . . . , g(m−1)m

and one of “baby steps” of length one from y:

y, yg, yg2, . . . , ygm−1.

Sort these lists and look for a match. If we find
gim = yg j, then y = gim− j, and so x = im − j. Any
x ∈ [0, n − 1] may be written in this form for i, j ≤
m, so we are certain to find such a match.

The time for this algorithm is O(
√

n) group op-
erations, plus the time to find collisions in the two
lists. This may be done either by sorting the lists
or using hash tables.

Pollard’s ρ Method

The drawback to Shanks’s algorithm is that it re-
quires O(

√
n) space as well as time. Pollard [10]

gave two methods that use negligible space and
still run in O(

√
n) time: the ρ method and the kan-

garoo method, which are discussed below. They are
not deterministic, but depend on taking pseudo-
random walks in G.

Divide the elements of G into three subsets, S1,
S2 and S3, say by the value of a hash of the ele-
ments modulo three. We define a walk by h0 = 1
and

hi+1 =




hi y, if hi ∈ S1

h2
i , if hi ∈ S2

hi g, if hi ∈ S3.

At each step we know

hi = gai ybi = gai+xbi

for some ai, bi . (In particular, we have (a0, b0) =
(0, 0) initially, and (ai+1, bi+1) = (ai, bi + 1),
(2ai, 2bi), or (ai + 1, bi), depending on the hash
value.) Eventually, this walk must repeat. If
hi = hj, we have

x ≡ aj − ai

bi − bj
(mod n).

If bi − bj is relatively prime to n (which is very
likely if n is prime), this gives us x.

Figure 1 illustrates the ρ method walk.
Rather than store all of the steps to detect

a collision, we may simultaneously compute hi
and h2i , and continue around the cycle until they
agree. Assuming that this map behaves as a ran-
dom walk, we will need O(

√
n) steps to find a

repeat.

h0

h1

h2

h3 . . .

Fig. 1. ρ method walk, with a collision at h3

Parallelized Collision Search

The ρ method has two main drawbacks. One is
that it is difficult to parallelize. Having k proces-
sors do random walks only results in an O(

√
k)

speedup, since the different walks are indepen-
dent, and the probability of one of k cycles of length
l having a collision is much less than one cycle of
length kl (see [8] for details). Another is that after
the collision occurs, many more steps around the
cycle are needed before the collision is detected.
Parallelized collision search [8] is a variant of the
ρ method which fixes both problems.

We designate a small fraction of elements of G
distinguished points, say if the last several bits of
the element are all zero. Then a walk will begin
at a random point, proceed as for the ρ method,
and end when we hit a distinguished point. We
save that point along with the starting point of
the path, and then begin a walk at a new ran-
dom point. When a distinguished point is hit for
the second time, we have a collision and with high
probability can determine x.

By picking the right fraction of elements of G to
be distinguished points, we may ensure that not
too much memory is needed to store the paths, and
not much time is wasted after a collision occurs.
Also, this algorithm may be trivially parallelized,
with a linear speedup.

Figure 2 shows this method.

Fig. 2. Parallelized collision search paths, with three
distinguished points and one collision
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Tame kangaroo

Wild kangaroo

Trap

Coalescence

Fig. 3. Kangaroo method paths, with one distinguished
point and collision

Pollard’s Kangaroo Method

Another method due to Pollard also uses a ran-
dom walk in G. In this algorithm the steps are
limited: h −→ hgs(h), where the hop length s(h) is
a pseudorandom function of h with values between
1 and

√
n.

The idea is to start from two points, say g
(the “tame” kangaroo, since we know its discrete
logarithm at all times) and y (the “wild” kangaroo),
and alternately take hops with length determined
by s(h). We will set “traps” when a kangaroo hits a
distinguished point. If the wild kangaroo and tame
kangaroo paths meet or “coalesce” at any point,
they will take the same hops from then on, and
any traps encountered by one after they coalesce
will also be encountered by the other. When one
reaches a trap that the other one hit, we have a
collision and can determine x.

The main advantage of the kangaroo method is
when x is known to be in a certain range, say [0, L]
for some L � |G|. In that case we may start the
tame kangaroo from gL/2, and the wild kangaroo
from y. We expect to find a collision before we get
far out of [0, L], and so this will take O(

√
L) time.

See Figure 3 for an illustration.

SUBEXPONENTIAL METHODS: The lower bound
for generic algorithms means that to find a
faster algorithm we must use information about
the group. The main method for doing this is
called index calculus, and is described in this
section.

Index Calculus Methods

Let

Lx[t, γ ] = e(γ+o(1))(log x)t (log log x)1−t
,

for x → ∞ (see L-notation for further discussion).
This function interpolates between slow and fast
algorithms; Lx[1, γ ] ≈ xγ is exponential in log x
(see exponential time), while Lx[0, γ ] ≈ (log n)γ

is polynomial (see polynomial time). All the al-
gorithms of the previous section are O(

√
n) =

Ln[1, 1/2]. With early index calculus methods we
may reduce this to Ln[1/2, c], and the number field
sieve further improves this to Ln[1/3, c] for appro-
priate constants c.

All index calculus algorithms for discrete loga-
rithms have three main parts:
1. Gather equations relating the discrete loga-

rithms of a factor base of “small” elements.
2. Solve a linear system to find the factor base dis-

crete logarithms.
3. To find the discrete logarithm of an element y,

reduce y to a product of elements in the factor
base.
The first step is the same as in integer factoring.

The second step is also done in factoring, but mod-
ulo 2 instead of modulo n. The third step is only
done for discrete logarithms, typically by multi-
plying y by random powers of g, and attempting
to express the result as a product of smaller num-
bers, possibly recursively breaking those numbers
into smaller ones until everything is in the factor
base.

The factor base is a set of elements such as
small primes or low-degree polynomials, such that
other elements have a reasonable chance of being
“smooth”: expressible as a product of these small
elements (see the entry on smoothness). To opti-
mize the algorithm we need to know the probabil-
ity of this happening; see the section on number
theory for more information.

Typically the first two steps require large com-
putations, and finding individual logarithms is
much quicker.

For additional technical details on these meth-
ods, please see the entry index calculus.

Discrete Logarithms in Prime Fields

Coppersmith, Odlyzko, and Schroppel gave an
Lp[1/2, c] algorithm for prime fields GF(p), which
turned out to be special case of the Number Field
Sieve (using imaginary quadratic fields). In their
method there are two factor bases, one of small ra-
tional primes and another of small primes in the
imaginary quadratic field.
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The Number Field Sieve, which is the fastest
known algorithm for factoring integers, may also
be applied to finding discrete logarithms [5, 12].
The factor base used consists of small rational
primes and representatives of small prime ideals
in a number field. The asymptotic complexity is
the same as for factoring. The sieving phase is the
same, but solving the linear system modulo p− 1
instead of modulo 2 makes discrete logarithms
harder than factoring problems of the same size.

Because the number field sieve works better for
special numbers (such as primes p = re + s for r
and s small), it has been suggested that the Dig-
ital Signature Standard could be given a “trap-
door” by using a prime for which the Number Field
Sieve runs faster than on a typical prime of that
size. However, in [4], it is shown that such trap-
doors may be detected, and that it is easy to spec-
ify primes which were clearly not chosen with a
trapdoor.

Discrete Logarithms in Fields
of Characteristic 2

Until the 1980s, fields GF(q) with q = 2n received
the most attention, because of their applications
to shift registers and ease of implementation in
hardware. However, it turned out that attacks on
these fields ran much faster than prime fields, and
so few cryptosystems today depend on discrete log-
arithms in these fields.

Blake et al. [1] gave an attack which ran in time
Lq [1/2, c]. Their factor base consists of polynomi-
als in GF(2)[x] of low degree. This was improved
by Coppersmith [3], who gave the first index calcu-
lus algorithm which runs in time Lq [1/3, c]. It was
not realized until much later, but Coppersmith’s
method was a special case of the function field
sieve (see the entry sieving in function fields).

Other Fields

Schirokauer [11] has looked at GF(q) for q = pm

with p > 2 and m > 1. By combining features of
the number field sieve and function field sieve, he
gives an algorithm which is conjectured to run in
Lq [1/3, c] for some c for fields with q −→ ∞ and
m > (log p)2 or m < (log p)1/2−ε . In the “gap” be-
tween these constraints the algorithm is conjec-
tured to run in time Lq [2/5, c′].

Recently Lenstra and Verheul invented a cryp-
tosystem called XTR, which depends on the secu-
rity of discrete logarithms in GF(p6), for p6 ≈ 1024
bits. Weber [17] has computed discrete logarithms
in fields GF(p2) for small p.

ATTACKS ON ELLIPTIC CURVE DISCRETE
LOGARITHMS: The elliptic curve discrete loga-
rithm problem (ECDLP) was suggested as a ba-
sis for cryptosystems in 1985 by Neal Koblitz and
Victor Miller. Because no subexponential attack
was known for them, much shorter key sizes could
be used.

Since then, several attacks on special elliptic
curves have been developed, but no index calcu-
lus attack for general curves are known.

CHALLENGES AND ATTACKS: In 1989, Kevin
McCurley gave a challenge problem. Let q =
(7149 − 1)/6, and p = 2 × 739q + 1. McCurley gave
two numbers modulo p which equal 7x and 7y for
some x and y, and issued a challenge to find 7xy.

The form of p was intended to make it easy to
show that p is prime and that 7 is a primitive
root modulo p. Unfortunately, soon afterwards the
number field sieve was discovered, which showed
that the special form of this p made the system
much less secure. The challenge was broken in
1998 by Weber and Denny [18] using the special
number field sieve.

Joux and Lercier found discrete logarithms
modulo a nonspecial 120-digit prime in 2001. For
fields of characteristic 2, the record is GF(2607),
which was done in 2001 by Thomé [16].

In 1997 Certicom issued a series of ECDLP chal-
lenges. The problems ranged from easy (curves
over 79-bit fields), to very difficult (359-bit fields).
The largest challenge problem solved to date is a
curve over GF(p) for a 109-bit prime p by a group
at Notre Dame in 2002, using parallelized collision
search.

Daniel M. Gordon
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E
E0 (BLUETOOTH)

E0 is a stream cipher, designed especially for
Bluetooth communications (Bluetooth is a stan-
dard for wireless short-range connectivity, see [1]).
As usual for stream ciphers, the main point is the
keystream generation. For E0, it is derived from
the summation generator, with four input LFSRs
(see linear feedback shift register). The four LF-
SRs have lengths respectively, 25, 31, 33 and 39;
their feedback polynomials are all primitive, with
five nonzero terms. The global system looks like
this:

zt

LFSR 1

LFSR 2

LFSR 3

x1
t

c1
t

s1
t

s0
t

c0
t

x 2
t

x 3
t

x 4
tLFSR 4

where t denotes the time, and the internal bits
satisfy (in the three first equations, the addition
is taken modulo 2; in the last one, it is the usual
integer addition, followed by a rounding off down-
wards):

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t

c0
t+1 = s0

t+1 ⊕ c0
t ⊕ c0

t−1 ⊕ c1
t−1

c1
t+1 = s1

t+1 ⊕ c1
t ⊕ c0

t−1
(
s0

t+1, s1
t+1

)
=

⌊
x1

t + x2
t + x3

t + x4
t + c0

t + 2c1
t

2

⌋
.

More precise details can be found in [1].
Several studies and attacks have been proposed

[2, 3], but the more powerful is the one of Golic
et al. [5]; they proposed a linear cryptanalysis for
this cipher, based on the fact that the produced
keystream sequence is short and that the system is
frequently reinitialized. This attack is going with
a work factor of O(270), with a precomputing stage
of complexity O(280). The authors suggest to rein-
force E0 according to the improvement techniques
presented in [6].

A more recent paper, only available at the mo-
ment as a preprint, deals with an improvement of
this attack [4].

Caroline Fontaine
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EAVESDROPPER

An eavesdropper (see also Shannon’s model) is a
person or party who tries to get unauthorized ac-
cess to data, e.g. by breaking into a computer sys-
tem or tapping into a communication channel.
The use of a proper cryptosystem should make
it impossible for the eavesdropper to determine
the meaning of an intercepted message. Meaning-
ful plaintext has been replaced by unintelligible
ciphertext.

A common distinction is between passive eaves-
droppers, who only read or listen to the cipher-
text, and active eavesdroppers who may replace
a ciphertext by another one, retransmit a cipher-
text at a different moment, insert their own texts,
etc.

Jean-Jacques Quisquater
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ECC CHALLENGES

In 1997 Certicom [1] issued a series of elliptic
curve discrete logarithm problem (ECDLP) chal-
lenges. Each challenge asks for the solution of
an ECDLP instance in 〈P〉, where P is a point of
prime order n on an elliptic curve E defined over
a finite field Fq . The difficulty of the challenge is
measured by the bitlength of the order n.

The challenges are of three kinds. In the follow-
ing, ECCp-k denotes a randomly selected elliptic
curve over a prime field, ECC2-k denotes a ran-
domly selected elliptic curve over a characteristic
two finite field F2m where m is prime, and ECC2K-
k denotes a Koblitz curve (that is, an elliptic curve
whose defining equation has coefficients in the bi-
nary field F2); k is the bitlength of n. In all cases,
the bitlength of the order of the underlying field is
equal to or slightly greater than k (so the elliptic
curves have prime order or almost prime order).
An underlined entry denotes that the challenge
has been solved as of April 2004.
1. Randomly generated curves over prime fields:

ECCp-79, ECCp-89, ECCp-97, ECCp-109,
ECCp-131, ECCp-163, ECCp-191, ECCp-239,
and ECCp-359.

2. Randomly generated curves over characteristic
two finite fields: ECC2-79, ECC2-89, ECC2-97,
ECC2-109, ECC2-131, ECC2-163, ECC2-191,
ECC2-238, and ECC2-353.

3. Koblitz curves over F2: ECC2K-95, ECC2K-
108, ECC2K-130, ECC2K-163, ECC2K-238,
and ECC2K-358.
The challenges were solved using the parallel

collision search variant of Pollard’s ρ algorithm as
explained in the discrete logarithm problem entry.
The computation was performed on workstations
distributed over the Internet. The hardest chal-
lenges solved to date were ECCp-109 and ECC2-
109. Of the challenges that remain unsolved, the
one that is expected to be the easiest to solve is
ECC2K-130.

Darrel Hankerson
Alfred Menezes
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ELECTROMAGNETIC
ATTACK

INTRODUCTION: Kerchoff ’s laws (see maxim’s)
recommend basing cryptographic security solely

on the secrecy of the key and not on the conceal-
ment of the encryption algorithm. A cryptosystem
that uses some specific encryption method may,
however, be imperfect as to its physical imple-
mentation. One or several leakages of all possible
kinds may in that case provide an attacker with
relevant information. Physical signals can often be
used as a leakage source to conduct side channel
cryptanalysis [9] (see also side-channel attacks)
Time, power consumption or electromagnetic ra-
diations can, for instance, be used. Electromag-
netic radiation leakage has been known for a long
time now, [6] and it also constitutes the subject of
very recent research [11]. When analysing cryp-
tographic implementations, the near and far field
of cryptographic processors may offer a leakage
source that should be seriously taken into account.

HISTORY: It is quite difficult to fix with precision
the advent of side channel cryptanalysis. It even
seems that this date is rather to be situated at
the end of the XIXth century or at the very be-
ginning of XXth. J. Maxwell has established its
theory on electromagnetic waves in 1873. Some
cross talk problems in telephone links were men-
tioned at the end of the XIXth century. The ob-
tained information was only copied on another me-
dia in order to listen to it afterwards. In 1918, H.
Yardley and its team discovered that classified in-
formation could leak from electric materials. This
knowledge enabled them to rediscover the handled
secrets. The data contained in a cryptographic de-
vice modulated a signal on the tape of a nearby
recording source. The study of the IBM typewriter
in the middle thirties indicated that the leakage
of information was important and had to be seri-
ously taken into account. Many years and some
interception cases later, militaries seriously wor-
ried about this new threat and initiated the TEM-
PEST program. It is amusing to notice that the
first analyses were based on electromagnetic radi-
ation, rather than directly on the analysis of the
consumed current. This is due to the ease of mea-
suring the radiated field, which needs no physical
access to the device, unlike consumption measure-
ments.

In the early seventies, people began mentioning
cases of interference between some of their elec-
tronic equipment. Electromagnetic radiation has
even been described by standard, thus allowing
the peaceful coexistence of various devices at the
same time in the same place. All electronic devices
are sensitive to outside disturbances and may in
some cases, themselves, be disturbing elements.
So an office computer can interfere with a radio
receiver and this is the idea on which the study
of electromagnetic fields emitted by processors is
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based upon [13, 20]. The idea has been applied to
smart cards, and allowed, realizing that their ra-
diation could easily be measured [8].

PRINCIPLES: It is thus possible to investigate ra-
diations coming from electronic components while
they are executing a sensitive computation involv-
ing some secret. A solution therefore is to mea-
sure the electromagnetic radiation of the chip dur-
ing computation. The principles of Simple Power
Analysis (SPA) and Differential Power Analysis
(DPA) [10] (see differential power analysis) are
based on consumption differences generated dur-
ing the computation in function of the value of
some key bit, which can be used to recover the
key. Similarly, Simple ElectroMagnetic Analysis
(SEMA) and Differential ElectroMagnetic Analy-
sis (DEMA) allow retrieving the key as well, based
on the same concept [14]. It is important to no-
tice that refinements such as Automatic Template
Analysis, Dictionary attacks, High Order DPA or
Multiple bits DPA [10, 12] are also useful in the
case of electromagnetic analyses.

In the case of the current analysis, however,
the only possible measure contains the sum of
the contributions of all actions of the processor at
a given moment. Computer architecture and the
massive use of commutation electronics generate
interesting properties for electromagnetic analy-
sis. The modifications linked to the evolution of
the clock characterize the system for the case of a
synchronous processor and the bus transfers have
a consumption that is proportional to the number
of bit transitions between two cycles. It is indeed
possible to easily use sensors that are only sen-
sitive to commutations inside the chip. When the
value of a logic gate is established and does not
vary anymore, the only existing currents are con-
tinuous currents. During the commutation from
one value to another, on the contrary, the involved
currents contain very different frequency compo-
nents. Every continuous current will indeed not
provide any contribution to the sensor. The oscil-
lators and commutation lines, on the contrary, pro-
vide contributions that are directly linked to the

size of the used amplifiers, their power and the
quantity of changing bits. But it is possible to carry
out the same measure in the case of leakage by
consumption measurements. It is possible to de-
couple the power supply by judiciously placing a
small capacitor between the power supply line and
the ground of the device under measure. This is a
principle that is well-known to electronics engi-
neers, and all disruptions that are present on the
power supply line will in this way go through the
capacitor to end up at the ground. As previously,
only the commutations are visible. By measuring
the currents that transit through this capacitor,
it is possible to highly reduce the number of sam-
ples that are required for a differential measure.
This current measurement can be carried out by
an electromagnetic measurement.

The figure depicted below shows two curves, rep-
resenting the initialisation of a smart card, the ex-
ecution of a DES (see Data Encryption Standard)
and the stopping of the card. Both curves have sig-
nal to noise ratios that are very close, but the green
curve, which details the current through the ca-
pacitor, requires twenty-five times less traces than
the one that represents the current measurement.

As for power consumption measurements, the
analysis of the currents, obtained with an electro-
magnetic field sensor can be performed in the time
domain as well as in the frequency domain. The in-
ternal clocks of the components, as well as the os-
cillator of the charge pump required for the writing
into some non-volatile memories, can in this way
easily be found. In certain cases (charge pump-
ing oscillator . . . ), the sensitive information mod-
ulates the radiated signals and a simple demodu-
lation suffices to recover the data [1, 14, 17].

The cards are well protected against a wide
variety of attacks (see tamper detection, tamper
response and tamper resistance) in order to avoid
fault insertion [3, 4, 19] (see fault attack). As a
consequence, they recreate their clock internally
and by electromagnetic analysis it is possible to
recover this clock, to re-amplify it and to multiply
it in order to be able to synchronize the acquisition
frequency of the device as well as possible.

One of the advantages of EMA is the locality
principle. Using an adapted sensor it is possible to
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locally measure the field radiated by a chip [7, 15].
But the equations are much more complex than
announced in [7], and the near field approximation
does not require the same equations at all. Using
a coil as the electromagnetic sensor and consider-
ing it as an adapted sensor is only a first order
approximation.

ADVANTAGES: An advantage of Electromagnetic
Analysis is that it allows obtaining at least the
same result as power analysis [17]. But the most
accurate information leakage model (see side-
channel attacks) is based on bit commutations be-
tween two states. Moreover, for some so-called
classes of ‘bad’ instructions, it allows to deduce re-
sults, where power analysis fails [5, 18]. So, EMA
could be used to reduce the effectiveness of ex-
isting countermeasures against Power Analysis.
Buses and registers constitute the major leakage
sources. In addition, it is possible to use the pos-
sible leakage sources jointly. Rao and his team
have shown that attacks that are based on signals
which, taken together, do not necessarily present
the best signal to noise ratio, can lead to satis-
factory results [2]. Smart cards are particularly
vulnerable, as they can hardly detect a listening
material (see tamper detection, tamper response
and tamper resistance). In certain cases electro-
magnetic analysis allows to recover PIN codes (see
personal identification number) or, by applying an
a little bit more complex approach (active sensors),
to insert faults [16].

CONTEXT: Maxwell’s equations indicate that it is
possible to theoretically predict the radiation of
a cryptoprocessor. The complexity of the compu-
tation is, however, often prohibitive and inhibits
from using such a procedure. From this observa-
tion on, only an empirical approach, based on prac-
tice and experimentation, allows to rapidly obtain
useful results. Once this step is taken, one can turn
back to a numerical simulation and provide more
reliable numerical values to the used model.

The practical approach is simple, but the princi-
ple of analysis by measuring the electromagnetic
radiation is, however, more complex to put in place
than the one that uses power consumption mea-
surements. As for power analysis, a sensor and
an acquisition system are sufficient to recover the
sampled data. But sometimes the obtained signal
has to be amplified before it can be correctly mea-
sured. Different sensors can therefore be used,
but they do not all offer the same information.
The measured spectrum also vary in the function
of the implementations and the packaging of the
components.

COUNTERMEASURES: There exist multiple coun-
termeasures at the hardware level, but they are
however not all well suited to all cases and have
sometimes to be locally adjusted. The first of all
these countermeasures is of course the use of a
Faraday cage, in order to stop all kinds of ra-
diation leakage. This countermeasure, although
being ideally the most perfect one, is also the
most difficult to put in place. There are multi-
ple and heavy constraints when using a Faraday
cage and they cannot always all be relaxed. In or-
der to reduce radiation, a thin metal layer (ide-
ally a ferromagnetic one) may sometimes suffice
to render measurements more difficult. In cases
where a Faraday cage cannot be used because of
bounding wires, power supply lines, or simply be-
cause of mechanical constraints (the thickness of
a smart card is fixed at 0.76 mm), one should
define a protection zone around the device to be
measured. But once again, this cannot always be
done.

Electronic designs call more and more upon low
consumption techniques. As a consequence, this
reduces the commuted currents and thus reduces
their radiation. These techniques are, however,
not sufficient. One is then forced to use asynchro-
nism techniques and classical DPA countermea-
sures (Dual rail logic and precharged logic . . . ) (see
side-channel attacks). Some of the new architec-
tures seem, however, to be able to break the local-
ity principle and scatter around the computation
over the processor.

CONCLUSION: Analysis by electromagnetic radi-
ation has to be taken into account seriously, espe-
cially when it enables discovering cryptographic
keys. Practical examples that could be threatened
by such an attacks/are numerous (see hardware
security module and EMV-standard). Therefore,
there exist some evaluation criterions (see secu-
rity evaluation criteria and countermeasures to
stop this type of attack. Even if the signals are
noisier, electromagnetic analysis has some serious
advantages compared to power consumption anal-
ysis. The combination of both often allows reduc-
ing the required number of samples to recover the
cryptographic keys, because of the improvement of
the signal to noise ratio. The statistical analyses
that can be performed afterwards are numerous
and also allow improving the efficiency of the at-
tack compared to a classical differential analysis.
The use of side channels to recover a cryptographic
key is primordial when a physical access to the de-
vice is at disposal. But electromagnetic analysis
strongly depends on the architecture of the chip
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and some knowledge of the internal circuitry of
the processor also highly facilitates the work.

Jean-Jacques Quisquater
Samyde David
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ELECTRONIC CASH

Electronic Cash is a self-authenticating digital
payment instrument that can be stored in an
electronic wallet (or electronic purse) just like tra-
ditional cash is stored in a traditional wallet.
Electronic cash is a sort of pre-paid electronic
payment, i.e., payers withdraw electronic cash
from their bank accounts prior to making a pur-
chase and payment. To make a payment the payer
simply passes the required amount of electronic
cash to the payee. The payee is not referred to any
bank account of the payer.

Like electronic payment schemes in general,
electronic cash schemes shall satisfy the following
security requirements:
Payment authorization: Electronic cash typi-

cally comes in the form of electronic coins of var-
ious face values, which have attached a digital
signature by the issuing bank. Any payee can
immediately verify the validity of such elecronic
coins by checking them against the public veri-
fying key of the respective issuing bank.

No counterfeiting: The overall value of all pay-
ment instruments shall not be increased with-
out further action by an authorized minting
bank. This is partly achieved by the digital sig-
natures of electronic coins, which ensure that
electronic coins cannot be forged. However, the
digital signatures alone cannot prevent cheat-
ing payers from overspending. In some systems,
such attacks can be detected after the fact, but
they cannot be prevented unless electronic wal-
lets employ a piece of tamper resistant hardware
that controls the spending of coins effectively.
A moderate level of tamper resistance can be
achieved by smartcards. This approach is taken,
e.g., by [4]. Stronger levels of tamper resistance
can only be achieved by more tamper responsive
electronic wallets.

Confidentiality: Certain payment information
may be required to be kept confidential from
prying eyes (privacy). The purchase content,
the payment amount, or the time of payment
shall not be disclosed to individuals not involved
in the transaction. This is usually achieved by
using a point-to-point connection between the
payer’s electronic wallet and the payee’s mer-
chant device (e.g., a point of sale terminal), or

by using an SSL/TLS tunnel over the Internet
(see Secure Socket Layer and Transport Layer
Security).

Payer anonymity and payment unlinkability
can be achieved by electronic coins that are sta-
tistically independent of the payers who use
them. According to work by Chaum and Brands
[1, 3] this can be achieved by blind signatures
as follows: When a payer opens an account with
her issuing bank, she identifies herself to the
issuer and establishes a role pseudonym to be
used for her withdrawels of electronic coins
from the issuer. When the payer withdraws an
electronic coin from her bank account, the is-
suer provides a blind signature for the payer’s
role pseudonym. Different public verifying keys
can be used to encode different face values of
electronic coins, such that the face value can-
not be changed by the blinding of signatures.
The payer then transforms the blind signature
into a signature for a one-time pseudonym of
the payer. The resulting electronic coin is sta-
tistically independent of any other electronic
coin of this and every other payer, thus achiev-
ing payer anonymity and payment unlinkability
even against computationally unlimited payee’s
who collaborate with the issuer to figure out ori-
gins of electronic coins. The remarkable prop-
erty of Brands proposal is that he shows how
to construct the payment protocol such that
the payer automatically loses her anonymity
once she spends any of her electronic coins
twice. The payment protocol ensures that such
cheating will immediately reveal to the payee
the role pseudonym the payer uses with her
issuer. Thus, Brands electronic cash scheme
achieves overspender detection even if imple-
mented without tamper resistant electronic
wallets.

Reliability: The payment transaction must be
atomic in the sense that it is either processed
completely or not at all. Even if the network
or system crashes, there must be recovery
mechanisms in place that either allow to re-
synchronize the devices of all participants au-
tomatically or at least enable all participants to
make their just claims. This is usually not ad-
dressed in the cryptographic literature, and for
many electronic cash schemes actually in use it
is not described in great detail.

Nacchache and van Solms [5] pointed out that
anonymous electronic cash can be misused if there
is no way of revoking the payer’s anonymity in case
of suspected money laundering and other kinds of
financial abuse. Their work sparked more sophis-
ticated proposals of anonymous electronic cash,
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for example by Brickell, Gemmell and Kravitz [2]
where centralized or decentralized trustees are
capable of revoking the anonymity from electronic
coins.

Electronic cash provides customers a way of
offline electronic payment, i.e., no bank or other
trusted third party is involved in the payments.
This may be appealing to certain groups of cus-
tomers, but it is not favored by banks, and banks
have argued against offline electronic payments
by saying it is less secure than online electronic
payments.

Another practical issue in any electronic cash
product is how customers are protected against
loss of electronic coins in critical cases such as
when their electronic wallets fail or if disaster or
bankruptcy strikes their issuer.

It is thus conceivable that electronic cash will
remain a method of payment for smaller amounts,
while online electronic payments methods will re-
main to be used for larger amounts.

Gerrit Bleumer
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ELECTRONIC CHEQUE

This term is used quite freely and could mean any-
thing from an electronic payment instruction of
some kind to a digitally signed electronic counter-
part of a paper based cheque, and may even be
considered as the so-called negotiable instrument
(as opposed to a crossed cheque, which may not be
forwarded as a payment but needs to be cashed).

Peter Landrock

ELECTRONIC
NEGOTIABLE
INSTRUMENTS

A negotiable instrument is a document which, ac-
cording to law, can be traded freely, such as cash,
endorsable cheques or Bills of Lading (which actu-
ally is only quasi-negotiable). All of these types of
documents may appear in electronic form as well.
The only challenge is to prevent what is known
as double-spending (e.g., for cash). This can be
achieved in two ways: either by having an on-line
Trusted Third Party to keep track of ownership,
or by using tamper resistant devices to prevent
double-spending.

Peter Landrock

ELECTRONIC PAYMENT

Since the Internet spread beyond the research
communities and made significant inroads into
the commercial world, more and more customers
became connected to the Internet. Customers first
got equipped with personal computers, then with
palm pilots, and more recently with cell phones.
By the end of the 1990s most customers in the de-
veloped countries were hooked to the Internet by
one device or another. The wide availability of cus-
tomer devices and the Internet itself sparked the
development of electronic payment instruments
throughout the 1980s and 1990s and many of them
have been put to trial.

In traditional payment systems as well as in
electronic payment systems, payers and payees
keep and manage their money in bank accounts.
The payer’s bank is sometimes called the issuer,
while the payee’s bank is called the aquirer. A pay-
ment system is a way to move a specified amount
of money from the payer’s bank account into the
payee’s bank account in a secure fashion. In or-
der to transfer money from the payer’s account at
the issuer to the payee’s account at the acquirer,
the payer and payee can use various electronic
payment instruments. All electronic payment in-
struments are electronic representations of cash,
a payment order, funds transfer order, or the like
that authorizes the transfer of a specified amount
of money. Electronic payments can be initiated by
the payer or by the payee.

In indirect payment systems, the payer initiates
a payment with the acquirer into the payees bank
account, or the payee initiates a payment with the
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issuer from the payer’s account. In either case, the
payer and payee have no online interaction dur-
ing the payment. Respective examples are elec-
tronic funds transfer and automatic clearing house
(ACH).

In direct payment schemes, the payer and payee
interact online during the payment while connect-
ing their devices, either directly, e.g., by insert-
ing the payer’s card into the payee’s card reader
and terminal or by a point-to-point IR connection,
or by connecting the two devices through a wired
or wireless network. A direct payment scheme is
called online if the payment protocol requires the
issuer or the acquirer to participate in the pay-
ment protocol online. Otherwise, it is called of-
fline. Online payment schemes are perceived as
more secure because each payment transaction is
overseen by an issuer or by an acquirer, who are
regarded as trusted participants. Offline (direct)
payment schemes require payers to use electronic
wallets, i.e., secure hardware devices, in order to
prevent overspending (overspending prevention).
Direct payment schemes can be classified as
follows:
Pre-pay: At the time of payment, the payee’s bank

account is credited, but the payer has to have
withdrawn a sufficient amount of money from
her or his accounts BEFORE making the pay-
ment. This is usually called electronic cash.

Pay-now: At the time of payment, the bank ac-
count of the payers is debited and the bank ac-
count of the payee is credited. Examples are
electronic checks and debit cards.

Pay-later: At the time of payment, the payee’s
bank account is credited, but the payer’s bank
account is debited some time later. Typical ex-
amples are electronic credit cards.

Payment schemes must satisfy a number of
security requirements:

Payment authorization: Payers shall not find
money deducted from their accounts without
their consent. Thus, all payments shall be au-
thorized at least by the payer. This will not nec-
cessarily imply that payers have to authenti-
cate their identity to payees. In pre-pay systems,
i.e., e-cash systems, the payment instruments
are self-authenticated, and payers may remain
anonymous.

A payer can authorize a payment by out-of-
band means such as by phone or regular mail.
This is common with credit cards payments for
phone orders or mail orders. In lasting business
relationships, the payer and payee can agree on
a shared secret such as a password, passphrase
or PIN. The payer then needs to type the shared
secret in order to authorize a payment to the

payee sharing the secret. The highest degree of
security can be achieved if the payer uses a dig-
ital signature to authorize payments. Distribut-
ing the respective public verifying keys requires
a public key infrastructure (PKI), but ensures
non-repudiation, i.e., only the intended payer is
capable to produce a signature for the payment
with respect to the public verifying key certified
to the payer’s name.

No counterfeiting: The overall value of all
payment instruments cannot increase without
further action by an authorized minting bank.
In other words, payees shall not find their ac-
counts credited without anyone actually paying
for this amount.

Confidentiality: Certain payment information
may be required to be kept confidential from
prying eyes (privacy). The purchase content, the
payment amount, or the time of payment shall
not be disclosed to individuals not involved in
the transaction. If anonymity of payer or payee,
unlinkability of payments or untraceability of
payments are an issue, then the identities of the
payer and/or payee must be disclosed neither to
outsiders nor to certain participants of the pay-
ment transaction.

Reliability: The payment transaction must be
atomic in the sense that it is either processed
completely or not at all. Even if the network
or system crashes, there must be recovery
mechanisms in place that either allow to re-
synchronize the devices of all participants au-
tomatically or at least enable all participants to
make their just claims.

In order to support frequent payments of small
amounts, typically less than 1$ each, special mi-
cro payment schemes have been proposed. They
involve no complex cryptographic computations
for the payment itself, but require some over-
head between the payer and payee in order to
set up the micropayment option. Typical applica-
tions are pay-per-view or pay-per-click or pay-per-
phone tick. If micropayments between a payer and
a payee are so rare that even the small overhead
to set up the micropayment option is not justified,
then they can still use a micro payment scheme,
such as µ-iKP [2], by employing a broker who fre-
quently receives micro payments from the payer
and makes micropayments to the payee. This way,
one leverages on existing business relationships
spanning from the payer over the broker to the
payee.

The predominant standard for on-line pay-now
schemes (electronic checks) is SET, the Secure
Electronic Transactions [3] standard, a merger of
VISA’s Secure Transaction Technology (STT) and
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Master Card’s Secure Electronic Payment Protocol
(SEPP). Marketing, branding and compliance test-
ing is organized by SetCo, Inc., a joint subsidiary
of VISA and MasterCard.

There is a large and quickly changing variety of
proposals for electronic payment schemes; some
more directed to research activities, others striv-
ing for market share. A good overview is given by
Asokan, Janson, Steiner and Waidner in [1].

Gerrit Bleumer
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ELECTRONIC POSTAGE

Electronic postage is a way to pay for postal trans-
portation services in an electronic way. Customers
who have less than five or ten mailpieces to send
per day on an average will use stamps, and cus-
tomers who have several hundreds of mailpieces
of equal weight and size will use rebated bulk
mail options. For many other customers, electronic
postage is a convenient option. Electronic postage
comes in two form factors, as a software applica-
tion running on a regular personal computer, or
built right into a desktop printer, or integrated
into a postage metering device [5].

Large Postal Services such as the US Postal Ser-
vices, Deutsche Post AG, and Canada Post Cor-
poration have started initiatives that will replace
mechanical postage metering devices in their re-
spective Postal markets by electronic metering de-
vices within 3 to 5 years. Other Postal Services are
likely to follow these initiatives because electronic
metering devices reduce the risk of fraud signifi-
cantly, and they support the integration of value
added features such as track and trace services.

The first specification of electronic postage was
published by the US Postal Services in 1996 [7].
The first publication specified closed systems, i.e.,
postage metering devices that couple the elec-
tronic postage vault together with the printing
mechanism. It was later accompanied by a spec-

ification of open systems, which means systems
based on a regular personal computer connected
to a desktop printer. Both specifications enforced
that electronic postage would only be stored inside
certified hardware security modules, which were
called postal security devices. In closed systems,
the postal security devices would be integrated
within the postage metering devices in order to
faciliate high throughputs of mailpieces. For open
systems, there were two options. Either the postal
security device was held inside a server at the
postage provider, such that customers could use
some application software in order to download
postage every time they had to produce an indi-
cium for a mail piece. This approach is called on-
line PC postage. The other option was to build
postal security devices into the customers per-
sonal computers, which would then be used more
or less like a postage meter. This approach is called
offline PC postage. In 1999, a third type of system
was specified, called centralized systems, where
customers employ one postal security device in
a central location of a network, and connect sev-
eral printers or postage metering devices (with-
out built-in postal security devices) to the net-
work, for example, one for each department. Each
printer or postage metering device would then re-
ceive its indicia from the central postal security de-
vice. In practice, profitable business models have
only been developed for electronic postage meter-
ing devices and for online PC postage (see listings
at [3,7]).

The main idea behind the Information Based In-
dicia Program (IBIP) is this: each postal security
device serves as a secure storage for pre-paid elec-
tronic postage, and produces a digital signature
for each mail piece a customer is going to send.
Typically, the digital signature is produced in real
time, such that all actual mail piece parameters
such as weight, size, mail category, date of mailing,
etc. can be taken into account by the digital signa-
ture. All parameters and the digital signature of
a mail piece are encoded into a two-dimensional
barcode, which is printed in the upper right cor-
ner of an envelope. A similar kind of bar code can
also be used for parcels. Typically, those barcodes
are printed to a label, which the customer affixes
to the respective parcel. IBIP specifies which sig-
nature algorithms are permitted (the RSA digi-
tal signature scheme, the Digital Signature Stan-
dard (DSS), and Elliptic curve signature schemes
(ECDSA)), which minimum resolution to be used
for printing indicia, and which barcode symbolo-
gies are permitted (PDF417 and Datamatrix [1]).
IBIP also specifies the length of the keys to be used
for the digital signature scheme, and in case of
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Fig. 1. Sample indicia

ECDSA specifies a set of permitted elliptic curves
based on recommendations by NIST [4]. The size of
the footprint of the resulting barcodes is between
3 × 1 inches (PDF417), and 1 by 1 inch (Datama-
trix). Sample indicia with either bar code symbol-
ogy are displayed in Figure 1.

The postal mail sorting centers have to be
equipped with CCD cameras in order to read the
barcodes. Furthermore, the postal infrastructure
must be enabled to decode the mail piece param-
eters and the respective digital signatures from
each barcode and verify these digital signatures.
In order to do this, the postage providers are
required by IBIP to submit the public verifying
keys of each postal security device under their or
one of their customers operation to the US Postal
Services. The US Postal Services have set up a
Public Key Infrastructure (PKI) to which each
postage provider must get registered before it can
be approved to provide electronic postage to the
US postal market.

The postal security devices must be certified ac-
cording to FIPS 140-2 Level 3 with additional re-
quirements on physical security [4]. They must
have an active tamper response mechanism that
permanently shuts off the signing functionality
of the postal security device as soon as specified
attempts of tampering are detected. The operat-
ing software of postal security devices must be de-
signed to implement a finite state machine spec-
ified by IBIP. An important part of the internal
state of a PSD is its set of postal registers that
keeps track of its electronic postage. Mainly, there
is a descending register, an ascending register
and a control total register, which are initially
set to zero. The descending register is increased
by a respective amount every time the postal se-
curity device downloads electronic postage from
the postage provider, and it is decreased by the
face value of a requested indicium every time the
postal security device produces a signature. The
ascending register is increased by the face value of
a requested indicium every time the postal secu-
rity device produces a signature. The total setting

register is increased by a respective amount ev-
ery time the postal security device downloads elec-
tronic postage from the postage provider. At any
point in time during the life cycle of a postal secu-
rity device, these three postal registers shall ob-
serve the following relation:

descending register + ascending register
= total settings register (1)

Other Postal Services such as Deutsche Post AG
[3] or Canada Post Corporation have specifications
that rely on the same principles as the Informa-
tion Based Indicia Program including the use of
FIPS 140-2 certified hardware security modules
with the above mentioned postal registers, but
may specify other types of digital signatures, key
lengths, elliptic curves, or integrity check codes
based upon message authentication codes in place
of digital signatures.

The deployment of CCD cameras, high speed
cryptographic equipment for verifying digital sig-
natures and a countrywide distributed database
for detecting and rejecting replays of indicia are
the major investments for any Postal Service
making the transition towards electronic postage.
Since the early 1990s there is also increasing ac-
tivity into innovation and patenting by the postage
providers. Because of these commitments, elec-
tronic postage can be expected to become an indus-
trial application area of security and cryptography
mechanisms.

All of these specifications value traceability of
customers higher than their privacy. For example,
there is no option in any of these specifications
to send mail anonymously. The likely reasons are
firstly that the by far largest group of customers
are companies, who naturally have an interest
to be recognized, not to remain anonymous, and
secondly, that the main motivation of the Postal
Services to retire the mechanical postage meters
in their markets was to reduce fraud by meter
manipulation. Nevertheless, if electronic postage
should take over significant market share from
conventional stamps then privacy probably be-
comes a customer requirement to be addressed
[3]. Sending mail anonymously can be misused
to cover up attacks against mail recipients by us-
ing mail bombs or contaminated mail pieces. But
making products available that allow anonymous
electronic postage would neither encourage such
attacks, nor would prohibiting these products pre-
vent such attacks.

Electronic postage for postcards has been ad-
dressed by Pintsov and Vanstone in [6].

Gerrit Bleumer
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ELECTRONIC VOTING
SCHEMES

A system is called an electronic voting system
when ballots are directly recorded electronically.
Standards for such systems have been set by the
Federal Election Commission. In most such sys-
tems used today, voters go to designated polling
places, and cast their votes electronically after
being identified and authorized by conventional,
non-electronic means. In the near future, we envi-
sion systems in which voters securely send their
ballots to the authorities over a network. Current
research on electronic voting schemes is concerned
with maintaining the privacy of the ballots while
ensuring their validity, and with reliably verifying
the final tally.

The general technique of secure multiparty
computation can be applied to solve this problem
in theory. However, such a solution places a heavy
computational load on the voter’s computer, and
requires transaction with all other voters, mak-
ing it impractical. A more realistic approach is to
establish voting authorities and develop protocols
specific to voting so that a voter only needs to
communicate with the authorities, with a moder-
ate computational and communication cost. The
goal of such protocols is to prevent the authorities
from learning who voted for whom (or what), while

enabling them to check the validity of the votes
and compute the correct tally.

Two approaches for maintaining the privacy of
votes are: (1) hiding the voter’s identity and (2) hid-
ing the vote data. In the former approach, we
assume that there is an anonymous channel by
which authorities can receive a ballot, but can-
not determine who sent it. For this approach it
is important to check the validity of such anony-
mous ballots, and to verify that no one has voted
multiple times or has voted when they are not au-
thorized to vote. In the latter approach, the au-
thorities can identify the voter but the ballots are
encrypted. Therefore, it is necessary to employ
techniques enabling the voting authorities to tally
the ballots without decrypting each ballot individ-
ually. Below we outline mechanisms to solve the
problems in each strategy.

A key technique in the former approach is blind
signatures. A blind signature scheme enables a
signer to sign a message without seeing it. This
may sound paradoxical, but is a powerful tool in
achieving privacy in voting and payments systems
(see electronic cash). Prior to voting, the authori-
ties identify the voter and, using the blind signa-
ture scheme, issue a digital signature to his ballot.
Thus the authorities cannot learn the vote. Dur-
ing the voting phase, the voter anonymously sends
the signed ballot.

The authorities can check the validity of the bal-
lot by verifying their own signature on it. The use
of blind signature scheme prevents the authori-
ties from learning to which voter the signature
was issued. Along with blind signatures, we need a
mechanism for distinguishing between two valid
ballots from two different voters with the same
choice and two or more ballots from a single voter.
This can be done by including random sequences
in the ballot format. By making a long enough
sequence, the probability that two distinct voters
choose the same sequence can be made negligibly
small. If two ballots are ever submitted with the
same sequence, they are assumed to be copies of a
single legitimate ballot, and only one is counted.

This random sequence can also serve as a key
to verify the authority’s activity. By searching for
this sequence in a published list of the accepted
ballots, a voter can confirm that his vote was in-
deed counted in the tally. The ballot format should
be designed to prevent a voter from receiving mul-
tiple valid ballots in a single blind signature issu-
ing procedure.

For the second approach, we use a special en-
cryption property that enables the tallying of votes
without decrypting each vote. The property is
called homomorphism. If we represent yes-votes
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by 1 and no-votes by 0, the sum of votes gives the
number of yes-votes. If the votes are encrypted
using a homomorphic encryption function, the
encrypted votes may be combined to create an en-
cryption of the sum of these votes, without decrypt-
ing any of the votes. Decrypting the encrypted to-
tal gives the final tally. In order to use this idea,
we must use probabilistic public-key encryptions;
otherwise, all encrypted yes-votes would look ex-
actly the same, and it would be straightforward to
determine how people voted.

Another method of tallying encrypted votes
while preserving privacy is by using a crypto-
graphic shuffling procedure. In this method, the
authorities do decrypt each ballot but only when
the ballots are shuffled so that the voter’s identity
cannot be matched to any voter list. In crypto-
graphic shuffling, the list of encrypted ballots is
transformed to another list of encrypted ballots,
where the order of the entries is shuffled, so that
no one can determine the correspondence between
entries in the new list and entries in the old list.
To do so, the appearance of each encrypted entry
must be changed without altering its decrypted
result. We use an encryption scheme that is
malleable in this regard: that is, this procedure
can be performed by a party without knowing the
decryption key. An example of such a scheme is
ElGamal public key encryption.

Each of the two strategies described above has
its own advantages and disadvantages; each is
based on different assumptions. The former strat-
egy requires an anonymous channel. The latter
requires that all voters trust the authorities hold-
ing the decryption key (in more sophisticated
schemes, it is only necessary to trust that one of
the authorities is honest). Verifiability of the tally
is also different. In the former, one can verify only
his or her own vote, while in the latter, anyone
can verify the integrity of voter signatures on the
accepted vote list and the correctness of the sum
based on the list.

Neither strategy has a good solution for the
receipt-free problem. That is, a malicious voter (or
a coerced innocent voter) generates ‘a receipt’ or a
proof of how he or she voted to trade for money (or
to satisfy the coercer). Current solutions require
physical assumptions or work on a limited coercer
model.

Kazue Sako
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ELECTRONIC WALLET

In a general business sense, an electronic wallet
(or electronic purse) is a consumer device provid-
ing some additional security compared to a mere
credit card solution. An electronic wallet could be
as simple as an encrypted storage of credit card in-
formation that saves consumers to re-enter their
credit card data manually each time they make a
payment. There is a considerable variety of prod-
ucts and services, each called “electronic wallet”
or “electronic purse”, that turn up in the market-
place and in investors’ press conferences, while the
technical specifications and the life time of these
products and services are left unclear. We will thus
concentrate on the more specific use of the term
“electronic wallet” in the cryptographic literature.

In a more specific, cryptographic sense, an elec-
tronic wallet is a consumer device designed to store
and manage electronic funds or electronic cash. In
particular, an electronic wallet is used to download
funds from a bank account, to store those funds
inside the electronic wallet and transfer deliber-
ate amounts to other electronic wallets or point of
sale terminals in order to make purchases. Even,
Goldreich and Yacobi [6] were one of the first to
consider electronic wallets as consumer devices
with keypad and display allowing their holders
to also inspect the current amount of stored elec-
tronic cash and configure their own devices.

If such electronic wallets have an offline elec-
tronic cash scheme installed, consumers experi-
ence increased autonomy because they can make
payments offline and manage the amounts of
electronic cash remaining in their e-wallets of-
fline, i.e., without a bank or any other trusted
third party being involved in the payments or
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management actions. Such electronic wallets dif-
fer from ATM cards, debit cards or credit cards,
which are merely tokens that identify their hold-
ers to access the respective bank accounts or allow
payees to deduct certain payment amounts from
the respective payers’ bank accounts.

An electronic wallet shall satisfy security re-
quirements of their holders and of the bank-
ing industry operating the financial infrastruc-
ture behind those electronic wallets. Pfitzmann,
Pfitzmann, Schunter and Waidner [8] distinguish
the following three security requirements on mo-
bile user devices in general and on electronic wal-
lets in particular:
Personal agent trust: In normal operation, con-

sumers demand their electronic cash to be
stored reliably by their electronic wallets. All
sorts of mishaps, e.g., hitting unintended com-
mands at the keypad, interrupting communi-
cation lines, or experiencing downtimes of the
banking servers, shall all be smoothly tolerated
by the electronic wallets without losing a penny
of electronic cash.

Consumers may have additional privacy re-
quirements such as anonymity or unlinkability
of transactions, or untraceability of their pay-
ments. As a minimum privacy requirement they
may want to prevent payment providers, payees
and others to implant cookies on their electronic
wallets, which could be used to trace their pur-
chase behavior.

Captured agent trust: In exceptional cases
where an electronic wallet is lost or stolen, at-
tackers shall find it infeasible to misuse a cap-
tured electronic wallet in order to pay for their
own dealings. In general, a captured electronic
wallet shall stop all its services and render it-
self totally useless to a potential attacker. In sit-
uations where a consumer is blackmailed and
forced to authorize a certain payment on be-
half of an attacker, for example by entering a
password, there should be mechanisms in place
by which the victim could purposely lock up
his electronic wallet and optionally set off some
form of alarm, preferably some wireless alarm
that goes unnoticed by the attacker [2].

Undercover agent trust: The banking industry
demands that legitimate holders cannot misuse
their electronic wallets, for example, by manipu-
lating electronic wallets such that the amount of
electronic cash is increased without being paid
for, or by spending electronic cash more than
once, or by using premium services although
they should not be available to a consumer be-
cause they have not been paid for. In a certain
sense, an electronic wallet is a pocket branch of
the issuing bank in the hands of a consumer.

Like with any real branch, it should be infeasi-
ble to break in and steal the assets.

Most commercially available electronic wallets are
based on smart cards in order to keep the price tag
low. Prominent examples are Mondex [7] and [4]
CEPS (Common Electronic Purse Specifications),
which is based on the EMV specification by Euro-
pay, MasterCard, and Visa. Smart cards, however,
can hardly meet all of these security requirements
with a high level of assurance (see Security Eva-
luation Criteria). For example, in order to achieve
undercover agent trust, an electronic wallet had
to have some active tamper response mechanism,
which would lock up the electronic wallet in case
it detects an attempt of tampering with the secure
housing of the circuitry. Security assurance can be
evaluated and certified according to the industry
standard FIPS 140-2.

In a landmark paper, Chaum and Pedersen [3]
have proposed a hardware architecture for elec-
tronic wallets that can support all of the above
security requirement at the same time. The main
idea is to embed a tamper resistant piece of hard-
ware, which is called an observer, into a larger
piece of hardware, called a wallet, which is totally
under the holder’s control. Chaum and Pedersen
devised protocols for the:
� holder withdrawing e-cash from her account

at an issuer into her wallet with observer,
� holder paying chunks of e-cash from her wal-

let with observer to a payee (merchant) to make
a purchase, and

� merchant depositing paid e-cash into his ac-
count at an acquirer.

Each of these protocols includes actions of the res-
pective issuer or acquirer, the wallet and the
observer. The observers are all certified by the
banking infrastructure behind the issuer and
the acquirer and the observers’ task in all the pro-
tocols is to authenticate the holder’s wallet to the
respective issuer or acquirer and to authorize the
requested transaction. For example, the observer
keeps track of the amount of funds remaining in-
side its wallet. If the holder requests to spend an
amount that exceeds the available funds in her
wallet, then the observer will not authorize the
payment and the payee will not acknowledge the
payment. However, the observer has no way of
communicating directly with the issuer or the ac-
quirer. All communication between the observer
and an issuer or acquirer is relayed through the
wallet, which transforms all messages in such a
way that it preserves the authentication and au-
thorization by the observer, but keeps the payment
transactions of all holders statistically unlinkable,
even if the issuers and the payees all collaborate
against the payers.
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Cramer and Pedersen [5] improved this proposal
by achieving the same strong unlinkability of pay-
ments even if the attacker coalition of issuers and
payees captures the wallets with the observer and
manages to extract all information stored by the
observer.

Brands [1] proposed an independent suite of pro-
tocols for withdrawal, payment, and deposit that
achieved the same level of security as Cramer
and Pedersen [5] and the additional feature that
a holder who spends any piece of electronic cash
more than once would automatically revoke its
own anonymity, such that the acquirer who col-
lects two or more deposits originating from the
same piece of electronic cash would efficiently re-
cover the cheating holder’s identity.

Gerrit Bleumer
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ELGAMAL DIGITAL
SIGNATURE SCHEME

The ElGamal signature scheme [1] is one of the
first digital signature scheme based on an arith-
metic modulo a prime (see modular arithmetic). It
can be viewed as an ancestor of the Digital Signa-
ture Standard and Schnorr signature scheme.

ElGamal signatures are much longer than DSS
and Schnorr signatures. As a result, this signa-
ture scheme is not used often and is mostly of in-
terest for historical reasons. We present a small
modification of the original scheme that includes
a hash function needed for the security analysis:
Key Generation. Given a security parameter

τ ∈ Z as input do the following:
1. Generate a random τ -bit prime p. Pick a ran-

dom generator g ∈ Z
∗
p of the group Z

∗
p.

2. Pick a random integer α ∈ [1, p− 2] and com-
pute y = gα ∈ Z

∗
p.

3. Let H be a hash function H : {0, 1}∗ →
{1, . . . , p− 2}.

4. Output the public key (p, g, y, H) and the pri-
vate key (p, g, α, H).

Signing. To sign a message m ∈ {0, 1}∗ using the
private key (p, g, α, H) do:
1. Pick a random integer k ∈ [1, p− 2] with

gcd(k, p− 1) = 1.
2. Compute r = gk mod p. We view r as an inte-

ger 1 ≤ r < p.
3. Compute s = k−1(H(m‖r ) − αr ) mod p− 1.

Here m‖r denotes concatenation of m and r .
4. Output the pair (r, s) ∈ Z

∗
p as the signature on

m.
Verifying. To verify a message/signature pair

(m, (r, s)) using the public key (p, g, y, H) do:
1. Verify that 1 ≤ r < p, otherwise reject the sig-

nature.
2. Compute v = yrrs ∈ Zp.
3. Accept the signature if v = gH(m‖r ) ∈ Zp. Oth-

erwise, reject.
We first check that the verification algorithm

accepts all valid message/signature pairs. For a
valid message/signature pair we have:

v = yrrs = gαr gks = gαr+ks = gαr+H(m‖r )−αr

= gH(m‖r ) (mod p)

and therefore a valid message/signature is always
accepted.

The signature can be shown to be existentially
unforgeable (see existential forgery) under a cho-
sen message attack in the random oracle model,
assuming the discrete logarithm problem in the
group generated by g is intractable [4]. In the proof
of security, the function H is assumed to be a ran-
dom oracle. In practice, one derives H from some
cryptographic hash function such as SHA-1. We
note that the check in Step 1 of the verification al-
gorithm is required. Without this check, there is a
simple forging algorithm that, just given the pub-
lic key, is able to forge a signature on any message
m. In these forged signatures the value r is an in-
teger in the range 1 . . . p(p− 1). Similarly, we note
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that signing the message m directly without first
hashing it with H results in a system for which
a simple existential forgery is possible, just given
the public key.

To discuss signature length we fix concrete secu-
rity parameters. At the present time the discrete-
log problem in the cyclic group Z

∗
p where p is a

1024-bit prime is considered intractable [2] except
for a very well funded organization. With these pa-
rameters an ElGamal signature is 2048-bit long—
much longer than the related DSS or Schnorr sig-
natures.

There are many variants of the ElGamal signa-
ture scheme. We refer to [3] for a comparison of
some six variants. The signature scheme can be
made to work in any finite cyclic group in which
the discrete log problem is intractable. In partic-
ular, there is an analogous scheme that works
on elliptic curves instead of finite fields. A vari-
ant that supports message recovery was proposed
in [3].

Dan Boneh
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ELGAMAL PUBLIC KEY
ENCRYPTION

In the ElGamal public key encryption scheme [1]
〈g〉 is a finite cyclic group of large enough order. A
value q (a multiple of) the order of g, denoted as
ord(g) (not necessarily a prime), is public. In the
original ElGamal scheme, 〈g〉 = Z ∗

p , p a prime and
q = p− 1.

If Alice wants to make a public key, she chooses
a random element a in Zq and she computes yA :=
ga in the group 〈g〉. Her public key will be (g, q, yA).
If a group of users uses the same g and q, the public
key could be shorter. Her secret key is a.

If Bob, knowing Alice’s public key (g, q, yA),
wants to encrypt a message m ∈ 〈g〉 to be sent
to Alice, he chooses a random k in Zq and com-
putes (c1, c2) := (gk, m · yk

A) in the group and sends
c = (c1, c2). To decrypt Alice (using her secret key
a) computes m′ := c2 · (ca

1 )−1 in this group.
The security of this scheme is related to the

Diffie–Hellman problem. A non-malleable variant
of this scheme was proposed independently by
Tsiounis and Yung [4] and Jakobsson [2], by com-
bining Schnorr’s signature scheme [3] with the El-
Gamal encryption. The proof of non-malleability
uses some cryptographic assumptions and the
random oracle model.

Yvo Desmedt
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ELLIPTIC CURVE

Elliptic curves have been used in integer factoring
algorithms and in primality proving algorithms,
and also for designing public-key cryptosystems.
This section introduces elliptic curves and associ-
ated group operations, along with basic structural
properties of particular interest in cryptography.

DEFINING EQUATION: An elliptic curve E over a
field F is defined by a Weierstrass equation

E/F : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
(1)
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with a1, a2, a3, a4, a6 ∈ F and � �= 0, where � is
the discriminant of E and is defined as follows:

� = −d2
2 d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4 .




(2)

If L is any extension field of F, then the set of L-
rational points on E is

E(L) = {(x, y) ∈ L × L : y2 + a1xy + a3y − x3

− a2x2 − a4x − a6 = 0} ∪ {∞},
where ∞ is the point at infinity.

Two elliptic curves E1 and E2 defined over F and
given by Weierstrass equations (1) are said to be
isomorphic over F if there exist u, r, s, t ∈ F, u �= 0,
such that the change of variables

(x, y) → (u2x + r, u3y + u2sx + t) (3)

transforms equation E1 into equation E2. The
transformation (3) is called an admissible change
of variables.

SIMPLIFIED WEIERSTRASS EQUATION: A
Weierstrass Equation (1) defined over F can be
simplified considerably by applying admissible
changes of variables.
1. If the characteristic of F is not equal to 2 or 3,

then the admissible change of variables

(x, y) →
(

x − 3a2
1 − 12a2

36
,

y − 3a1x
216

− a3
1 + 4a1a2 − 12a3

24

)

transforms E to the curve

y2 = x3 + ax + b, (4)

where a, b ∈ F. The discriminant of this curve
is � = −16(4a3 + 27b2).

2. If the characteristic of F is 2, then there are two
cases to consider. If a1 �= 0, then the admissible
change of variables

(x, y) →
(

a2
1 x + a3

a1
, a3

1 y + a2
1a4 + a2

3

a3
1

)

transforms E to the curve

y2 + xy = x3 + ax2 + b, (5)

where a, b ∈ F. The discriminant is � = b. If
a1 = 0, then the admissible change of variables

(x, y) → (x + a2, y)

transforms E to the curve

y2 + cy = x3 + ax + b, (6)

where a, b, c ∈ F. The discriminant is � = c4.
3. If the characteristic of F is 3, then there are two

cases to consider. If a2
1 �= −a2, then the admis-

sible change of variables

(x, y) →
(

x + d4

d2
, y + a1x + a1

d4

d2
+ a3

)
,

where d2 = a2
1 + a2 and d4 = a4 − a1a3 trans-

forms E to the curve

y2 = x3 + ax2 + b, (7)

where a, b ∈ F. The discriminant is � = −a3b.
If a2

1 = −a2, then the admissible change of vari-
ables

(x, y) → (x, y + a1x + a3)

transforms E to the curve

y2 = x3 + ax + b, (8)

where a, b ∈ F. The discriminant is � = −a3.

GROUP LAW: Let E be an elliptic curve defined
over the field F. There is a chord-and-tangent rule
for adding two points in E(F) to give a third point
in E(F). Together with this addition operation, the
set of points E(F) forms an abelian group with ∞
serving as its identity. It is this group that is used
in the construction of elliptic curve cryptographic
schemes.

The addition rule is best explained geometri-
cally. Figure 1 illustrates the addition and dou-
bling rule for the curve y2 = x3 − x over the real
numbers R. Let P = (x1, y1) and Q = (x2, y2) be two
distinct points on an elliptic curve E. Then the sum
Rof P and Q is obtained by drawing a line through
P and Q; this line intersects the elliptic curve at
a third point. Then R is the reflection of this point
about the x-axis. The double R of P, also denoted
2P, is obtained by drawing the tangent line to the
elliptic curve at P. This line intersects the elliptic
curve at a second point. Then R is the reflection of
this point about the x-axis.

Algebraic formulas for the group law can be eas-
ily derived from the geometric description. These
formulas are presented next for elliptic curves E of
the simplified Weierstrass form (4) in affine coor-
dinates when the characteristic of the underlying
field F is not 2 or 3, and for elliptic curves E of the
form (5) over characteristic 2 finite fields.
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x

y

R = P + Q

P

Q

(a)  Addition: P + Q = R.

x

y

R = 2P

P

(b)  Doubling: P + P = R.

Fig. 1. Geometric addition and doubling of elliptic curve points

Group law for E/F : y2 = x3 + ax + b,
char(F) �= 2, 3

1. Identity. P + ∞ = ∞ + P = P for all P ∈ E(F).
2. Negatives. If P = (x, y) ∈ E(F), then (x, y) +

(x, −y) = ∞. The point (x, −y) is denoted by −P
and is called the negative of P; note that −P is
indeed a point in E(F). Also, −∞ = ∞.

3. Point addition. Let P = (x1, y1) ∈ E(F) and Q =
(x2, y2) ∈ E(F), where P �= ±Q. Then P + Q =
(x3, y3), where

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2

and

y3 =
(

y2 − y1

x2 − x1

)
(x1 − x3) − y1.

4. Point doubling. Let P = (x1, y1)′ ∈ E(F), where
P �= −P. Then 2P = (x3, y3), where

x3 =
(

3x2
1 + a
2y1

)2

− 2x1

and

y3 =
(

3x2
1 + a
2y1

)
(x1 − x3) − y1.

Group law for E/F : y2 + xy = x3 + ax2 + b,
char(F) = 2

1. Identity. P + ∞ = ∞ + P = P for all P ∈ E(F).
2. Negatives. If P = (x, y) ∈ E(F), then (x, y) +

(x, x + y) = ∞. The point (x, x + y) is denoted
by −P and is called the negative of P; note
that −P is indeed a point in E(F). Also,
−∞ = ∞.

3. Point addition. Let P = (x1, y1) ∈ E(F) and Q =
(x2, y2) ∈ E(F), where P �= ±Q. Then P + Q =
(x3, y3), where

λ = y1 + y2

x1 + x2
, x3 = λ2 + λ + x1 + x2 + a,

and

y3 = λ(x1 + x3) + x3 + y1.

4. Point doubling. Let P = (x1, y1) ∈ E(F), where
P �= −P. Then 2P = (x3, y3), where

x3 =
(

x1 + y1

x1

)2

+
(

x1 + y1

x1

)
+ a

and

y3 = x2
1 +

(
x1 + y1

x1

)
x3 + x3.

GROUP ORDER: Let E be an elliptic curve de-
fined over a finite field F = Fq . The number of
points in E(Fq ), denoted #E(Fq ), is called the or-
der of E over Fq . Since the Weierstrass equa-
tion (1) has at most two solutions for each x ∈ Fq ,
we know that #E(Fq ) ∈ [1, 2q + 1]. Hasse’s theo-
rem provides tighter bounds for #E(Fq ):

q + 1 − 2
√

q ≤ #E(Fq ) ≤ q + 1 + 2
√

q.

#E(Fq ) can be computed in polynomial time by
Schoof ’s algorithm or one of its many derivatives.

Let pbe the characteristic of Fq . An elliptic curve
E defined over Fq is supersingular if p divides t ,
where t = q + 1 − #E(Fq ). If p does not divide t ,
then E is non-supersingular. The elliptic curves
(6) and (8) are supersingular.

If E is an elliptic curve defined over Fq , then E
is also defined over any extension Fqn of Fq . The
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group E(Fq ) of Fq -rational points is a subgroup of
the group E(Fqn ) of Fqn -rational points and hence
#E(Fq ) divides #E(Fqn ). If #E(Fq ) is known, then
#E(Fqn ) can be efficiently determined by the fol-
lowing result due to Weil. Let #E(Fq ) = q + 1 − t .
Then #E(Fqn ) = qn + 1 − Vn for all n ≥ 2, where
{Vn} is the sequence defined recursively by V0 = 2,
V1 = t , and Vn = V1Vn−1 − qVn−2 for n ≥ 2.

GROUP STRUCTURE: Let E be an elliptic curve
defined over Fq . Then E(Fq ) is isomorphic to Zn1 ⊕
Zn2 where n1 and n2 are uniquely determined pos-
itive integers such that n2 divides both n1 and
q − 1.

Note that #E(Fq ) = n1n2. If n2 = 1, then E(Fq ) is
a cyclic group. If n2 > 1, then E(Fq ) is said to have
rank 2. If n2 is a small integer (e.g., n = 2, 3 or 4),
we sometimes say that E(Fq ) is almost cyclic. Since
n2 divides both n1 and q − 1, one expects that
E(Fq ) is cyclic or almost cyclic for most elliptic
curves E over Fq .

EXAMPLE. Consider the elliptic curve

E : y2 = x3 + 2x + 4

defined over F13, the integers modulo 13. The
points in E(F13) are:

(0, 2) (2, 4) (5, 3) (7, 6) (8, 5) (9, 6) (10, 6) (12, 1) ∞
(0, 11) (2, 9) (5, 10) (7, 7) (8, 8) (9, 7) (10, 7) (12, 12)

so #E(F13) = 17. Examples of the group law are
(8, 5) + (2, 4) = (7, 6), and 2(8, 5) = (0, 2). Since the
group order 17 is prime, E(F13) is a cyclic group.
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ELLIPTIC CURVE
CRYPTOGRAPHY

Elliptic curve cryptographic schemes were pro-
posed independently in 1985 by Neal Koblitz [3]
and Victor Miller [5]. They are the elliptic curve
analogues of schemes based on the discrete log-

arithm problem where the underlying group is the
group of points on an elliptic curve defined over
a finite field. The security of all elliptic curve
signature schemes, elliptic curve key agreement
schemes and elliptic curve public-key encryption
schemes is based on the apparent intractability
of the elliptic curve discrete logarithm problem
(ECDLP). Unlike the case of the ordinary discrete
logarithm problem in the multiplicative group of a
finite field, or with the integer factoring problem,
there is no subexponential-time algorithm known
for the ECDLP. Consequently, significantly
smaller parameters can be selected for elliptic
curve schemes than for ordinary discrete loga-
rithm schemes or for RSA, and achieve the same
level of security. Smaller parameters can poten-
tially result in significant performance benefits,
especially for higher levels of security.
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ELLIPTIC CURVE
DISCRETE LOGARITHM
PROBLEM

Let E be an elliptic curve defined over a finite field
Fq , and let P ∈ E(Fq ) be a point of order n. Given
Q ∈ 〈P〉, the elliptic curve discrete logarithm
problem (ECDLP) is to find the integer l, 0 ≤ l ≤
n − 1, such that Q = l P.

The ECDLP is a special case of the discrete
logarithm problem in which the cyclic group G is
represented by the group 〈P〉 of points on an ellip-
tic curve. It is of cryptographic interest because its
apparent intractability is the basis for the security
of elliptic curve cryptography.
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If the order n of the base point P is composite
and its factorization is known, then the Pohlig-
Hellman algorithm [14] (see the discrete log-
arithm problem entry) can be used to efficiently re-
duce the ECDLP in 〈P〉 to instances of the ECDLP
in proper subgroups of 〈P〉. Thus, the difficulty of
the original ECDLP instance depends on the size
of the largest prime factor of n. In order to maxi-
mize resistance to the Pohlig-Hellman algorithm,
n should be prime, as we will henceforth assume.

POLLARD’S ρ METHOD: Pollard’s ρ method [15]
(see discrete logarithm problem) is the best
general-purpose algorithm known for solving the
ECDLP. The algorithm, as improved by Teske [21],
has an expected running time of

√
πn/2 elliptic

curve operations and has negligible storage re-
quirements. Van Oorschot and Wiener [22] showed
how Pollard’s ρ method can be effectively paral-
lelized so that r processors could jointly work on
solving one ECDLP instance with a net speedup
by a factor of r . The processors do not have to com-
municate with each other, and only occasionally
transmit data to a central processor. This method
is also called parallel collision search (see discrete
logarithm problem).

Gallant, Lambert and Vanstone [4] and Wiener
and Zuccherato [23] observed that Pollard’s ρ

method can be modified to operate on equivalence
classes determined by the negation map acting on
points (which maps a point P to −P), rather than
on points themselves. The running time of this
modified version is

(
√

πn)/2,

a speedup by a factor of
√

2.
Gallant, Lambert and Vanstone [4] and Wiener

and Zuccherato [23] also observed that Pollard’s
ρ method can be accelerated by exploiting other
efficiently-computable endomorphisms of an ellip-
tic curve. For the two Koblitz elliptic curves (also
known as anomalous binary curves) which are de-
fined over F2 by the equations y2 + xy = x3 + 1
and y2 + xy = x3 + x2 + 1, the Frobenius map φ :
(x, y) �→ (x2, y2) is an endomorphism on E(F2m ) and
can be efficiently computed. By operating on the
equivalence classes of points determined by the
negation and Frobenius maps, Pollard’s ρ method
for Koblitz curves can be accelerated further by a
factor of

√
m for a resulting running time of

(
√

πn)/2
√

m.

The parallelized version of Pollard’s ρ algorithm
has been used in practice to solve several ECC
challenges.

INDEX-CALCULUS METHODS: Unlike the case
of the discrete logarithm problem in the multi-
plicative group of a finite field, there is no index-
calculus method known for solving the ECDLP
that has a subexponential (or better) running
time. No appropriate choice is known for the el-
ements of the factor base required in the index-
calculus method. In the case of elliptic curves over
prime fields, the most natural choice for factor
base elements is obtained by regarding an ellip-
tic curve point as having coordinates in the field
of the rational numbers, and selecting those points
that have small height. Miller [13] and Silverman
and Suzuki [19] presented convincing arguments
why this approach is doomed to fail.

Silverman [18] proposed a different idea for at-
tacking the ECDLP, which he termed xedni cal-
culus. Shortly after, Jacobson et al. [7] gave com-
pelling theoretical and experimental evidence why
xedni calculus would be ineffective for solving the
ECDLP.

SPECIAL-PURPOSE ALGORITHMS: Algorithms
that are faster than Pollard’s ρ method for solving
the ECDLP are known for some special classes of
elliptic curves. When selecting an elliptic curve for
use in a cryptographic scheme, one should verify
that the elliptic curve chosen is not vulnerable to
these special-purpose attacks.

Attack on Prime-Field Anomalous Curves

An elliptic curve E over a prime field Fp is said to be
prime-field anomalous if the number of points in
E(Fp) is equal to p. Satoh and Araki [16], Semaev
[17], and Smart [20] showed that for such curves,
the ECDLP in E(Fp) can be efficiently solved.
Hence, when selecting an elliptic curve E over a
prime field Fp for cryptographic use, it is important
to verify that #E(Fp) �= p.

Weil and Tate Pairing Attacks

Let E be an elliptic curve defined over a
finite field Fq . Menezes, Okamoto and Van-
stone [10] and Frey and Rück [3] showed
how the Weil and Tate pairings can be used
to efficiently reduce the ECDLP in E(Fq ) to
the discrete logarithm problem in the multiplica-
tive group of an extension field Fqk , where
subexponential-time index calculus methods are
known. The reduction is only useful for solving the
ECDLP instance if the discrete logarithm problem
in Fqk is tractable—this imposes the restriction
that k not be too large. Now, the smallest permis-
sible value for the extension degree k is the small-
est integer k such that n divides qk − 1. Hence by
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verifying that n does not divide qk − 1 for all in-
tegers k ∈ [1, c] (where c is chosen so that the dis-
crete logarithm problem in Fqc is deemed to be in-
tractable), the Weil and Tate pairing attacks can
be circumvented.

Weil Descent

Frey [2] proposed a general methodology using
Weil descent for reducing the ECDLP in an ellip-
tic curve E over a characteristic two finite field
F2m to the discrete logarithm problem in the jaco-
bian JC(F2n ) of an algebraic curve C defined over
a subfield F2n of F2m . Gaudry, Hess and Smart [6]
gave an explicit algorithm for the case where C
is a hyperelliptic curve of genus g defined over
F2n ; their method is called the GHS attack. Since
subexponential-time algorithms are known for the
discrete logarithm problem in high genus hyper-
elliptic curves (see [1, 5]), the GHS attack can
potentially solve the ECDLP faster than Pollard’s
ρ method.

Menezes and Qu [11] showed that the GHS at-
tack is slower than Pollard’s ρ method for all ellip-
tic curves defined over finite fields F2m where m is
prime and m ∈ [160, 600]. Thus the GHS attack is
ineffective for elliptic curves over these fields.

The GHS attack for elliptic curves over F2m

where m is composite has been extensively ana-
lyzed (see [8,9,12]). This body of work shows that
the GHS attack is indeed effective in solving the
ECDLP for some elliptic curves over some fields
F2m with m composite. In view of these attacks, it
seems prudent to avoid use of elliptic curves over
finite fields F2m where m is composite.
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ELLIPTIC CURVE KEY
AGREEMENT SCHEMES

In the elliptic curve analogue of the basic
Diffie–Hellman key agreement scheme [4], two
users A and B share domain parameters D =
(q, FR, S, a, b, P, n, h) (see elliptic curve keys). A
selects an integer dA ∈R [1, n − 1] and sends QA =
dA P to B. Similarly, B selects an integer dB ∈R
[1, n − 1] and sends QB = dB P to A. A computes
K = dA QB = dAdB P, and B similarly computes
K = dB QA. The shared secret point K is used to
derive a secret key which can then be used to en-
crypt or authenticate messages using symmetric-
key schemes. Security against passive adversaries
is based on the hardness of the elliptic curve ana-
logue of the Diffie–Hellman problem: given the do-
main parameters D and points QA and QB, com-
pute K.

In order to provide security against active adver-
saries, the exchanged points have to be authenti-
cated. Many variants of the basic Diffie-Hellman
scheme that provide authentication have been pro-
posed including the station-to-station protocol [5]
and the MQV key agreement scheme [8]. For a
survey of authenticated Diffie–Hellman protocols,
see [2, 3]. Elliptic curve analogues of these proto-
cols have been standardized in ANSI X9.63 [1],
IEEE 1363-2000 [6], and ISO 15946-3 [7].
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ELLIPTIC CURVE KEYS

Key pairs for elliptic curve cryptography are as-
sociated with a set of domain parameters D =
(q, FR, S, a, b, P, n, h) which consist of:
1. The order q of the underlying field Fq .
2. An indication FR of the representation used for

the elements of Fq .
3. A seed S if the elliptic curve was generated ver-

ifiably at random using a method such as those
described in FIPS 186-2 [1].

4. Two field elements a and b that define the equa-
tion of the elliptic curve: y2 = x3 + ax + b in the
case that the characteristic of Fq is not 2 or 3,
and y2 + xy = x3 + ax2 + b if Fq has character-
istic 2.

5. A point P ∈ E(Fq ) of prime order.
6. The order n of P.
7. The cofactor h = #E(Fq )/n.
Domain parameters may either be shared by a
group of users, or they may be specific to each user.

Typically the cofactor h is small (e.g., h = 1, 2,
3 or 4). A suitable elliptic curve can be found by
randomly selecting elliptic curves E over Fq until
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#E(Fq ) is a prime or almost prime. The number of
points #E(Fq ) can be determined using Schoof ’s
algorithm [5] and its derivatives. For the case
where the characteristic of Fq is 2, #E(Fq ) can
be computed extremely rapidly using Satoh’s al-
gorithm or the AGM method and their variants
(see [2–4,6]).

Given a set of domain parameters D =
(q, FR, S, a, b, P, n, h), an elliptic curve key pair
is (d, Q), where d ∈R [1, n − 1] is the private key,
and Q = d P is the corresponding public key. Com-
puting the private key from the public key is
an instance of the elliptic curve discrete logarithm
problem.

Darrel Hankerson
Alfred Menezes
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ELLIPTIC CURVE METHOD

The Elliptic Curve Method (ECM for short) was
invented in 1985 by H.W. Lenstra, Jr. [5]. It is
suited to find small—say 9–30 digits—prime
factors of large numbers. Among the different
factorization algorithms whose complexity mainly
depends on the size of the factor searched for
(trial division, Pollard rho, Pollard p− 1, Williams
p+ 1—see integer factoring), it is asymptotically
the best method known. ECM can be viewed as
a generalization of Pollard’s p− 1 method, just
like elliptic curves for primality proving (ECPP)

generalizes the n − 1 primality test. ECM relies
on Hasse’s theorem: if p is prime, then an elliptic
curve over Z/pZ (see modular arithmetic) has
group order p+ 1 − t with |t | ≤ 2

√
p, where t

depends on the curve. If p+ 1 − t is a smooth
number (see smoothness), then ECM will—most
probably—succeed and reveal the unknown
factor p.

Since 1985, many improvements have been pro-
posed to ECM. Lenstra’s original algorithm had
no second phase. Brent proposes in [2] a “birthday
paradox” second phase, and further more techni-
cal refinements. In [7], Montgomery presents dif-
ferent variants of phase two of ECM and Pollard
p− 1, and introduces a parameterization with ho-
mogeneous coordinates, which avoids inversions
modulo n, with only 6 and 5 modular multiplica-
tions per addition and duplication on E, respec-
tively. It is also possible to choose elliptic curves
with a group order divisible by 12 or 16 [1,7,8].

Phase one of ECM works as follows. Let
n be the number to factor. An elliptic curve
is E(Z/nZ) = {(x : y : z) ∈ P

2(Z/nZ), y2z ≡ x3 +
axz2 + bz3 mod n}, where a, b are two parameters
from Z/nZ, and P

2(Z/nZ) is the projective plane
over Z/nZ. The neutral element is O = (0 : 1 : 0),
also called point at infinity. The key idea is that
computations in E(Z/nZ) project to E(Z/pZ) for
any prime divisor pof n, with the important partic-
ular case of quantities which are zero in E(Z/pZ)
but not in E(Z/nZ). Pick at random a curve E and
a point P on it. Then compute Q = k · P where k is
the product of all prime powers less than a bound
B1 (see elliptic curves). Let p be a prime divisor
of n: if the order of E over Z/pZ divides k, then
Q will be the neutral element of E(Z/pZ), thus its
z-coordinate will be zero modulo p, hence gcd(z, n)
will reveal the factor p (unless z is zero modulo
another factor of n, which is unlikely).

Phase one succeeds when all prime factors of g =
#E(Z/pZ) are less than B1; phase two allows one
prime factor g1 of g to be as large as another bound
B2. The idea is to consider two families (ai Q) and
(bjQ) of points on E, and check whether two such
points are equal over E(Z/pZ). If ai Q = (xi : yi : zi)
and bjQ = (x′

j : y′
j : z′

j), then gcd(xiz′
j − x′

jzi, n) will
be non-trivial. This will succeed when g1 divides
a non-trivial ai − bj. Two variants of phase two
exist: the birthday paradox continuation chooses
the ai ’s and bj’s randomly, expecting that the dif-
ferences ai − bj will cover most primes up to B2,
while the standard continuation chooses the ai ’s
and bj’s so that every prime up to B2 divides at
least one ai − bj. Both continuations may benefit
from the use of fast polynomial arithmetic, and are
then called “FFT extensions” [8].
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The expected running time of ECM is conjec-
tured to be O(L(p)

√
2+o(1)M(log n)) to find one fac-

tor of n (see O-notation), where p is the (unknown)
smallest prime divisor of n, L(x) = e

√
log x log log x

(cf. L-notation), M(log n) represents the complex-
ity of arithmetic modulo n, and the o(1) in the expo-
nent is for p tending to infinity. The second phase
decreases the expected running time by a factor
log p. Optimal bounds B1 and B2 may be estimated
from the (usually unknown) size of the smallest
factor of n, using Dickman’s function [9]. For RSA
moduli (see RSA public key encryption), where n
is the product of two primes of roughly the same
size, the running time of ECM is comparable to
that of the Quadratic Sieve.

ECM has been used to find factors of Cunning-
ham numbers (an ± 1 for a = 2, 3, 5, 6, 7, 10, 11,
12). In particular Fermat numbers Fn = 22n + 1
are very good candidates for n ≥ 10, since they are
too large for general purpose factorization meth-
ods. Brent completed the factorization of F10 and
F11 using ECM, after finding a 40-digit factor of
F10 in 1995, and two factors of 21 and 22 digits of
F11 in 1988 [3]. Brent, Crandall, Dilcher and Van
Halewyn found a 27-digit factor of F13 in 1995, a
(different) 27-digit factor of F16 in 1996, and a 33-
digit factor of F15 in 1997.

Some applications of ECM are less obvious. The
factors found by the Cunningham project [4] help
to find primitive polynomials over the finite field
GF(q). They are also used in the Jacobi sum and
cyclotomy tests for primality proving [6].

Brent maintains a list of the ten largest factors
found by ECM (ftp://ftp.comlab.ox.ac.uk/pub/Do-
cuments/techpapers/Richard.Brent/champs.txt);
his extrapolation from previous data would give
an ECM record of 70 digits in year 2010, 85 digits
in year 2018, and 100 digits in year 2025. As of
October 2003, the ECM record is a factor of 57
digits.

Paul Zimmermann
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ELLIPTIC CURVE POINT
MULTIPLICATION USING
HALVING

Elliptic curve cryptographic schemes require cal-
culations of the type

kP = P + · · · + P︸ ︷︷ ︸
k

,

where k is a large integer and the addition is
over the elliptic curve (see elliptic curves). The
operation is known as scalar or point multipli-
cation, and dominates the execution time of sig-
nature and encryption schemes based on elliptic
curves. Double-and-add variations of famil-
iar square-and-multiply methods (see binary
exponentiation) for modular exponentiation are
commonly used to find kP. Windowing methods
can significantly reduce the number of point ad-
ditions required, but the number of point doubles
remains essentially unchanged.

Among techniques to reduce the cost of the
point doubles in point multiplication, perhaps the
best known is illustrated in the case of Koblitz
curves (elliptic curves over the field F2m with co-
efficients in F2; see [8]), where point doubling is
replaced by inexpensive field squarings. Knudsen
[4] and Schroeppel [6,7] proposed a point halving
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operation which shares strategy with τ -adic meth-
ods on Koblitz curves in the sense that most
point doublings are replaced with less-expensive
operations. The improvement is not as dramatic
as that obtained on Koblitz curves; however, halv-
ing applies to a wider class of curves.

We restrict our attention to elliptic curves E over
binary fields F2m defined by the equation

y2 + xy = x3 + ax2 + b,

where a, b ∈ F2m , b �= 0. To simplify the exposi-
tion, we consider only the case that the trace func-
tion Tr (see Boolean functions) satisfies Tr(a) = 1;
see [4] (where “minimal two-torsion” corresponds
to Tr(a) = 1) for the necessary adjustments and
computational costs for Tr(a) = 0 curves. We fur-
ther assume that m is prime. These properties are
satisfied by the five random curves over binary
fields recommended by NIST in the FIPS 186-2
standard [2].

Let P = (x, y) be a point on E with P �= −P. The
(affine) coordinates of Q = 2P = (u, v) can be com-
puted as follows:

λ = x + y/x (1)

u = λ2 + λ + a (2)

v = x2 + u(λ + 1) (3)

(see elliptic curves). Point halving is the follow-
ing operation: given Q = (u, v), compute P = (x, y)
such that Q = 2P. The basic idea for halving is to
solve (2) for λ, (3) for x, and finally (1) for y.

When G is a subgroup of odd order n in E, point
doubling and point halving are automorphisms
of G. Therefore, given a point Q ∈ G, there is a
unique point P ∈ G such that Q = 2P. An efficient
algorithm for point halving in G, along with a
point multiplication algorithm based on halving,
are outlined in the following sections.

POINT HALVING: The notion of trace plays a
central role in deriving an efficient algorithm
for point halving. The trace function Tr : F2m →
F2m is defined by Tr(c) = c + c2 + c22 + · · · + c2m−1

.
The map is linear, Tr(c) ∈ {0, 1}, and Tr(u) =
Tr(a) for (u, v) ∈ G (from an application of Tr
to (2)).

Given Q = (u, v) ∈ G, point halving seeks the
unique point P = (x, y) ∈ G such that Q = 2P. The
first step of halving is to find λ = x + y/x by solv-
ing the equation

λ̂2 + λ̂ = u + a (4)

for λ̂. It is easily verified that λ ∈ {̂λ, λ̂ + 1}. If
Tr(a) = 1, then it follows from (3) that λ̂ = λ if and

only if Tr(v + ûλ) = 0. Hence λ can be identified,
and then (3) is solved for the unique root x. Finally,
if needed, y = λx + x2 may be recovered with one
field multiplication.

Let the λ-representation of a point Q = (u, v)
be (u, λQ), where λQ = u + v/u. Given the λ-
representation of Q as the input to point halving,
we may compute t = v + ûλ without converting to
affine coordinates, since

t = v + ûλ = u
(
u + u + v

u

)
+ ûλ = u(u + λQ + λ̂).

In point multiplication, repeated halvings may be
performed directly on the λ-representation of a
point, with conversion to affine only when a point
addition is required.

ALGORITHM 1. Point halving

Input: λ-representation (u, λQ) or affine represen-
tation (u, v) of Q ∈ G.
Output: λ-representation (x, λP) of P = (x, y) ∈ G,
where λP = x + y/x and Q = 2P.
1. Find a solution λ̂ of λ̂2 + λ̂ = u + a.
2. If the input is in λ-representation, then compute

t = u(u + λQ + λ̂); else compute t = v + ûλ.
3. If Tr(t) = 0, then λP ← λ̂, x ← √

t + u; else
λP ← λ̂ + 1, x ← √

t.
4. Return (x, λP).

The point halving algorithm requires a field
multiplication and three main steps: computing
the trace of t , solving the quadratic equation (4),
and computing a square root. In a normal ba-
sis, field elements are represented in terms of
a basis of the form {β, β2, . . . , β2m−1}. The trace
of an element c = ∑

ciβ
2i = (cm−1, . . . , c0) is given

by Tr(c) = ∑
ci . The square root computation is

a right rotation:
√

c = (c0, cm−1, . . . , c1). Squaring
is a left rotation, and x2 + x = c can be solved
bitwise. These operations are expected to be in-
expensive relative to field multiplication. How-
ever, field multiplication in software for normal
basis representations tends to be slow in com-
parison to multiplication with a polynomial ba-
sis. We shall restrict our discussion to computa-
tions in a polynomial basis representation, where
c ∈ F2m is expressed as c = ∑m−1

i=0 cizi with ci ∈
{0, 1}.

Trace Computations

The trace of c may be calculated as Tr(c) = ∑m−1
i=0

ciTr(zi), where the values Tr(zi) are precomputed.
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As an example, F2163 with reduction polynomial
f(z) = z163 + z7 + z6 + z3 + 1 has Tr(zi) = 1 if and
only if i ∈ {0, 157}, and finding Tr(c) is an essen-
tially free operation.

Solving the Quadratic Equation

For an odd integer m, define the half-trace H :
F2m → F2m by H(c) = ∑(m−1)/2

i=0 c22i
. Then

H(c) = H

(
m−1∑
i=0

cizi

)
=

m−1∑
i=0

ci H(zi)

is a solution of the equation x2 + x = c + Tr(c).
For elements c with Tr(c) = 0, the calculation pro-
duces a solution H(c) of x2 + x = c, and requires
an expected m/2 field additions and storage for m
field elements H(zi).

The storage and time required to solve the
quadratic equation can be reduced. The basic
strategy is to write H(c) = H(c′) + s where c′ has
fewer nonzero coefficients than c. The property
H(c) = H(c2) + c + Tr(c) for c ∈ F2m may be applied
directly to eliminate storage of H(zi) for even i.
Repeated applications may yield further improve-
ments. For example, if the reduction polynomial
f(z) = zm + r (z) has deg r < m/2, then the strat-
egy can be applied in an especially straightfor-
ward fashion to eliminate storage of H(zi) for odd
i, m/2 < i < m − deg r . If deg r is small, the stor-
age requirement is reduced to approximately m/4
elements. Such strategies are outlined in [4, Ap-
pendix A]; see also [3] for details.

Computing Square Roots

The square root of c may be expressed as

√
c =

∑
i even

ciz
i
2 + √

z
∑
i odd

ciz
i−1

2 .

The value
√

z may be precomputed, and finding
√

c
is expected to be significantly less expensive than
a field multiplication. Note that if the reduction
polynomial f is a trinomial, then substantial im-
provements are possible based on the observation
that

√
z may be obtained directly from f; see [3].

POINT MULTIPLICATION: Halve-and-add vari-
ants of point multiplication methods replace most
point doublings with halvings. However, point
halving is performed on affine (or λ) representa-
tions, and hence some modifications may be re-
quired if projective coordinates are used. The al-
gorithm presented in this section illustrates the

use of projective coordinates (and a windowing
method) with halving.

Let w ≥ 2 be an integer. A width-w NAF of a
positive integer k is an expression k = ∑l−1

i=0 ki2i

where each nonzero coefficient ki is odd, |ki | <

2w−1, kl−1 �= 0, and at most one of any w con-
secutive digits is nonzero [8]. A positive integer
k has a unique width-w NAF denoted NAFw(k),
with length at most one more than the length of
the binary representation. As an illustration, co-
efficients in the binary representation of k = 29
and the width-2 and width-3 NAFs are given
by:

k = 1 1 1 0 1
NAF2(k) = 1 0 0 −1 0 1
NAF3(k) = 1 0 0 0 0 −3.

The average density of nonzero digits among all
width-w NAFs of length l is approximately 1/(w +
1). The signed digit representation NAF2(k) is
known as the non-adjacent form. In point multi-
plication, the use of signed digit representations is
motivated by the property that point subtraction
is as efficient as addition.

If kP is to be found for a given scalar k, then a
conversion is required for halving-based methods.
If k′ is defined by

k ≡ k′
t−1/2t−1 + · · · + k′

2/22 + k′
1/2 + k′

0 (mod n),

where k′
i ∈ {0, 1} and n is the order of G, then

kP = ∑t−1
i=0 k′

i/2i P; i.e., (k′
t−1, . . . , k′

0) may be used
by halving-based methods. This can be general-
ized to width-w NAF: if

∑l−1
i=0 k′

i2
i is the w-NAF

representation of 2t−1k mod n, then

k ≡
t−1∑
i=0

k′
t−1−i

2i
+ 2k′

t (mod n),

where it is understood that ki = 0 if i ≥ l.
Algorithm 2 presents a right-to-left version of a

halve-and-add method with the input 2t−1k mod n
represented in w-NAF. Point halving occurs on the
input P rather than on accumulators (which may
be in projective form). The expected running time
is approximately

(step 4 cost) + (t/(w + 1) − 2w−2)A′ + t H

where H denotes a point halving and A′ is the cost
of a point addition when one of the inputs is in λ-
representation. If projective coordinates are used
for Qi , then the additions in step 3.1 and 3.2 are
mixed-coordinate. Step 4 may be performed by cal-
culating Qi ← Qi + Qi+2 for odd i from 2w−1−3 to
1, and then the result is given by Q1 + 2

∑
i∈I\{1} Qi

[5, Exercise 4.6.3-9].
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Table 1. Field operation costs for point and curve operations, where M, I, and V denote field multiplication,
inversion, and division, respectively. The cost H of halving is an estimate. A′ denotes the cost of a point addition
when one of the inputs is in λ-representation

Field operations

Calculation Point operations Affine Projectivea

Point operation
Addition A M + V 8M
Additionb A′ 2M + V 9M
Double D M + V 4M
Halvec H 2M

Curve operation (with width-2 NAF)
kP via doubling (1/3)t A+ t D (4/3)t(M + V) (20/3)t M + (2M + I)
kP via Alg 2 (1/3)t A′ + t H (8/3)t M + (1/3)tV 5t M + (2M + I)

a Mixed-coordinate additions and a ∈ {0, 1}.
b A field multiplication converts λ-representation to affine.
c Estimated.

ALGORITHM 2. Halve-and-add w-NAF (right-to-
left) point multiplication

Input: Window width w, NAFw(2t−1k mod n) =∑t
i=0 k′

i2
i , P ∈ G.

Output: kP. (Note: k = k′
0/2t−1 + · · · + k′

t−2/2 +
k′

t−1 + 2k′
t mod n.)

1. Set Qi ← ∞ for i ∈ I = {1, 3, . . . , 2w−1 − 1}.
2. If k′

t = 1 then Q1 = 2P.
3. For i from t − 1 down to 0 do:

3.1 If k′
i > 0 then Qk′

i
← Qk′

i
+ P.

3.2 If k′
i < 0 then Q−k′

i
← Q−k′

i
− P.

3.3 P ← P/2.
4. Q ← ∑

i∈I iQi.
5. Return(Q).

The computational costs in terms of field opera-
tions are summarized in Table 1 for the case that
Algorithm 2 is used with w = 2. Only field mul-
tiplications and inversions are considered, under
the assumption that field addition is relatively in-
expensive. The choice between affine coordinates
and projective coordinates is driven primarily by
the cost of inversion (I) relative to multiplication
(M). If division has approximate cost I + M, then
the estimates in the table show that projective co-
ordinates will be preferred in Algorithm 2 with
w = 2 whenever an inversion costs more than six
multiplications.

Summary

The performance advantage of halving methods
is clearest in the case of point multiplication kP
where P is not known in advance, and smaller
field inversion to multiplication ratios generally

favor halving. However, significant storage (e.g.,
m/4 field elements) for the solve routine appears
to be essential for performance. It should be noted,
however, that the precomputation for the solve and
square root routines is per field.

Darrel Hankerson
Alfred Menezes
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ELLIPTIC CURVE
PUBLIC-KEY ENCRYPTION
SCHEMES

It is possible to describe elliptic curve analogues
of all the variants of the ElGamal public-key
encryption scheme [3]. We describe one such
variant, the Elliptic Curve Integrated Encryption
Scheme (ECIES), proposed by Abdalla, Bellare
and Rogaway [1].

The elliptic curve domain parameters are D =
(q, FR, S, a, b, P, n, h), and an entity A’s key pair
is (d, Q) (see elliptic curve keys). E denotes a
symmetric cryptosystem such as the Rijndael/
AES, and MAC (see MAC algorithms) denotes a
message authentication code algorithm such as
HMAC. In order to encrypt a message m to A, an
entity B does the following:
1. Select k ∈R [1, n − 1].
2. Compute R = kP and Z = kQ.
3. Derive two keys k1 and k2 from Z and R.
4. Compute c = Ek1 (m) and t = MACk2 (c).
5. Send (R, c, t) to A.
A decrypts using her private key d as follows:
1. Compute Z = d R.
2. Derive two keys k1 and k2 from Z and R.
3. Compute t ′ = MACk2 (c); reject the ciphertext if

t �= t ′.
4. Compute m = E−1

k1
(c).

ECIES has been proven to be semantically se-
cure against adaptive chosen-ciphertext attacks
[4] under the assumptions that the encryption
scheme E is secure, that the MAC algorithm is
secure, and that certain non-standard variants of
the Diffie–Hellman problem are intractable [1].

Another noteworthy elliptic curve public-key
encryption scheme is the elliptic curve analogue
of the Cramer–Shoup scheme [2]. This scheme
has the advantage that its security has been
proven under standard assumptions only; how-
ever, encryption and decryption are slower than
in schemes such as ECIES.

Darrel Hankerson
Alfred Menezes
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ELLIPTIC CURVE
SIGNATURE SCHEMES

Many variants of the ElGamal digital signature
scheme [1] have been proposed including the
Digital Signature Algorithm (DSA; see Digital Sig-
nature Standard) [2]; Schnorr digital signature
scheme [8]; the Nyberg-Rueppel signature scheme
[6]; and the Korean certificate-based digital sig-
nature algorithm (KCDSA) [5]. Some of these
variants have been proven to be existentially
unforgeable by adaptive chosen-message attacks
[3] under certain assumptions including in-
tractability of the elliptic curve discrete logarithm
problem (ECDLP) (see [7]). We outline ECDSA,
an elliptic curve analogue of the DSA; for further
details, see [4].

The elliptic curve domain parameters are D =
(q, FR, S, a, b, P, n, h), and an entity A’s key pair
is (d, Q) (see elliptic curve keys). In order to sign
a message m, A does the following:
1. Select k ∈R [1, n − 1].
2. Compute R = kP.
3. Compute r = x mod n (see modular arith-

metic), where x is the x-coordinate of R. If r = 0
then go to step 1.

4. Compute e = H(m), where H is a cryptographic
hash function.

5. Compute s = k−1(e + dr ) mod n. If s = 0 then
go to step 1.

6. The digital signature on m is (r, s).
To verify A’s signature (r, s) on m, and entity B
does the following:
1. Verify that r and s are integers in the interval

[1, n − 1].
2. Compute e = H(m).
3. Compute w = s−1 mod n, u1 = ew mod n and

u2 = rw mod n.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 16:34

196 Elliptic curves for primality proving

4. Compute X = u1 P + u2 Q, and verify that X �=
∞.

5. Let v = x mod n, where x is the x-coordinate of
X.

6. Accept the signature if and only if v = r .
Signature verficiation works because if a sig-

nature (r, s) on a message m was indeed gener-
ated by the legitimate signer, then s ≡ k−1(e + dr )
(mod n). Rearranging gives

k ≡ s−1(e + dr ) ≡ s−1e + s−1rd ≡ we + wrd
≡ u1 + u2d (mod n).

Thus X = u1 P + u2 Q = (u1 + u2d)P = kP, and so
v = r as required.

Darrel Hankerson
Alfred Menezes
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ELLIPTIC CURVES FOR
PRIMALITY PROVING

Proving the primality of an integer N (see
primality proving algorithm) is easy if N − 1 can
be factored: N is a prime number if and only if
the multiplicative group of invertible elements
(Z/NZ)∗ is cyclic of order N − 1 (see modular arith-

metic). To prove that an integer g is a generator of
(Z/NZ)∗ and hence that the group is cyclic, it suf-
fices to check that gN−1 ≡ 1 mod N and g(N−1)/q �≡
1 mod N for all prime factors q of N − 1. (It is quite
easy to find a generator, or to prove that none ex-
ists, given the prime factors.)

The above method is the converse of Fermat’s
Little Theorem. However, it is rare that N − 1 is
easy to factor. Less rare is the case where N − 1
has a large prime cofactor C, in which case the
primality of N − 1 can be proven in the same
way, modulo the assumption that C can be proven
prime in turn. This approach of primality can-
not succeed to prove the primality of all numbers
in reasonable time. Other approaches have there-
fore been pursued for proving that a number is
prime. For instance, the first deterministic algo-
rithm for this task was designed by Adleman et
al. in the early 1980s [2] and improved by Cohen
and Lenstra [7] among others [5,6,12].

The basic idea of primality proving with ellip-
tic curves is to enlarge the set of groups that
can be used for proving the primality of N.
We add to (Z/NZ)∗ the groups formed by ellip-
tic curves over Z/NZ, that is sets E(Z/NZ) =
{(x, y) ∈ (Z/NZ)2, y2 ≡ x3 + ax + b mod N}, where
gcd(4a3 + 27b2, N) = 1. If N is indeed prime, then
E(Z/NZ) is a group of order m = N + 1 − t for
some integer t ∈ [−2

√
N, 2

√
N], by Hasse’s the-

orem. A primality testing theorem analogous to
the converse of Fermat’s theorem can be proven,
so that it is enough to find a generator P of the
curve satisfying equalities in the group E(Z/NZ).
To each curve corresponds a distinct m. A lot of
them should be factorizable numbers. This will
give us a lot of candidates to try for primality, and
not just N − 1.

For use in primality, two problems must be
solved: find algorithms to compute the group law
on E(Z/NZ) and compute the cardinality of the
group. The first task is easy, many algorithms
being known. The second task is not so easy,
but there exists a deterministic point counting
algorithm due to R. Schoof for this, which runs
in polynomial time.

In 1986, two primality proving algorithms us-
ing elliptic curves were proposed, somewhat an-
ticipated in 1985 by Bosma, Chudnovsky and
Chudnovsky. One is due to Goldwasser and Kilian
[9,10], the other one to Atkin [3]. The Goldwasser–
Kilian algorithm uses random curves whose cardi-
nality has to be computed with Schoof ’s algorithm.
The analysis shows that proving primality can be
done in random polynomial time for almost all
primes, a result eventually proven for all primes
[1] by Adleman and Huang using curves of genus 2,
shortly after the work of Goldwasser and Kilian.
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The drawback of the Goldwasser–Kilian algorithm
is that Schoof ’s algorithm is too slow to be inter-
esting in practical primality proving, despite the
improvements made by Elkies and Atkin.

Atkin’s approach replaces random curves by
curves which are reductions of curves with com-
plex multiplication and for which the cardinality is
known in advance. The analysis of this algorithm,
also called ECPP [4], is heuristic and yields a run-
ning time O((log N)6) (see [11] and O-notation) for
deciding the primality of N using classical arith-
metic. In practice, due to many improvements
of several people including the present author,
primes of cryptographic size (say 512 or 1024 bits)
can be proved in a few seconds, and large numbers
tackled as well, the record being around 5000 deci-
mal digits. An interesting feature of this algorithm
is the fact that it gives a certificate of primality
that can be checked in time O((log N)4).

As a matter of fact, a faster version of ECPP
was outlined by J. O. Shallit, with a complexity
of O((log N)5) (see [11]). With fast multiplication
techniques, this is a Õ((log N)4) method and its
practicality has been recently demonstrated with
the primality of several numbers with more than
15000 decimal digits [8,13].

François Morain
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EMV1

OVERVIEW: Traditional credit and debit pay-
ment cards carry a magnetic stripe, a hologram,
a specimen signature of the cardholder, and one
or more payment brands, and they may be em-
bossed with the cardholder’s name, their account
number and the expiry date of the card. Mag-
netic stripe technology provides little in the way of
card authentication. Point-of-Sale terminals can-
not authenticate magnetic stripe cards and, even
if sent “online” for authorization by the card issuer,
because of the static nature of the magnetic stripe,
the issuer is not able to distinguish card data orig-
inating from a genuine card from replayed card
data or card data read from a copied (cloned) card.
However with the advent of EMV chip cards, card
authentication can be performed by the terminal
or issuer using dynamic techniques that distin-
guish genuine cards from clones. Both the card
and terminal implement offline risk management
processes that control whether a transaction is ap-
proved or declined offline, or whether online au-
thorization should be sought.

EMV defines different mechanisms for chip card
authentication. In the so-called on-line authenti-
cation method (on-line CAM) the authentication of
the payment card and transaction is done through
an on-line communication to the card issuer dur-
ing the transaction while the off-line authentica-
tion method (off-line CAM) enables the payment
terminal to authenticate the card without this on-
line communication.

1 EMV2000 Integrated Circuit Card Specification for Payment
Systems, Version 4.0, December 2000. A joint specification,
originally developed by Europay, MasterCard and Visa, and
now administered by EMVCo, LLC. C© 2000 EMVCo, LLC.
EMV is a trademark of EMVCo, LLC.
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THE EMV ARCHITECTURE

The Transaction Flow

The figure below provides an overview on the
transaction flow for EMV.

Off-line CAM

The off-line card authentication mechanism is ei-
ther “static”, wherein the same authentication
data is provided by the card to the terminal for
every transaction, or “dynamic”, wherein the au-
thentication data provided by the card will be
different for each transaction. The EMV2000 [1]
specifications define one static offline CAM (SDA)
and two dynamic offline CAMs: Dynamic Data Au-
thentication (DDA) and Combined Data Authen-
tication (CDA).

For SDA the issuer pre-signs unique static card
data to protect against alteration of the data after

personalization. During a transaction the termi-
nal can retrieve this signed static data from the
chip card and verify the correctness of this data
(Figure 2).

For both DDA and CDA the issuer personal-
izes the chip card with a certified private RSA
key unique to the chip card and then during a
transaction the card produces a dynamic signa-
ture on a random challenge received from the ter-
minal. By verifying this dynamic signature, the
terminal can authenticate the chip card itself (un-
der the assumption that the chip card’s private
key is known only to the chip card), and con-
firm the legitimacy of static chip card data. Ad-
ditionally with CDA the dynamic signature of the
chip card covers all the transaction data neces-
sary for the terminal to confirm the integrity of the
chip card’s response for the current transaction
(Figure 3).

The EMV specifications have specified CDA as
a result of a study on the use of “wedge” de-
vices for offline transactions. Wedge devices alter

Initiate
Application

Read Data

Offline Data
Authentication

Request online Auth
(ARQC)

Cardholder
Verification

Terminal and Card
Risk Management

Decline offline
(AAC)

Approve offline
 (TC)

Decline (AAC) + optional
scripts

Approve (TC) + optional
scripts

Fig. 1. EMV transaction flow
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Issuer Acquirer

Private Key
(Issuer)

SI

Public Key
(Issuer)

PI

Private Key
(CA)
SCA

Public Key
(CA)
PCA

SSAD signed
with SI

PI certified
with SCA

IC Card IC Terminal
Communication between IC Card and Terminal

Card provides to terminal : 
- PI certified by the Certification Authority
- Signed Static Application Data (SSAD) 
  signed by the Issuer

Terminal :

- Uses PCA to verify that the Issuer’s PI
  was certified by the CA
- Uses PI to verify that the Card’s SSAD
  was signed  by  the Issuer

Distributed to Acquirer
(Resides in Terminal)

Certification Authority

Fig. 2. Diagram of static data authentication

data exchanged between the genuine card and
the terminal and such alterations may not be de-
tected when using SDA or DDA. Thus whereas
DDA authenticates the card but not the trans-

Issuer Issuer Acquirer

Private Key
(IC Card)

SIC

Public Key
(IC Card)

PIC

Private Key
(Issuer)

SI

Public Key
(Issuer)

PI

Private Key
(CA)
SCA

Public Key
(CA)
PCA

PIC certified
with SI

PI certified
with SCA

IC Card IC TerminalCommunication between IC Card and Terminal 

Card provides to terminal :

- PIC certified by Issuer
- PI certified by Certification Authority
- Card and terminal dynamic data with digital signature

Terminal :

- Uses PCA  to verify that the Issuer's PI

   was certified by the CA
- Uses PI to verify that the Card's PIC

   was certified  by  the Issuer
- Uses PIC to verify the digital signature
  of the card data

Distributed to Acquirer
(Resides in Terminal)

Certification Authority

Fig. 3. Diagram of dynamic data authentication

action data, with CDA the card digitally signs
all the important transaction data including the
value, and so any modifications to this data can be
detected.
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On-line CAM and Application
Cryptograms

In order to understand the significance of the of-
fline CAMs other aspects of the EMV transac-
tion must be introduced, namely application cryp-
tograms. During an EMV transaction the terminal
will obtain from the card at least one Application
Cryptograms (AC) that can be verified by the card
issuer. These cryptograms, which are dynamically
generated, can be one of the following:
ARQC generated when the chip card requests

online authorization
TC generated when the chip card approves

the transaction
AAC generated when the chip card declines

the transaction
AAR generated for authorization referrals

If the card generates an ARQC then the ter-
minal sends this to the issuer who responds
with a cryptogram called the ARPC which can
be verified by the card. This process is known
as online dynamic data authentication or On-
line Mutual Authentication (OMA). TCs are re-
tained by the terminal for inclusion in the clearing
records.

These transaction cryptograms are dynamically
generated by the chip card and use symmetric
cryptography, employing a unique key derived
from a master key shared between the chip card
and the issuer.

Cardholder Verification Method

The introduction of chip cards allows Issuers to
choose whether their cards support online PIN
and/or offline PIN verification (see Personal Iden-
tification Number). With online PIN the PIN en-
tered by the cardholder is encrypted and sent over
the network to the issuer for verification in the
usual way (as per magnetic stripe). With offline
PIN verification the PIN entered by the cardholder
is sent from the PIN pad to the card for verifica-
tion. In order to perform offline PIN verification
the card must securely store a reference copy of
the cardholder’s PIN.

EMV specifies two methods for offline PIN ver-
ification: plaintext and enciphered.
� With offline plaintext PIN verification the card

receives the PIN in clear from the terminal.
� For offline enciphered PIN verification the card

must be a DDA-capable card. The card will re-
ceive the PIN encrypted under a card public
key and using a randomized RSA encryption
method specified in EMV. The card will decrypt

the PIN using its corresponding private RSA
key.

For simple Lost and Stolen cards the use of offline
PIN verification will vastly reduce fraud as com-
pared to the use of handwritten signatures.

Risk Management

The decision for off-line or on-line authorization
for a given chip card transaction is based on the
outcome of the card and terminal risk manage-
ment, consisting of
� Floor limit checking. Merchant terminals con-

tain a floor limit value. If the transaction value
exceeds this number then the terminal should
request online authorization.

� Random transaction selection by the terminal,
ensuring that transactions go on-line periodi-
cally.

� Velocity Checking, where the terminal can
choose to go on-line depending on card risk man-
agement, aiming to limit the number of con-
secutive offline transactions performed by the
card.

Moreover chip card technology allows the issuer
to block or unblock the card, change the PIN and
some of the card risk management parameters, us-
ing issuer to card script processing. These scripts
are protected using symmetric cryptography en-
suring integrity and/or confidentiality, as appro-
priate.

CRYPTOGRAPHIC MECHANISMS
AND PROTOCOLS

Message Authentication Code

The computation of an s-byte MAC (4 ≤ s ≤ 8; see
MAC algorithms) is according to ISO/IEC 9797-1
[2] using a 64-bit block cipher ALG in CBC mode
as specified in ISO/IEC 10116. More precisely, the
computation of a MAC S over a message MSG
consisting of an arbitrary number of bytes with a
MAC Session Key KS takes place in the following
steps:
1. Padding and Blocking

Pad the message M according to ISO/IEC 7816-
4 (which is equivalent to method 2 of ISO/IEC
9797-1), hence add a mandatory ‘80’ byte to
the right of MSG, and then add the smallest
number of ‘00’ bytes to the right such that the
length of resulting message MSG := (MSG ||
‘80’ || ‘00’ || ‘00’ || . . . || ‘00’) is a multiple of
8 bytes.

MSG is then divided into 8-byte blocks X1,
X2, . . . , Xk.
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2. MAC Session Key
The MAC Session Key KS either consists of

only a leftmost key block KS = KSL or the
concatenation of a leftmost and a rightmost
key block KS = (KSL|| KSR).

3. Cryptogram Computation
Process the 8-byte blocks X1, X2, . . . , Xk with

the block cipher in CBC mode (see modes of
operation) using the leftmost MAC Session
Key block KSL:

Hi := ALG(KSL)[Xi ⊕ Hi−1], for i = 1, 2, . . . , k

with initial value H0 :=
(‘00’ || ‘00’ || ‘00’ || ‘00’ || ‘00’ || ‘00’ || ‘00’ || ‘00’).

Compute the 8-byte block Hk+1 in one of the
following two ways:
� According to ISO/IEC 9797-1 Algorithm 1:

Hk+1 := Hk.

� According to Optional Process 1 of ISO/IEC
9797-1 Algorithm 3:

Hk+1 := ALG(KSL)[ALG−1(KSR)[Hk]].

The MAC S is then equal to the s most significant
bytes of Hk+1.

Digital Signature Scheme Giving
Message Recovery

This section describes the special case of the digi-
tal signature scheme giving message recovery us-
ing a hash function according to ISO/IEC 9796-2
[3], which is used in the EMV specification for both
static and dynamic data authentication.

The digital signature scheme uses the following
two types of algorithms.
� A reversible asymmetric algorithm consisting

of a signing function Sign(SK)[ ] depending
on a Private Key SK and a recovery function
Recover(PK)[ ] depending on a Public Key PK .
Both functions map N-byte numbers onto N-
byte numbers and have the property that

Recover(PK)[Sign(SK)[X]] = X,

for any N-byte number X.
� A hash algorithm Hash[ ] that maps a mes-

sage of arbitrary length onto an 20-byte hash
code.

Signature Generation

The computation of a signature S on a message
MSG consisting of an arbitrary number L of at
least N – 21 bytes takes place in the following
way.

1. Compute the 20-byte hash value H :=
Hash[MSG] of the message M.

2. Split MSG into two parts MSG = (MSG1 ||
MSG2), where MSG1 consists of the N – 22 left-
most (most significant bytes) of MSG and MSG2
of the remaining (least significant) L – N + 22
bytes of MSG.

3. Define the byte B := ‘6A’.
4. Define the byte E := ‘BC’.
5. Define the N-byte block X as the concatenation

of the blocks B, MSG1, H and E, hence

X := (B||MSG1||H||E).

6. The digital signature S is then defined as the
N-byte number.

S := Sign(SK)[X].

Signature Verification

The corresponding signature verification takes
place in the following way:
1. Check whether the digital signature S consists

of N bytes.
2. Retrieve the N-byte number X from the digital

signature S:

X = Recover(PK)[S].

3. Partition X as X = (B || MSG1|| H || E), where
– B is one byte long,
– H is 20 bytes long,
– E is one byte long,
– MSG1 consists of the remaining N – 22 bytes.

4. Check whether the byte B is equal to ‘6A’.
5. Check whether the byte E is equal to ‘BC’.
6. Compute MSG = (MSG1 || MSG2) and check

whether H = Hash[MSG].
If and only if these checks are correct is the mes-
sage accepted as genuine.

Approved Algorithms

The double-length key triple DES encipherment
algorithm is the approved cryptographic algo-
rithm to be used in the encipherment (using ECB
or CBC as specified in ISO/IEC 10116 [4]) and
MAC mechanisms specified above (see ISO/IEC
CD 18033-3 [7]).

Single DES (see Data Encryption Standard) is
only approved for use with the version of the MAC
mechanism specified in Algorithm 3 of ISO 9797-1
(triple DES applied to the last block).

The digital signature scheme and offline PIN
encryption use the RSA transform (see RSA dig-
ital signature scheme) as defined in ISO/IEC CD
18033-2 [6].
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The approved algorithm for hashing is SHA-1
as specified in ISO/IEC 10118-3 [5].

Marijke de Soete
Michael Ward
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ENCRYPTION

An encryption (also called enciphering), is a map-
ping of plaintext to ciphertext, based on some cho-
sen keytext. It is performed by a stepwise appli-
cation of a (more or less formalized) encryption
algorithm (see cryptosystem).

An encryption step is an encryption applied to a
particular sequence of plaintext characters, using,
in a way that depends on the encryption key, a par-
ticular encryption rule of an encryption algorithm.

Often padding is necessary to give the message
the proper length as required by the encryption al-
gorithm. With padding, one also means the filling
of gaps between meaningful messages, frequently
by special padding characters (called nulls). Both
meaningful messages and padding characters are
encrypted, thus masking the occurrence of idle
times. Careless padding may corrupt some encryp-
tion systems.

A product cipher or superencryption consists of
an encryption A applied to the result of encryption
B; it is denoted by encryption AB (product of B and
A ).

Homophones are two or more ciphertext ele-
ments belonging to the same plaintext element.

EXAMPLE. The bipartite, monographic encryption
(see substitutions and permutations and alpha-
bet) Z26 −→ [ZZ10\{0}]2 given by:

1 2 3 4 5 6 7 8 9

9, 6, 3 a b c d e f g h i
8, 5, 2 j k l m n o p q r
7, 4, 1 s t u v w x y z

The plaintext letter e has the three homophones
95, 65, 35 . The table also defines the inverse, a
unipartite, digraphic substitution [ZZ10\{0}]2 −→
Z26, which turns out to be polyphonic.

Polyphony is an encryption that assigns to each
plaintext element one out of several ciphertext el-
ements (to be chosen arbitrarily, randomly in the
best case).

Decryption or deciphering is the inverse op-
eration of an encryption; it maps ciphertext to
plaintext, based on the (authorized) knowledge of
the keytext. It may consist of several decryption
steps.

One speaks of an unauthorized decryption if it
takes place without authorized access to the key.

Examples of classical encryption schemes are
often named after people (see Cæsar, Alberti,
Vigenère, Porta, Beaufort, Vernam, Polybios, and
Playfair).

Friedrich L. Bauer
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ENCRYPTION EXPONENT

The exponent e in the RSA public key (n, e). See
RSA public key encryption and RSA digital signa-
ture scheme.

Burt Kaliski

ENTITLEMENTS
MANAGEMENT

Entitlements management is a subset of general
“authorization data” management (see authori-
zation architecture) in which the data being man-
aged are entitlements granted or bestowed upon
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entities in an environment. An entitlement may be
defined as follows [1]: “a right to benefits specified
especially by law or contract”.

Carlisle Adams

Reference

[1] Merriam-Webster OnLine. Available on http://
www.m-w.com/cgi-bin/dictionary

ENTITY AUTHENTICATION

Entity authentication is the process by which one
entity (the verifier) is assured of the identity of a
second entity (the claimant) that is participating
in a protocol (see identity verification protocol).
This assurance is usually obtained by requiring
the claimant to provide corroborating evidence of
the claimed identity to the verifier. The claimed
identity can either be presented to the verifier
as part of the protocol or can be presumed by
context.

The term identification is sometimes used as a
synonym for entity authentication, however it is
also sometimes used to simply refer to the pro-
cess of claiming or stating an identity without
providing the corroborating evidence required for
entity authentication. Care must be taken to en-
sure, when using this term, that the correct inter-
pretation is used.

The corroborating evidence required in order
to obtain entity authentication is sometimes also
called credentials or an authentication code and is
usually calculated using one of the following three
types of input:
1. Something known: Typically this involves the

claimant providing a password (see password)
or PIN (see Personal Identification Code) that
is then either presented directly to the verifier
or is used to compute credentials that are pre-
sented to the verifier and are then validated.

2. Something possessed: This type of input in-
cludes physical devices that are used to com-
pute the credentials presented to the verifier
as well as software files that must be pos-
sessed by the claimant in order to compute the
credentials. Examples of physical devices in-
clude smart cards, magnetic stripe cards and
one-time password generators (see one-time
password). Software files will typically contain
secret or private keys that are used to compute
credentials, however physical devices may con-
tain these keys as well. Note that these physical

devices are sometimes called authentication
codes.

3. Something inherent: This category includes
that class of inputs known as biometrics. In
this category human physical characteristics,
like fingerprints, retinal scans or handwriting,
are used to produce the credentials.
The main reason why entity authentication is

usually required is to restrict access to protected
resources. Examples include remote access to com-
puter accounts, access to web sites, and bank ac-
count access at automated teller machines. If en-
tity authentication is being used for this purpose
then it necessarily must be combined with an
access control method or privilege management
technique; see also authorization architecture) in
order to restrict access. The claimant will usually
first be authenticated and then the access control
or privilege management technique will be used to
determine the level of access allowed.

Important standards that describe methods of
entity authentication include:
� ISO/IEC 9798 [1]: This is a five part interna-

tional standard dealing with entity authentica-
tion that includes a general introduction and
parts focusing on entity authentication based
upon symmetric encryption, public-key signa-
tures, cryptographic check functions, and zero-
knowledge techniques.

� ANSI X9.26 [2]: This is a US banking standard
that specifies techniques for entity authentica-
tion using passwords and DES-based challenge
response protocols.

� ISO 11131 [3]: This is the international version
of ANSI X9.26.

� FIPS 196 [4]: This is a US government stan-
dard that specifies techniques for entity authen-
tication using public-key techniques. It is based
upon techniques described in ISO/IEC 9798-3.

Robert Zuccherato
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EUCLIDEAN ALGORITHM

The Euclidean algorithm was reported by Euclid
in his Elements [3]. For a brief historical ac-
count the reader is referred to Knuth [4]. The
Euclidean algorithm provides a simple and effi-
cient means for computing the greatest common
divisor (GCD) denoted gcd(u, v) of two positive
integers u and v without finding their factoriza-
tions. The gcd operation exhibits the following
properties:
1. gcd(g, 0) = |g|;
2. gcd(u, v) = gcd(v, u − v);
3. gcd(u, v) = gcd(v, u mod v) = gcd(v, u − qv),

where q = �u/v�.
The execution of the Euclidean algorithm is

based on the repetitive application of the prop-
erty gcd(u, v) = gcd(v, u mod v). Assume u ≥ v
and let r0 = u and r1 = v, then the computa-
tion proceeds as gcd(r0, r1) = gcd(r1, r2) = . . . =
gcd(rk, 0) = rk, where the residues ri are related
as follows:

ri+2 = ri − qiri+1 with qi = �ri/ri+1�.
The sequence ri is strictly decreasing and by in-

duction it may be shown to quickly converge to
zero. When rk+1 = 0 then rk holds the desired re-
sult and the algorithm terminates. The Euclidean
Algorithm is given below:

The Euclidean Algorithm
Input: positive integers u and v, with u ≥ v
Output: g = gcd(u, v)

While v > 0 do
q ← � u/v � ; r ← u − qv ;
u ← v ; v ← r ;

End While
g ← u ;

Return (g)

In many cryprographic applications the “ex-
tended” version of the Euclidean algorithm plays
an important role. In addition to the greatest
common divisor, the Extended Euclidean Algo-
rithm (EEA) returns two unique integers s and
t . Using these integers the greatest common divi-
sor may be expressed as a linear combination of u
and v:

us + vt = gcd(u, v).

If u and v are relatively prime, it immediately
follows that

us = 1 (mod v).

Hence, the Extended Euclidean Algorithm pro-
vides an efficient method to compute modular in-
verse u−1 mod v = s. The original Euclidean algo-
rithm described above is modified to compute the
parameters s and t . We define new iteration pa-
rameters si and ti such that

ri = siu + tiv.

Consider the i + 1-st iteration ri+1 = ri−1 −
qi−1ri . By substituting ri and ri−1 in this identity
we obtain the following relation:

ri+1 = (si−1u + ti−1v) − qi−1(siu + tiv)
= (si−1 − qi−1si)u + (ti−1 − qi−1ti)v.

Also since ri+1 = si+1u + ti+1v, the values of the
s and t parameters in iteration i + 1 are found as
follows:

si+1 = si−1 − qi−1si

ti+1 = ti−1 − qi−1ti .

As seen from these equations for the compu-
tation of the sequences si and ti only the last
two values of s and t need to be available. In
the first two iterations of the algorithm, r0 =
s0u + t0v and r1 = s1u + t1v since r0 = u and r1 = v
the parameters need to be initialized as s0 = 1,
s1 = 0, t0 = 0, and t1 = 1. A generic description
of the Extended Euclidean algorithm is given
below:

The Extended Euclidean Algorithm
Input: positive integers u and v, with u ≥ v
Output: g = gcd(u, v) and integers s, t

satisfying us + vt = g
s ′′ ← 1 ; s ′ ← 0 ; t ′′ ← 0 ; t ′ ← 1
While v > 0 do

q ← � u/v � ; r ← u − qv ;
s ← s ′′ − qs ′ ; t ← t ′′ − qt ′ ;
u ← v ; v ← r ;
s ′′ ← s ′ ; s ′ ← s ; t ′′ ← t ′ ; t ′ ← t ;

End While
g ← u ;
s ← s ′′ ; t ← t ′′ ;
Return (g, s, t)

The algorithm recycles the temporary variables
s ′, s ′′, t ′, and t ′′ by shifting their values in each it-
eration of the loop.

The most complex operation used in the EEA
is the integer division operation. If the goal of the
EEA is to compute a modular inverse, i.e., u−1 mod
v, then the operations required for computing t
may be entirely omitted.

The exact number of iterations required for the
algorithm to converge is more difficult to analyze.
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According to [2], Lamé, Dixon, and Heilbronn de-
veloped an upper bound for the number of itera-
tions in the Euclidean algorithm as

⌈
log(n

√
5)

log((1 + √
5)/2)

⌉
− 2 ≈ 2.078 log(n) + 1.672

and came up with the following approximation for
the average number of iterations:

12 log(2)
π2

log(n) + 0.14 ≈ 0.843 log(n) + 0.14,

where u, v ≤ n. Hence, the number of iterations
grows logarithmically with the size of the inputs.
In each iteration of the Euclidean algorithm a
costly division operation is computed which takes
time O((log(n))2) (see O-notation). This gives a
running time of O((log(n))3). However, by careful
implementation it is possible to systematically re-
duce the sizes of u and v in each step, and achieve
the overall computation in time O((log(n))2).

For multiprecision integers, there is a use-
ful variant due to Lehmer [5] with time com-
plexity O((log(n))2). Lehmer’s algorithm is based
on the observation that the quotient in the Eu-
clidean algorithm is in general dependant only on
the leading digits of u and v. More clearly, if ū
and v̄ denote the leading digits of u and v, re-
spectively. Then the following inequality always
holds:

ū
v̄ + 1

≤ u
v

≤ ū + 1
v̄

.

Hence, to determine the quotient in the Eu-
clidean iteration one may compute q = ū/(v̄ + 1)
and q ′ = (ū + 1)/v̄. If q = q ′ then it must be that
q ′ = u/v = q, and the quotient is determined via
two simple single precision divisions. Otherwise,
a multiprecision division is performed as in the
original Euclidean iteration. The advantage of this
method is that multiprecision division is only per-
formed when absolutely essential. Lehmer’s algo-
rithm is presented below:

Lehmer’s Euclidean Algorithm
Input: positive integers u and v with u ≥ v
Output: g = gcd(u, v)

While v > B do
ū ← � u/2k � ; v̄ ← � v/2k � ;
s ′′ ← 1 ; s ′ ← 0 ; t ′′ ← 0 ; t ′ ← 1 ;
While v̄ + s ′ �= 0 AND v̄ + t ′ �= 0 do

q ← � (ū + s ′′)/(v̄ + s ′) � ;
q ′ ← � (ū + t ′′)/(v̄ + t ′) � ;
If q �= q ′ then Goto L
z ← s ′′ − qs ′ ; s ′′ ← s ′ ; s ′ ← z ;
z ← t ′′ − qt ′ ; t ′′ ← t ′ ; t ′ ← z ;
z ← ū − qv̄ ; ū ← v̄ ; v̄ ← z ;

End While
L If t ′′ = 0 then
q ← � u/v � ;
w ← u − qv ; u ← v ; v ← w ;

Else
w ← s ′′u + t ′′v ; r ← s ′u + t ′v ;
u ← w ; v ← r ;

End If
End While
Compute g = gcd(u, v) via the
Euclidean Algorithm and Return(g)

Note that in the algorithm ū, v̄, s ′, s ′′, t ′, t ′′, q,

q ′, z are single precision variables, whereas w and
r are multiprecision. In the first step Bdenotes the
largest value a single precision integer (word) may
hold. In the next step k is made as large as to trun-
cate all bits except the leading word of u and v. In
the innermost loop the two approximations of the
quotient are compared and accordingly either the
single precision operations in the next three steps
or the multiprecision operations in the following if
branch are computed. The While loop repeats until
v is sufficiently reduced to fit into a single precision
variable. Finally, in the last step, the execution
continues with the classical Euclidean algortihm
which computes and returns the GCD of the lat-
est contents of u and v. For a more detailed treat-
ment of the subject see [4]. An extended version
of Lehmer’s algorithm is given in [1]. Sorenson
presents a complexity analysis of Lehmer’s algo-
rithm in [6].

The Euclidean Algorithm may be adapted to
work on polynomials as well. Since there is no
natural ordering among polynomials, the greatest
common divisor of two polynomials is defined as
the largest degree monic polynomial that divides
both polynomials. Here we restrict our attention to
polynomials defined over a field. It should be noted
however that it is possible to develop Euclidean
algorithms for polynomials defined over an arbi-
trary domain. The Extended Euclidean algorithm
for polynomials is given below.

The Extended Euclidean Algorithm for Polyno-
mials
Input: polynomials u(x) and v(x), with

deg(u) ≥ deg(v)
Output: g(x) = gcd(u(x), v(x)) and polynomials

s(x), t(x)
satisfying u(x)s(x) + v(x)t(x) = g(x)
s ′′(x) ← 1 ; s ′(x) ← 0 ; t ′′(x) ← 0 ;
t ′(x) ← 1
While v(x) > 0 do

r (x) ← u(x) mod v(x) ;
q(x) ← (u(x) − r (x))/v(x) ;
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s(x) ← s ′′(x) − q(x)s ′(x) ;
t(x) ← t ′′(x) − q(x)t ′(x) ;
u(x) ← v(x) ; v(x) ← r (x) ;
s ′′(x) ← s ′(x) ; s ′(x) ← s(x) ;
t ′′(x) ← t ′(x) ; t ′(x) ← t(x) ;

End While
a ← leading nonzero coefficient
of u(x) ;
g(x) ← a−1u(x) ;
s(x) ← a−1s ′′(x) ; t(x) ← a−1t ′′(x) ;
Return (g(x), s(x), t(x))

The modular reduction and the division opera-
tions within the loop may be achieved by a single
polynomial division. The most significant differ-
ence in the polynomial version is the final scaling
of g(x), s(x) and t(x) with a−1 to obtain a monic
greatest common divisor polynomial. For this the
inverse of a needs to be computed in the field over
which the polynomials are defined.

See also Binary Euclidean Algorithm.

Berk Sunar
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EULER’S TOTIENT
FUNCTION

The multiplicative group of the ring Zn consists of
the integers (or more formally, residue classes) be-
tween 0 and n − 1 that are relatively prime to the
modulus n. The number of elements in this group,
denoted φ(n), is called Euler’s totient function of n.

If n is prime, then φ(n) is n − 1, since 0 is the
only integer in the set that is not relatively prime
to n.

If n is a prime power, n = pk, k > 1, then φ(n)
is (p− 1)pk−1, since any integer in the set that is
divisible by p is not relatively prime to n.

If n is a general composite of the form

n =
d∏

i=1

pki
i ,

where d > 2, p1, . . . , pd are distinct primes, and
each ki ≥ 1, then

φ(n) =
d∏

i=1

φ(pki
i ) =

d∏
i=1

(pi − 1)pki−1
i .

In particular, if n is a composite of the form n =
pq where p and q are distinct primes, which is
a common case in cryptography, then φ(n) = (p−
1)(q − 1).

By a basic result of group theory, since φ(n) is
the order of the multiplicative group Z∗

n, it follows
that every element x ∈ Z∗

n has multiplicative order
dividing φ(n), i.e.,

xφ(n) ≡ 1 (mod n).

This is known as Euler’s Theorem. (Fermat’s Little
Theorem covers the special case where n is prime.)
A related function is the λ function, which is the
smallest positive integer such that

xλ(n) ≡ 1 (mod n)

for every element x ∈ Z∗
n. The λ function is the

same as the φ function if n is a prime or prime
power; if n is composite it is defined as

λ(n) = lcm(φ(pk1
1 ), . . . , φ(pkd

d )),

which is a divisor of φ(n).

Burt Kaliski

EXHAUSTIVE KEY SEARCH

INTRODUCTION: The simplest approach to crypt-
analyzing a block cipher is exhaustive key search.
The cryptanalyst wishes to find the key k that was
used with block cipher E to encrypt some plaintext
P to produce ciphertext C, C = Ek(P) (see Figure 1
and Shannon’s model).

E

k

CP

Fig. 1. Block cipher encryption
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Once k is known, the cryptanalyst can find
the plaintext by decrypting the ciphertext, P =
E−1

k (C). A very simple approach to finding k is
known as exhaustive search: the cryptanalyst
tries decrypting the known ciphertext C with each
possible key in turn until the correct key k is
found.

Implicit in the definition of exhaustive search
is the assumption that the cryptanalyst can tell
whether a given guess of the key is correct. This
requires that the cryptanalyst has some informa-
tion about the plaintext. For example, the plain-
text may start with a known header (e.g., “Dear
Sir”), or the bytes of the plaintext may be lim-
ited to ASCII character values. In general, the
cryptanalyst requires as much information about
the plaintext as he has uncertainty about the key.
Otherwise, there are likely to be many keys corre-
sponding to plausible plaintexts.

The time required to complete an exhaustive key
search depends on the number (K) of possible keys,
the time (t) it takes to test a candidate key, and the
number (p) of processors performing the search.
Each processor is responsible for approximately
K/p keys and would take time Kt/p to test them
all. On average we expect to find the key about
half way through the search making the expected
run time approximately Kt/(2p).

Although the focus here is on block ciphers, ex-
haustive search methods can be applied to stream
ciphers and MAC algorithms as well.

In the following sections, we discuss some of the
history of exhaustive search including the level of
effort required for hardware and software based
attacks (Section “History”), the invulnerability
of modern block ciphers to exhaustive search
(Section “Modern block ciphers”), countermea-
sures for preventing exhaustive search attacks
(Section “Countermeasures”), and other related
attacks (Section “Related attacks”).

HISTORY: Much of the history of exhaustive key
search concerns the U.S. Data Encryption Stan-
dard (DES) [4]. DES is a block cipher with 64-bit
plaintext and ciphertext blocks, and 56-bit keys
(K = 256). When DES was first proposed by the US
government, there was considerable controversy
over its short keys. In 1977, Diffie and Hellman [2]
estimated that a machine capable of recovering
DES keys in a day could be built for $20 million.
Some argued that this estimate was too low and
that even if it were correct, it provides an ade-
quate barrier to cryptanalysis. On the other hand,
advancing technology would reduce costs quickly,
and the cost of using larger keys is quite low. For

example, increasing the DES key length by just 8
bits to 64 bits would increase the cost of exhaustive
search by a factor of 28 = 256.

The debate about the DES key size raged on
for many years (see Diffie’s foreword to “Cracking
DES” [3] for more details). At Crypto ’93, a paper
was presented that gave a detailed design for a
$1 million DES key search machine consisting of
p = 57,600 custom chips, each capable of testing a
DES key every t = 20 ns [10]. Using the expression
for expected run time from the Introduction, this
machine takes, on average, Kt/(2p) = 3.5 hours
to recover a DES key. Although general purpose
computers are poorly suited to performing DES
key search, by the late 1990s various group efforts
succeeded in searching the DES key space using
months of computer time.

By 1998, the Electronic Frontier Foundation
had actually built a hardware-based DES key
search machine called “Deep Crack” [3]. Because
their budget was limited, they used custom gate
array chips that are slower and more expensive
than fully custom chips, but have considerably
lower design and fabrication start-up costs. Deep
Crack cost $200,000 to build, consisted of 1536
chips each capable of searching through 60 million
keys per second, and required, on average, 4.5 days
to recover a DES key.

As the evidence mounted over the years, it be-
came inceasingly difficult to pretend that DES
provides adequate security, although a great deal
of legacy DES-based equipment is still in use
today because of a desire to avoid the cost of
replacing it.

MODERN BLOCK CIPHERS: The reign of DES
is finally giving way to new ciphers with longer
keys. The most significant of these new ciphers is
Rijndael/AES [1], which was selected by the U.S.
National Institute of Standards and Technology
(NIST) to be the Advanced Encryption Standard
(AES) [6]. The AES plaintext and ciphertext block
size is 128 bits, and its keys can be 128, 192, or
256 bits long.

To assess the difficulty of AES exhaustive key
search, we use the 1993 DES key search design
as a starting point. By Moore’s law, we expect the
speed of a key search machine to double every
18 months. From 1993 to 2003, this is about a fac-
tor of 100. A $1 million DES key search machine
in 2003 would then take about 2 minutes to re-
cover a key rather than 3.5 hours. If we ignore the
fact that AES is more complex than DES to imple-
ment on a chip, even the smallest key size of AES
is 72 bits longer than a DES key meaning that AES
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requires 272 times as much effort to recover a key.
Even if we increase the budget to $1 trillion for
a machine, the time increases to billions of years.
AES is essentially invulnerable to key search.

Note that these arguments apply only to key
search. It is conceivable that a clever cryptanalyst
will find some short cut to recovering AES keys.
AES has withstood considerable scrutiny so far,
and time will tell whether the current confidence
in its security is justified.

COUNTERMEASURES: The most effective way to
prevent exhaustive key search attacks is to use
sufficiently long keys. By making the number of
keys K large, the key search time Kt/(2p) be-
comes large. In some cases system designers are
constrained to some key size limit (e.g., interop-
erating with a legacy system, export controls). In
the following subsections, we examine some of the
means that have been tried to prevent key search
attacks.

Frequent Key Changes

A common suggestion for avoiding key search at-
tacks is to change keys frequently. If it takes an
hour to find a key, then change keys every half
hour. Implicit in this suggestion is the assump-
tion that the key will not be useful after the half
hour is up, which is true in only certain types of
systems.

It turns out that this technique does not work
well, because key search does not take exactly an
hour, but takes a time that is uniformly distributed
between zero and two hours. The probability that
the key will be found in the first half hour is 25%. If
the cryptanalyst does not succeed before the key is
changed, then he abandons the search and starts
to work on the next key. On average, one quarter
of the keys will be found while they are still in
use. Even if the keys are changed very frequently,
say every minute, the cryptanalyst expects to wait
about 2 hours to recover a key quickly enough
that it is still in use. Frequent key changes only
slow the cryptanalyst down by at most a factor of
two.

Eliminate Known Plaintext

In most analyses of key search time, it is assumed
that the cryptanalyst has some known plaintext
P corresponding to ciphertext C. The cryptanalyst
can then take a candidate key, use it to decrypt C
and compare the result to P. If we could encrypt
only the unpredictable parts of messages or find

some other way to eliminate known plaintext, we
could slow down the cryptanalyst. This is not as
easy as it sounds.

Suppose that the cryptanalyst has no known
plaintext, but knows that the plaintext is coded
with one ASCII character per byte. This means
that each byte has a leading zero bit. In the case of
DES with a 64-bit block size, each plaintext block
contains 8 zero bits at known positions. When the
cryptanalyst tries decrypting a ciphertext block
with the wrong key, the random result has only
a 1 in 28 chance of having the correct form. Thus
the cryptanalyst can eliminate most keys in just
a single decryption. The remaining wrong keys
can be eliminated with one or more additional de-
cryptions of other ciphertext blocks. Overall, the
impact on run time is negligible. Even if the
cryptanalyst knows only one bit of redundancy
per plaintext block, half the keys will be elimi-
nated on the first decryption, a quarter of the keys
will be eliminated on the second decryption, etc.
Overall, this only slows the search by a factor of
two.

Different Modes of Encryption

There are several standardized modes of opera-
tion of a block cipher [5]. The simplest is called
electronic codebook (ECB) mode where each plain-
text block is encrypted in turn and the result-
ing ciphertext blocks are concatenated. However,
there are other modes where the previous cipher-
text block is involved in encrypting the next plain-
text block. The 1993 DES key search paper [10]
shows that a key search design can be adapted
to cipher-block chaining (CBC), cipher-feedback
(CFB), and output feedback (OFB) modes for a
run-time penalty of less than 2.5.

Extensive Key Setup

In most block ciphers, there is a key setup pro-
cess to take a key and produce a set of subkeys
for direct use in the algorithm. Collectively, these
subkeys are usually much longer than the origi-
nal key. When encrypting, the key setup can be
performed once per key, and the resulting subkeys
can be used for the life of the key. However, for key
search, it is necessary to compute new subkeys for
each key that is tried. This leads to the idea of
making the key setup process expensive to slow
down key search, while having (hopefully) mini-
mal impact on encryption.

For example, if key setup is 100 times more ef-
fort than encrypting a block, then key search is
slowed down by a factor of approximately 100. But
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from the cryptographer’s point of view, if a key is
used to encrypt significantly more than 100 blocks,
the impact is minimal.

There are a number of potential problems with
this approach. A system may be designed to
encrypt short messages making the key setup
overhead significant. Subkeys would have to be
stored rather than recomputed for each encryp-
tion, which may be a problem in small devices
that handle many keys. If the key space is small
enough, the cryptanalyst might precompute and
store the subkeys for each key and use the re-
sulting database to perform key search quickly.
The cryptanalyst may have many keys to attack
at once and can compute subkeys from each key
once and try the subkeys on each of the problem
instances, thereby spreading the cost of subkey
generation across multiple problem instances.

All-Or-Nothing Encryption

Rivest had an interesting idea for slowing down
key search called all-or-nothing encryption [8].
This encryption mode is designed so that it is not
possible to recover a single plaintext block (even
knowing the key) until the entire message is de-
crypted. This means that the cryptanalyst cannot
eliminate most keys by decrypting a single block,
and the key search effort increases by a factor of
the number of blocks in the message.

RELATED ATTACKS: Exhaustive key search be-
longs to a larger class of attacks sometimes called
black-box cryptanalysis. These attacks do not de-
pend on the exact details of the scheme being
attacked, but only on its external characteristics.
With exhaustive search, the only details about the
block cipher that matter are the key size, block
size, and complexity of performing an encryption
or decryption in hardware or software. Some view
these attacks as uninteresting because they do
not make use of details of the scheme being at-
tacked, but on the other hand, the broad appli-
cability of black-box attacks makes them quite
powerful techniques. Other examples of black-box
cryptanalysis are attacks on double- and triple-
encryption with a block cipher, generic methods
of finding hash function collisions, and generic
methods of finding discrete logarithms in cyclic
groups [7,9,11].

CONCLUSION: Exhaustive key search is a sim-
ple approach to attacking a block cipher and has
had an interesting history in connection with DES.
However, modern ciphers with keys of 128 bits and

longer have made exhaustive cryptanalysis infea-
sible with current technology.

Michael J. Wiener
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EXISTENTIAL FORGERY

Existential forgery is a weak, message related
forgery against a cryptographic digital signature
schemes. Given a victim’s verifying key, an exis-
tential forgery is successful, if the attacker finds
a signature s for any new message m, such that
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the signature s is valid for m with respect to the
victim’s verifying key. The message m need not be
sensical or useful in any obvious sense.

Gerrit Bleumer

EXPONENTIAL TIME

An exponential-time algorithm is one whose run-
ning time grows as an exponential function of the
size of its input. Let x denote the length of the in-
put to the algorithm (typically in bits, but other
measures are sometimes used). Let T(x) denote
the running time of the algorithm on inputs of
length x. Then the algorithm is exponential-time
if the running time satisfies

T(x) ≤ cbx

for all sufficiently large x, where the coefficient
and the base b > 1 are constants. The running
time will also satisfy the bound

T(x) ≤ (b′)c′x

for another base base b′ > 1, and an appopriate
constant c′. The term “exponential” comes from
the fact that the size x is in the exponent. In
O-notation, this would be written T(x) = O(bx),
or equivalently T(x) = (b′)O(x). The notations 2O(x)

and eO(x) are common.
Exhaustive key search is one example of an

algorithm that takes exponential time; if x is
the key size in bits, then key search takes time
O(2x).

For further discussion, see polynomial time.

Burt Kaliski

EXPONENTIATION
ALGORITHMS

The problem of computing an exponentiation
occurs frequently in modern cryptography. In par-
ticular, it is the core operation in the three most
popular families of public-key algorithms: integer
factorization based schemes (e.g., RSA public key
encryption); discrete logarithm problem based
schemes (e.g., Digital Signature Standard
or Diffie–Hellman key agreement); and elliptic
curve cryptography. Exponentiation is defined
as the repeated application of the group oper-
ation to a single group element. If we assume
a multiplicative group, i.e., the group opera-
tion is called “multiplication”, and we denote
the group element by g, we write an exponen-

tation as

g · g · . . . · g︸ ︷︷ ︸
e times

= ge.

This case is in particular relevant for RSA and dis-
crete logarithm schemes in finite fields. It should
be kept in mind that the corresponding notation
for additive groups, i.e., groups where the group
operation is an addition, looks as follows:

g + g + . . . + g︸ ︷︷ ︸
e times

= e · g.

This case, repeated addition of the same group
element, is the core operation in elliptic curve
cryptosystems. Strictly speaking, this operation
is not called “exponentiation” but multiplication.
Accordingly, in elliptic curve schemes the corre-
sponding operation is referred to as “scalar point
multiplication.”

There is a wealth of different exponentiation
methods. The general goal of these algorithms is
to perform an exponentiation with a minimum
of arithmetic operations combined with optimized
storage requirements. For groups where inversion
of a field element is not a trivial operation, e.g., in
finite fields or integer rings, we can distinguish
between three main families of exponentiation al-
gorithms. For clarity, we assume multiplicative
groups:
General Exponentiation. This case is given if

neither the base element g nor the exponent e
is known ahead of time. Hence, no precompu-
tations can be be performed. This is the most
general case. The basic algorithm in this situa-
tion is the binary exponentiation method, also
known as square-and-multiply algorithm. For
random exponents e, this method takes on aver-
age �log2 e� − 1 squarings and 0.5 (�log2 e� − 1)
multiplications in the group. The binary method
has negligible storage requirements. General-
izations of the binary method, referred to as
the 2k-ary exponentiation and sliding window
exponentiation, lead to reductions of the num-
ber of group multiplications, while increasing
the storage requirements. However, both of the
latter algorithms essentially do not reduce the
number of squarings required.

Fixed-base Exponentiation. In certain crypto-
graphic schemes the basis g of an exponentia-
tion algorithm is known à priori and, thus, pre-
computations can be performed. This leads to
much faster exponentation times compared to
the general case. These methods are described
in the entry fixed-base exponentiation.

Fixed-exponent Exponentiation. The other
special case is given in applications where the
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exponent e is known ahead of time. Again,
precomputations can be performed. The gain
compared to the general exponentiation case
is relatively moderate, however. Correspond-
ing techniques are described in fixed-exponent
exponentiation. These techniques are closely re-
lated to the theory of addition chains.
In situations where taking the inverse of a group

element is trivial (as it is the case in elliptic
curve groups, where inversion is often a single
subtraction of two field elements), there are ad-
ditional exponentiation methods. Those methods
are based on the idea that e can sometimes be
represented more efficiently when negative digits
are allowed as well as positive digits. For instance,
the decimal number 31 has the binary represen-
tation (1, 1, 1, 1, 1) but the signed-digit represen-
tation (1, 0, 0, 0, 0, −1). Since the complexity of
exponentiation algorithms often depends on the
number of non-zero digits, the latter represen-
tation can lead to faster exponentiations. Corre-
sponding algorithms are described in signed-digit
exponentiation.

Another special case is given when exponentia-
tions of the following form are required:

ge1
1 · ge2

2 .

Such exponentiations are referred to as simul-
taneous exponentiation. They can be computed to-
gether considerably more efficiently than the two
individual exponentiations ge1

1 and ge2
2 . Efficient

methods exist both for multiplicative groups and
for additive groups. In the latter case the notation

e1 · g1 + e2 · g2

is being used. This is the core operation in the ver-
ification step of the elliptic curve digital signature
algorithm (or ECDSA), which is described in the
entry Elliptic Curve signature schemes.

Christof Paar

EXTENSION FIELD

Let F = (S, +, ×) be a field and let f (x) be a monic
irreducible polynomial of degree d over F. That is,

let f (x) be a polynomial

f (x) = xd + fd−1x d−1 + · · · + f1x + f0.

Let α denote a root of this polynomial. Then the
set of elements generated from field operations on
elements of F and α is itself a field, denoted F(α).
The field F(α) is called an extension field of F of
extension degree d. F is a subfield of F(α), since F
is a subset of F(α) and is itself a field.

The definition given here is for a simple ex-
tension field. In general, an extension field of a
field F is any field that contains F as a sub-
field; an example of a non-simple extension of F is
F(α, β) where β is another root. Simple extension
fields are the ones usually encountered in crypto-
graphy.

The elements of a simple extension field may
be viewed as polynomials of degree at most d − 1
in α, where the coefficients are elements of F, so
that an element A ∈ F(α) corresponds to the poly-
nomial

ad−1α
d−1 + · · · + a1α + a0.

Field addition in the extension field corresponds
to coefficient-wise addition of the d coefficients,
while field multiplication corresponds to polyno-
mial multiplication modulo the field polynomial
f (x).

If F is a finite field with q elements, i.e., Fq , then
F(α) is a finite field with qd elements, i.e., Fqd .

For instance, a binary finite field F2k is an ex-
tension field of the finite field F2, and likewise an
odd-characteristic extension field Fpk with p ≥ 3 is
an extension field of Fp.

A number field Q(α) is an extension field of the
rational numbers Q.

The representation of elements given above is
a polynomial basis representation, since the poly-
nomial terms αd−1, . . . , α, 1 form a basis for the
extension field when viewed as vector space over
F (i.e., linear combinations of the basis elements
generate the vector space). However, various other
representations have been developed and can be
applied in cryptography.

See also primitive element.

Burt Kaliski
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F
FACTOR BASE

The term factor base refers to the set of small
prime numbers (and more generally, prime powers
and irreducible polynomials) among which rela-
tions are constructed in various integer factoring
algorithms (see also sieving) as well as in cer-
tain algorithms for solving the discrete logarithm
problem (see also index calculus).

The choice of factor base—and specifically the
maximum value in the factor base, called the
smoothness bound—plays a crucial role in the time
and hardware requirements for these algorithms.
For further discussion, see the entry on smooth-
ness.

Burt Kaliski

FACTORING CIRCUITS

In [1] Bernstein proposed a new approach to the
relation combination step of the number field sieve
(see integer factoring), based on sorting in a large
mesh of small processors. A variant based on rout-
ing in a similar mesh was later described in [2]. A
hardware approach to relation collection based on
more traditional methods was also proposed in [1];
a more detailed hardware design is described in [4]
(see TWIRL). As of the summer of 2003, it seems
realistic that a US$ 10 million device, not count-
ing research and development costs, should be able
to factor 1024-bit RSA moduli at the rate of one
modulus per year (see RSA problem). See also [3].
Combined with Moore’s law this does not bode well
for long term prospects of the security offered by
such moduli.

An alternative way to measure the cost of inte-
ger factoring was presented in [1] as well, namely
as the product of the runtime and the cost of the
hardware required, as opposed to just the runtime
(see also [5]). Refer to [1, 2] for a discussion of
the effect this has on the parameter choices and
asymptotic cost of the Number Field Sieve.

Arjen K. Lenstra

References

[1] Bernstein, D.J. (2001). Circuits for integer factor-
ization: A proposal. Available at cr.yp.to/papers.
html#nfscircuit

[2] Lenstra, A.K., A. Shamir, J. Tomlinson, and
E. Tromer (2002). “Analysis of Bernstein’s fac-
torization circuit.” Advances in Cryptography—
ASIACRYPT 2002, Lecture Notes in Computer
Science, vol. 2501, ed. Y. Zheng. Springer-Verlag,
Berlin, 1–26.

[3] Lenstra, A.K., E. Tromer, A. Shamir, W. Kortsmit,
B. Dodson, J. Hughes, and P. Leyland (2003). “Fac-
toring estimates for a 1024-bit RSA modulus.” Ad-
vances in Cryptography—ASIACRYPT 2003, Lec-
ture Notes in Computer Science, vol. 2894, ed. C.S.
Laih. Springer-Verlag, Berlin.

[4] Shamir, A. and E. Tromer (2003). “Factoring large
numbers with the TWIRL device.” Advances in
Cryptology—CRYPTO 2003, Lecture Notes in Com-
puter Science, vol. 2729, ed. D. Bonch. Springer-
Verlag, Berlin.

[5] Wiener, M.J. (2004). “The full cost of cryptanalytic
attacks.” J. of Cryptology, 17 (2): 105–124.

FAIL-STOP SIGNATURE

Fail-stop signatures are digital signatures where
signers enjoy unconditional unforgeability (with
an unavoidable but negligible error probability),
while the verifiers bear the risk of forged signa-
tures, and therefore enjoy computational security
only. If a signer is confronted with an alleged sig-
nature that she has not produced, then the signer
can with overwhelming probability prove that the
alleged signature is in fact forged. Afterwards, the
signer can revoke her verifying key, thus the name
fail-stop signature scheme. Fail-stop signatures
were introduced by Pfitzmann [4] who gives an
in-depth introduction in [6]. The security for the
signer is strictly stronger than the strongest secu-
rity defined by Goldwasser, Micali, and Rivest (see
GMR signatures [2]), where signers enjoy com-
putational security while verifiers are uncondi-
tionally secure against forgery. In other words,
the signer is secure even against counterfeit-
ing by a computationally unrestricted attacker.
In the same sense, fail-stop signatures provide
strictly stronger security for the signer than all
the standard digital signature schemes such as
RSA digital signatures, Rabin digital signatures,
ElGamal digital signatures, Schnorr digital sig-
natures, Digital Signature Algorithm (DSA),
elliptic curve signature schemes (ECDSA), etc. A
comparative overview is found in [5]. Fail-stop
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signatures are more fundamental than ordi-
nary digital signatures because the latter can
be constructed from the former, but not vice
versa [3].

In a fail-stop signature scheme, each signing
member has an individual signing key pair of a
private signing key and a public verifying key (see
public key cryptography). The verifying algorithm
takes the signer’s public verifying key, a mes-
sage, and a corresponding signature and returns
a Boolean result indicating whether the signature
is valid for the message with respect to the public
verifying key. If a signer is confronted with a sig-
nature that she did not produce, but which holds
against the verifying algorithm, then the signer
can use an additional algorithm to produce a proof
of forgery. Any third party verifier can then ver-
ify by means of an additional algorithm that the
proof of forgery is valid. The first efficient fail-stop
signature scheme was constructed by van Heijst,
Pedersen and Pfitzmann [3, 10, 11].

Pedersen and Pfitzmann have shown that fail-
stop signatures can be produced and verified about
as efficiently as ordinary digital signatures, but
that the length of the signer’s private signing key
is proportional to the number of messages that can
be signed with it [3]. However, signers need not
store complete long signing keys at any one time,
but can generate random bits for them on demand.

Fail-stop signatures have been proposed to be
used in electronic cash schemes such that custo-
mers need not bear the risk of very powerful banks
forging some of their customer’s signatures. Al-
though this may appear far fetched for the case of
general customers, it may be a necessary condition
to open the door for processing high value trans-
actions (millions of dollars) fully electronically.

A fail-stop signature scheme has the following
operations: (i) an operation for generating pairs of
a private signing key and a public verifying key
for an individual, (ii) an operation to produce fail-
stop signatures, (iii) an operation to verify fail-stop
signatures, (iv) an operation to produce proofs of
forgery, and (v) an operation to verify proofs of
forgery.

The characteristic security requirements of a
fail-stop signature scheme are:
Unforgeability (Recipient’s Security): resis-

tance against existential forgery under adaptive
chosen message attacks by computationally re-
stricted attackers.

Nonrepudiation: a computationally restricted
signer cannot produce a fail-stop signature that
he can later prove to be a forged signature.

Signer’s Security: if a computationally unlim-
ited attacker fabricates a signature, the alleged

signer can produce a valid proof of forgery with
overwhelming probability.

Constructions have been based on groups, in
which the discrete logarithm problem is hard [3,
10, 11], on the RSA digital signature scheme [7],
and on authentication codes [9].

Fail-stop signatures schemes can be equipped
with additional features: Chaum et al. have pro-
posed undeniable fail-stop signatures [1]. Susilo
et al. have proposed threshold fail-stop signatures
[8].

Gerrit Bleumer
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[11] van Heijst, Eugéne, Torben P. Pedersen, and
Birgit Pfitzmann (1993). “New constructions of fail-
stop signatures and lower bounds.” Advances in
Cryptology—CRYPTO’92, Lecture Notes in Com-
puter Science, vol. 740, ed. E.F. Brickell. Springer-
Verlag, Berlin, 15–30.

FAIR EXCHANGE

An exchange protocol transmits a digital token
from each participant to each other participant in
a group. An exchange protocol is called fair, if and
only if
1. The protocol either ensures that all honest par-

ticipants receive all items as expected or re-
leases no useful information about any item of
any honest party.

2. The protocol terminates after a fixed time.
In the two-party case, this means that a honest
party releases its item if it receives the expected
item from the peer. Otherwise, no additional infor-
mation is released. A practical example is Ebay’s
escrow service that works as follows: the buyer
deposits a payment at Ebay, the seller sends the
item to the buyer, and if the buyer approves, Ebay
forwards the payment to the seller. Note that the
exact formalization of “fixed time” depends on the
network model: in synchronous networks with a
global notion of rounds this is formalized by “fixed
number of rounds.” In asynchronous networks
without global time, a maximum logical time [6]
is used.

Early research focused on two-party protocols
(see multiparty protocols) solving particular in-
stances of fair exchange such as contract signing
[2] and [3] or certified mail [7]. However, these pro-
tocols are either unfair with a probability that is
linear in the number of rounds (e.g., 1/10 for 10
rounds) or cannot guarantee termination in a fixed
time [4].

Fairness with a negligible error probability
within a limited time can only be guaranteed by
involving a Trusted Third Party (TTP) or by as-
suming a trusted majority. A TTP ensures that
the outcome is fair even if one party cheats. The
TTP solves the fundamental problem that a party
sending the complete item while not having re-
ceived a complete item is always at disadvantage.
Third parties can either be on-line, i.e., involved in
each protocol run or optimistic, i.e., involved only
if an exception occurs.

Generic fair exchange protocols [1] can exchange
many types of items. Examples are data (described
by a publicly known property), receipts, signatures
on well-known data, or payments. Besides generic
protocols, there exist a variety of protocols that
optimize or extend exchanges of particular items:
payment for receipt, payment for data (“fair pur-
chase”), data for receipt (“certified mail”), or sig-
nature for signature (“contract signing”).

A nonoptimistic generic fair exchange protocol
similar to the contract signing protocol in [8] is de-
picted in Figure 1: each party, say A, sends its item
itemA and a description descB of the item expected
in return to the TTP. The TTP exchanges the items
if the expectations are met. This is determined
by a function verify() that verifies that an item
matches its description. Otherwise, the exchange
is aborted and no additional information about the
items is released. Fair exchange protocols can be
further classified by the number of participants,
the network model they assume, the properties
of the items they produce, and whether they are
abuse-free or not. In synchronous networks there
exists a global notion of rounds that limits the
time needed to transmit messages between cor-
rect parties. In asynchronous networks messages
between honest participants are guaranteed to be
delivered eventually; but the transmission time
is unbounded. Besides these two well-known net-
work models, some protocols assume special net-
work models that assume trusted hosts such as
reliable messaging boards or reliable file-transfer

Party A TTP Party B

itemB, descAitemA, descB

abort if not
verifyX (descX ,  itemX )

for X ∈ {A, B}

itemB itemA

Fig. 1. A generic fair exchange protocol with on-line trusted third party
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servers. Abuse-free protocols [5] provide the
additional guarantee that if a failed protocol runs
it never produces any evidence. This is of some
importance for contract signing where a dishon-
est party may gain an advantage by being able to
prove that a particular honest party was willing
to sign a particular contract.

Matthias Schunter
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FAST CORRELATION
ATTACK

Fast correlation attacks were first proposed by W.
Meier and O. Staffelbach [12] in 1988. They apply
to running-key generators based on linear feed-
back shift registers (LFSRs), exactly in the same
context as the correlation attack, but they are sig-
nificantly faster. They rely on the same princi-
ple as the correlation attack: they exploit the ex-
istence of a correlation between the keystream
and the output of a single LFSR, called the tar-
get LFSR, whose initial state depends on some
bits of the secret key. In the original correlation
attack, the initial state of the target LFSR is

recovered by an exhaustive search. Fast correla-
tion attacks avoid examining all possible initial-
izations of the target LFSR by using some efficient
error-correcting techniques (see cyclic codes). But,
they require the knowledge of a longer segment
of the keystream (in the context of a known-
plaintext attack). As for the correlation attack,
similar algorithms can be used for mounting a
ciphertext only attack when there exists redun-
dancy in the plaintext.

FAST CORRELATION ATTACKS AS A DECOD-
ING PROBLEM: The key idea of fast correlation
attacks consists in viewing the correlation attack
as a decoding problem. If there exists a correlation
between the keystream s and the output u of the
target LFSR, then the running-key subsequence
(st )t<N can be seen as the result of the transmis-
sion of (ut )t<N through the binary symmetric chan-
nel with error probability p = Pr[st �= ut ] < 1/2
(if Pr[st �= ut ] > 1/2, the bitwise complement of
s is considered). Moreover, all bits of the LFSR
sequence u depend linearly on the LFSR initial
state, u0 · · · uL−1. Therefore, (ut )t<N is a codeword
of a linear code of length N and dimension L de-
fined by the LFSR feedback polynomial. Thus, re-
covering the LFSR initial state consists in decod-
ing the running-key subsequence relatively to the
LFSR code.

target LFSR

L

binary symmetric channel

P(X)

0

1 1

0

1− p

1− p

p

p

u running-key
s

With this formulation, the original correlation
attack proposed by Siegenthaler consists in ap-
plying a maximum-likelihood decoding algorithm
to the linear code defined by the LFSR feedback
polynomial. It has complexity 2L, where L is the
length of the target LFSR. The complexity can be
reduced by using faster decoding algorithms. But,
they usually require a larger number of running-
key bits.

DECODING TECHNIQUES FOR FAST CORRELA-
TION ATTACKS: Several algorithms can be used
for decoding the LFSR code, based on the following
ideas:
� Find many sparse linear recurrence relations

satisfied by the LFSR sequence (these rela-
tions correspond to sparse multiples of the feed-
back polynomial), and use them in an iterative
decoding procedure dedicated to low-density
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parity-check codes [3, 13, 14]. The complexity
of this attack may significantly decrease when
the feedback polynomial of the target LFSR is
sparse. Thus, the use of sparse LFSR feedback
polynomials should be avoided in LFSR-based
running-key generators;

� Construct a convolutional code [6] (or a turbo
code [7]) from the LFSR code, and use an ap-
propriate decoding algorithm for this new code
(Viterbi algorithm or turbo-decoding);

� Construct a new linear block code with a lower
dimension from the LFSR code and apply to
this smaller linear code a maximum-likelihood
decoding algorithm [4], or a polynomial recon-
struction technique [8].

A survey of all these techniques and their compu-
tational complexities can be found in [9] and [10].
In practice, the most efficient fast correlation at-
tacks enable to recover the initial state of a target
LFSR of length 60 for an error-probability p = 0.4
in a few hours on a PC from the knowledge of 106

running-key bits.

FAST CORRELATION ATTACKS ON COMBINA-
TION GENERATORS: In the particular case of
a combination generator, the target sequence u
is the sequence obtained by adding the outputs
of (m + 1) constituent LFSRs, where m is the
correlation-immunity order of the combining func-
tion (see correlation attack). Thus, this sequence
u corresponds to the output of a unique LFSR
whose feedback polynomial is the greatest com-
mon divisor of the feedback polynomials of the
(m + 1) involved LFSRs. Since the feedback poly-
nomials are usually chosen to be primitive, the
length of the target LFSR is the sum of the lengths
of the (m + 1) LFSRs. The keystream corresponds
to the received word as output of the binary sym-
metric channel with error probability

p = Pr[st �= ut ] = 1
2

− 1
2n+1

| f̂ (t)|,

where n is the number of variables of the combin-
ing function, t is the n-bit vector whose ith compo-
nent equals 1 if and only if i ∈ {i1, i2, . . . , im+1} and
f̂ denotes the Walsh transform of f (see correlation
attack and Boolean functions).

FAST CORRELATION ATTACKS ON FILTER
GENERATORS: In the case of a filter generator, the
target LFSR has the same feedback polynomial as
the constituent LFSR, but a different initial state.
Actually, if the keystream is given by

st = f (vt+γ1 , vt+γ2 , . . . , vt+γn ),

where v is the sequence generated by the con-
stituent LFSR, the optimal target sequence u then
corresponds to

ut =
n∑

i=1

αivt+γi ,

where α = (α1, . . . , αn) is the vector which maxi-
mizes the magnitude of the Walsh transform of
the filtering function. Thus, the keystream corre-
sponds to the received word as output of the binary
symmetric channel with error probability

p = Pr[st �= ut ] = NL( f )
2n ,

where NL( f) is the nonlinearity of the filtering
function. The fast correlation attacks on filter gen-
erators can be improved by using several target
LFSRs together [2, 10].

Other particular fast correlation attacks apply
to filter generators, like conditional block-oriented
correlation attacks [1, 5, 11] (see filter generator).

Anne Canteaut
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FAULT ATTACK

A successful fault attack on an Integrated Circuit
Card (ICC) or smartcard requires two steps: fault
injection and the fault exploitation. The first step
consists in injecting a fault at the appropriate time
during the process. Fault injection is very depen-
dent on the hardware and therefore the ICC. The

Physical

Perturbation

1st step:
Fault Injection

2nd step:
Fault exploitation

Erronous result
or

unexpected behavior

second step consists in exploiting the erroneous
result or unexpected behavior. Fault exploitation
depends on the software design and implementa-
tion. In the case of an algorithm it will also depend
on its specification since the fault exploitation will
be combined with cryptanalysis most of the time.
Depending on the type of analysis performed, the
fault injection will have to be done at a precise
instant or roughly in a given period of time.

There are many ways to generate a fault in
an ICC. We can already distinguish three major
means of fault injection:
Electrical perturbation on the standard ISO con-

tact of the smartcard
� Vcc glitch (see below)
� Clock duty cycle and/or frequency alteration

Light-beam perturbation (contact-less)
� Global light-beam (wide spectrum)
� Focused light-beam (wide spectrum)
� Laser-beam (single wavelength)

Electromagnetic field perturbation (contact-less).
The effectiveness of each fault injection method

strongly depends on the hardware design, manu-
facturing process, and technology. The chip behav-
ior under a fault injection can be of four types:
� No effect
� Wrong results or unexpected behavior (ex-

ploitable fault)
� No response from the card (hardware reset re-

quired)
� Card is dead (physically damaged).
Of course, only one out of the four listed behavior
might be exploitable. Moreover, the perturbation
can have a transient effect, permanent effect, or
an intermediary state in between:
� Transient effect (only during fault injection)
� Semipermanent effect (for a variable period of

time from a few minutes to a few days)
� Permanent effect.
In practice, transient faults are easier to exploit
as we will see in the fault exploitation section.

The main difficulty of the fault injection step is
to find the appropriate parameters of the pertur-
bation for the ICC in consideration. Inappropriate
parameters will not lead to an exploitable fault
such as a wrong result or an unexpected behavior.
Therefore, there is a risk to irremediably kill the
chip. Besides, if the hardware implements some
security sensors and/or protection mechanism, it
will be even more difficult to inject an exploitable
fault without triggering a security mechanism.

A Vcc glitch is defined by many parameters
among which are its shape, the falling and ris-
ing slope, the low and high level, and the low
level duration. Very good results have been ob-
tained on some IC with a limited control over these
parameters. In fact, the three main parameters
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that needed to be tuned are the low and high volt-
age values and the glitch duration. Besides, the
combination of all parameters quickly gives a huge
search space and therefore it is not practical to
have too many parameters to play with.

A white light perturbation can be very effective
on some ICC. The hardware required for such an
attack can be easy to set up by using a photo cam-
era bulk and the associated electronic. Then, the
major parameters to be tuned are the light emis-
sion intensity, the light emission duration and,
eventually, the selection of a specific area of the
chip to be exposed (focused light attack) rather
than the complete die.

Using a laser such as a pulsed Nd:YAG laser is
even more powerful because the energy level, the
wavelength, the beam duration, and the beam size
are much more under control. It is important to
control the energy level in order to avoid destruc-
tion of the chip (too much energy) or an ineffective
beam (not enough energy).

Fault exploitation is the mandatory second step
of a successful fault attack. The fault exploitation
directly depends on the fault effect, the fault lo-
calization in time, and the target of the attack. We
distinguish two major types of target for a fault
attack:
� The operating system and application sensitive

process
� The cryptographic algorithm.

A sensitive process is defined as a piece of code
processing data which is known to the external
world but should not be modified. The fault injec-
tion will precisely modify such data. By definition,
if the data should not be modified, it means that
modifying it will compromise the system security
to some extent.

Differential fault analysis (DFA) mainly con-
sists in analyzing an algorithm result (cipher-
text) under regular condition and under abnor-
mal condition for the same input (plaintext). The
abnormal condition is usually obtained by fault
injection during the process (transient fault) or
before the process (permanent fault). Differen-
tial fault analysis has been widely studied from
a theoretical point of view. In September 1996,
three researchers from Bellcore identified a new
attack against plain RSA (see RSA digital sig-
nature scheme), see Boneh et al. [1], when per-
formed with the Chinese Remainder Theorem.
This attack was reported in a Bellcore press re-
lease entitled New Threat Model Breaks Crypto
Codes, but no technical details were provided.
Later, another researcher wrote a short memo
that seemed to describe a more realistic attack.
In the case of a computation error, the Bellcore re-
searchers showed how to recover the secret factors

p and q of the public RSA modulus n from two
signatures of the same message: a correct one
and a faulty one. Lenstra remarked that only the
faulty signature was required. At the same time,
Joye and Quisquater noted that Lenstra’s obser-
vation could actually be applied to all RSA-type
cryptosystems, including variants based on Lucas
sequences (LUC) and elliptic curves (KMOV,
Demytko). See Joye et al. [2].

In conclusion, a fault attack is a threat for
any secure token (whatever the form factor) and
must be taken into consideration at all steps of
the product design and specification. Countermea-
sures and protection can be designed both in hard-
ware and in software to thwart such attacks.

Olivier Benoı̂t
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FEAL

The Fast Data Encipherment Algorithm
(FEAL) [9] is a family of block ciphers developed
by Shimizu and Miyaguchi. Since the introduction
of its first version (FEAL-4, presented in 1987), the
block cipher has stimulated the development of
some of the most useful cryptanalytical techniques
available today.

FEAL was designed to be a more efficient alter-
native to the Data Encryption Standard (DES), in
particular in software. The block cipher encrypts
data in blocks of 64 bits and uses a 64-bit key. It is
a Feistel cipher, just as DES, but the components
have been modified in order to be more suitable
for word-oriented processors. The complete cipher
can be implemented using only additions modulo
28, rotations over 2 bits, and XORs. The 32-bit f-
function used in the Feistel network takes a 16-bit
subkey as a parameter and mixes it with the data
using the functions S0 and S1. Both functions take
two bytes as input and return a single output byte.
They are defined as:

Si(x, y) = [x + y + i (mod 28)] ≪ 2 , i ∈ {0, 1} .
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Fig. 1. FEAL’s f-function

Another structural difference with DES is the ad-
ditional layers inserted before the first and after
the last round of FEAL. In these layers, an extra
64-bit subkey is mixed with the data and the left
half of the data is XORed with the right half.

While most of its components are far simpler,
FEAL has a more complex key schedule (see block
cipher) than DES. The secret key is expanded
in a Feistel-like ladder network using a nonlin-
ear fk-function similar to the f-function mentioned
above.

FEAL has been studied by many researchers,
and various interesting techniques were devel-
oped to analyze its security. The next paragraph
gives a short overview of the most important
developments.

The first vulnerabilities in the original four-
round version, FEAL-4, were discovered by
den Boer [4] in 1988. He developed an adaptively
chosen plaintext attack which was later improved
by Murphy [8]. The improved attack required only
20 chosen plaintexts and at that time recovered
the key in less than 4 hours. At the Securicom
conference in 1989, Biham and Shamir demon-
strated a chosen plaintext attack on FEAL-8, the
eight-round version of the cipher. The attack,
which would turn out to be a direct application of
differential cryptanalysis, is mentioned in differ-
ent papers [1, 5, 7], but its details were only
published in 1991 [2]. In 1990, Gilbert and
Chassé [5] proposed a statistical chosen plaintext
attack on FEAL-8. A year later, Tardy-Corfdir and
Gilbert [10] presented a known plaintext attack on
FEAL-4 and FEAL-6. The first attack had many
ideas in common with differential cryptanalysis,
which was being developed around the same time;
the second attack contained elements which would
later be used in linear cryptanalysis. In 1992, a
first variant of this linear cryptanalysis was in-

troduced by Matsui and Yamagishi [6]. The new
attack could recover FEAL-4 keys in 6 minutes
using only five known plaintexts. In 1993, Biham
and Shamir [3] developed a more efficient differen-
tial attack against FEAL-8 deriving the secret key
in 2 minutes on a PC given 128 chosen plaintexts.

The development of these new techniques forced
the designers of FEAL to considerably increase
the number of rounds, sacrificing its original
efficiency.

Christophe De Cannière
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FEISTEL CIPHER

One popular class of the modern iterative block-
ciphers is the Feistel ciphers (named so after Horst
Feistel—cryptanalyst who worked with the IBM
crypto group in the early 1970s). The round of a
Feistel cipher uses the product of two involutions
(a function G is called an involution if it is its
own inverse: G(G(x)) = x) in order to achieve the
very comfortable similarity of encryption and de-
cryption processes. Given an n-bit block, a Feistel
round function divides it into two halves L (left)
and R (right). Then some function F(R, k) is ap-
plied to the right half and the result is XORed with
the left half (this is the first involution):

(L, R) → (R, L ⊕ F(R, k)).

Here k is the round subkey produced by the key
scheduling algorithm; it may vary from round to
round. Then the halves are swapped (the second
involution) and the process is repeated. Another
convenience in this construction is that it is al-
ways a permutation, and thus is invertible no mat-
ter what function F is used and thus a designer
may now concentrate on the security properties of
this function. Many modern ciphers are designed
as Feistel ciphers. One prominent example of a
Feistel cipher is the Data Encryption Standard.

Note that the division into halves in a Feistel
cipher can be replaced by division into quarters,
octets, etc. Such ciphers are called generalized
Feistel ciphers. Several modern ciphers are of this
type, for example the CAST family of ciphers or
the cipher Skipjack.

Alex Biryukov

FERMAT PRIMALITY TEST

The Fermat primality test is a primality test, giv-
ing a way to test if a number is a prime number,
using Fermat’s little theorem and modular expo-
nentiation (see modular arithmetic).

Fermat’s Little Theorem states that if a is rel-
atively prime to a prime number p, then a p−1 ≡
1 mod p. Fermat’s little theorem is not true for
composite numbers generally, and so it is an ex-
cellent tool to use to test for the primality of a
number. Basically, to test whether p is prime, we
can see if a randomly chosen a satisfies Fermat’s
little theorem. This is called the Fermat pri-
mality test. If a and p do not satisfy Fermat’s
little theorem, we can be sure that p is not
prime, and thus the test is completed. However,
if a and p do satisfy Fermat’s little theorem, we

cannot necessarily be convinced that p is prime, as
Fermat’s little theorem sometimes holds when p is
not prime.

Unhappily for primality testers, there are some
composite numbers, called Carmichael numbers,
which pass the Fermat test for every base a. The
smallest one is 561. Carmichael numbers are rel-
atively rare; asymptotically, if C(n) is the number
of Carmichael numbers less than n, then

n2/7 < C(n) < n1− ln ln ln n
ln ln n .

As such, the Fermat primality test has a limit: it
cannot guarantee that a composite number won’t
slip through undetected. However, any number
that fails the Fermat test is certainly composite.

Moses Liskov

FERMAT’S LITTLE
THEOREM

Pierre de Fermat (1601–1665) was one of the most
reknowned mathematicians in history. He focused
much of his work on Number Theory, though he
made great contributions to many other areas of
mathematics. Fermat’s “last theorem” was a re-
mark Fermat made in a margin of a book, for which
he claimed to have a proof but the margin was too
small to write it down.

Fermat’s little theorem concerns modular
arithmetic. The statement of the theorem is that
if p is a prime number and a is any number not
divisible by p, then a p−1 ≡ 1 mod p.

The theorem follows easily from the follow-
ing observations. If we consider the product
(a)(2a)(3a) · · · ((p− 1)a), then on the one hand we
can write this as (p− 1)!a p−1. On the other hand,
the list of terms in the product is a complete list
between 1 and p− 1, since no two terms in the
list are equivalent modulo p (if na ≡ ma mod p
where n > m, then pdivides n − m, but n − m can-
not be as large as p, so it must be 0). Thus, we
deduce that this product is (p− 1)! mod p. Thus
(p− 1)!a p−1 ≡ (p− 1)! (mod p) or in other words,
a p−1 ≡ 1 (mod p).

Euler’s theorem (see Euler’s totient function)
generalizes Fermat’s little theorem to handle com-
posite moduli as well as primes.

Fermat’s little theorem is important to cryptog-
raphy in that it gives rise to techniques for testing
prime numbers. See also Fermat primality test.

Moses Liskov
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FIAT–SHAMIR
IDENTIFICATION
PROTOCOL AND THE
FIAT–SHAMIR
SIGNATURE SCHEME

INTRODUCTION: There are several variants of the
Fiat–Shamir identification protocol. One way to
classify these is based on the number of secrets.
In the basic one [4] each prover knows only one
secret. Another is to distinguish between identity
based and public key based ones. In both, a trusted
center made public n = p · q such that p and q are
secret a prime numbers only known to the center.

In the identity based system [3, p. 152] (see also
[2, 4, 5]) a trusted center gives each user a se-
cret key, partially based on biometrics. In partic-
ular, to receive an identity from the trusted cen-
ter, Alice goes to the center. There her fingerprints
and, other biometrics information is collected and
her identity verified. I is the string which con-
tains: Alice’s identity (name), Alice’s biometrics,
and other information to identify Alice uniquely.
The center chooses k small ji, 1 ≤ i ≤ k, such
that xi := f (I, ji) are quadratic residues modulo
n, where f is a public function (see also modular
arithmetic). The center calculates as secrets the
smallest si := (

√
xi)−1 mod n and gives these se-

crets to Alice (write these in Alice’s smart card).
In the public key based system, Alice chooses her

secrets and publishes a public key. In particular,
Alice chooses uniformly random si in Zn and com-
putes xi := s−2

i mod n. This xi with Alice’s identity
is published in an authentic public directory.

PRELIMINARY: In the identity based scheme,
when Bob wants to verify Alice’s identity, Bob asks
Alice’s identity I together with the ji and Bob
checks Alice’s biometrics. If correct, Bob then cal-
culates xi := fi(I, ji), or else Bob halts.

In the public key based scheme, Alice reveals her
identity and Bob finds her public key in the public
key directory.

THE PROTOCOL: Repeat the protocol t times:
Step 1. Alice chooses uniformly random r and

computes z := r2 mod n and sends t to Bob.
Step 2. Bob sends Alice bits ei (1 ≤ i ≤ k).
Step 3. Alice sends α := r · ∏

ei=1 sei
i mod n.

Step 4. Bob verifies that α2 · ∏
ei=1 xi = z.

If all the verifications are correct, Bob accepts.

PARAMETERS: The size of t and k as func-
tions of n is chosen depending whether one uses

Fiat–Shamir as an identification protocol, or as a
zero-knowledge interactive proof. For more details
see [1].

FIAT–SHAMIR SIGNATURE SCHEME: The Fiat–
Shamir scheme can be used to digitally sign
(see also digital signature schemes). This is called
the Fiat–Shamir signature. To sign a message m,
just use a secure hash function h to compute ei in
the above protocol as follows:

ei := h(z, m), (1)

where z is as above. Use the Fiat–Shamir pro-
tocol and publish as signature: (e, α) where e =
(e1, . . . , ek) and α is as above.

To verify the signature the verifier computes z′

as in Step 4. Then the verifier uses this z′ to com-
pute e′ using Equation 1. If e′ = e, the verifier ac-
cepts the signature of m.

Yvo Desmedt
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FIELD

A field F = (S, +, ×) is a ring that has a multi-
plicative identity (denoted 1) and satisfies two ad-
ditional properties:
� Commutativity of ×: For all x, y ∈ S, x × y =

y × x.
� Multiplicative inverse: For all x ∈ Ssuch that

x �= 0, there exists a multiplicative inverse z
such that x × z = z × x = 1.
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Thus, a field is a commutative ring with a multi-
plicative identity where every element except the
additive identity has a multiplicative inverse, so
that division is defined in the usual way (i.e., the
quotient y/x is defined for all x �= 0 and y as y × z
where z is the multiplicative inverse of x).

The characteristic of a field is the least positive
integer k such that for all x ∈ S, kx = 0, if such a k
exists and is defined as 0 otherwise. A finite field is
field with a finite number of elements; the charac-
teristic of a finite field is always a prime number.
The rational numbers Q are an example of an in-
finite field under ordinary addition and multipli-
cation.

Burt Kaliski

FIELD POLYNOMIAL

The irreducible polynomial with respect to which
field operations are computed in an extension field.

Burt Kaliski

FILTER GENERATOR

A filter generator is a running-key generator for
stream cipher applications. It consists of a single
linear feedback shift register (LFSR) which is fil-
tered by a nonlinear function. More precisely, the
output sequence of a filter generator corresponds
to the output of a nonlinear function whose inputs
are taken from some stages of the LFSR. If (ut )t≥0
denotes the sequence generated by the LFSR, the
output sequence (st )t≥0 of the filter generator is
given by

st = f (ut+γ1 , ut+γ2 , . . . , ut+γn ), ∀t ≥ 0,

where f is a function of n variables, n is less than
or equal to the LFSR length, and (γi)1≤i≤n is a de-

utut+γ1
ut+γ2

ut+γ3
ut+γn. . .

f

st (running-key)

creasing sequence of non-negative integers called
the tapping sequence.

In order to obtain a keystream sequence having
good statistical properties, the filtering function f
should be balanced (i.e., its output should be uni-
formly distributed), and the feedback polynomial
of the LFSR should be chosen to be a primitive
polynomial (see linear feedback shift register for
more details).

In a filter generator, the LFSR feedback poly-
nomial, the filtering function, and the tapping se-
quence are usually publicly known. The secret pa-
rameter is the initial state of the LFSR which is
derived from the secret key of the cipher by a key-
loading algorithm. Therefore, most attacks on fil-
ter generators consist in recovering the LFSR ini-
tial state from the knowledge of some digits of the
sequence produced by the generator (in a known
plaintext attack), or of some digits of the cipher-
text sequence (in a ciphertext only attack). The at-
tack presented in [8] enables to construct an equiv-
alent keystream generator from the knowledge of
a large segment of the ciphertext sequence when
the LFSR feedback polynomial is the only known
parameter (i.e., when the filtering function, the
tapping sequence and the initial state are kept
secret).

Any filter generator is equivalent to a particu-
lar combination generator, in the sense that both
generators produce the same output sequence.
An equivalent combination generator consists of
n copies of the LFSR used in the filter generator
with shifted initial states; the combining function
corresponds to the filtering function.

Statistical Properties of the
Output Sequence

The output sequence s of a filter generator is a
linear recurring sequence. Its linear complexity,
�(s), is related to the LFSR length and to the al-
gebraic degree of the filtering function f (the alge-
braic degree of a Boolean function is the highest
number of terms occurring in a monomial of its al-
gebraic normal form). For a binary LFSR with a
primitive feedback polynomial, we have

�(s) ≤
d∑

i=0

(
L
i

)
,

where L denotes the LFSR length and d denotes
the algebraic degree of f [6, 8]. The period of s
divides 2L − 1. Moreover, if L is a large prime,
�(s) is at least ( L

d ) for most filtering functions with
algebraic degree d (see [9]).

Thus, to achieve a high linear complexity, the
LFSR length L and the algebraic degree of the
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filtering function should be large enough. More
precisely, the keystream length available to an at-
tacker should always be much smaller than ( L

deg( f )).

Known Attacks and Related
Design Criteria

Filter generators are vulnerable to fast correla-
tion attacks because their output sequence is cor-
related to some linear function of the stages of
the constituent LFSR. Efficient fast correlation at-
tacks on filter generators are described in [JJ02]
and [CF02]. In order to make the fast correlation
attacks computationally infeasible, the filtering
function should have a high nonlinearity. More-
over, it should have many nonzero Walsh coeffi-
cients. Another design criterion is that the LFSR
feedback polynomial should not be sparse.

Another attack on any filter generator is the
generalized inversion attack. It depends highly on
the memory size of the generator, which corre-
sponds to the largest spacing between two taps,
i.e., M = γ1 − γn. To make this attack infeasi-
ble, the tapping sequence should be such that
the memory size is large and preferably close to
its maximum possible value L − 1, where L is
the LFSR length. Moreover, when the greatest
common divisor of all spacing between the taps,
gcd(γi − γi+1), is large, the effective memory size
can be reduced by a decimation technique (see
inversion attack). Then, the greatest common di-
visor of all (γi − γi+1) should be equal to 1.

The choice of the tapping sequence also condi-
tions the resistance to the so-called conditional
correlation attacks [1, 4, 7]. The basic idea of these
particular correlation attacks is that some infor-
mation on the LFSR sequence may leak when
some patterns appear in the keystream sequence.
Actually, the keystream bits st and st+τ , with τ ≥
1, respectively depend on the LFSR-output bits
ut+γ1 , . . . , ut+γn and ut+γ1+τ , . . . , ut+γn+τ . Therefore,
the pair (st , st+τ ) only depends on M − I(τ ) bits
of the LFSR sequence, where M is the memory
size and I(τ ) is the size of the intersection be-
tween {γi, 1 ≤ i ≤ n} and {γi + τ, 1 ≤ i ≤ n}, i.e.,
the number of pairs (i, j) with i < j such that
γi − γ j = τ . It is then clear that a given observa-
tion of (st , st+τ ) may provide some information on
the (M − I(τ )) involved bits of the LFSR sequence
when I(τ ) is large. Thus, I(τ ) should be as small
as possible for all values of τ ≥ 1. It can be proved
that the lowest possible value of maxτ≥1 I(τ ) is 1
and it is achieved when the tapping sequence is a
full positive difference set, i.e., when all differences
γi − γ j, i < j, are distinct (a full positive differ-
ence set is also called a Golomb ruler). Such a tap-

ping sequence of n integers only exists if the LFSR
length exceeds n(n − 1)/2 (see [4] for details).

Advanced algebraic techniques, like Gröbner
bases, also provide powerful known plaintext
attacks on filter generator, called algebraic attacks
[3]. Any keystream bit can be expressed as a func-
tion of the L initial bits of the LFSR. Thus, the
knowledge of any N keystream bits leads to an al-
gebraic system of N equations of L variables. The
degree of these equations corresponds to the alge-
braic degree of the filtering function. But, efficient
Gröbner bases techniques enable to substantially
lower the degree of the equations by multiply-
ing them by well-chosen multivariate polynomi-
als. Then, it may be possible to recover the LFSR
initial state by solving the algebraic system even
if the filtering function has a high degree.

Anne Canteaut
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FINGERPRINTING
Fingerprinting is a technique that aims at pre-
venting unauthorized redistribution of digital
content. This assumes a multitude of scenarios
under which identical or very close copies of a
document v (software, images or other digital
media) are made available to a large number of
users of the system by paid subscription. Finger-
printing consists in embedding a mark x (a finger-
print) in the document with the purpose of encod-
ing the identity of the user. Fingerprints should
not be easily detectable or removable, they must
be also designed in a way that makes forgery dif-
ficult or expensive. In the area of content distri-
bution, the functionality associated with the fin-
gerprinting system is its resistance to a collusion
attack. A group or coalition of users of the system
is said to perform a collusion attack if they produce
a copy of the document v with either an obfuscated
(for instance, totally removed) fingerprint or a fin-
gerprint that does not enable the distributor D to
trace it back to any of the members of the coali-
tion. A closely related concept of watermarking is
aimed at tracing the owner of the contents and is
not intended to fight collusion attacks.

The first mention of fingerprinting in the liter-
ature dates back to 1983 [15]. Presently there are
two main trends in fingerprinting depending on
the acceptance of the so-called marking assump-
tion. Under this assumption, the document v and
the fingerprint x are strings over some finite al-
phabet � (a typical length of v is in the range of
Mbytes or greater, while the length of x is on the
order of several kbytes). The location of x in v is not
known to the users nor is it assumed that the bits
of x form a consecutive substring of v. However,
for practical reasons, fingerprints occupy the same
positions in all the copies of v. A pirate user or a
coalition of t such users can detect some positions
that belong to x. It is assumed that changing any
undetectable position of the user’s copy of the doc-
ument makes it useless and obliterates its market
value. This scenario applies for instance to finger-
printing licensed software. Fingerprinting under
the marking assumption emerged in the defining
paper [8] which studied distribution of decryption
keys used to access pay-per-view TV programs and
similar applications. The main tools of analysis of
fingerprinting with the marking assumption are
combinatorial, information- and coding-theoretic.

In the absence of the marking assumption, both
the distributor and the users are allowed to add
relatively small distortion to the original docu-
ment. The main application of this scenario is fin-
gerprinting of digital media such as image, video,
audio, and speech content. In such applications,

slight differences from the original version will
not affect the quality of users’ copies. It is as-
sumed that both the signal and the fingerprint are
real random variables that obey some probability
distribution. Establishing resilience of the system
against collusion attacks relies on probabilistic or
information-theoretic analysis.

MEDIA FINGERPRINTING: It is natural to assume
that the original document v is represented by a
vector in R

n. Let M be the total number of users
of the system. The marked copy of the ith user
is obtained by computing xi = v + wi, where wi is
the ith fingerprint (another real vector).

The most common assumption in the literature
is that the document is a random vector (v1, . . . ,

vn) whose coordinates are real random N(0, 1)-
variables (Gaussian random variables with zero
mean and unit variance). Similarly, fingerprints
wi, i = 1, . . . , M, are chosen as Gaussian vectors
or taken as linear combinations of orthogonal
pseudonoise vectors. By assumption, the deviation
of xi from v has to be bounded above uniformly for
all i: ‖xi − v‖ ≤ δ1

√
n, where δ1 is an appropriately

chosen threshold. In the case of Gaussian finger-
prints it is assumed that the variance α2 of their
coordinates satisfies the inequality α < δ1 (other-
wise with large probability, marked copies will vi-
olate the bounded deviation assumption).

Collusion attacks in this context proceed by av-
eraging the copies of the document belonging to
the users in the coalition or by taking their con-
vex combination and adding some Gaussian noise
or by some similar general method. Let y be the
fingerprint formed by a pirate coalition. Detec-
tion is performed by correlation analysis: the ith
user is assumed guilty if (y, xi) ≥ δ2‖y‖, where δ2
is another threshold. It is proved in [10] that for
Gaussian fingerprints, the minimum size of the
coalition that succeeds in removing any finger-
print with probability bounded away from zero
must be proportional to

√
n/ log M.

Another class of problems in the same context,
called asymmetric fingerprinting [13], arises when
it is assumed that not only coalitions of users
but also the distributor may create unauthorized
copies of the content. The goal of asymmetric fin-
gerprinting is to bar the distributor from issuing
an unregistered copy, while at the same time al-
lowing it to trace the source of such copy to the
user whose mark it contains.

FINGERPRINTING UNDER MARKING ASSUMP-
TION: This group of problems was introduced
in [8] as a part of a broader area known as
traitor tracing. Let C = (c1, . . . , cM), where for all
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i, ci ∈ �n, be a collection of their fingerprints, also
called a fingerprinting code. Suppose that the max-
imum size of a pirate coalition U is t . Properties
and constructions of fingerprinting codes depend
crucially on the exact rule that the coalition fol-
lows to produce an unregistered fingerprint y.

Let E(U) = {y} be the set of all fingerprints y
that can be created by the coalition U, called the
envelope of the coalition. The current art distin-
guishes between narrow-sense and wide-sense en-
velopes. The narrow-sense envelope E(U) of the
coalition U of users consists of all the n-vectors y =
(y1, . . . , yn) ∈ �n that satisfy yi ∈ {ui : u ∈ U}, i =
1, . . . , n. Let

E(C) =
⋃

U∈( C
t )

E(U)

be the union of the t-envelopes of all coalitions of
size t or less. The code C that satisfies⋂

U:y∈E(U)

U �= ∅ for every y ∈ E(C)

is said to possess a t-identifiable parent property.
Intuitively, for every unregistered fingerprint y,
such a code enables the content provider to iden-
tify at least one of the members of the pirate coali-
tion. The study of such codes was undertaken in
[1, 2, 4, 6, 9]. It is easy to show that if |�| ≤ t,
the maximum number of users of the system is
M ≤ t. For |�| ≥ t + 1 it is possible [1, 4] to con-
struct codes with t-identifiable parent property
codes of size M such that log M = �(n). Upper
bounds on the size of such codes were obtained in
[1, 2, 6].

The wide-sense envelope reflects a more general
problem statement under which the members of
the coalition have more amplitude in creating an
unregistered copy of the document, Namely, once
the position is detected by the members of the
coalition as belonging to the fingerprint, they can
substitute this position in y with any letter from
the alphabet. Accordingly the set of fingerprints
that can be generated by the coalition U under
this strategy is called the wide-sense envelope of
U. This envelope is larger than the narrow-sense
one for all alphabets of size |�| ≥ 3.

Properties of fingerprinting codes resistant to
the collusion attack in the wide sense were es-
tablished in [3, 7] for any alphabet size |�| ≥ 2.

Both papers assume that the collusion attack
is adversarial in the sense that in creating a
forged fingerprint, the coalition pursue the strat-
egy that minimizes distributor’s chance for cor-
rect identification. One of the central facts is that
any fingerprinting scheme whose probability of
wrong identification under a collusion attack is

small (for instance, approaches zero as the code
length n grows) must rely on a family of codes
C = (C1, . . . , CK) rather than an individual code.
The family C is publicly known while the choice
of a specific code Ci forms the secret key of the
distributor. The error probability of identification
(defined in a suitable way) is bounded below as
follows [3]:

pe(C) ≥ t − 1
(2t − 1)K

.

This shows that no individual code (i.e., K = 1)
can provide reliable protection against collusion
attack in the wide sense.

Turning to the practically important case of
the binary alphabet, we note that under this re-
striction, the narrow- and wide-sense envelope
conditions give rise to the same problem. As men-
tioned above, finger-printing codes that provide
exact identification in this case do not exist. Re-
laxing the requirement of exact identification of
pirate users enables the content provider to ac-
commodate a large number of subscribers even if
the fingerprint alphabet is binary. Suppose that
with some small probability ε, the distributor im-
plicates an innocent user (false positive) or misses
all of the pirates (false negative). For this prob-
lem, paper [7] suggested fingerprinting schemes
with n = O(t4 log(M/ε) log(1/ε)) (see O-notation).
This implies that the error probability ε cannot de-
crease faster than exp(−ω(

√
n)) and then log M =

O(
√

n). For a fixed t , paper [3] improved this re-
sult to log M = O(n), ε = exp(−�(n)). Existence of
codes of length n = O(t2 log(M/ε)) was proved in
[14] by random choice.

Algorithmic aspects of identification with finger-
printing codes were addressed in [3, 5, 11]. In par-
ticular, [3, 5] provide large-size codes with polyno-
mial identification of pirate users.

Finally, a general analysis of information hiding
based on an information-theoretic model of finger-
printing as coding with side information is per-
formed in [12]. The analysis in this paper also sub-
sumes such contexts as watermarking and digital
steganography.

Alexander Barg
Gregory Kabatiansky
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FINITE FIELD

A finite field is a field with a finite number of el-
ements. The number of elements or the order of
a finite field is a power q = pk of a prime number
p ≥ 2, where k ≥ 1. The finite field with q elements
is denoted Fq or GF(q) (the latter meaning Galois

Field). The prime pis the characteristic of the field,
i.e., for all x ∈ Fq , px = 0.

(One generally refers to the finite field with q
elements in the sense that all finite fields with a
given order have the same structure, i.e., they are
isomorphic to one another.)

Finite fields are commonly organized into three
types in cryptography:
� Characteristic-2 or binary fields, where p = 2.
� Prime-order fields, where p ≥ 3 and k = 1.
� Odd-characteristic extension fields, where p ≥ 3

and k > 1.
Finite fields are widely employed in cryptogra-

phy. The IDEA and Rijndael/AES algorithms, for
instance, both involve operations over relatively
small finite fields. Public-key cryptography gener-
ally involves much larger finite fields. For exam-
ple, the Digital Signature Algorithm (see Digital
Signature Standard) operates in a subgroup of the
multiplicative group of a prime-order finite field.
Elliptic curve cryptography can be defined over a
variety of different finite fields.

The multiplicative group of a finite field, denoted
F∗

q , is the group consisting of the elements of Fq
with multiplicative inverses, i.e., the elements ex-
cept for 0, under the multiplication operation. This
is a cylic group of order q − 1; all the elements of
the group can be obtained as powers of a single
generator.

Efficient implementation of finite field arith-
metic has been a major area of research in cryp-
tography. For a discussion, see inversion in finite
fields and rings and optimal extension fields.

A classic volume in this “field” is Lidl and
Niederreiter’s text [1]; a book by Menezes et al.
[2] gives further treatment of the cryptographic
applications.

Burt Kaliski
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FIPS 140-2

The full name is Federal Information Pro-
cessing Standard (FIPS) 140-2, titled: Security
Requirements For Cryptographic Modules [2].
This document was issued May 25, 2001 and
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supercedes FIPS 140-1, which was published
January 11, 1994 [1]. FIPS 140-1 and FIPS 140-2
were developed not only as documents to com-
municate requirements, but also as complete pro-
grams with the objective to provide the end cus-
tomer with cryptographic products that can be
trusted and used with confidence. The Program
is called the cryptographic module validation pro-
gram (CMVP). The program’s intent is to bal-
ance several objectives to maximize the effective-
ness for end users of the cryptographic products
including security functionality, assurance, cost,
and schedule. The program implementation in-
cludes testing requirements, lab accreditations,
thorough report and validation result review by
the regulators, and certificates of validation issued
by the NIST/CSE, including an actively main-
tained Web site of currently approved products
http://csrc.nist.gov/cryptval/.

The FIPS 140-1 and -2 program was established
in response to the Information Technology Man-
agement Reform Act of 1996 and the Computer
Security Act of 1987. The program is an equal
partnership between U.S. NIST and CSE of the
Canadian Government with both the USA and
Canadian organizations being integrally involved
with all aspects of the program.

FIPS 140-2 is published and maintained by the
U.S. Department of Commerce; National Insti-
tute of Standards and Technology; Information
Technology Laboratory; and Cryptographic Mod-
ule Validation Program. The standard is designed
to be flexible enough to adapt to advancements
and innovations in science and technology. The
standard will be reviewed every 5 years in or-
der to consider new or revised requirements that
may be needed to meet technological and economic
changes.

FIPS 140-2 is applicable to cryptographic-based
security systems that may be used in a wide
variety of computer and telecommunication
applications (e.g., data storage, access control and
personal identification, network communications,
radio, facsimile, and video) and in various environ-
ments (e.g., centralized computer facilities, office
environments, and hostile environments). The
cryptographic services (e.g., encryption, authen-
tication, digital signature, and key management)
provided by a cryptographic module are based on
many factors that are specific to the application
and environment. The security level to which a
cryptographic module is validated must be chosen
to provide a level of security appropriate for the
security requirements of the application and envi-
ronment in which the module will be utilized and
the security services that the module will provide.

The security requirements for a particular secu-
rity level include both the security requirements
specific to that level and the security requirements
that apply to all modules regardless of the level.

It is important to note the difference between
FIPS 140-2 and verification of correct crypto-
graphic algorithm testing. Algorithm testing is
limited only to verifying that a design correctly
performs the logical and mathematical processes
to comply with the specified algorithm functional-
ity, such as, but not limited to:
– FIPS PUB 46-3, Data Encryption Standard

(DES).
– FIPS PUB 81, DES Modes of Operation.
– FIPS PUB 113, Computer Data Authentication.
– FIPS PUB 180-1, Secure Hash Standard SHA

family.
– FIPS PUB 186-2, Digital Signature Standard

(DSS).
In contrast FIPS 140-2 is a comprehensive se-
curity standard that integrates module access
control, key management, interface control, de-
sign assurance, operational assurance, and uti-
lizes algorithm testing to verify that each specific
algorithm used is correct.

FIPS 140-2 provides a standard that is used by
government and commercial organizations when
they specify that cryptographic-based security
systems are to be used for providing protection of
sensitive or valuable data. The protection of data,
processes, and critical security parameters that
is provided by a cryptographic module embedded
within a security system is necessary to maintain
the access control, confidentiality, and integrity of
the information entrusted to that system.

This standard specifies the security require-
ments that will be satisfied by a cryptographic
module. These requirements have been developed
over a number of years by cryptographic and in-
formation security experts from government orga-
nizations, international representatives, the De-
partment of Defense, users, and vendors with the
objective being something that is meaningful, but
also reasonable with regard to technology, usabil-
ity, and affordability. The requirements have been
compiled to address a broad range of threats and
vulnerabilities, which trusted security focal points
(modules) are subject to.

The security requirements cover areas related
to the secure design and implementation of a cryp-
tographic module. These areas include:

1. Cryptographic module specification
2. Cryptographic module ports and interfaces
3. Roles, services, and authentication
4. Finite state model
5. Physical security
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6. Operational environment
7. Cryptographic key management
8. Electromagnetic interference/electromagnetic

compatibility (EMI/EMC)
9. Self-tests

10. Design assurance
11. Mitigation of other attacks.
The standard provides four increasing qualitative
levels of security intended to cover a wide range of
potential applications and environments.

Security Level 1 provides the lowest level of
security, the basic security requirements are spec-
ified for a cryptographic module. No specific
physical security mechanisms are required in a
Security Level 1 cryptographic module beyond
the basic requirement for production-grade com-
ponents. Such implementations may be appropri-
ate for some low-level security applications when
other controls, such as physical security, network
security, and administrative procedures, are lim-
ited or nonexistent.

Security Level 2 enhances the physical security
mechanisms of a Security Level 1 cryptographic
module by adding the requirement for physical
security in the form of tamper-evidence, tamper-
evident seals or pick-resistant locks are placed on
covers or doors to protect against unauthorized
physical access. Security Level 2 also requires the
module operators to authenticate to the module to
assume a specific role and perform a correspond-
ing set of services. Level 2 allows the software
and firmware components of a cryptographic mod-
ule to be executed on a general purpose comput-
ing system using an operating system that meets
the functional requirements specified in specific
Common Criteria (CC) Protection Profiles and has
been evaluated to a CC assurance level 2 (EAL2
or higher).

Security Level 3 increases the physical security
of the cryptographic module to inhibit the intruder
from gaining access to critical security parame-
ters (CSPs) held within the cryptographic module.
Physical security mechanisms required at Secu-
rity Level 3 are intended to have a high proba-
bility of detecting and responding to attempts at
physical access, use or modification of the cryp-
tographic module through the implementation of
strong enclosures and tamper detection/response
that includes circuitry that zeroizes all plaintext
CSPs when the removable covers/doors of the cryp-
tographic module are opened.

Level 3 requires stronger identity-based au-
thentication mechanisms, enhancing the security
provided by the role-based authentication mech-
anisms specified for Security Level 2. Level 3
specifies more robust key management processes

including the entry or output of plaintext CSPs
using split knowledge procedures or to be per-
formed using ports that are physically separated
from other ports, or interfaces that are logically
separated using a trusted path from other inter-
faces. Plaintext CSPs may be entered into or out-
put from the cryptographic module in encrypted
form (in which case they may travel through en-
closing or intervening systems).

Level 3 allows the software and firmware com-
ponents of a cryptographic module to be executed
on a general purpose computing system using an
operating system that meets the functional re-
quirements specified in specified protection pro-
files (PPs) if they also meet the additional func-
tional requirement of a Trusted Path (FTP TRP.1)
and has been evaluated at the CC EAL3 (or higher)
with the additional assurance requirement of an
Informal Target of Evaluation (TOE) Security Pol-
icy Model (ADV SPM.1).

Security Level 4 provides the highest level of se-
curity defined in this standard. At this security
level, the physical security mechanisms provide a
complete envelope of protection around the cryp-
tographic module with the intent of detecting and
responding to all unauthorized attempts at phys-
ical access. Penetration of the cryptographic mod-
ule enclosure from any direction has a very high
probability of being detected, resulting in the im-
mediate zeroization of all plaintext CSPs. Security
Level 4 cryptographic modules are useful for op-
eration in physically unprotected and potentially
hostile environments.

Level 4 also protects a cryptographic module
against a security compromise due to environmen-
tal conditions or fluctuations outside of the mod-
ule’s normal operating ranges for voltage and tem-
perature.

Level 4 allows the software and firmware com-
ponents of a cryptographic module to be executed
on a general purpose computing system using an
operating system that meets the functional re-
quirements specified for Security Level 3 and is
evaluated at the CC evaluation assurance level
EAL4 (or higher).

One of the important concepts that is funda-
mental to the application of FIPS 140-2 is that
of a cryptographic boundary. The Cryptographic
boundary shall consist of an explicitly defined
perimeter that establishes the physical bounds
of a cryptographic module. If a cryptographic
module consists of software or firmware compo-
nents, the cryptographic boundary shall contain
the processor(s) and other hardware components
that store and protect the software and firmware
components. Hardware, software, and firmware
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components of a cryptographic module can be ex-
cluded from the requirements of this standard if
shown that these components do not affect the se-
curity of the module. This concept allows for the
evaluation of products to fixed and established
confines, thereby making the process feasible. It
also provides for a totally self-contained crypto
module that contains enough functionality to pro-
tect itself and be able to be trusted.

For purposes of specifying physical security
mechanisms, FIPS 140-2 defines three possible
physical embodiments for a module and the as-
sociated security mechanisms for each.
– Single-chip cryptographic modules are physical

embodiments in which a single integrated cir-
cuit is employed

– Multiple-chip embedded cryptographic modules
are physical embodiments in which two or more
IC chips are interconnected and are embedded
within an enclosure or a product that may not
be physically protected.

– Multiple-chip standalone cryptographic mod-
ules are physical embodiments in which two or
more IC chips are interconnected and the entire
enclosure is physically protected.

For a module to receive a certificate of validation,
it must follow a process defined by the CMVP pro-
gram and be tested by an accredited laboratory.
Laboratories are accredited to perform FIPS 140-2
testing based on proving to the National Voluntary
Laboratory Accreditation Program (NVLAP) that
they have the appropriate quality system, qual-
ity process, cryptographic skills, and FIPS 140-2
knowledge to warrant accreditation. Laboratory
reaccreditation occurs on an annual basis.

Testing by the laboratory is based on a document
related to FIPS 140-2 termed the Derived Test Re-
quirements (DTR) document [3]. This document
outlines the responsibilities of the test laboratory
and the analysis and testing that is performed. It
also describes the information and material that
the vendor must provide the laboratory for the pur-
pose of evaluating the compliance of the module to
FIPS 140-2 requirements.

Tom Caddy
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FIREWALL

A firewall is a network device that enforces secu-
rity policy for network traffic. The term originates
from fire wall, a fireproof wall used as a barrier to
prevent the spread of fire. An Internet firewall cre-
ates a barrier between separate networks by im-
posing a point of control that traffic needs to pass
before it can reach a different network [2]. A fire-
wall may limit the exposure of hosts to malicious
network traffic, e.g., remote adversaries attempt-
ing to exploit security holes in vulnerable applica-
tions, by preventing certain packets from entering
networks protected by the firewall.

When inspecting a network packet, a firewall
decides if it should drop or forward the packet.
The decision is based on a firewall’s security policy
and its internal state. Before forwarding a packet,
a firewall may modify the packet’s content. Packet
inspection may occur at several different layers:
� The link layer provides physical addressing of

devices on the same network. Firewalls operat-
ing on the link layer usually drop packets based
on the media access control (MAC) addresses of
communicating hosts.

� The network layer contains the Internet proto-
col (IP) headers that support addressing across
networks so that hosts not on the same physical
network can communicate with each other.

� The transport layer provides data flows between
hosts. On the Internet, the transmission control
protocol (TCP) and the user datagram protocol
(UDP) are used for this purpose. Most firewalls
operate at the network and transport layer. TCP
provides reliable data flow between hosts. UDP
is a much simpler but unreliable transport pro-
tocol.

� The application layer contains application spe-
cific protocols like the hypertext transfer protocol
(HTTP). Inspection of application specific proto-
cols can be computationally expensive because
more data needs to be inspected and more states
are required.
The IP header [7] contains information re-

quired by routers to forward packet between hosts.
For an IPv4 header, firewalls usually inspect the
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following fields: header length, total length, proto-
col, source IP address, and destination IP address.
The protocol field states which transport protocol
follow after the IP header. The most frequently
used transport protocols are TCP, UDP, and ICMP.
While the IP protocol provides addressing between
different hosts on the Internet, TCP and UDP al-
low the addressing of services by employing source
and destination port numbers. For example, a mail
client sends email by contacting a mail server on
destination port 25 which is used for the simple
mail transport protocol (SMTP) and Web servers
usually listen for HTTP requests on port 80. A data
flow between hosts is uniquely identified by its
4-tuple:

(source IP address, source port number, destina-
tion IP address, destination port number).

A firewall’s policy is described by a list of fil-
ter rules that specify which packets may pass and
which packets are blocked. A rule contains an ac-
tion and several specifiers. The specifiers describe
the packets for which a rule should be applied. The
action of the last matching rule determines if the
firewall forwards or drops the inspected packet.
Many firewalls use a format to describe filter rules
that is similar to the following:

action dir interface protocol srcip srcport destip
dstport flags,

The first word action can be either pass or block
and determines if a packet that matches this rule
should be forwarded or dropped. These two ac-
tions are supported by all firewalls, but many
modern firewall systems also support logging of
packets that match specific rules, network address
translation, and generating return packets. The
remaining words are specifiers that restrict which
packets a rule applies to. The different elements
in a filter rule are explained below:
� dir refers to the direction a packet is taking. It

may be either incoming or outgoing. Depending
on the firewall solution, the direction may be
specific to a network interface or to a network
boundary.

� interface specifies the physical or virtual net-
work device upon which the packet was re-
ceived. This is often used to classify the network

from which the packet arrived as internal or ex-
ternal.

� protocol allows a filer to specify for which trans-
port protocols the rule should match. Using a
protocol specifier allows us to differentiate, for
example between UDP and TCP packets.

� srcip specifies which source IP addresses should
match the rule. This can either be a single ad-
dress or IP network ranges.

� srcport applies only to TCP or UDP packets and
determines the range of port numbers a packet
should have to match the rule.

� dstip and dstport specify which destination IP
addresses and destination ports to match and
are very similar to the source specifiers de-
scribed above.

� flags may contain firewall specific features.
For example, the SYN flag indicates that rule
matches only where the packet contains a TCP
connection setup message (see below).
In the following example, we show a simple fire-

wall configuration that blocks all traffic except
SMTP connections to a central mail server:

Figure 1 shows the rules of a firewall that uses
only the information contained in the inspected
packet to decide if the packet should be dropped
or forwarded. Any incoming packet that is not sent
to port 25 of the mail server matches only the first
firewall rule and will be dropped. A firewall that
reaches policy decisions based only on the content
of the inspected packet is called stateless. Filter-
ing packets that enter a network is called ingress
filtering and filtering packets that leave a network
is called egress filtering.

If we want to enforce a policy that allows only
outgoing HTTP connections, the rules for stateless
firewalls are more difficult to configure. When a
client initiates an HTTP connection to port 80 of a
Web server, the server sends back data with source
port 80. A naive firewall configuration might allow
all TCP packets with source port 80 to enter the
network. As a result, an adversary is allowed to
initiate any kind of connection as long as the pack-
ets arrive with the correct source port. We can im-
prove the firewall configuration by inspecting the
control flags used by TCP. A packet to initiate a
connection has only the SYN flag set. The receiver
acknowledges the connection attempt by setting

action
block in external

external

external tcp

tcpexternal

block out

pass in

pass out

dir interface protocol srcip
all

all

any any

mail-server

mail-server

25 any any

25

srcport dstip dstport flags

Fig. 1. A simple configuration that allows only traffic to and from the SMTP port of a specific mail server



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 10:59

232 Firewall

action
block in external

external

external tcp

tcpexternal

block out

pass in

pass out

dir interface protocol srcip
all

block in external tcp

all

any

any

any

any

any any S/SA

any

80

any

80

80

any

srcport dstip dstport flags

Fig. 2. A configuration that allows only outgoing HTTP traffic. The rules use TCP control flags to prevent outsiders
from initiating connections to our internal network

both the SYN and ACK flag. After a connection has
been established, the SYN flag is not used again. A
better firewall configuration is shown in Figure 2.
The third rule permits all external tcp traffic with
source port 80 but the subsequent rule blocks all
Web server packets that contain a SYN flag but
no ACK flag. In other words, external connection
attempts are denied.

A more flexible configuration is permitted by
stateful firewalls [8] which track connection states
for ICMP, TCP, and UDP packets. While UDP and
ICMP are connectionless protocols, a stateful fire-
wall may create short-lived states for them. The
connection state allows a firewall to determine if
a packet is part of an ongoing connection and drop
packets that are outside the valid range of param-
eters. A stateful firewall is easier to configure be-
cause packets that match connection state are for-
warded without consulting the firewall rules. The
HTTP client example from above can be realized
with a stateful firewall using only one rule; see
Figure 3.

Because IP is independent of the physical net-
work layer, it is possible that an IP packet needs to
be fragmented into several smaller packets that fit
within the frame size of the physical medium. The
first IP fragment contains all addressing informa-
tion including ports. The firewall may enforce its
policy only for the first fragment. Even if all sub-
sequent fragments are forwarded by the firewall,
without the first fragment it is not possible for the
end host to completely reassemble the IP packet.

The situation is more complicated if the fire-
wall decides to forward the first fragment. As it
is possible for fragments to overlap, an adversary
may decide to send an IP fragment that overlaps
the transport header data of the first fragment.
In that case, an adversary may be able to rewrite

the port numbers and effectively bypass the fire-
wall’s security policy. Overlapping IP fragments
may also confuse network intrusion detection sys-
tems (NIDS) [5].

There are several methods to send packets that
may bypass application level firewalls and evade
intrusion detection systems [6]. Because a NIDS
does not have complete knowledge of network
topology and end host state, an adversary may
evade security policy by exploiting ambiguities in
the traffic stream monitored by the NIDS. For ex-
ample, a packet may be seen by the monitoring
device but never reach the end host. As a result,
the traffic seen by the monitor differs from the traf-
fic received by an end host and the monitor may
make an incorrect decision.

One possible solution to remove ambiguities
from the network traffic is called traffic normaliza-
tion [4]. It rewrites ambiguous traffic so that the
interpretation of traffic at the end host is known
to the NIDS. As a result, an adversary loses direct
control over the specific layout of traffic, making
it more difficult to evade intrusion detection sys-
tems. Recently, firewalls have started to support
traffic normalization. Handley et al. enumerate
methods to normalize traffic. For example, a fire-
wall may reassemble all IP fragments into com-
plete IP packets before forwarding them.

Firewalls may also help to limit the problem of
address spoofing and denial of service attacks [3].
Address spoofing refers to IP packets that carry an
incorrect IP source address. An adversary may be
able to exploit trust relationships by sending pack-
ets via an external network that claim to originate
from the internal network [1]. Denial of service is
aimed at disrupting network services and often
uses thousands of machines to generate network
traffic that saturates the available bandwidth at

action
block in external

external

external tcp
block out

pass out

dir interface protocol srcip
all

all

any any any 80 keep state

srcport dstip dstport flags

Fig. 3. A stateful firewall is easier to configure because it keeps track of established connections. Packets that are
part of an ongoing connection do not need to match any rules
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the target host. To prevent tracing the attack back
to the originators, denial of service attacks often
use IP address spoofing.

Organizations that employ firewalls should en-
force a policy that does not allow spoofed traffic
to either enter or leave the network by employing
both ingress and egress filtering. Denying pack-
ets with spoofed source addresses from leaving the
network prevents denial of service attacks to hide
their origin.

ADDITIONAL DEFINITIONS
� Ingress filtering: filtering packets that enter a

network.
� Egress filtering: filtering packets that leave a

network.
� Stateful packet inspection: decisions to drop or

forward a packet are based not only on the con-
tent of the inspected packet but also on previous
network traffic.

� Denial of service: disrupting a computer ser-
vice by exhausting resources like network band-
width, memory, or computational power.

� Network intrusion detection system: a system
that monitors network traffic to identify abnor-
mal behavior that indicates network attacks.

Niels Provos
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FIXED-BASE
EXPONENTIATION

There are many situations where an exponentia-
tion of a fixed base element g ∈ G, with G being
some group, by an arbitrary positive integer expo-
nent e is performed. For instance, such cases oc-
cur at the Diffie–Hellman key agreement. Fixed-
base exponentiation aims to decrease the number
of multiplications compared to general exponen-
tiation algorithms such as the binary exponenti-
ation algorithm. With a fixed base, precomputa-
tion can be done once and then used for many
exponentiations. Thus the time for the precompu-
tation phase is virtually irrelevant. Using precom-
putations with a fixed base was first introduced by
Brickell et al. (and thus it is also referred to as the
BGMW method) [1]. In the basic version, values
g0 = g, g1 = g2, g2 = g22

, . . . , gt = g2t
are precom-

puted, and then the binary exponentiation algo-
rithm is used without performing any squarings.
Having an exponent e of bit-length n + 1, such a
strategy requires on average n/2 multiplications
whereas the standard binary exponentiation al-
gorithm requires (3/2)n multiplications. However,
there is quite some storage required for all pre-
computed values, namely storage for t + 1 val-
ues. The problem of finding an efficient algorithm
for fixed-base exponentiation can be rephrased
as finding a short vector-addition chain for given
base elements g0, g1, . . . , gt (see fixed-exponent
exponentiation). Note that there is always a trade-
off between the execution time of an exponen-
tiation and the number t of precomputed group
elements.

In order to reduce the computational complexity,
one might use a precomputed version of the k-ary
exponentiation by making the precomputation
phase only once. However, time is saved by multi-
plying together powers with identical coefficients,
and then raising the intermediate products
to powers step by step. The main idea of the
fixed-base windowing method is that ge =∏t

i=0 gei
i = ∏h−1

j=1 (
∏

ei= j gi) j where 0 ≤ ei < h [1].
Assume that ge is to be computed where g is
fixed. Furthermore, there is a set of integers
{b0, b1, . . . , bt } such that any appropriate posi-
tive exponent e can be written as e = ∑t

i=0 eibi ,
where 0 ≤ ei < h for some fixed positive integer
h. For instance, choosing bi = 2i is equivalent
to the basic BGMW method described above.
Algorithm 1 takes as input the set of precom-
puted values gi = gbi for 0 ≤ i ≤ t , as well as h
and e.
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ALGORITHM 1. Fixed-base windowing method
INPUT: a set of precomputed values {gb0 , gb1 , . . . ,

gbt }, the exponent e = ∑t
i=0 eibi , and the positive

integer h
OUTPUT: ge

1. A ← 1, B ← 1
2. For j from (h − 1) down to 1 do

2.1 For each i for which ei = jdo B ← B · gbi

2.2 A ← A · B
3. Return A

This algorithm requires at most t + h − 2 mul-
tiplications, and there is storage required for t + 1
precomputed group elements. The most common
version of this method is the case where the ex-
ponent e is represented in radix b, where b is a
power of 2, i.e., b = 2w. The parameter w is also
called the window size. The exponent is written
as e = ∑t

i=0 ei(2w)i or (et . . . e1e0)2w where t + 1 =
�n/w� and bi = (2w)i for 0 ≤ i ≤ t , and h = 2w.
Then on average there are (t + 1)(2w − 1)/2w +
2w − 3 multiplications required. Consider the fol-
lowing example [5] for e = 862 and w = 2, i.e.,
b = 4. Then bi = 4i, 0 ≤ i ≤ 4, such that the values
g1, g4, g16, g64, and g256 are precomputed. Further-
more, this gives t = 4 and h = 4. Table 1 displays
the values of Aand B at the end of each iteration of
step 2:

A method to reduce the required memory stor-
age for precomputation even further was proposed
by Lim and Lee [5] which is called the fixed-base
comb method. Here, the binary representation of
the exponent e is written in h rows such that there
is a matrix EA (exponent array) established. Then
v columns of the matrix are processed one at a
time. Assume that the exponent is written as e =
(en · · · e1e0)2. Then select an integer h (the num-
ber of rows of EA) with 1 ≤ h ≤ n + 1 and compute
a = �(n + 1)/h� (the number of columns of EA).
Furthermore, select an integer v (the number of
columns of EA that are processed at once) with
1 ≤ v ≤ a, and compute b = �a/v� (the number of
processing steps). Let X = (Rh−1||Rh−2|| · · · ||R0) be
a bit-string formed from e by padding e on the
left with 0’s such that X has bit-length ah and
such that each Ri is a bit-string of length a. Form
the h × a array EA where row i of EA is the
bit-string Ri . The fixed-base comb method algo-

Table 1. Example for the windowing method

j 3 2 1

B 1 g4g256 = g260 g260g = g261 g261g16g64 = g341

A 1 g260 g260g261 = g521 g521g341 = g862

rithm has two phases. First, there is a precom-
putation phase that is done only once for a fixed
base element g, and then there is the exponen-
tiation phase that is done for each exponentia-
tion. Algorithm 2 [6] describes the precomputation
phase.

ALGORITHM 2. Fixed-base comb method—pre-
computation phase
INPUT: a group element g and parameters h, v, a,
and b
OUTPUT: {G[ j][i] : 1 ≤ i < 2h, 0 ≤ j < v}
1. For i from 0 to (h − 1) do

1.1 gi ← g2ia

2. For i from 1 to (2h − 1) (where i =
(ih−1 . . . i0)2), do
2.1 G[0][i] ← ∏h−1

j=0 gi j

j
2.2 For j from 1 to (v − 1) do

2.2.1 G[ j][i] ← (G[0][i])2 jb

3. Return G[ j][i] for 1 ≤ i < 2h, 0 ≤ j < v

Now let Ij,k, 0 ≤ k < b, 0 ≤ j < v, be the integer
whose binary representation is column ( jb + k) of
EA, where column 0 is on the right and the least
significant bit of a column is at the top. Algorithm 3
displays the fixed-base comb method exponentia-
tion phase.

ALGORITHM 3. Fixed-base comb method—expo-
nentiation phase
INPUT: a group element g and an exponent e as
well as the precomputed values G[i][ j]
OUTPUT: ge

1. A ← 1
2. For k from (b − 1) down to 0 do

2.1 A ← A · A
2.2 For j from (v − 1) down to 0 do

2.2.1 A ← G[ j][Ij,k] · A
3. Return A

The number of multiplications required in the
computation phase is at most a + b − 2 of which
there are at least b − 1 squarings. Furthermore,
there is space required for v(2h − 1) precomputed
group elements. Note that the required compu-
tational complexity depends on h and v, i.e.,
on the available memory capacity for storing
precomputed elements. In practice, values h = 4 or
8 and v = 1 or 2 offer a good trade-off between run-
ning time and memory requirements. Again, as-
sume e = 862 = (1101011110)2, i.e., t = 9. Choose
h = 3 and thus a = 4, and choose v = 2 such that
b = 2. In the first phase algorithm 2 is applied.
Table 2 displays the precomputed values. Here, all
possible values that might occur in a column of the
EA matrix are precomputed. Note that the values
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Table 2. Example for fixed-base comb method
precomputation

i 1 2 3 4 5 6 7

G[0][i] g0 g1 g1g0 g2 g2g0 g2g1 g2g1g0

G[1][i] g4
0 g4

1 g4
1 g4

0 g4
2 g4

2 g4
0 g4

2 g4
1 g4

2 g4
1 g4

0

of the second row are the values of the first one to
the power of a = 4 such that later on two columns
can be processed at a time. Recall that gi = g2ia

.
Now form the bit-string X = (001101011110)

with two padded zeros. Table 3 displays the ex-
ponent array EA. Note that the least significant
bit of e is displayed in the upper right corner of
EA and the most significant bit in the lower left
corner.

Finally, Algorithm 3 is performed. Table 4 dis-
plays the steps of each iteration. Note that only the
powers of the three base values gi are displayed.

The last row of the table corresponds to
ge = gl0

0 gl1
1 gl2

2 = g14g16·5g256·3 = g862. The fixed-
base comb method is often used for implementa-
tions as it promises the shortest running times
at given memory constraints for the precomputed
values. A compact description of the algorithm
can be found in [4].

Further examples and explanations can be
found in [3, 5]. An improvement of the fixed-
base windowing method, which is called fixed-base

Table 3. Example for exponent array EA
a = 4︷ ︸︸ ︷

I1,1 I1,0 I0,1 I0,0

e3 = 1 e2 = 1 e1 = 1 e0 = 0
e7 = 0 e6 = 1 e5 = 0 e4 = 1
0 0 e9 = 1 e8 = 1


 h = 3

︸ ︷︷ ︸
v = 2

b = �a/v� = 2

Table 4. Example for fixed-base comb method
exponentiation

A = gl0
0 gl1

1 gl2
2

k j l0 l1 l2

1 – 0 0 0
1 1 4 0 0
1 0 5 0 1
0 – 10 0 2
0 1 14 4 2
0 0 14 5 3

Euclidean method, was proposed by de Rooij [2].
However, in most situations the fixed-base comb
method is more efficient.

André Weimerskirch
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FIXED-EXPONENT
EXPONENTIATION

There are several situations where an exponenti-
ation ge of an arbitrary element g ∈ G, with G be-
ing some group, by a fixed exponent e needs to be
performed. For instance, such cases occur in RSA
public key encryption and decryption as well as
in ElGamal decryption. Fixed-exponent exponen-
tiation algorithms aim to decrease the number of
multiplications compared to general exponentia-
tion algorithms such as the binary exponentiation
algorithm. They are based on the fact that cer-
tain precomputations can be performed once for a
fixed exponent. The problem of finding the small-
est number of multiplications to compute ge is
equivalent to finding the shortest addition chain
of e. An addition chain is a sequence of num-
bers such that each number is the sum of two
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previous ones and such that the sequence starts
with 1. For instance, an addition chain of 19 is
V = (1, 2, 4, 5, 9, 10, 19).

DEFINITION 1. An addition chain V of length s
for a positive integer e is a sequence u0, u1, . . . , us
of positive integers, and an associated se-
quence w1, . . . , ws of pairs wi = (i1, i2), 0 ≤ i1, i2 <

i, having the following properties: (i) u0 = 1
and ul = e; and (ii) for each ui, 1 ≤ i ≤ s, ui =
ui1 + ui2 .

Since we are considering fixed exponents, we do
not take into account the time for precomputa-
tions. However, determining the shortest addition
chain for e is believed to be computationally infea-
sible in most cases for chains of relevent length.
Thus in practice there are heuristics used to ob-
tain nearly optimal addition chains. Knuth [4]
describes several such heuristics. It is wise to
implement multiple heuristics in order to com-
pare the results, and finally to choose the shortest
addition chain. Such precomputation can be com-
putationally very demanding, though. After an ad-
dition chain for an exponent e had been obtained,
exponentiation can be performed as described in
algorithm 1.

ALGORITHM 1. Addition chain exponentiation
INPUT: a group element g, an addition chain V =
(u0, u1, . . . , us) of length s for a positive integer
e, and the associated sequence (w1, . . . , ws), where
wi = (i1, i2)
OUTPUT: ge

1. g0 ← g
2. For i from 1 to s do

2.1 gi ← gi1 · gi2

3. Return (gs)

Algorithm 1 computes ge for a precomputed ad-
dition chain for e of length s with s multiplica-
tions. For instance, for above example of e = 19 it is
V = (1, 2, 4, 5, 9, 10, 19). Algorithm 1 then works
as follows:

i 0 1 2 3 4 5 6

wi – (0, 0) (1, 1) (0, 2) (2, 3) (3, 3) (4, 5)
gi g g2 g4 g5 g9 g10 g19

In some cases addition–subtraction chains
might be used to shorten the length of a chain.
In such cases a number of the chain is the sum
or subtraction of two previous elements in the
chain. For instance, the shortest addition chain

for 31 is V = (1, 2, 3, 5, 10, 11, 21, 31) whereas
there exists a shorter addition–subtraction chain
C′ = (1, 2, 4, 8, 16, 32, 31) [3]. However, addition–
subtraction chains only make sense in cases where
an inversion in the underlying group is com-
putationally cheap. Thus, addition–subtraction
chains are not used for exponentiation in an RSA
modulus but might be applied to elliptic curve
operations.

There are two generalized versions of addition
chains. An addition sequence is an addition chain
V = (u0, . . . , us) such that it contains a specified
set of values r1, . . . , rt . They are used when an
element g needs to be raised to multiple pow-
ers ri, 1 ≤ i ≤ t . Especially when the exponents
r1, r2, . . . , rt are far apart, an addition sequence
might be faster in such a case. Finding the shortest
addition sequence is known to be NP-complete [2]
and thus heuristics are used to find short
sequences.

In cases of simultaneous exponentiations such
as in the digital signature standard (DSS), a gene-
ralized addition chain called vector-addition chain
can be applied. These are used to compute ge0

0 ge1
1 . . .

gek−1
k−1 where the gis are arbitrary elements in G and

the eis are fixed positive integers. In a vector addi-
tion chain, each vector is the sum of two previous
ones. For instance, a vector-addition chain C of
the vector [15, 5, 12] is ([1, 0, 0], [0, 1, 0], [0, 0, 1],
[1, 0, 1], [2, 0, 2], [2, 1, 2], [3, 1, 2], [5, 2, 4], [6, 2, 5],
[12, 4, 10], [15, 5, 12]).

DEFINITION 2. Let s and k be positive integers and
let vi denote a k-dimensional vector of non-negative
integers. An ordered set V = {vi : −k + 1 ≤ i ≤ s}
is called a vector-addition chain of length s and
dimension k if V satisfies the following: (i) Each
vi, −k + 1 ≤ i ≤ 0, has a 0 in each coordinate po-
sition, except for coordinate position i + k − 1,
which is a 1. (Coordinate positions are labeled 0
through k − 1.). (ii) For each vi, 1 ≤ i ≤ s, there ex-
ists an associated pair of integers wi = (i1, i2) such
that −k + 1 ≤ i1, i2 < i and vi = vi1 + vi2 (i1 = i2 is
allowed).

Again, the time for precomputations is irrel-
evant. There is a 1-1 correspondence between
vector-addition chains and addition sequences [6].
Hence determining the shortest vector-addition
chain is NP-complete and thus heuristics are used
to obtain short vector-addition chains [1]. Having a
vector-addition chain, exponentiation can be per-
formed as shown in algorithm 2. The algorithm
needs s multiplications for a vector-addition chain
of length s to compute ge0

0 ge1
1 · · · gek−1

k−1 for arbitrary
base and fixed exponents.
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ALGORITHM 2. Vector-addition chain exponentia-
tion
INPUT: group elements g0, g1, . . . , gk−1 and a
vector-addition chain V of length s and dimen-
sion k with associated sequence w1, . . . , ws, where
wi = (i1, i2).
OUTPUT: ge0

0 ge1
1 . . . gek−1

k−1 where vs = (e0, . . . , ek−1).
1. For i from (−k + 1) to 0 do

1.1 ai ← gi+k−1
2. For i from 1 to s do

2.1 ai ← ai1 · ai2

3. Return (as)

An overview of addition chains was given by
Knuth [4]. Further examples of fixed-exponent ex-
ponentiation can be found in [3, 5]. A lower bound
for the shortest length of addition chains was
proven by Schönhage [7], an upper bound is ob-
tained by constructing an addition chain of e from
its binary representation, i.e., by the binary expo-
nentiation algorithm. Yao proved bounds for addi-
tion sequences [8].

André Weimerskirch

References

[1] Bos, J. and M. Coster (1990). “Addition chain heuris-
tic.” Advances in Cryptology—CRYPTO’89, Lec-
ture Notes in Computer Science, vol. 435, ed. G.
Brassard. Springer-Verlag, Berlin.

[2] Downey, P., B. Leong, and R. Sethi (1981). “Comput-
ing sequences with addition chains.” SIAM Journal
on Computing, 10, 638–646.

[3] Gordon, D.M. (1998). “A survey of fast exponentia-
tion methods.” Journal of Algorithms, 27, 129–146.

[4] Knuth, D.E. (1997). The Art of Computer Program-
ming, Volume 2: Seminumerical Algorithms (3rd
ed.). Addison-Wesley, Reading, MA.

[5] Menezes, A.J., P.C. van Oorschot, and S.A. Vanstone
(1996). Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL.

[6] Olivos, J. (1981). “On vectorial addition chains.”
Journal of Algorithms, 2, 13–21.

[7] Schönhage, A. (1975). “A lower bound for the length
of addition chains.” Theoretical Computer Science,
1, 1–12.

[8] Yao, A.C. (1976). “On the evaluation of powers.”
SIAM Journal of Computing, 5, 100–103.

FORGERY

The term forgery usually describes a message re-
lated attack against a cryptographic digital signa-
ture scheme. That is an attack trying to fabricate
a digital signature for a message without having
access to the respective signer’s private signing

key. The security requirement of unforgeability of
digital signatures is also called nonrepudiation.

A generally accepted formal framework for
ordinary digital signatures has been given by
Goldwasser et al. [2]. According to their definition
a digital signature scheme consists of three algo-
rithms: one for generating key pairs, one for sign-
ing messages, and one for verifying signatures.
The key generator produces a key pair (see public
key cryptography) of a signing key (private key)
and a verifying key (public key). The signing algo-
rithm takes as input a signing key and a message,
and returns a signature. The verifying algorithm
takes as input a verifying key, a message, and a
signature, and returns a Boolean value. A signa-
ture is usually called valid for a message with re-
spect to a verifying key if the verifying algorithm
returns TRUE on input this verifying key, mes-
sage, and signature.

The GMR definition identifies four types of
forgery against digital signature schemes. They
are in order of decreasing strength: (i) to figure
out the signing key (total break), (ii) an equiva-
lent algorithm that also produces signatures valid
with respect to the victim’s verifying key (univer-
sal forgery), (iii) to find a signature for a new mes-
sage selected by the attacker (selective forgery), or
(iv) to find a signature for any one new message
(existential forgery).

They further define passive attacks and active
attacks (see cryptanalysis) for cryptographic sig-
nature schemes. An attack is called passive if it
is restricted to the access of the verifying key and
a number of signed messages (known message at-
tack). An attack is called active if it also accesses
the signer to ask for signatures on messages cho-
sen by the attacker (chosen message attack). The
attack is successful if the attacker can come up
with a signature for a new message, i.e., one for
which the signer has not provided a signature be-
fore. A stronger active attack is where each mes-
sage may be chosen by taking into account the
signer’s responses to all previously chosen mes-
sages (adaptive chosen message attack). Orthog-
onal to the classification of active attacks into
whether they are adaptive or not is the following
classification based on how the attacker may in-
terleave his queries to the signer [5]. In a sequen-
tial attack, the attacker may ask the signer to sign
messages one by one. In a concurrent attack, the
attacker may ask the signer to sign more than one
message at the same time, while the attacker may
interleave his queries arbitrarily.

Security requirements are then defined as se-
curity against a certain type of forgery under a
certain type of attack. For example, the GMR
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signature scheme has been proven to be secure
against existential forgery under an adaptive cho-
sen message attack.

There are several different types of crypto-
graphic signatures schemes to which other or ad-
ditional security requirements apply. The better
known types of cryptographic signature schemes
are in alphabetical order (i) blind signatures,
(ii) designated confirmer signatures, (iii) fail-stop
signatures, (iv) group signatures, (v) threshold
signatures, (vi) undeniable signatures, (vii) tran-
sitive signatures [3], and (viii) monotone signa-
tures [4]. All of them impose security require-
ments alternatively or in addition to the security
requirements of ordinary cryptographic signature
schemes described above. Most of the alterna-
tive/additional security requirements are defined
by means of alternative/additional types of forgery.

In a blind signature scheme, the verifier does
not tell the signer which message to sign, but
instead “blinds” the intended message and re-
quests a signature for the blinded message from
the signer. Then the signer provides information to
the verifier, from which the verifier can efficiently
derive a valid signature for the intended message.
The GMR framework does not apply to blind sig-
natures because in a blind signature scheme the
notion of a successful attack is undefined. If an at-
tacker comes up with a signature for a message,
it makes no sense to ask whether that message
has been signed by the signer before or not, sim-
ply because the signer has no idea which messages
he has signed before. Instead, two other types of
active attacks have been defined for blind signa-
ture schemes: one-more forgery [6] and forgery of
restrictiveness [1, 5].

A one-more-forgery [6] is an attack that for some
polynomially bounded integer n comes up with

valid signatures for n + 1 pairwise different mes-
sages after the signer has provided signatures only
for n messages.

A forgery of restrictiveness is an attack that
comes up with a signature for a message that does
not observe a predefined internal structure.

Gerrit Bleumer
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G
GAP

A gap of length k in a binary sequence is a set of
k consecutive 0s flanked by 1s See also run or [1].

Tor Helleseth
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GENERALIZED MERSENNE
PRIME

A prime number of the form

p = f (2m),

where f (t) is a low-degree polynomial with small
integer coefficients. Generalized Mersenne primes
are useful in public-key cryptography because re-
duction modulo these primes can be very fast
using a generalization of the technique used for
Mersenne primes. In particular, the integer divi-
sion by p is replaced by a small number of addi-
tions and subtractions and some bit shifts.

In practice, m is taken to be a multiple of the
word size of the machine in order to eliminate
the need for shifting bits within words. The pre-
cise rule for modular reduction (see modular arith-
metic) depends on f (t).

The simplest example is

p = 2192 − 264 − 1.

In this case, f (t) = t3 − t − 1, and one has

5∑
i=0

ci ti ≡ b2 t2 + b1 t + b0 (mod f (t)),

where

b0 = a0 + a3 + a5
b1 = a1 + a3 + a4 + a5
b2 = a2 + a4 + a5.

This yields the following reduction algorithm for
p = f (264). A positive integer modulo p2 is repre-
sented as the concatenation of six 64-bit words

(c5 c4 c3 c2 c1 c0),

which represents

c =
5∑

i=0

ci · 264i .

Then

c ≡ s0 + s1 + s2 + s3 (mod p),

where the sis are the integers represented by the
following concatentations of the six words:

s0 = (c2 c1 c0)
s1 = (0 c3 c3)
s2 = (c4 c4 0)
s3 = (c5 c5 c5).

In the general case, one derives the reduction
formulae by writing down the reductions (mod
f (t)) of t j for d ≤ j < 2d, where d is the degree
of f. One then rearranges the terms to minimize
the numbers of additions and subtractions. Details
can be found in [2].

To find a generalized Mersenne prime of a given
bit size, one lists the small-coefficient integer poly-
nomials f (t) of appropriate degrees and chooses
the one for which f (2m) is prime and whose re-
duction rules require the smallest number of ad-
ditions and subtractions.

The U.S. National Institute for Standards and
Technology (NIST) has standardized four gener-
alized Mersenne primes, including the above ex-
ample, in its Digital Signature Standard [1].

A useful generalization of generalized Mersenne
primes is generalized Mersenne numbers. A near-
prime (i.e., a small multiple of a large prime) of
the generalized Mersenne form can be used in
elliptic curve cryptography almost as easily as a
prime modulus. If m is a generalized Mersenne
number divisible by a large prime p, then one im-
plements the cryptography over an elliptic curve
over the field Fp. The arithmetic is carried out
modulo m (using the appropriate reduction rules)
and is additionally reduced modulo p at the
end of the calculation. This can sometimes be
advantageous if a generalized Mersenne near-
prime exists requiring significantly fewer addi-
tions and subtractions than any available gener-
alized Mersenne prime.

Jerome Solinas
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GENERATOR

An element g of a group is said to generate that
group if the set of elements

g, g2, g3, . . .

(where the group law is multiplication) traverses
all of the elements in the group. Such an element
is a generator. In other words, g is a generator of
a group if and only if every element y in the group
can be expressed as

y = gx

for some x. Every cyclic group has at least one gen-
erator, and a group that is generated by a single
element is cyclic by definition.

When the group is a multiplicative group mod-
ulo an integer n, a generator is also called a prim-
itive root of n.

A generator (sometimes also called the base)
is one of the parameters in several cryptosys-
tems. See Diffie–Hellman key agreement, Digital
Signature Standard.

Burt Kaliski

GMR SIGNATURE

The GMR Signature Scheme was invented by
Goldwasser et al. [2, 3]. In their landmark pub-
lication [2], they presented a formal framework
of security definitions of cryptographic signature
schemes (see digital signature schemes and pub-
lic key cryptography) and they proposed the GMR
Signature Scheme, which, under the assumption
that integer factoring is hard, is provably secure
by their strongest security definition, i.e., it resists
existential forgery under an adaptive chosen mes-
sage attack.

The value of the GMR Signature Scheme is
not in its practical use, but in showing the ex-
istence of a provably secure signature scheme.
Other more efficient signature schemes such as

RSA digital signature scheme, DSA or ECDSA
(see Digital Signature Standard) are memoryless,
i.e., in order to produce a signature, one does not
need to memorize any previously produced signa-
tures (in whole or in part). Also, the computational
effort of signing and verifying and the length of sig-
natures are independent of the number of signa-
tures a signer has produced before. However, the
GMR Signature Scheme is not memoryless, i.e.,
each signature a signer produces depends on every
other signature the signer has produced before.
Even worse, the time to produce and to verify a sig-
nature and the length of a signature increase (log-
arithmically) with the number of signatures that
a signer has produced before. At the cost of some
memory, the average signing performance can be
made independent of the number of signatures
that a signer has produced before. In essence,
the overall performance of the GMR Signature
Scheme (in terms of time and memory) decreases
steadily over the lifetime of each signing key pair.

In a nutshell, the GMR Signature Scheme works
as follows: a signer who anticipates to produce 2b

signatures constructs a key pair for security pa-
rameter k as follows: The public verifying key con-
sists of four components:
1. The maximum number B = 2b (b ∈ N0) of mes-

sages to be signed.
2. Two randomly chosen Blum integers n1 = p1q1

and n2 = p2q2, i.e., each the product of two
prime numbers both congruent to 3 modulo 4,
but not congruent to each other modulo 8, such
that n1 and n2 are each of length k-bit.

3. The two infinite families of pairwise claw-free
trap-door permutations (also see trap-door one-
way functions) fi,n(x) = ±4rev(i)x2len(i)

mod n for
n = n1 and n = n2, where the function rev(·)
takes a bit string i ∈ {0, 1}+ and returns the in-
teger represented by the bits of i in reversed
order, and the function len(·) takes a bit string
i ∈ {0, 1}+ and returns its number of bits. The
sign plus or minus is selected such that the im-
age of fi,n is positive and smaller than n/2.

4. A randomly chosen integer r in the domain of
fi,n1 (·).

The private signing key consists of the primes
p1, q1, p2, q2, which allow to efficiently compute
the inverse permutations f −1

i,n1
(y) and f −1

i,n2
(y).

Let us first consider the simple case of sign-
ing only one message m, i.e., B = 1 and b = 0.
The signer chooses a random element r0 from
the domain of fi,n1 (·), and computes the signature
(t, r0, s) for m such that:

t = f −1
r0,n1

(r ) and s = f −1
m,n2

(r0). (1)

The signature (t, r0, s) is displayed in Figure 1 as a
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Fig. 1. Signing one message

chain connecting the signer’s root element r with
the actual message m. A verifier checks the signa-
ture by computing from the message m up to the
signer’s root element r as follows: First check that
fm,n2 (s) = r0 and then check that fr0,n1 (t) = r .

If there are B = 2b > 1 messages to be signed,
the signer expands the root element r from the
case B = 1 above into a binary authentication tree
(see Merkle [1]) with B leaves r0, r1, . . . , rB−1. All
nodes of the authentication tree except for the root
r are chosen uniformly at random from the domain
of fi,n1 (·) analogously to r0 in Equation (1) above.
Each node Ris unforgeably tied to both its children
R0 and R1 by computing a tag f−1

R0‖R1,n1
(R) analo-

gously to how the tag t was computed in Equation
(1) above. Finally, the message mj (0 ≤ j ≤ B − 1)
is unforgeably tied to r j, which hangs off of the
jth leaf of the authentication tree by computing a
tag s j = f−1

mj,n2
(r j) analogously to how the tag s was

computed in Equation (1) above. The signature for
message mj then consists of (i) the sequence of b
nodes from the root r down to item r j, (ii) the b tags
associated to these nodes (analogously to t above),
and (iii) the tag s j (analogously to s above). The au-
thentication tree and associated tags for the case
B = 8, b = 3 is depicted in Figure 2 as a binary tree
connecting the signer’s root element r with the B
messages m0, m1, . . . , mB−1. A verifier can check
the signature in reverse order beginning from the
message mj and working back up to the root ele-
ment r of the signer.

Obviously, the authentication tree need not be
precomputed in the first place, but can be built
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T00 T01

t0 t1

m0

r

r0 r1

R0 R1

R00 R01 R10 R11

T10 T11
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Fig. 2. Signing more than one message

step-by-step as the need arises. For example, sign-
ing the first message requires one to compute the
complete path from the root r down to the item
r0, but signing the second message only requires
one to build one more leaf of the authentication
tree and the next item r1, while all previously built
nodes of the authentication tree can be reused. So,
on average, each signature requires one to build
two new nodes of the authentication tree and one
additional item. A complete security analysis is
given in [3].

Gerrit Bleumer
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GOLDWASSER–MICALI
ENCRYPTION SCHEME

The Goldwasser–Micali encryption scheme (see
public key cryptography) is the first encryption
scheme that achieved semantic security against a
passive adversary under the assumption that solv-
ing the quadratic residuosity problem is hard. The
scheme encrypts 1 bit of information, and the re-
sulting ciphertext is typically 1024 bits long.

In the Goldwasser–Micali encryption scheme, a
public key is a number n, that is a product of two
primes numbers, sayp and q. Let Y be a quadratic
nonresidue modulo n (see quadratic residue and
modular arithmetic), whose Jacobi Symbol is 1.
The decryption key is formed by the prime factors
of n.

The Goldwasser–Micali encryption scheme en-
crypts a bit b as follows. One picks an integer
r (1 < r < n − 1) and outputs c = Y br2 mod n as ci-
phertext. That is, c is quadratic residue if and only
if b = 0. Therefore a person knowing the prime fac-
tors of n can compute the quadratic residuosity of
the ciphertext c, thus obtaining the value of b.
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If the quadratic residuosity problem is hard,
then guessing the message from the ciphertext is
equivalently hard.

Kazue Sako
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GOLOMB’S RANDOMNESS
POSTULATES

No finite sequence constructed by a linear feed-
back shift register is a truly random sequence.
Golomb [1] introduced the notion of a pseudo-
random sequence for a periodic binary sequence
that satisfies three randomness postulates. These
postulates reflect properties one would expect to
find in a random sequence.

A run in a binary sequence is a set of consecutive
0s or 1s. A run of 0s is denoted a gap and a run
of 1s is denoted a block. A gap of length k is a
set of k consecutive 0s flanked by 1s. A block of
length k is a set of k consecutive 1s flanked by
0s. A run of length k is is a gap or length k or a
block of length k. In this terminology, the three
randomness postulates of a periodic sequence are
as follows:
R-1: In a period of the sequence, the number of 1s

and the number of 0s differ by at most 1.
R-2: In every period, half the runs have length

1, one-fourth have length 2, one-eighth have
length 3, etc., as long as the number of runs so
indicated exceeds 1. Moreover, for each of these
lengths, there are equally many gaps and blocks.

R-3: The out-of-phase auto-correlation of the se-
quence always has the same value.
The R-2 postulate implies the R-1 postulate, but

otherwise the postulates are independent, which
follows from the observation that there exist se-
quences that satisfy some but not all of the postu-
lates. Some examples are:
Example 1: The m-sequence 00001001011001111

10001101110101 of period 31 is an R-1, R-2 and
R-3 sequence.

Example 2: The sequence 00100011101 of period
11 is an R-1 sequence. It is also an R-3 sequence
since the out-of-phase auto-correlation is equal
to −1. However, the sequence is not an R-2 se-
quence since there are two blocks of length 1 but
only one gap of length 1.

Example 3: The sequence 0000010001101 of pe-
riod 13 is an R-3 sequence with a constant out-of-
phase auto-correlation being 1, but the sequence
violates the R-1 and R-2 conditions.

Example 4: The sequence 01001101 of period 8
is an R-1 and R-2 sequence but not an R-3
sequence.
The three randomness postulates are inspired

by the properties obeyed by maximum-length
linear sequences (m-sequences). Also they can be
interpreted as properties of flipping a perfect coin.
R-1 says that heads and tails occur about equally
often; R-2 says that after a run of n heads (tails)
there is a probability 1/2 that the run will end with
the next coin-flip. R-3 is the notion of independent
trials. Knowing the outcome of a previous coin-flip
gives no information of the current coin-flip.

Any sequence obeying both R-1 and R-3 can be
shown to have a value of the out-of-phase auto-
correlation of −1, and therefore the period must be
odd. Sequences which obey the randomness postu-
lates of Golomb are sometimes also called pseudo-
noise sequences.

Tor Helleseth

Reference

[1] Golomb, S.W. (1982). Shift Register Sequences.
Aegean Park Press, Laguna Hills, CA.

GOST

GOST is an encryption algorithm adopted as a
standard by the former Soviet Union in 1989 [5].
The specifications, translated from Russian in
1993, describe a DES-like 64-bits block cipher
(see Data Encryption Standard) and specify four
modes of operation.

The GOST encryption algorithm is a very simple
32-round Feistel cipher. It encrypts data in blocks
of 64 bits and uses a 256-bit secret key. The 32-bit
F-function used in the Feistel construction con-
sists of three transformations. First, a 32-bit sub-
key is mixed with the data using an addition mod-
ulo 232. The result is then split into 4-bit segments,
fed in parallel to eight 4 × 4-bit S-boxes. Finally,
the output values are merged again and rotated
over 11 bits. The key schedule (see block cipher) of
GOST is also particularly simple: the 256-bit se-
cret key is divided into eight 32-bit words and di-
rectly used as subkeys in rounds 1–8, 9–16, and
17–24. The same eight subkeys are reused one
more time in rounds 25–32, but in reverse order
Figure 1.
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A remarkable property of the GOST standard
is that the eight S-boxes are left unspecified. The
content of these lookup tables is considered to be
a secondary long-term secret key, common to a
network of computers, and selected by some cen-
tral authority. The set of S-boxes can be strong or
weak, depending on the authority’s intention. The
S-boxes can even be hidden in an encryption chip,
thus keeping them secret to the users of the de-
vice. As explained in a short note by Saarinen [3],
recovering the secret S-boxes would not be very
hard, however. If a user is allowed to select the
256-bit key of the cipher, he can easily mount a
“chosen key attack” and efficiently derive the se-
cret contents of the lookup tables.

The best attacks on GOST exploit the sim-
plicity of its key schedule. The first attack in
open literature is a related key attack by Kelsey
et al. [2]. Biryukov and Wagner [1] have shown
that the cipher is vulnerable to slide attacks.
Their cryptanalysis breaks 20 rounds out of 32,
but also reveals weak key classes for the full ci-
pher. Finally, Seki and Kaneko [4] have applied
differential cryptanalysis to reduced-round ver-
sions of GOST. Combined with a related-key ap-
proach, the attack breaks 21 rounds.

Christophe De Cannière
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GREATEST COMMON
DIVISOR

The greatest common divisor (gcd) of a set of posi-
tive integers {a1, . . . , ak} is the largest integer that
divides every element of the set. This is denoted by
gcd(a1, . . . , ak) or sometimes just (a1, . . . , ak). For
example, gcd(21, 91) = 7 because 7 divides both 21
and 91, and no integer larger than 7 divides both
of these values. If the gcd is 1, then the integers
are said to be relatively prime.

An important property of the gcd is that it can al-
ways be written as an integer linear combination
of the elements of the set. In other words, there
exist integers x1, . . . , xk such that

∑k
i=1 ai · xi =

gcd(a1, . . . , ak). In the example above, one such lin-
ear combination is given by x1 = −4 and x2 = 1,
since 21 · (−4) + 91 · 1 = 7.

The gcd of a set of integers can be quickly com-
puted using a method due to Euclid, known as
the Euclidean algorithm. The integer linear com-
bination that gives the gcd can also be computed
quickly, using what is known as the extended
Euclidean algorithm.

Scott Contini

GROUP

A group G = (S, ◦) is defined by a set of elements S
and a group operation ◦ that satisfy the following
group axioms:
� Closure: For all x, y ∈ S, x ◦ y ∈ S.
� Associativity: For all x, y, z ∈ S, (x ◦ y) ◦ z =

x ◦ (y ◦ z).
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� Identity: There exists an identity element, de-
noted I, such that for all x ∈ S, x ◦ I = I ◦ x = x.

� Inverse: For all x ∈ S, there exists an inverse y
such that x ◦ y = y ◦ x = I.
A group is commutative (also called Abelian)

if the group operation does not depend on the
ordering of the elements, i.e., if for all x, y ∈ S,
x ◦ y = y ◦ x. A group is cyclic if it has a single
generator, i.e., an element g such that every el-
ement of the group can be obtained by repeated
composition with g, starting with the identity el-
ement. The order of a group G, denoted #G, is the
number of elements in G.

Groups commonly employed in cryptography in-
clude the following:
� A multiplicative group modulo a prime, where

S consists of the set of integers (i.e., residue
classes) modulo a prime p, excluding 0, and the
group operation is multiplication. This group is
typically denoted by Z∗

p, where Zp denotes the
integers modulo p, and ∗ denotes that the group
operation is multiplication and 0 is excluded.
The order of Z∗

p is p− 1.
(This group is the same as the multiplicative
group of the finite field Fp.)

� A subgroup of a multiplicative group modulo a
prime, i.e., a subset of elements in Z∗

p that is
closed under multiplication. Typically, the sub-
group is selected so that its order is a prime
number. For instance, the Digital Signature Al-
gorithm (see Digital Signature Standard) oper-
ates in a subgroup of order q of Z∗

p, where p and
q are large primes and q divides p− 1.

� A subgroup of the multiplicative group of an
extension field Fqd .

� A subgroup of an elliptic curve group. If the el-
liptic curve group has a prime order, then the
subgroup is the same as the elliptic curve group.
All these examples are cyclic and commutative;

an elliptic curve group itself may be noncyclic but
the subgroup of interest itself is typically cyclic.

A group is formally denoted by both the set and
the group operation, i.e., (S, ◦), but in cryptography
sometimes only the set S is denoted and the group
operation is implied. In cryptography, the group
operation is typically either denoted by multipli-
cation or addition. In the former case, repeated
application of the group operation is denoted by
exponentiation (e.g., ga); in the latter, it is denoted
by scalar multiplication (e.g., aP where P is the
group element).

Groups are primarily associated with public-
key cryptography, but they also have some appli-
cations to symmetric cryptography. For instance,
several researchers investigated whether the set
of keys in the Data Encryption Standard forms a

group [2,3], which would significantly weaken the
standard; the set of keys does not.

Braid groups are a notable recent example of
a noncommutative group in public-key cryptogra-
phy [1,4,5].

See also modular arithmetic and prime number.

Burt Kaliski
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GROUP KEY AGREEMENT

INTRODUCTION
Definition. Group Key Agreement (GKE) or con-

ference keying (or group key distribution) is an
extension of two-party key agreement to groups
of n ≥ 2 parties: it allows a group of parties to
share a common session key (see key) or confer-
ence key.

Applications. Many computer applications in-
volve dynamic peer groups. Examples include:
teleconferencing, multi-user computations,
multicast messaging, pay-per-view, distributed
interactive simulations, real-time information
systems, replication services and generally,
distributed applications. These require a
secure communication channel (see also
Shannon’s model) that links all the parties in
a group. Such a channel can be established
by using a symmetric encryption scheme (see
also symmetric cryptosystem) with key, a group
session key.
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Requirements. Given the openness of most net-
working systems, it is important that key agree-
ment is achieved efficiently and securely. Other
requirements include, scalability, freshness of
the session keys, forward secrecy, re-keying and
of course, reliability.

Efficiency: The efficiency of a GKE protocol is mea-
sured in terms of its computational complexity
(usually the number of modular exponentia-
tions), its communication complexity (the num-
ber of communicated messages) and its rounds
complexity (the number of rounds of communi-
cation exchanges). The complexity of a multi-
party protocol involving n parties is scalable if
it is bounded by O(log n) (see O-notation). Scal-
ability is particularly important when the num-
ber of parties in the group is large.

Security: Security involves both the privacy of the
session keys and authentication. Privacy (key
secrecy) requires that in a passive attack it is
hard to distinguish the session key from a ran-
dom key. Passive attacks are eavesdropping at-
tacks in which the adversary has access only
to traffic communicated in public (prior to key
agreement). There is a stronger version of pri-
vacy that requires that it is hard to compute the
session key in a passive attack. Freshness of the
session keys is required to prevent known key
attacks (see also related key attack) in which
the adversary succeeds in getting hold of ses-
sion keys by analyzing large amounts of commu-
nication traffic encrypted with the same group
key, or by noncryptographic means. Session keys
must therefore be regularly updated.

Forward secrecy: A compromised session key
should only affect its session, and not jeopardize
earlier sessions.

Re-keying: Groups are dynamic, with new mem-
bers joining the group or old members leaving
the group. Whenever a new group is formed, a
new session key must be agreed: otherwise in-
formation regarding previous sessions (or future
sessions) would become available to those join-
ing (or leaving) the group.

Reliability: The communication channel must be
reliable.

GROUP KEY AGREEMENT PROTOCOLS: Several
GKE protocols have been proposed in the litera-
ture (see e.g., [5–11,14,16,17,20–23,26,27,29,30].
Most of these are based on the Diffie–Hellman
key agreement protocol [13] or variants of it. We
shall describe some of these, starting with the
simplest ones and point out their strengths and
weaknesses. We first consider GKE protocols for

small groups which are secure against passive at-
tacks. We will then consider authenticated GKE
protocols. Finally we shall describe a GKE proto-
cols for large groups.

Private Group Key Agreement for
Small Groups

We consider GKE protocols that are secure against
passive attacks (eavesdropping). These involve a
group G = 〈g〉 generated by an element g whose
order is a k-bit prime q. The group could be a
subgroup of the multiplicative group Z∗

m (which
consists of all positive integers less than m and
relative prime to m; see modular arithmetic), the
group of an elliptic curve (see elliptic curves), or
more generally, any finite group whose operation
can be efficiently computed and for which one
can establish membership and select random el-
ements efficiently. For convenience we shall call
the elements of G, numbers.

The parameters of the group G are selected by
a Trusted Center (see also Trusted Third Party); k
is the security parameter. In this section we shall
assume that the number of parties n involved in
the key agreement protocol is small. That is, n 
 q
(n = poly(k)). The protocols we shall describe in-
volve random selections of elements from G. We
use the notation x ∈R X to indicate that x is se-
lected at random (independently) from the set X
with uniform distribution.

1. A basic centralized GKE protocol [11]. Let
U = {U1,U2, . . . ,Un}, n 
 q, be a group of parties.
A designated member of the group called the chair,
say U1, selects the session key sk ∈R G.
Round 1. The chair exchanges a key Ki ∈ G with

every member Ui ∈ U\U1 by using the Diffie–
Hellman key agreement protocol.

Round 2. The chair sends to each member Ui ∈
U\U1 the “number”: Xi = sk/Ki ∈ G.

Key Computation. Each member Ui ∈ U\U1
computes the key: sk = X1i · K1i .

Security and Efficiency. We clearly have for-
ward secrecy. Privacy reduces to the Diffie–
Hellman problem [18]. More specifically, distin-
guishing the session key from a random key in
a passive attack (key secrecy) is as hard as the
Decisional Diffie–Hellman problem; computing
the session key is as hard as the Computational
Diffie–Hellman problem (see Decisional Diffie–
Hellman problem). The complexity of this pro-
tocol is unbalanced: whereas the chair has to
exchange Diffie–Hellman keys with each one of
the other members of the group and then send
the Xi ’s, the other members need only exchange
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a Diffie–Hellman key with the chair. It is possi-
ble [12] to share the burden evenly among the
members by arranging the group in a graph tree,
with root the chair, and then exchanging Diffie–
Hellman keys only along root-to-leaf paths. In
this case, all members of the group (including
the chair) exchange a Diffie–Hellman key with
their adjacent nodes in the tree (their parent
and children). Then the per-user complexity is
shared evenly, however there is now a time-
delay which is proportional to the height of the
tree [12]. The per-user complexity of the tree-
based protocol is O(log n).

2. The Burmester–Desmedt distributed GKE
protocol [10, 11, 18]. Let U = {U1,U2, . . . ,Un}
be the group of parties. The protocol uses a
broadcast channel (this could be replaced by

(n
2

)
point-to-point channels). There are two rounds.
In the first round each member Ui ∈ U broad-
casts a random number (element) zi = gri ∈ G.
In the second round Ui broadcasts the number
Xi = (zi+1/zi−1)ri ∈ G. The session key is: sk =
g r1r2+r2r3+···+rnr1 ∈ G. More specifically:
Round 1. Each member Ui ∈ U selects an ri ∈R Zq

and broadcasts: zi = gri ∈ G.
Round 2. Each member Ui ∈ U broadcasts Xi =

(zi+1/zi−1)ri ∈ G, where the indices are taken in
a cycle.

Key Computation. Each member Ui ∈ U com-
putes the session key:

ski = (zi−1)nri · Xn−1
i · Xn−2

i+1 · · · Xi−2 ∈ G.

Remark. If all members adhere to the proto-
col then each will compute the same key: sk =
g r1r2+r2r3+···+rnr1 . Indeed, let Ai−1 = (zi−1)ri =
gri−1ri , Ai = (zi−1)ri · Xi = griri+1 , Ai+1 = (zi−1)ri ·
Xi · Xi+1 = gri+1ri+2 , and so on. Then ski = Ai−1 ·
Ai · Ai+1 · · · Ai−2 = sk.

In the special case when there are only
two members, we have X1 = X2 = 1 and sk =
gr1r2+r2r1 = g2r1r2 . This is essentially the Diffie–
Hellman key agreement (in this case there is no
need to broadcast X1, X2).

Security and Efficiency. We have forward se-
crecy, as in the previous protocol. Privacy is
reduced to the Decisional Diffie–Hellman prob-
lem [15]. (Computing the session key, in a pas-
sive attack, is as hard as the Computational
Diffie–Hellman problem [10] when n is even;
this extends to the odd case if one of the parties
behaves as two virtual parties.) The complex-
ity per user is O(1) (constant). This is roughly
double that of the Diffie–Hellman key agree-
ment protocol: there are two (broadcast) rounds,
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Fig. 1. The sets Xi for a group with four members

three exponentiations, and a few multiplica-
tions. Because of its efficiency, for re-keying, we
just re-run the protocol.

Variants. By arranging the connectivity of group
U in different ways to route messages, e.g., in
a star, a cycle, or a tree, we get several GKE
variants which can be used to meet specific re-
quirements [11,12].

3. The Ingemarsson–Tang–Wong distributed
GKE protocol [7, 8, 14]. For this protocol the
group of parties U is arranged in a cycle or
ring: (U1,U2, . . . ,Un). The protocol uses sets of
numbers Xi ⊂ G, i = 1, 2, . . . , n that are defined
as follows. Select r1, r2, . . . , rn ∈R Zq . Define
X1 = {x1,0 = g, x1,1 = gr1}, and recursively Xi =
{xi,0 = (xi−1,0)ri , . . . , xi,i−2 = (xi−1,i−2)ri ; xi,i−1 =
xi−1,i−1, xi,i = (xi−1,i−1)ri }, for 1 < i ≤ n − 1.
Finally Xn = {xn,0 = (xn−1,0)rn , . . . , xn,i−2 =
(xn−1,n−2)rn ; xn,n−1 = xn−1,n−1}. In Figure 1 we
illustrate these sets for the case when n = 4.

The protocol has two phases: up-flow and down-
flow. In the up-flow phase, each member Ui sends
to the next member Ui+1 in the ring the set
Xi . In the down-flow phase, Un broadcasts Xn.
The session key is sk = gx1x2···xn ∈ G. More speci-
fically:
Phase 1

For i = 1 to n − 1
Ui sends to Ui+1: Xi ⊂ G, where ri ∈R Zq is se-
lected by Ui .

Phase 2
Un broadcasts: Xn ⊂ G, where rn ∈R Zq is se-
lected by Un.

Key Computation. Each member Ui ∈ U com-
putes the key:

ski = (gx1x2···xi−1xi+1··· xn )xi = gx1x2···xn ∈ G,

where gx1x2···xi−1xi+1··· xn is obtained from Xn.
Remark. If all members adhere to the protocol

then each will compute the same key.
Security and Efficiency. We have forward se-

crecy, as in the previous protocols. Privacy is
guaranteed under the Group Computational
Diffie–Hellman (GCDH) assumption, which we
describe below.
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GCDH Assumption. Let G = 〈g〉 be a group
of order a k-bit prime q, n = poly(k), In =
{1, 2, . . . , n}, 2In be the powerset of In, and � ⊂
2In\In.
Given:

GCDH� = {∪J∈�(J, g
∏

j∈J xj) | (x1, . . . , xn) ∈R (Zq )n},
it is hard to find gx1x2··· xn .

The complexity of this protocol is O(log n). There
is a time-delay for the n + 1 steps, and the compu-
tation of the sets Xi requires on average 1

2 n expo-
nentiations.

Authenticated Group Key Agreement

Katz and Yung [15] recently described a compiler
C which will transform any GKE protocol P that
is secure against passive attacks into a protocol
P′ = C(P) that is secure against active adversaries
(see cryptanalysis) that control all communica-
tion in the network. The compiler adds only one
communication round to protocol P and authen-
ticates (see authentication) all communication
traffic.

The security model used is that of Bresson et al.
[8], which is based on the Random Oracle model
of Bellare and Rogaway [3,4] (see also [2]). In this
model, each member U ∈ U is allowed to execute
the protocol P many times with several groups of
partners (and to interleave the rounds of the exe-
cutions). Each such execution of P is called an in-
stance. The ith instance executed by U is denoted
by �i

U.
The following assumptions regarding the inputs

P to the compiler C are made: (i) P is a GKE pro-
tocol that is secure against passive attacks (key
secrecy); (ii) each message sent by instance �i

U in-
cludes the identity of the sender U and a sequence
number j which starts at 0 and is incremented by
1 each time �i

U sends a new message m (i.e., �i
U

sends U|| j||m, the concatenation of U, j and m);
and (iii) all messages are broadcasted to the en-
tire group U taking part in the execution of P.

It is easy to see that any GKE protocol P̃ can
readily be converted to a protocol P that satisfies
these three assumptions for compiler C. Moreover,
if P̃ is secure against passive attacks then P will
also be. Finally, the round complexity of P is the
same as that of P̃.

The compiler C uses a digital signature scheme
that is secure against adaptive chosen message
attacks. Let P be the set of potential users of
protocol P. Each party U ∈ P should have a pub-
lic/secret signature key pair (PKU, SKU). Given

protocol P, the compiler now constructs protocol
P′ as follows:
1. Let U = U1, . . . ,Un be a group of parties

that wish to establish a session key and let
U ′ = U1|| · · · ||Un (concatenation). Each party Ui
selects a random nonce ti ∈ {0, 1}k and broad-
casts Ui ||0||ti , where 0 is the (initial) sequence
number for this message. After receiving all the
broadcast messages, each instance �i

U stores U ′

and t ′ = t1|| · · · ||tn as part of its state informa-
tion.

2. The parties in group U now execute protocol P
with the following changes:
� Whenever instance �i

U has to broadcast
U|| j||m in protocol P, instead the instance
broadcasts U|| j||m||σ , where σ is the signa-
ture of party U on j||m||U ′||t ′ with the key
SKU.

� Whenever instance �i
U receives message

V|| j||m||σ , it checks that: (i) party V ∈ U and
message m is valid (for the protocols de-
scribed earlier this means that zi, Xi ∈ G, or
xi j ∈ G); (ii) j is the next expected sequence
number for V, and (iii) σ is a valid signature
of V on j||m||U ′||t ′. If any of these fails, �i

U
aborts the protocol.

Compiler C can thus be used to convert any GKE
protocol that is secure against a passive adver-
sary into a GKE protocol that is secure against
active adversaries in the random oracle model as
extended in [8].

We finally consider the case when the number
of parties n in the group G is large.

Group Key Agreement for Large Groups

Many emerging applications, such as teleconfer-
encing, pay-per-view and real-time information
systems, are based on a group communication
model in which data is broadcasted to large dy-
namically evolving groups (see also broadcast
encryption). Securing such communication is par-
ticularly challenging because of the requirement
for frequent re-keying as a result of members leav-
ing the group or new members joining the group.
Several GKE protocols for large groups have been
proposed in the literature (see e.g., [1,17,19,22,23,
28, 32], also [27, 31]). These are centralized algo-
rithms which offer scalable solutions to the group
key management problem and employ appropri-
ate key graphs that securely distribute re-keying
information after members leave or join the group.
In this section, we shall briefly describe the OFT
protocol which employs a key graph tree for scal-
able re-keying.
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4. The McGrew–Sherman one-way function
tree (OFT) protocol [17, 25]. Let k be the se-
curity parameter and n the number of poten-
tial users of the system. We shall assume n � k
(n superpolynomial in k). A trusted manager is
responsible for the selection and management of
all the symmetric user keys (see symmetric crypto-
system), as well as the maintenance of user-key re-
lation. Each member U of the group G is given a set
of keys XU ⊂ 2{0,1}k

, which includes the group ses-
sion key. The sets XU are constructed in a special
way by using a one-way function [18] g{0, 1}k →
{0, 1}k and a pseudo-random function [18] f :
{0, 1}2k → {0, 1}k.

Structure of the OFT Tree. This is a binary tree
maintained by the manager. Nodes are assigned
keys as follows. First each leaf u of the tree is as-
signed a random key ku ∈ {0, 1}k. Then starting
from the bottom of the tree each internal node
x is assigned a key which is computed by using
the rule:

kx = f (g(kleft(x)), g(kright(x))), (1)

where left(x) is the left child of x and right(x) is
the right child of x. The key kroot of the root is
the group session key.

Each party U who wishes to join the group is
issued with a set of keys XU which consists of:
the key ku of a leaf u and all the “blinded” node
keys k′

x = g(kx) that are siblings to nodes on its
path to the root. From these keys U can compute
all the node keys on its path to the root by using
rule (1). An illustration is given in Figure 2.

Removing or Adding Members. Whenever a
member U associated with leaf u is to be re-
moved, the key ku of U is invalidated and the
group member V associated with the sibling of
u is assigned to the parent of u and given a new
leaf key knew

v which is selected at random from
{0, 1}k by the manager. All internal node keys
along the path of this node to the root are then
assigned new values using rule (1).

X

X

X

U

Fig. 2. An OFT tree: member U possesses the keys of the
black nodes and the blinded keys of their siblings “⊗”

The new key values must be communicated
securely to all the members of the group who
store the corresponding old values. For this pur-
pose, the manager broadcasts the new values
encrypted in such a way that only the appropri-
ate members can decrypt them. For the member
V associated with the sibling v of u, the man-
ager encrypts the new leaf key knew

v with the old
key of V and broadcasts Ekold

v
[knew

v ], where E is
a symmetric encryption function [18] (see also
symmetric cryptosystem). For each of the inter-
nal nodes x on the path from u to the root,
only the new blinded values (knew

x )′ = g(knew
x ) are

needed (members store one leaf key and the
blinded keys of the siblings of the nodes on their
paths to the root). Observe that group mem-
bers that possess the old blind value (kold

x )′ know
the unblinded key value ks of the sibling s of
x. The manager therefore only needs to broad-
cast the encryption Eks [(k

new
x )′].

When a new member V joins the group,
an existing leaf node u is split: the member
U associated with u is now associated with
left(u) and the new member is associated with
right(u). Members U, V are given keys knew

u =
kleft(u), kv = kright(u), respectively, selected at ran-
dom from {0, 1}k. All the keys of the internal
nodes x along the path from u to the root are
then assigned new values knew

x using rule (1).
The new value knew

u and the blinded values
of the new keys (knew

x )′ are then encrypted with
the appropriate keys and broadcasted as in the
previous case. The key kv is given privately
to V.

Security and Efficiency. The security of the
OFT protocol reduces to that of the one-
way function g, the pseudo-random function
f, and the symmetric encryption function E.
We have forward and backward security (see
also group signature): members who leave the
group cannot read future messages and mem-
bers who join the group cannot read previous
messages.

The communication complexity of adding or
removing a member is bounded by hk + h bits,
where h is the height of the tree and k the
length of the keys. This is because up to h keys
must be broadcasted, and h bits are needed to
describe the member that joins or leaves the
group. If the tree is balanced, then the oper-
ation of adding or removing a member with
the OFT protocol is scalable (with complexity
O(log n)).

Mike Burmester
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GROUP SIGNATURES

Group signatures are digital signatures where
signers can establish groups such that each mem-
ber of the group can produce signatures anony-
mously on behalf of the group. Each group can
be managed by a trusted group authority, which
oversees joining and leaving the group and can re-
identify individual signers in case of disputes ac-
cording to a clearly stated policy. Obviously, many
groups can choose to be managed by the same
trusted group authority, or a group can choose to
fully distribute the group management among its
members such that every member is involved in all
management transactions. The concept of group
signatures and first practical constructions were
introduced by Chaum and van Heijst [4].

The term ‘group signatures’ or ‘group-oriented
signatures’ is sometimes also used for another
type of signature scheme where signers also form
groups such that, for example, any t-out-of-n mem-
bers of a group can together produce a signature.
In this case, the capability of producing signa-
tures is granted only to large enough coalitions
within a group. This was first introduced by Boyd
as multisignatures, but according to Desmedt [9]
there is growing consensus to call them threshold
signatures.

In a group signature scheme, each signing mem-
ber of a group has an individual signing key pair. If
individuals generate their key pairs without hav-
ing to agree on common domain parameters, the
group sigature scheme is called separable [6]. An
individual is registered for a group by presenting
a suitable ID certificate to the respective trusted
group authority and submitting her or his pub-
lic verifying key. The trusted group authority con-
structs a group key pair, which consists of a private
group key and a public group key, and publishes
the public group key through one or more authen-
tic channels such as a public key infrastructure
(PKI). A member leaves a group by revoking her or
his public verifying key from the trusted group au-
thority. It is the responsibility of the trusted group
authority to keep track of who belongs to the group
at any point of time. A group signature scheme is
called static if the public group key needs to be
updated after members join or leave the group, or
update their individual key pairs. Constructions
were proposed in [2, 4, 7]. All of them suffer from
the drawback that the size of a public group key
and that of the signatures are proportional to the
size of a group. If the public group key remains un-
changed after members join or leave the group, or
update their individual key pairs, the group sig-
nature scheme is called dynamic [13]. The first
construction of a dynamic group signature scheme
was proposed by Camenisch and Stadler [8]. Their
construction has the additional advantage that
the size of the public group key and that of the sig-
natures are independent of the size of the group.
Their paper sparked more work on dynamic group
signature schemes [1,5,6,13].

Everyone who has access to the public group
key of group G can verify every signature pro-
duced by every member of group G. When a signa-
ture is disputed, the respective verifier can request
the signer’s identity from the respective trusted
group authority. The trusted group authority then
uses the private group key in order to recover the
signer’s identity. If and when the signer’s identity
is recovered and released is controlled by the group
management policy that governs the operations of
the trusted group authority.

Robust key management is a particularly im-
portant issue in group signatures. For example,
if the public group key changes whenever mem-
bers join or leave the group or update their pri-
vate signing keys, then it becomes a burden for
the trusted group authority to publish the pub-
lic group keys for all recent time intervals in
a timely fashion. Moreover, if a private signing
key of a group member is compromized, then the
attacker can freely produce signatures on behalf of
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the group until the respective public verifying key
is revoked. Therefore, all the signatures of the vic-
timized group member must be regarded invalid
if there is no way of distinguishing the signatures
produced by the honest group member from those
produced by the attacker. These problems are ad-
dressed by an approach called forward security.
Forward secure group signature schemes allow in-
dividual group members to join or leave a group or
update their private signing keys without affect-
ing the respective public group key. By dividing
the lifetime of all individual private signing keys
into discrete time intervals, and by tying all signa-
tures to the time interval when they are produced,
group members who are revoked in time interval
i have their signing capability effectively stripped
away in time interval i + 1, while all their signa-
tures produced in time interval i or before (and, of
course, the signatures of all other group members)
remain verifiable and anonymous [13]. Forward
security in group signature schemes is similar to
forward security in threshold signature schemes.

Group signatures are useful, for example, to
build secure auction systems [7], where all the
bidders form a group and authorize their ten-
ders by group signatures. After the winning ten-
der has been determined, the trusted group au-
thority can re-identify the lucky bidder, while the
other bidders remain anonymous. Group signa-
ture schemes are dually related to identity es-
crow schemes [10], i.e., group-member identifica-
tion schemes with revocable anonymity.

A group signature scheme has the following op-
erations: (i) an operation for generating pairs of
a private signing key and a public verifying key
for an individual; (ii) an operation for generating
pairs of a private group key and a public group
key for a trusted group authority; (iii) operations
for group management such as joining and revok-
ing group members; (iv) an operation for signing
messages; (v) an operation for verifying signatures
against a public group key; and (vi) an operation
to identify (de-anonymize) a group member by one
of her or his signatures.

The characteristic security requirements of a
group signature scheme are:
Unforgeability: Resistance against existential

forgery under adaptive chosen message attacks
by computationally restricted attackers.

Unlinkability: Any cheating verifier except the
trusted group authority, given any two messages
m1, m2 and respective signatures s1, s2 that are
valid for these messages with respect to the pub-
lic group key of group G cannot decide with non-
negligible probability better than pure guessing
whether the two signatures have been produced

by the same group member or two different
group members. Note that unlinkability implies
signer anonymity.

Exculpability: A cheating trusted group author-
ity (or any coalition of signers) cannot produce
a valid signature that identifies an originating
group member who has in fact not produced the
signature (false claim of origin).

Traceability: Any coalition of cheating signers
cannot produce valid signatures for which not
at least one of them is held responsible.

Forward Security: Signers who leave the group
can no longer sign messages in behalf of the
group. Other additional security requirement
are proposed by Song [13].

Constructions have been based on groups, in
which the discrete logarithm problem is hard [8],
and on the RSA signature scheme [1,5,13].

Group signature schemes can be equipped with
additional features: Cramer et al. [3] proposed to
add threshold properties into a group signature
scheme such that any subset of group members
can be authorized to produce signatures on be-
half of the group. Lysyanskaya and Ramzan [11]
proposed blind group signatures based on the dy-
namic group signature scheme by Camenisch and
Stadler [8]. Another blind group signature scheme
based on [8] was proposed by Nguyen et al. [12].

Gerrit Bleumer
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HARD-CORE BIT

Let f be a one-way function. According to the def-
inition of such a function, it is difficult, given
y = f (x) where x is random, to recover x. How-
ever, it may be easy to determine certain infor-
mation about x. For instance, the RSA function
f (x) = xe mod n (see RSA public-key encryption)
is believed to be one-way, yet it is easy to compute
the Jacobi symbol of x, given f (x):

(
xe mod n

n

)
=

( x
n

)e
=

( x
n

)
.

Another example is found in the discrete expo-
nentiation function f (x) = gx mod p (see discrete
logarithm problem), where the least-significant
bit of x is revealed from the Legendre symbol of
f (x), i.e., f (x)(p−1)/2, which indicates whether f (x)
is a square and hence whether x is even.

It has therefore been of considerable interest in
cryptography to understand which parts of the in-
verse of certain one-way functions are hardest to
compute. This has led to the notion of a hard-core
bit. Informally, a function B from inputs to {0, 1}
is hard-core with respect to f if it is infeasible
to approximate B(x), given f (x). Here, “approxi-
mating” means predicting with probability signif-
icantly better than 1/2.

Hard-core bits have been identified for the main
hard problems in public-key cryptography, in-
cluding the discrete logarithm problem and the
RSA problem. Blum and Micali [2] gave the first
unapproximability results for the former; Alexi
et al. [1], the first complete results for the latter.
(See also [4] for recent enhancements.)

In addition, Goldreich and Levin [3] have given
a very elegant method for constructing a hard-core
bit from any one-way function:
1. Define g(x, r ) = ( f (x), r ), where the length of r

is the same as the length of x.
2. Define B(x, r ) = x1r1 ⊕ · · · ⊕ xkrk, where xi, ri

are the bits of x and r , and ⊕ is the exclusive-or
operation.

If f is one-way, then g is clearly one-way; Goldreich
and Levin’s key result is a proof that the predicate
B so constructed is hard-core with respect to g.
Intuitively, this can be viewed as saying that the
XOR of a random subset of bits of the inverse is
hard to predict.

Researchers have also studied the related prob-
lem of simultaneous security of multiple bits, that

is, whether an individual hard-core bit remains
difficult to approximate even if the values of other
hard-core bits are known. Typically, the order of
log k bits can be shown to be simultaneously se-
cure for the functions mentioned above, where k
is the size of the input to the function; up to k/2
have been proven simultaneously secure for re-
lated functions [5]. It has been conjectured that
half of the bits of the the RSA/Rabin functions are
simultaneously secure.

The primary application of these results is in
constructing a pseudo-random number generator.
Following early work by Yao [6] and Blum and
Micali [2], if B is a hard-core bit and f is a one-
way permutation, then the sequence

B(x0), B(x1), B(x2), . . . ,

where xi = f (xi−1) and x0 is a random seed, is in-
distinguishable from a truly random sequence of
the same length. The proof proceeds by showing
that any efficient algorithm to distinguish the se-
quence from a truly random sequence can also
be used to distinguish the supposed hard-core bit
from a random value, and hence to approximate
the bit.

Burt Kaliski
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[4] Håstad, J. and M. Näslund (2004). “The security of
all RSA and discrete log bits.” Journal of the ACM,
51 (2), 187–230.
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HARDWARE SECURITY
MODULE

Security devices are playing an essential role in
our everyday life, ensuring security for the finan-
cial transactions we could directly or indirectly
make. These devices provide the ability to make
transactions within a distributed and virtual
environment, satisfying the request of Trust and
Privacy.

One of the commonly used trusted token is the
Smart Card.

When you want to pay for some gift, the vendor
wants to be assured that you are the real owner—
not a hacker collecting credit card numbers—
of the banking account. On the other side, you
need to know that the vendor is really who
he claims to be before paying. Both parties in
this transaction need to authenticate each other’s
identity.

In addition, depending of the transaction’s
value, both parties may want the exchanges pro-
tected against hacker spying, disclosing and in-
tercepting the exchanges of the transaction. Both
parties need confidentiality and integrity.

Security technology can be divided into two
types: software defined and hardware achieved.

Security Processors are computational devices
that are used to execute security functions in a
short execution time. In the context of Information
Technology, these Security Processors have to exe-
cute trustfully these operations whether the envi-
ronment is hostile or not, so they are usually inte-
grated into a tamper resistant device or package.
These devices are known by a variety of names,
including:
� Tamper Resistant Security Module (TRSM)
� Network Security Processor (NSP)
� Host/Hardware Security Module (HSM).

An HSM is a physically secure, tamper-resistant
security server that provides cryptographic func-
tions to secure transactions in retail and financial
applications. This includes:
� PIN (see Personal Identification Number) en-

cryption and verification
� Debit card validation
� Stored value card issuing and processing
� Chip card issuing and processing
� Message authentication (see MAC algorithms)
� Symmetric key management.

With a DSP-RSA Module, the HSM can also sup-
port public key cryptographic operations including
digital signatures, certificates, and asymmetric
key management.

Acting as a peripheral to a host computer,
the HSM provides the cryptographic facilities

needed to implement a wide range of data security
tasks.

Banks, corporations, and probably some
branches of the military are using HSMs as part
of their security chain.

Hardware Security Modules offer a higher level
of security than software. They are normally eval-
uated by third parties, such as the USA’s “National
Institute of Standards and Technology” (NIST),
through the Federal Information Processing Stan-
dards Publication (FIPS PUB 140) or French
“Direction Centrale de la Sécurité des Systmès
d’Information” (DCSSI). This level of security is
required by some highly secured web applications,
Public Key Infrastructures and Certification
Authorities.

FIPS140-1
level Description

1 Software-only implementation performs
correctly algorithms.

2 Both software and hardware
implementations can meet this level.
Hardware must incorporate a limited
degree of tamper-evident design or
employ locks to secure sensitive
informations. Role-based
authentication is required to authorize
a defined set of services.

3 This level requires a hardware
implementation, designed to prevent an
intruder from obtaining secrets from
the device. Detected tampering must
result in logical-destruction of sensitive
informations.

4 Hardware certified at this level must
resist the most sophisticated attacks.
Cryptographic functions are performed
within an ‘envelope’ protected by the
security parameters. The intent of Level
4 protection is to detect a penetration of
the device from any direction. Such
devices are suitable for operation in
physically unprotected environments.

Hardware Security Modules perform crypto-
graphic operations, protected by hardware. These
operations may include:
� Random number generation
� Key generation (asymmetric and symmetric)

(see asymmetric cryptosystem and symmetric
cryptosystem)

� Asymmetric private key storage while providing
protection (security) from attack (i.e., no unen-
crypted private keys in software or memory):
◦ Private keys used for signing and decryption
◦ Private keys used in PKI for storing Root

Keys.
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The diagram below describes the internal ele-
ments of an HSM.
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The diagram below illustrates various hardware
encryption technologies and their respective posi-
tions of cost relative to security.

Smart Card PCI Card

TPM

S
ec

u
ri

ty
 L

ev
el

Cost

USB
token 

PC
Card 

External box

An HSM is a key element in the security chain of
a system. It provides all necessary cryptographic
functions in association to a secured key man-
agement for generation, storage and handling.
Its cost may mean that only companies can af-
ford to use such devices. Overall benefit is the
third party evaluation of this piece of hardware
and software, through governmental certification
schemes.

USEFUL LINKS:
� More on HSM: http://www.cren.net/crenca/

onepagers/additionalhsm.html
� “Building a High-Performance, Programmable

Secure CoProcessor” by Sean W. Smith and
Steve Weingart.

� Cryptographic equipments list: http://www.ssi
.gouv.fr/fr/reglementation/liste entr/index.html

� FIPS PUB 140-2 Security Requirements for
Cryptographic Modules:
◦ http://csrc.nist.gov/cryptval/
◦ http://csrc.nist.gov/cryptval/140-2.htm

� PKCS #11—Cryptographic Token Inter-
face Standard: http://www.rsasecurity.com/
rsalabs/pkcs/pkcs-11/index.html

DEFINITIONS (EXTRACTED FROM
ISO 15408)

Tamper Evidence Requirement

A device that claims Tamper Evidence character-
istics shall be designed and constructed as follows:

� Substitution: To protect against substitution
with a forged or compromised device, a device
is designed so that it is not practical for an at-
tacker to construct a duplicate from commer-
cially available components that can reasonably
be mistaken for a genuine device.

� Penetration: To ensure that penetration of an
SCD is detected, the device shall be so designed



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 7, 2005 21:20

256 Hash functions

and constructed that any successful penetra-
tion shall require that the device be subject
to physical damage or prolonged absence from
its authorized location such that the device
cannot be placed back into service without a
high probability of detection by a knowledgeable
observer.

Tamper Resistance Requirements

� Penetration: An SCD shall be protected against
penetration by being Tamper Resistant to such
a degree that its passive resistance is suffi-
cient to make penetration infeasible both in
its intended environment and when taken to
a specialized facility where it would be sub-
jected to penetration attempts by specialized
equipment.

� Modification: The unauthorized modification of
any key or other sensitive data stored within an
SCD, or the placing within the device of a tap,
e.g., active, passive, radio, etc. to record such
sensitive data, shall not be possible unless the
device be taken to a specialized facility and this
facility be subjected to damage such that the
device is rendered inoperable.

� Monitoring: Monitoring shall be countered by
using tamper resistant device characteristics.
The passive physical barriers shall include the
following:
◦ sheilding against electromagnetic emissions

in all frequencies in which sensitive informa-
tion could be feasibly disclosed by monitoring
the device;

◦ privacy shelding such that during normal op-
eration, keys pressed will not be easily observ-
able to other persons. (For example, the device
could be designed and installed so that the de-
vice can be picked up and shielded from mon-
itoring by the user’s own body.)

Where parts of the device cannot be appropriately
protected from monitoring; these parts of the de-
vice shall not store, transmit or process sensitive
data. The device shall be designed and constructed
in such a way that any unauthorized additions
to the device, intended to monitor it for sensitive
data, shall have a high probability of being de-
tected before such monitoring can occur.
� Removal: If protection against removal is re-

quired, the device shall be secured in such a
manner that it is not economically feasible to
remove the device from its intended place of
operation.

Laurent Sustek

HASH FUNCTIONS
INTRODUCTION: Cryptographic hash functions
take input strings of arbitrary (or very large)
length and map these to short fixed length output
strings. The term hash functions originates from
computer science, where it denotes a function that
compresses a string of arbitrary length to a string
of fixed length. Hash functions are used to allocate
as uniformly as possible storage for the records of a
file. For cryptographic applications, we distinguish
between unkeyed and keyed hash functions. We
consider here only cryptographic hash functions
without a secret parameter or secret key; these
are also known as Manipulation Detection Codes
(or MDCs). An important class of keyed hash func-
tions are MAC Algorithms, which are used for in-
formation authentication. They can reduce the au-
thenticity of a large quantity of information to the
secrecy and authenticity of a short secret key.

Unkeyed cryptographic hash functions or MDCs
will in the remainder of this article be called hash
functions. These functions can also provide infor-
mation authentication in a natural way: one re-
places the protection of the authenticity of the
original input string by the protection of the au-
thenticity of the short hash result. A simple ex-
ample of such a process is the communication of a
large data file over an insecure channel. One can
protect the authenticity of this data file by sending
the hash result of the file over an authenticated
channel, e.g., by reading it over the phone or by
sending it by regular mail or telefax.

The most common application of hash functions
is in digital signatures: one will apply the signing
algorithm to the hash result rather than to the
original message; this brings both performance
and security benefits. With hash functions one
can also compare two values without revealing
them or without storing the reference value in
the clear. The typical examples are passwords and
passphrases: the verifier will store the image of
the passphrase under a hash function; on receipt
of the passphrase, it will apply the hash function
and check whether the result is equal to this im-
age. Hash functions can also be used to commit
to a value without revealing it. The availability
of efficient hash functions has resulted in their
use as pseudo-random functions (for key deriva-
tion), and as building blocks for MAC algorithms
(e.g., HMAC), block ciphers (e.g., Bear and Lion [5]
and Shacal [41]) and stream ciphers (e.g., SEAL).
Finally, many results in cryptology rely on the
random oracle model: informally one assumes the
existence of a random function that can be queried
on arbitrary inputs to yield a random output. If one
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needs to instantiate a random oracle in practice,
one typically uses a hash function.

DEFINITIONS: It will be assumed that the de-
scription of the hash function h is publicly known;
one also requires that given the inputs, the com-
putation of the hash result must be efficient.

One-Way Hash Function (OWHF)

The concept of one-way hash functions was intro-
duced by Diffie and Hellman in [25]. The first in-
formal definition was given by Merkle [52,53] and
Rabin [68].

DEFINITION 1. A one-way hash function (OWHF)
is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length
and the result h(X) has a fixed length of n
bits.

2. The hash function must be one-way in the sense
that given a Y in the image of h, it is compu-
tationally infeasible to find a message X such
that h(X) = Y (preimage resistant) and given X
and h(X) it is computationally infeasible to find
a message X′ �= X such that h(X′) = h(X) (second
preimage resistant).

Typical values for the length n of the hash result
are 64 . . . 128. A function that is preimage resis-
tant is known as a one-way function (but preim-
age resistance is typically used for hash functions).
It is clear that for permutations or injective func-
tions, second preimage resistance is not relevant.
Note that some authors call second preimage resis-
tance as weak collision resistance. For some appli-
cations (e.g., pseudo-random functions and MAC
algorithms based on hash functions), a large part
of the input of the hash function may be known,
yet one requires that it is hard to recover the un-
known part of the input. This property is known
as partial preimage resistance.

Collision Resistant Hash Function (CRHF)

The importance of collision resistance for hash
functions used in digital signature schemes was
first pointed out by Yuval [83]. The first formal def-
inition of a CRHF was given by Damgård [19,20].
An informal definition was given by Merkle [53].

DEFINITION 2. A collision resistant hash function
(CRHF) is a function h satisfying the following
conditions:

1. The argument X can be of arbitrary length and
the result h(X) has a fixed length of n bits.

2. The hash function must be an OWHF, i.e., preim-
age resistance and second preimage resistant.

3. The hash function must be collision resistant: it
is computationally infeasible to find two distinct
messages that hash to the same result.

Note that one finds in the literature also the terms
collision freeness and collision intractible.

Relation between Definitions

It is clear that finding a second preimage can-
not be easier than finding a collision: therefore
the second preimage condition in the definition
of a CRHF seems redundant. However, establish-
ing the exact relation between these conditions
requires formal definitions. Under certain condi-
tions, detailed in [74], collision resistance implies
both second preimage resistance and preimage re-
sistance. A formalization of collision resistance re-
quires a public parameter (also called a key), even
if in practice one uses a fixed function. If such a
parameter is also introduced for preimage and sec-
ond preimage resistance, one has then the choice
between randomizing the challenge (for the sec-
ond preimage or preimage attack), the key, or both.
The relationship between these definitions is stud-
ied by Rogaway and Shrimpton [74]. Earlier work
on this topic can be found in [21,37,62,78,85].

A universal one-way hash function (UOWHF)
was defined by Naor and Yung [59]. It is a class of
functions indexed by a public parameter (called a
key), for which finding a second preimage is hard;
the function instance (or parameter) is chosen af-
ter the challenge input, which means that finding
collisions for a particular instance does not help
an attacker. It corresponds to one of the cases con-
sidered by Rogaway and Shrimpton.

Simon [77] provides a motivation to treat colli-
sion resistant hash functions as independent cryp-
tographic primitives. He shows hat no provable
construction of a CRHF can exist based on a black-
box one-way permutation, i.e., a one-way permu-
tation treated as an oracle.

One may need other properties of hash func-
tions: for example, when hash functions are
combined with a multiplicative digital signature
scheme (e.g., the plain RSA digital signature stan-
dard [73]), one requires that the hash function is
not multiplicative, that is, it should be hard to
find inputs x, x′, x′′ such that h(x) · h(x′) = h(x′′) for
some group operation “·”. See Section “Attacks de-
pendent . . . Scheme” for an example and [3] for a
more extensive discussion on these aspects.
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If one digitally signs a hash value of a message
rather than the message itself, or if one uses a hash
function to commit to a value, a CRHF hash func-
tion is necessary. For other applications of hash
functions, such as protecting passphrases, preim-
age resistance is sufficient.

ITERATED HASH FUNCTIONS: Most practical
hash functions are based on a compression func-
tion with fixed size input; they process every mes-
sage block in a similar way. Lai and Massey call
this an iterated hash function [50]. The input is
first padded such that the length of the input is
a multiple of the block length. Next it is divided
into t blocks X1 through Xt . The hash result is
then computed as follows:

H0 = IV
Hi = f (Xi, Hi−1), i = 1, 2, . . . , t

h(X) = g(Ht ).

Here IV is the abbreviation of Initial Value, Hi
is called the chaining variable, the function f is
called the compression function or round function,
and the function g is called the output transfor-
mation. Most constructions used for g is the iden-
tity function. Two elements in this definition have
an important influence on the security of a hash
function: the choice of the padding rule and the
choice of the IV. It is essential that the padding
rule is unambiguous (i.e., there do not exist two
messages that can be padded to the same padded
message); at the end one should append the length
of the message; and the IV should be defined as
part of the description of the hash function (this
is called MD-strengthening after Merkle [53] and
Damgård [21]).

A natural question can now be formulated:
which properties should be imposed on f to guar-
antee that h satisfies certain properties? Two par-
tial answers have been found. The first result is by
Lai and Massey [50] and gives necessary and suf-
ficient conditions for f in order to obtain an ideally
secure hash function h.

THEOREM 1 (Lai–Massey). Assume that the
padding contains the length of the input string,
and that the message X (without padding) contains
at least 2 blocks. Then finding a second preimage
for h with a fixed IV requires 2n operations if
and only if finding a second preimage for f with
arbitrarily chosen Hi−1 requires 2n operations.

The fact that the condition is necessary follows
from the following argument: if one can find a sec-
ond preimage for f in 2s operations (with s < n),

one can find a second preimage for h in 2(n+s)/2+1

operations with a meet-in-the-middle attack (cf.
Section “Meet-in-the-middle attack”).

A second result by Damgård [21] and indepen-
dently by Merkle [53] states that for h to be a
CRHF, it is sufficient that f is a collision resistant
function.

THEOREM 2 (Damgård–Merkle). Let f be a col-
lision resistant function mapping l to n bits (with
l − n > 1). If an unambiguous padding rule is
used, the following construction yields a CRHF:

H1 = f (0n+1 ‖ X1)
Hi = f (Hi−1 Xi), for i = 2, 3, . . . , t.

The construction can be improved slightly, and ex-
tended to the case where l = n + 1, at the cost of
an additional assumption on f (see [21] for de-
tails and Gibson’s comment [37]). This variant,
which is used in practice, avoids the prefixing of
a zero or one bit. This construction can also ex-
tended to a tree, which allows for increased paral-
lelism [21,60].

METHODS OF ATTACK ON HASH FUNCTIONS:
A distinction is made between attacks that only
depend on the size n in bits of the hash result
attacks that depend on the black-box properties
of the compression function and cryptanalytic at-
tacks that exploit the detailed structure of the
compression function.

The security of hash functions is heuristic; only
in a few slow constructions, it can be reduced to
a number theoretic problem. Therefore, it is rec-
ommended to be conservative in selecting a hash
function: one should not use hash functions for
which one can find ‘near’ collisions or (second)
preimages, or hash functions for which one can
only find ‘randomly looking’ collisions or (second)
preimages. Such a property may not be a problem
for most applications, but one can expect that at-
tacks can be refined to create collisions or (second)
preimages that satisfy additional constraints. It is
also important to note that many attacks only im-
pose constraints on the last one or two blocks of
the input.

Black-Box Attacks on Hash Functions

These attacks depend only on the size n in bits of
the hash result; they are independent of the spe-
cific details of the algorithm. It is assumed that
the hash function behaves as a random function:
if this is not the case this class of attacks will typ-
ically be more effective.
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For attacks that require a limited memory size
and not too many memory accesses, 270 operations
is considered to be on the edge of feasibility (in
2004). In view of the fact that the speed of com-
puters is multiplied by 4 every 3 years (this is one
of the formulations of Moore’s law), 280 operations
is sufficient for the next 5–10 years, but it will be
only marginally secure within 15 years. For appli-
cations that require protection for 20 years, one
should try to design the scheme such that an at-
tack requires at least 290 operations. For a more
detailed discussion of the cost of brute force at-
tacks, see the entry on exhaustive key search.

Random (Second) Preimage Attack. One selects
a random message and hopes that a given hash
result will be obtained. If the hash function has
the required ‘random’ behavior, the success prob-
ability equals 1/2n. This attack can be carried
out off-line and in parallel. If t hash results can
be attacked simultaneously, the work factor is di-
vided by a factor t , but the storage requirement
becomes t n-bit blocks. For example, if t = 2n/2,
on average 2n/2 attempts are required to hit one
of the values. This linear degradation of security
can be mitigated by parameterizing the hash func-
tion and changing the parameter (or salt) for ev-
ery instance [52] (see also preimage resistance and
second preimage resistance).

Birthday Attack. The birthday paradox states that
for a group of 23 people, the probability that at
least two people have a common birthday exceeds
1/2. Intuitively one expects that the probability is
much lower. However, the number of pairs of peo-
ple in such a group equals 23 × 22/2 = 253. This
can be exploited to find collisions for a hash func-
tion in the following way: one generates r1 varia-
tions on a bogus message and r2 variations on a
genuine message. The expected number of colli-
sions equals r1 · r2/n. The probability of finding a
bogus message and a genuine message that hash
to the same result is given by 1 − exp(−r1 · r2/2n),
which is about 63% when r = r1 = r2 = 2n/2. Find-
ing the collision does not require r2 operations: af-
ter sorting the data, which requires O(r log r ) op-
erations, the comparison is easy. This attack was
first pointed out by Yuval [83].

One can substantially reduce the memory re-
quirements (and also the memory accesses) for col-
lision search by translating the problem to the de-
tection of a cycle in an iterated mapping. This was
first proposed by Quisquater and Delescaille [66].
Van Oorschot and Wiener propose an efficient par-
allel variant of this algorithm [80]; with a 10 mil-
lion US$ machine, collisions for MD5 (with n =

128) can be found in 21 days in 1994, which cor-
responds to 5 hours in 2004. In order to make a
collision search infeasible, n should be at least
160 bits; security for 15–20 years or more requires
at least 180 bits.

Black-Box Attacks on the
Compression Function

This class of attacks depends on some high level
properties of the compression function f. They are
also known as chaining attacks, since they exploit
the way in which multiple compression functions
are combined.

Meet-in-the-Middle Attack. This attack applies to
hash functions for which the compression function
f is easy to invert (see also Theorem 1). It is a
variant of the birthday attack that allows to find
a (second) preimage in time 2n/2 rather than 2n.
The opponent generates r1 variations on the first
part of a bogus message and r2 variations on the
last part. Starting from the initial value and go-
ing backwards from the hash result, the probabil-
ity for a matching intermediate variable is given
by 1 − exp(−r1 · r2/2n). The only restriction that
applies to the meeting point is that it cannot be
the first or last value of the chaining variable.
The memory cost can be made negligible using a
cycle finding algorithm [67]. For more details, see
the entry meet-in-the-middle attack.

A generalized meet-in-the-middle attack has
been proposed by Coppersmith [15] and Girault
et al. [39] to break p-fold iterated schemes, i.e.,
weak schemes with more than one pass over the
message as proposed by Davies and Price [22].

Correcting-Block Attack. This attack consists of
substituting all blocks of the message except for
one or more blocks. This attack often applies to the
last block and is then called a correcting-last-block
attack, but it can also apply to the first block or to
some blocks in the middle. For a collision attack,
one chooses two arbitrary messages X and X′ with
X′ �= X; subsequently one searches for one or more
correcting blocks denoted with Y and Y′, such that
h(X′‖Y′) = h(X‖Y). A similar approach is taken for
a (second) preimage attack. Hash functions based
on algebraic structures are particularly vulnera-
ble to this attack. See correcting-block attack for
more details.

Fixed Point Attack. A fixed point for a compression
f is a pair (Hi−1, Xi) that satisfies f (Xi, Hi−1) =
Hi−1. If the chaining variable is equal to Hi−1, one
can insert an arbitrary number of blocks equal to
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Xi without modifying the hash result. Producing
collisions or a second preimage with this attack is
only possible if the chaining variable can be made
equal to Hi−1: this is the case if IV can be cho-
sen equal to a specific value, or if a large number
of fixed points can be constructed (e.g., if one can
find an Xi for a significant fraction of Hi−1’s). This
attack can be made more difficult by appending a
block count or bit count and by fixing IV (MD-
strengthening, see Section “Iterated hash func-
tions”).

Attacks Dependent on the Internal Details
of the Compression Function

Most cryptanalytical techniques that have been
applied to block ciphers have a counterpart for
hash functions. As an example, differential crypt-
analysis has been shown to be a very effective at-
tack tool on hash functions [9]. Differential attacks
of hash functions based on block ciphers have
been studied in [62,69]. Special cryptanalytic tech-
niques have been invented by Dobbertin to crypt-
analyze MD4, MD5 and the RIPEMD family [26,
27]. For hash functions based on block ciphers,
weaknesses of block ciphers that may not be a
problem for confidentiality protection can be prob-
lematic for hashing applications. For example, one
needs to take into account the complementation
property and fixed points [58] of DES, as well as
the existence of weak keys (see also the weak hash
keys defined by Knudsen [47]).

Attacks Dependent on the Interaction with
the Signature Scheme

Signature schemes can be made more efficient
and secure by compressing the information to be
signed with a hash function and to sign the hash
result. Even if the hash function is collision resis-
tant, it might be possible to break the resulting
signature scheme. This attack is then the conse-
quence of an interaction between both schemes. In
the known examples of such an interaction, both
the hash function and the signature scheme have
some multiplicative structure (Coppersmith’s at-
tack on X.509 Annex D [16], see correcting block
attack).

A more subtle point is that problems can arise if
the hash function and the digital signature scheme
are not coupled. For example, given h(X), with h a
strong CRHF, one could try to find a value X′ such
that h′(X′) = h(X), where h′ is a weak hash func-
tion, and then claim that the signer has signed
X′ with h′ instead of X with h. This problem can
be addressed to some extent by signing together

with the hash result a unique hash identifier (e.g.,
as defined in [42]). However, Kaliski has pointed
out that this approach has some limitations [46].
A simpler approach is to allow only one hash func-
tion for a given signature scheme (DSA [34] and
SHA-1 [32]).

AN OVERVIEW OF PRACTICAL HASH FUNC-
TIONS: This section presents three types of
hash functions: custom designed hash functions,
hash functions based on a block cipher, and hash
functions based on algebraic structures (modular
arithmetic, knapsack, and lattice problems). It is
important to be aware of the fact that many pro-
posals have been broken; due to space limitations
it is not possible to include all proposals found in
the literature and the attacks on them. For a more
detailed discussion, the reader is referred to [65].

Custom Designed Hash Functions

This section discusses a selection of custom de-
signed hash functions, i.e., algorithms that have
been designed for hashing operations. Most of
these algorithms use the Davies–Meyer approach
(cf. Section “Hash functions . . . cipher”): the com-
pression function is a block cipher, keyed by the
text input Xi ; the plaintext is the value Hi−1, which
is also added to the ciphertext (feedforward).

MD2 [45] is a hash function with a 128-bit re-
sult that was published by Rivest in 1990. The
algorithm is software oriented, but due to the byte
structure it is not very fast on 32-bit machines. It
inserts at the end a checksum byte (a weak hash
function) of all the inputs. Rogier and Chauvaud
have found collisions for a variant of MD2, that
omits the checksum byte at the end [75].

A much faster algorithm by the same designer is
MD4 [71]; it also dates back to 1990 and has a 128-
bit result. It is defined for messages of shorter than
264 bits. An important contribution of MD4 is that
it has introduced innovative design principles; it
was the first published cryptographic algorithm
that made optimal use of logic operations and inte-
ger arithmetic on 32-bit processors. The compres-
sion function hashes a 128-bit chaining variable
and a 512-bit message block to a 128-bit chaining
variable. The algorithms derived from it (with im-
proved strength) are often called the MDx-family.
This family contains the most popular hash func-
tions used today. Dobbertin has found collisions
for MD4; his attack combines algebraic techniques
and optimization techniques such as genetic al-
gorithms [26, 27]. It can be extended to result
in ‘meaningful’ collisions: the complete message
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(except for a few dozen bytes) is under complete
control of the attacker. His attack also applies to
the compression function of extended MD4 [71],
which consist of two loosely coupled instances of
MD4. Later Dobbertin et al. showed that a reduced
version of MD4 (2 rounds out of 3) is not preimage
resistant [29].

Following early attacks on MD4 by den Boer and
Bosselaers [23] and by Merkle, Rivest quickly pro-
posed a strengthened version, namely MD5 [72].
It was however shown by den Boer and Bosse-
laers [24] that the compression function of MD5
is not collision resistant (but their collisions are of
the special form f (Hi−1, Xi) = f (H′

i−1, Xi), which
implies they have no direct impact on applica-
tions). Dobbertin has extended his attack on MD4
to yield collisions for the compression function of
MD5, i.e., f (Hi−1, Xi) = f (Hi−1, X′

i), where he has
some control over Hi−1 [28]. It is believed that it is
feasible to extend this attack to collisions for MD5
itself (i.e., to take into account the IV).

HAVAL was proposed by Zheng et al. at
Auscrypt’92 [86]; it consists of several variants
(outputs length between 128 and 256 bits and 3, 4
or 5 rounds). The 3-round version was broken by
Van Rompay et al. [81] for all output lengths.

NIST has published a series of variants on MD4
as FIPS standards under the name Secure Hash
Algorithm family or SHA family. The first Secure
Hash Algorithm was published by NIST [31] in
1993 (it is now referred to as SHA-0). The size of
the hash result is 160 bits. In 1995, NIST discov-
ered a certificational weakness in SHA-0, which
resulted in a new release of the standard published
under the name SHA-1 [32]. In 1998, Chabaud
and Joux have published an attack that finds col-
lisions for SHA-0 in 261 operations [13]; it is prob-
ably similar to the (classified) attack developed
earlier that prompted the upgrade to SHA-1. In
2002, three new hash functions have been pub-
lished with longer hash results: SHA-256, SHA-
384, and SHA-512 [33]. In December 2003, SHA-
224 has been added in a change notice to [33].
SHA-256 and SHA-224 have eight 32-bit chaining
variables, and their compression function takes
message blocks of 512 bits and chaining variables
of 256 bits. SHA-384 and SHA-512 operate on
64-bit words; their compression function processes
messages in blocks of 1024 bits and chaining vari-
ables of 512 bits. They are defined for messages
shorter than 2128 bits.

Yet another improved version of MD4, called
RIPEMD, was developed in the framework of the
EEC-RACE project RIPE [70]. RIPEMD has two
independent paths with strong interaction at the
end of the compression function. It resulted later

in the RIPEMD family. Due to partial attacks
by Dobbertin [26], RIPEMD was upgraded by
Dobbertin et al. to RIPEMD-128 and RIPEMD-
160, which have a 128-bit and a 160-bit result,
respectively [30]. Variants with a 256 and 320-bit
result have been introduced as well.

Whirlpool is a design by Barreto and V. Rijmen
[6]; it consists of a 512-bit block cipher with a 512-
bit key in the Miyaguchi–Preneel mode (see Sec-
tion “Hash functions . . . cipher”); it offers a result
of 512 bits. The design principles of Whirlpool are
closely related to those of Rijndael/AES.

Together with SHA-256, SHA-384, and SHA-
512, Whirlpool has been recommended by the
NESSIE project. The ISO standard on design hash
functions (ISO/IEC 10118-3) contains RIPEMD-
128, RIPEMD-160, SHA-1, SHA-256, SHA-384,
SHA-512, and Whirlpool [42]. Other custom de-
signed hash functions include FFT-Hash III [76],
N-hash [57], Snefru [54], Subhash [18] and Tiger
[4].

Hash Functions Based on a Block Cipher

Hash functions based on a block cipher have been
popular as this construction limits the number of
cryptographic algorithms which need to be eval-
uated and implemented. The historic importance
of DES, which was the first standard commer-
cial cryptographic primitive that was widely avail-
able, also plays a role. The main disadvantage of
this approach is that custom designed hash func-
tions are likely to be more efficient. This is par-
ticularly true because hash functions based on
block ciphers require a key change after every
encryption.

The encryption operation E will be written as
Y = EK(X). Here X denotes the plaintext, Y the
ciphertext, and K the key. The size of the plain-
text and ciphertext or the block length (in bits)
will be denoted with r , while the key size (in
bits) will be denoted with k. For DES, r = 64 and
k = 56. The hash rate of a hash function based on
a block cipher is defined as the number of r -bit
input blocks that can be processed with a single
encryption.

The discussion in this section will be limited to
the case k ≈ r . For k ≈ r , a distinction will be made
between the cases n = r , n = 2r , and n > 2r . Next
the case k ≈ 2r will be discussed. A more extensive
treatment can be found in [65].

Size of Hash Result Equal to the Block Length. All
known schemes of this type have rate 1. The first
secure construction for such a hash function was
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the 1985 scheme by Matyas et al. [51]:

Hi = E⊕
s(Hi−1)(Xi).

Here s() is a mapping from the ciphertext space
to the key space and E⊕

K(X) denotes EK(X) ⊕ X.
This scheme has been included in ISO/IEC 10118–
2 [42]. The dual of this scheme is the Davies–
Meyer scheme:

Hi = E⊕
Xi

(Hi−1). (1)

It has the advantage that it extends more eas-
ily to block ciphers for which key size and block
size are different. A variant on these schemes
was proposed in 1989 independently by Miyaguchi
et al. [43, 57] and Preneel et al. [63] (it is known
as the Miyaguchi–Preneel scheme):

Hi = E⊕
s(Hi−1)(Xi) ⊕ Hi−1.

In 1993, Preneel et al. identify 12 secure vari-
ants [64]; Black et al. [10] offer a concrete secu-
rity proof for these schemes in the black-box cipher
model (after earlier work in [82]): this implies that
in this model, finding a collision requires ≈ 2r/2

encryptions and finding a (second) preimage takes
≈ 2r encryptions. This shows that these hash func-
tions can only be collision resistant if the block
length is 160 bits or more. Most block ciphers have
a smaller block length, which motivates the con-
structions in the next section.

Size of Hash Result Equal to Twice the Block
Length. The goal of double block length hash func-
tions is to achieve a higher security level against
collision attacks. Ideally a collision attack on such
a hash function should require 2r encryptions, and
a (second) preimage attack 22r encryptions.

The few proposals that survive till today have
rate less than 1. Two important examples are
MDC-2 and MDC-4 with hash rate 1/2 and 1/4,
respectively. They have been designed by Brachtl
et al. [12], and are also known as the Meyer–
Schilling hash functions after the authors of the
first paper described these schemes [55].

T1
i = E⊕

u(H1
i−1)

(Xi) = LT1
i ‖ RT1

i

T2
i = E⊕

v(H2
i−1)

(Xi) = LT2
i ‖ RT2

i

H1
i = LT1

i ‖ RT2
i

H2
i = LT2

i ‖ RT1
i .

The variables H1
0 and H2

0 are initialized with the
values IV1 and IV2 respectively, and the hash re-
sult is equal to the concatenation of H1

t and H2
t .

The functions u, v map the ciphertext space to
the key space and need to satisfy the condition

u(IV1) �= v(IV2). For k = r , the best known preim-
age and collision attacks on MDC-2 require 23r/2

and 2r operations, respectively [50]. A collision
attack on MDC-2 based on the Data Encryption
Standard (DES) (r = 64, k = 56) requires at most
255 encryptions. Note that the compression func-
tion of MDC-2 is rather weak, hence Theorems 1
and 2 cannot be applied: preimage and collision at-
tacks on the compression function require at most
2r and 2r/2 operations. MDC-2 has been included
in ISO/IEC 10118-2 [42].

One iteration of MDC-4 consists of the concate-
nation of two MDC-2 steps, where the plaintexts
in the second step are equal to H2i−1 and H1i−1.
The rate of MDC-4 is equal to 1/4. For k = r , the
best known preimage attack for MDC-4 requires
27r/4 operations. This shows that MDC-4 is prob-
ably more secure than MDC-2 against preimage
attacks. However, finding a collision for MDC-4 it-
self requires only 2r+2 encryptions, while finding a
collision for its compression function requires 23r/4

encryptions [49,62]. The best known (2nd) preim-
age attack on the compression function of MDC-4
requires 23r/2 encryptions.

A series of proposals attempted to achieve rate
1 with constructions of the following form:

H1
i = EA1

i
(B1

i ) ⊕ C1
i

H2
i = EA2

i
(B2

i ) ⊕ C2
i ,

where A1
i , B1

i , and C1
i are binary linear com-

binations of H1
i−1, H2

i−1, X1
i , and X2

i and where
A2

i , B2
i , and C2

i are binary linear combinations of
H1

i−1, H2
i−1, X1

i , X2
i , and H1

i . The hash result is
equal to the concatenation of H1

t and H2
t . However,

Knudsen et al. showed that for all hash functions
in this class, a preimage attack requires at most
2r operations, and a collision attack requires at
most 23r/4 operations (for most schemes this can
be reduced to 2r/2) [48].

Merkle describes an interesting class of propos-
als in [53], for which he proves in the black-box
cipher model that the compression function is col-
lision resistant. The most efficient scheme has rate
1/4 and offers a security level of 256 encryptions
when used with DES. Other results on output
length doubling have been obtained by Aiello and
Venkatesan [1].

Size of Hash Result Larger than Twice the Block
Length. Knudsen and Preneel propose a collision
resistant compression function, but with paral-
lel encryptions only [49]. They show how a class
of efficient constructions for hash functions can
be obtained based on non-binary error-correcting
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codes. Their schemes can achieve a provable
security level against collisions equal to 2r , 23r/2

(or more) and this with rates larger than 1/2
(based on a rather strong assumption). The inter-
nal memory of the scheme is larger than two or
three blocks, which implies that an output trans-
formation is required. Two of their schemes have
been included in ISO/IEC 10118-2 [42].

Size of the Key Equal to Twice the Block Length.
In this case making efficient constructions is a lit-
tle easier. A scheme in this class was proposed by
Merkle [52], who observed that a block cipher with
key length larger than block length is a natural
compression function:

Hi = EHi−1 ‖ Xi (C),

with C a constant string. Another construction can
be found in [50].

Two double length hash functions with rate 1/2
have been proposed by Lai and Massey [50]; they
form extensions of the Davies–Meyer scheme. One
scheme is called Tandem Davies–Meyer, and has
the following description:

H1
i = E⊕

H2
i−1‖Xi

(H1
i−1)

H2
i = E⊕

Xi‖(H1
i ⊕H1

i−1)
(H2

i−1).

The second scheme is called Abreast Davies–
Meyer:

H1
i = E⊕

H2
i−1‖Xi

(H1
i−1)

H2
i = E⊕

Xi‖H1
i−1

(H
2
i−1).

Here H denotes the bitwise complement of H. The
best known attacks for a preimage and a collision
require 22r and 2r encryptions, respectively. Faster
schemes in this class have been developed in [49].

Hash Functions Based on
Algebraic Structures

It should be pointed out that several of these hash
functions are vulnerable to the insertion of trap-
doors, which allow the person who chooses the de-
sign parameters to construct collisions. Therefore
one needs to be careful with the generation of the
instance. For an RSA public key encryption mod-
ulus, one could use a distributed generation as de-
veloped by Boneh and Franklin [11] and Frankel
et al. [35].

Hash Functions Based on Modular Arithmetic.
For several schemes there exists a security re-

duction to a number theoretic problem that is be-
lieved to be difficult. However, they are very slow:
typically they hash log2 log2 N bits per modular
squaring (or even per modular exponentiation).
Damgård provides two hash functions for which
finding a collision is provably equivalent to fac-
toring an RSA modulus [19]. Gibson proposes a
construction based on the discrete logarithm prob-
lem modulo a composite [38]. A third approach by
Bellare et al. [7] uses the discrete logarithm prob-
lem in a group of prime order p denoted with Gp.
Every non-trivial element of Gp is a generator. The
hash function uses t random elements αi from Gp
(αi �= 1). The hash result is then computed as

Ht+1 =
t∏

i=1

α
X̃i
i .

Here X̃i is obtained by considering the string Xi as
the binary expansion of a number and prepending
1 to it. This avoids trivial collisions when Xi con-
sists of all zeroes.

There exists a large number of ad hoc schemes
for which there is no security reduction; many
of these have been broken. The most efficient
schemes are based on modular squaring. The best
schemes seem to be of the form:

Hi = ((Xi ⊕ Hi−1)2 mod N ) ⊕ Hi−1.

In order to preclude a correcting block attack, it is
essential to add redundancy to the message blocks
Xi and to perform some additional operations. Two
constructions, MASH-1 and MASH-2 (for Modular
Arithmetic Secure Hash) have been standardized
in ISO/IEC 10118-4 [42]. MASH-1 has the follow-
ing compression function:

Hi = (
((Xi ⊕ Hi−1) ∨ A)2(mod N)

) ⊕ Hi−1,

Here A = 0xF00 . . . 00, the four most significant
bits in every byte of Xi are set to 1111, and the
output of the squaring operation is chopped to n
bits. A complex output transformation is added,
which consists of a number of applications of the
compression function; its goal is to destroy all the
remaining mathematical structure. The final re-
sult is at most n/2 bits. The best known preimage
and collision attacks on MASH-1 require 2n/2 and
2n/4 operations [17]; they are thus not better than
brute force attacks. MASH-2 is a variant of MASH-
1 which uses exponent 28 + 1 [42]. This provides
for an additional security margin.

Hash Functions Based on Knapsack and Lattice
Problems. The knapsack problem (see knapsack
cryptographic schemes) of dimensions n and �(n)
can be defined as follows: given a set of n l-bit
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integers {a1, a2, . . . , an}, and an integer S, find a
vector X with components xi equal to 0 or 1 such
that

n∑
i=1

ai · xi = S mod 2�(n).

For application to hashing, one needs n > �(n);
knapsack problems become more difficult when
n ≈ �(n); however, the performance of the hash
function decreases with the value n − �(n). The
best known attacks are those based on lattice
reduction (LLL) [44] and an algebraic technique
which becomes more effective if n � �(n) [61]. It
remains an open problem whether for practical in-
stances a random knapsack is sufficiently hard.

Ajtai introduced a function that is one-way (or
preimage resistant) if the problem of approximat-
ing the shortest vector in a lattice to polynomial
factors is hard [2]. Goldreich et al. have proved
that the function is in fact collision resistant [40].
Micciancio has proposed a CRHF for which the se-
curity is based on the worst case hardness of ap-
proximating the covering radius of a lattice [56].

Several multiplicative knapsacks have also
been proposed, such as the schemes by Zémor [84]
and Tillich and Zémor [79]. Their security is based
on the hardness of finding short factorizations in
certain groups. In some cases one can even prove
a lower bound on the Hamming distance between
colliding messages. Attacks on these proposals (for
certain parameters) can be found in [14,36].

Incremental Hash Functions. A hash function (or
any cryptographic primitive) is called incremental
if it has the following property: if the hash func-
tion has been evaluated for an input x, and a small
modification is made to x, resulting in x′, then one
can update h(x) in time proportional to the amount
of modification between x and x′, rather than hav-
ing to recompute h(x′) from scratch. If a function is
incremental, it is automatically parallelizable as
well.

This concept was first introduced by Bellare
et al. [7]. They also made a first proposal based
on exponentiation in a group of prime order. Im-
proved constructions were proposed by Bellare
and Micciancio [8].

Bart Preneel
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HMAC

HMAC is a MAC algorithm designed by Bellare
et al. [1] in 1996. A MAC algorithm is a crypto-
graphic algorithm that computes a complex func-
tion of a data string and a secret key; the result-
ing MAC value is typically appended to the string
to protect its authenticity. HMAC is a MAC algo-
rithm based on a hash function. This type of con-
struction became popular, because in the mid to
late 1990’s no secure and efficient custom designed
MAC algorithms were available and hash func-
tions (such as MD5) offered a much better perfor-
mance than block ciphers; this implies that HMAC
is faster than CBC-MAC. HMAC offers the advan-
tage that it can be implemented without making
any modification to the code of the hash function
itself.

We present a description of HMAC for use with
hash functions such as MD5, RIPEMD-160, and
SHA-1, that process inputs in blocks of 512 bits;
it is straightforward to extend this description to
other hash functions:

MACK(x) = h((K ⊕ opad)‖h((K ⊕ ipad)‖x)).

Here K is the key of the MAC algorithm (padded
with zeroes to a block of 512 bits) and opad
and ipad are constant 512-bit strings (equal to
64 times the hexadecimal values ‘36x’ and ‘5cx’,
respectively). The resulting MAC value can
(optionally) be truncated to 80 bits. In practice,
one can apply the compression function f of the
hash function (see Hash functions) to the strings
K ⊕ ipad and K ⊕ opad, respectively, and store
the resulting values as initial values for the inner
and outer hashing operations. This will reduce the
number of operations of the compression function
by two.

The designers of HMAC have proved that
HMAC is a secure MAC algorithm if the follow-
ing conditions hold: (i) the hash function is colli-
sion resistant for a secret value and random value
IV = H0 (the initial value of the iteration); (ii) its
compression function is a secure MAC (with the
secret key in the Hi input and the text in the Xi
input); (iii) the compression function is ‘weakly
pseudo-random’ (for more details see [1]). Note
that the first condition is weaker than normal
collision resistance with known IV. The other two
conditions are different from standard conditions
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on hash functions, but some other hash function
applications assume that they hold.

The best attack known on HMAC is a forgery
attack based on internal collisions [5]. For HMAC
based on MD5, this attack requires 264 known
text-MAC pairs (and a similar number of chosen
texts if truncation is applied). For HMAC based
on SHA-1 and RIPEMD-160, this increases to 280

known text-MAC pairs.
HMAC has been included in ISO/IEC 9797-2 [3]

and in FIPS 198 [2]. It is also widely used on the
Internet [4]: HMAC-SHA-1 with a 160-bit key and
a truncation to 96 bits is the mandatory algorithm
for providing message authentication at the net-
work layer (IPsec), and HMAC-MD5 is optional.
Transport Layer Security (TLS) also uses both al-
gorithms.

B. Preneel
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HOMOMORPHISM

A mapping between two groups that preserves the
group structure is a homomorphism. Let (S, ◦) and
(T, •) be two groups, and let f be a mapping from
S to T. The mapping f is a homomorphism if, for
all x, y ∈ S,

f (x ◦ y) = f (x) • f (y).

As an example, the mapping f (x) = xe mod n
in RSA public-key encryption is a homomorphism

since

f (xy) ≡ (xy)e ≡ f (x) f (y) (mod n).

In this case, the sets S and T are the operations ◦
and • are the same. Another homomorphism is the
mapping f (x) = gx mod p related to the discrete
logarithm problem:

f (x + y) ≡ f (x) f (y) (mod p).

Here, the sets and the operations are different be-
tween the two sides.

Ring homomorphisms that preserve group
structure with respect to two operations may be
defined similarly.

Homomorphisms are important in cryptogra-
phy since they preserve relationships between ele-
ments across a transformation such as encryption.
Sometimes the structure enables additional secu-
rity features (as in blind signatures), and other
times it enables additional attacks (e.g., Bleichen-
bacher’s attack on an unprotected form of RSA en-
cryption [1]).

Burt Kaliski

Reference

[1] Bleichenbacher, Daniel (1998). “Chosen ciphertext
attacks against protocols based on RSA encryption
standard PKCS #1. In Advances in Cryptology—
CRYPTO ’98, ed. H. Krawczyk, vol. 1462 of Lec-
ture Notes in Computer Science, Springer, Berlin,
1–12.

HTTPS, SECURE HTTPS

HTTPS is a variant of http for handling secure
transactions. A secure http request is made us-
ing an URL of the type “https://. . .” instead of the
“http://. . .” request used for ordinary http. The de-
fault “https” port number is 443, as assigned by
the Internet Assigned Numbers Authority.

In a secure http transaction, data sent to and
received from an https server are protected using
Secure Socket Layer (SSL) or Transaction Layer
Security (TLS). Thus https is a two-step process in
which security mechanisms and the necessary ses-
sion keys are agreed initially. These session keys
establish a secure tunnel during which the actual
messages can be subsequently transmitted. The
secure http server must have a certified public
key (see certificate and public key cryptography),
which is used when exchanging the session keys
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(e.g., the client generates and encrypts a common
secret under the public key of the server). Only
a server having the private key corresponding to
the public key in the certificate is able to recover
the exchanged secret and obtain a common key
with the requesting entity. By looking up the in-
formation in the serverís certificate, the client can
therefore be confident that it communicates with
the right server and that only this server can
see the contents of the messages transmitted over
https.

HTTPS optionally supports identification of the
client during key exchange. In this case, the client
must have a certified key pair as well. During
the initial key agreement, this key pair is used to
authenticate the client (e.g., by making a digital
signature). Thus the server may base it decision
to proceed on the identity of the client. In partic-
ular, this allows the server to control access to its
services.

Torben Pedersen
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I
IDEA

IDEA (previous name IPES) is a 64-bit, 8.5-round
non-Feistel block cipher with 128-bit keys, pro-
posed by Lai and Massey in 1991 [12]. It is a
modified version of a previous design called PES
(Proposed Encryption Standard) by the same au-
thors [11], with added strength against differen-
tial cryptanalysis. The key-schedule of the cipher
is completely linear. The main idea behind the
design is the mix of non-commuting group oper-
ations: addition mod 216 (denoted by �), XOR (de-
noted by ⊕), multiplication mod (216 − 1) (denoted
by �, with 0 ≡ 216). These operations work with
16-bit words. One round of IDEA is split into two
different half-round operations: key mixing (de-
noted by T) and M-mixing denoted by M = s ◦
MA, where MA denotes a multiplication–addition
structure and s denotes a swap of two middle
words.1 T divides the 64-bit block into four 16-
bit words X1, X2, X3, X4 and mixes the key words
Z1, Z2, Z3, Z4 with the data using � and �:

(X1, X2, X3, X4)
T−→ (X1 � Z1, X2 � Z2,

X3 � Z3, X4 � Z4).

The transform MA provides diffusion between dif-
ferent words and mixes in two more key words
Z5, Z6:

Y1 = ((X1 ⊕ X3) � Z5 � (X2 ⊕ X4)) � Z6,

Y2 = Y1 � ((X1 ⊕ X3) � Z5),

(X1, X2, X3, X4)
MA−→ (X1 ⊕ C2, X2 ⊕ C1,

X3 ⊕ C2, X4 ⊕ C1).

Both MA and s are involutions. The full 8.5-round
IDEA can be written as

IDEA = T ◦ s ◦ (s ◦ MA◦ T)8 = T ◦ s ◦ (M ◦ T)8.

The only changes between IDEA and its pre-
decessor PES, are in the order of operations
in the key mixing subround T: PES uses the
order (�, �, �, �), while IDEA uses the order
(�, �, �, �), and in the swap of the words after the
MAsubround. In IDEA the outer words X1, X4 are
not swapped. These changes were motivated by a
differential attack on PES given in [12].

1 As usual the composition of transformations is applied from
right to left, i.e., MA is applied first, and the swap s is applied
to the result.

Since its publication, IDEA resisted intensive
cryptanalytic efforts [1–8,13]. In [10, p. 79] IDEA
reduced to four rounds was claimed to be secure
against differential attacks. Progress in cryptan-
alyzing round-reduced variants was very slow,
starting with an attack on a two-round variant
of IDEA in 1993 [13] by Meier, an improvement
to 2.5 rounds by Daemen et al. [4], then an at-
tack on 3.5 rounds published in 1997 [3] by Borst
et al. Impossible differential attack significantly
improved previous results for 3 and 3.5 rounds
and could break up to 4.5 rounds [1] using the
full codebook and 2112 steps. Finally the current
best attack marginally breaks five rounds with a
new variant of meet-in-the-middle attack due to
Demirci et al. [6] and uses 224 chosen plaintexts,
258 memory and 2126 steps of analysis. This ap-
proach has higher analysis complexity than the
impossible differential attack for 4 and 4.5 rounds,
but requires less data.

In addition to these attacks three relatively
large easily detectable classes of weak keys were
found: in [5] 251 weak keys out of the 2128 keys
were found to be detectable with 16 chosen plain-
texts and 217 steps using differential membership
tests, and in [7] 263 weak keys were found to
be detectable given 20 chosen plaintexts with a
negligible complexity under differential–linear
membership tests. Recently a boomerang mem-
bership test allowed to find a class of 264 keys [2]
with 216 steps and queries for the membership
test. Still the chance of choosing a weak key at ran-
dom is about 2−64 which is extremely low. Using
this approach for a 5-round reduced IDEA one key
out of 231 can be recovered with just 210 adaptive
chosen plaintext and chosen ciphertext queries,
which compares favourably to the currently best
attacks. Also related key attacks on 3.5 rounds [9]
and on 4 rounds [7] of IDEA were developed.

Alex Biryukov
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IDENTIFICATION

A “name”, or identity, is a set of information that
distinguishes a specific entity from every other
within a particular environment. In some envi-
ronments, the “name” may just be a given name;
in other environments, it will be a given name
and a family name; in still others, it may in-
clude additional data such as a street address,
or may be some other form entirely (for example,
an employee number). In all cases, however, the
identity depends upon the environment: the size
and characteristics of the environment determine
the amount of information required for unique-
ness.

Identification is the claim of an identity. Each
of two entities is involved in this process: the
claimant claims an identity either explicitly or im-
plicitly (“I am x”), and the verifier makes a corre-
sponding claim with respect to the same identity
(“The entity with whom I am dealing is X”, where
X is either x or a mapping from x to some other
namespace that is meaningful to the verifier).
In order for the verifier to believe its own claim
enough to rely upon it for some purpose, there
must be corroborating evidence of the claimant’s
claim. This evidence may come from the claimant
directly or may come from some third party that is
trusted by the verifier. In either case, the process
of obtaining and verifying this evidence is known
as authentication (see also entity authentication)
and may make use of a protocol exchange be-
tween the verifier and the claimant (see identity
verification protocol).

Depending upon the purpose for which the ver-
ifier needs the identity of the claimant (that is,
depending upon how much the verifier must rely
upon this identity), the authentication process as-
sociated with an identification step may be rel-
atively weak, relatively strong, or somewhere in
between. The verifier needs to assess and man-
age the risk that this identity may have been
stolen by another entity who is now trying to
impersonate the true holder of this identity (see
impersonation attack). Impersonation can poten-
tially lead to unauthorized access to personal or
corporate data, networks, applications, or func-
tions; the verifier will typically use stronger au-
thentication mechanisms if a successful imper-
sonation attack leads to the release of sensitive
data.

IDENTITY UNIQUENESS: Identification is only
possible within a domain when all identities in
that domain are unique (i.e., no two entities in
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the domain have the same “name”). There are two
general schemes for achieving identity uniqueness
within a domain: hierarchical namespaces and flat
namespaces. In a flat namespace, the Naming Au-
thority (the authority that officially assigns iden-
tities to, or associates identities with, entities) is
responsible for binding a unique identity to every
entity in the domain and uses a fixed, nonextensi-
ble syntax to express this identity. Within a com-
pany, an n-digit employee number is an example
of a flat namespace scheme.

In a hierarchical namespace, the Naming Au-
thority is responsible for binding a unique iden-
tity to only a subset of the entities; these entities
in turn are responsible for binding unique iden-
tities to other groups of entities, and so on, until
every entity has a unique identity. The identity
syntax is typically flexible and extensible. Exam-
ples of hierarchical namespace schemes include
e-mail address, IP address, and X.500 Distin-
guished Name.

In general, there is a tradeoff between
uniqueness and usability (user-friendliness) in
a flat namespace. Furthermore, for many large
domains—in particular, the domain of the entire
world—there is no single recognized naming au-
thority. Consequently, hierarchical schemes are
typically used in practice in large-scale environ-
ments.

AUTHORITIES FOR NAMING AND AUTHENTI-
CATION: Although they may in theory be the same,
typically the Naming Authority and the Authen-
tication Authority in a domain are distinct enti-
ties. The Naming Authority associates a “name”
with an entity for the purposes of identification,
while the Authentication Authority associates
that same “name” with corroborating evidence
for the purposes of authentication, and/or with
an authentication mechanism for the purposes of
identity verification. A Certification Authority in
a Public Key Infrastructure (PKI) is an example
of the latter type of Authentication Authority in
that it binds a “name” (such as an e-mail address)
to a public key pair that will be used as an au-
thentication mechanism by the entity associated
with that “name”. A government department is-
suing driver’s licenses is an example of the former
type of Authentication Authority in that it writes
a “name” (in this case, a given and family name,
along with address and other information) into an
official document (the driver’s license) that may be
used as corroborating evidence to validate a claim
of identity.

Carlisle Adams

IDENTITY-BASED
CRYPTOSYSTEMS

INTRODUCTION: Identity-based public key cryp-
tography is a paradigm (see also identity-based
encryption) introduced by Shamir in 1984 [29].
His motivation was to simplify key management
and remove the need for public key certificates
as much as possible by letting the user’s public
key be the binary sequence corresponding to an
information identifying him in a nonambiguous
way (e-mail address, IP address combined to a
user name, telephone number . . . ). The removal
of certificates allows avoiding the trust problems
encountered in current public key infrastructures
(PKIs): it is no longer necessary to bind a public
key to its owner’s name since it is one single thing
and it also simplifies key management since pub-
lic keys are human-memorizable. These systems
involve trusted authorities called private key gen-
erators (PKGs) that have to deliver private keys
to users after having computed them from their
identity information (users do not generate their
key pairs themselves) and from a master secret
key. End users do not have to enquire for a certifi-
cate for their public key. The only things that still
must be certified are the public keys of trusted au-
thorities (PKGs). This does not completely remove
the need for certificates but, since many users de-
pend on the same authority, this need is drastically
reduced. Several practical solutions for identity-
based signatures (IBS) have been devised since
1984 [13, 17, 28] but finding a practical identity-
based encryption scheme (IBE) remained an open
challenge until 2001 when Boneh and Franklin
[5] proposed to use bilinear maps (the Weil or
Tate pairing) over supersingular elliptic curves
to achieve an elegant identity-based encryption
method. Other identity-based signature and key
agreement schemes based on pairings were pro-
posed after 2001 [11, 18, 30].

Basically, an identity-based cryptosystem is
made of four algorithms. First, a Setup algorithm
that is run by a PKG and takes as input a secu-
rity parameter to output a public/private key pair
(Ppub, mk) for the PKG (Ppub is its public key and
mk is its master key that is kept secret). Second,
a key generation algorithm Keygen that is run by
a PKG: it takes as input the PKG’s master key mk
and a user’s identity ID to return the user’s private
key dID. In the case of identity-based encryption,
the third algorithm is an encryption algorithm
Encrypt that is run by anyone and takes as in-
put a plaintext M, the recipient’s identity and the
PKG’s public key Ppub to output a ciphertext C. The
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last algorithm is then the decryption algorithm
Decrypt that takes as input the ciphertext C and
the private decryption key dID to return a plain-
text M. In the case of identity-based signatures,
the last two algorithms are the signature gener-
ation algorithm Sign that, given a message M,
the PKG’s public key and a private key dID gen-
erates a signature on M that can be verified by
anyone thanks to the signature verification algo-
rithm Verify. The latter takes as input the PKG’s
key Ppub and the alleged signer’s identity ID to re-
turn 1 or 0 depending on whether the signature is
acceptable or not.

In this chapter we give a survey of the main
advancements achieved in the field of identity-
based cryptography since Shamir’s call for propos-
als in 1984. We first recall two schemes obtained
from simple modular arithmetic before showing
examples obtained from bilinear maps over elliptic
curves.

ID-BASED CRYPTOSYSTEMS FROM MODULAR
ARITHMETIC: This section presents two sim-
ple identity-based cryptosystems: the Guillou–
Quisquater [17] digital signature and Cocks’s pub-
lic key encryption scheme [12]. Both are obtained
from modular arithmetic and their security re-
lies on the intractability of factoring large inte-
gers. The first one uses the RSA trapdoor permu-
tation while the second one is based on quadratic
residues.

The Guillou–Quisquater Signature Scheme

This scheme is derived from a three round iden-
tification scheme. It was proposed in 1988 and is
made of the four following algorithms:
Setup: Given a security parameter k0, the private

key generator (PKG) picks two k0/2-bit primes p
and q and computes n = pq. It also picks a prime
number e ∈ Zϕ(n) such that gcd (e, ϕ(n)) = 1 and
chooses a cryptographic hash function h :→ Ze
and a redundancy function R : {0, 1}∗ → Zn. The
pair (n, e) is its public key while the pair (p, q) is
kept secret and is its master key. The functions
R and h are also made public.

Keygen: Given a user’s identity ID, the PKG
computes I = R(ID) ∈ Z

∗
n and a ∈ Z

∗
n such that

Iae ≡ 1 (mod n). The obtained a is returned to
the user as a private key.

Sign: Given a message m, the signer does the fol-
lowing:
1. Pick a random k ←R Z

∗
n and compute r =

ke mod n
2. Compute � = h (m ‖ r ) ∈ Ze
3. Calculate s = ka� mod n
The signature on m is the pair (s, �).

Verify: To verify a signature (s�) on m,
1. Compute I = R (ID) from the signer’s identity

ID.
2. Compute u = se I� mod n.
3. Accept the signature if � = h (m ‖ u).

To verifiy the consistency of the scheme, we note
that

u ≡ se I� ≡ (ka�)e I� ≡ ke(ae I)� ≡ ke ≡ r (mod n).

Hence u = r and then h (m‖u) = h (m‖r ). This
signature scheme is derived from the Guillou–
Quisquater identification protocol (GQ) using the
Fiat–Shamir heuristic [13] (that allows the con-
version of any identification scheme into a digital
signature by the replacement of the verifier’s chal-
lenge with the hash value of the message to sign
concatenated to the commitment). That is why the
output of the hash function h must be smaller than
e (the set of challenges is Ze in the underlying iden-
tification protocol). The GQ signature scheme can
be proved to be existentially unforgeable provided
it is hard to invert the RSA function (see RSA
public-key encryption) by using the proof tech-
nique of Pointcheval and Stern [26, 27]. The public
exponent is taken as a prime for provable secu-
rity purposes. The redundancy function R aims at
preventing attacks that could take advantage of
multiplicative relations between identities. In or-
der to avoid birthday paradox attacks on the hash
function, it is recommended to use public expo-
nents e of at least 160 bits (in the corresponding
identification scheme, shorter exponents are al-
lowed). The security parameters should be at least
1024 or 2048 to avoid attacks trying to factor the
modulus.

Cocks’s Identity-Based Cryptosystem

This encryption scheme, due to Cocks in 2001, is
based on quadratic residues and on the properties
of the Legendre and Jacobi symbols for Blum inte-
gers (i.e., composite numbers n that are a product
of two primes pand q such that p ≡ q ≡ 3 (mod 4).
It is made of the four algorithms depicted below:
Setup: The PKG picks prime numbers p and q

such that p ≡ q ≡ 3 (mod 4), computes their
product n = pq that is made public together
with a hash function H : {0, 1}∗ → Z

∗
n. The

PKG’s master key is (p, q).
Keygen: Given an identity ID, the PKG com-

putes a chain of hash values starting from ID
until obtaining a = H(H(H . . . (ID))) ∈ Z

∗
n such

that (a
n ) = 1. For such a a ∈ Z

∗
n, either a or −a

is a square in Z
∗
n. It is easy to verify that r =

a
n+5−(p+q)

8 mod n satisfies a = r2 mod n or a = −r2

mod n depending on whether (a
p) = ( a

q ) = 1 or
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(a
p) = ( a

q ) = −1. The obtained r is returned to the
user as a private key.

Encrypt: The sender A ignores which of a or −a
is a square in Z

∗
n. We first assume we are in

the case a = r2 mod n. A generates a symmet-
ric transport key K and encrypts the plaintext
M with it. Each bit x of that symmetric key is
then encrypted before being sent to the receiver
B. To do this, A encodes x in {−1,1} rather than
in {0,1} and does the following.
1. Pick a random t ∈ Z

∗
n such that ( t

n ) = x.
2. Compute s = (t + a

t ) mod n (since ( t
n ) 
= 0, t is

coprime with p and q and thus invertible in
Zn) and send it to B.

Since A does not know which of a or −a is the
square of B’s decryption key, A has to repeat the
above process for a new t and, this time, send
s = (t − a/t) mod n. Hence, 2|n| bits, where |x|
denotes the bitlength of x, have to be transmit-
ted for each bit of the symmetric key.

Decrypt: B recovers x as follows. Given that

t
(
1 + r

t

)2
≡ t + 2r + r2

t
≡ t + 2r + a

t
≡ s + 2r (mod n),

B can compute ( s+2r
n ) = ( t

n ) = x and recover x us-
ing his/her private key r thanks to the multi-
plicative properties of the Jacobi symbol. Once
the symmetric key K is obtained in clear, the
ciphertext can be decrypted.
For 128-bit symmetric keys, the scheme is rea-

sonably computationally cheap: the sender’s com-
puting time is dominated by 2 × 128 Jacobi sym-
bol evaluations and 2 × 128 modular inversions
(see inversion in finite fields and rings). The re-
ceiver just has to compute 128 Jacobi symbols
since he/she knows which of a or −a is the square
of his/her private key. The drawback of the scheme
is its bandwidth overhead: for a 1024-bit modulus
n and a 128-bit symmetric transport key, at least
2 × 16 KB need to be transmitted if all the inte-
gers s are sent together. This remains reasonable
for applications such as secure e-mail.

Cocks provided no formal security proof for his
scheme. He informally demonstrated that his con-
struction is secure against chosen-plaintext at-
tacks under the Quadratic Residuosity Assump-
tion (i.e., the hardness of deciding whether or not
a random integer a such that (a

n ) = 1 is a square or
not). He argued that several generic transforma-
tions can be applied to the scheme to turn it into
a chosen-ciphertext secure one.

ID-BASED CRYPTOSYSTEMS FROM PAIRINGS
OVER ELLIPTIC CURVES: Pairings are bilinear
maps that are efficiently computable for a particu-

lar kind of elliptic curves. These curves have been
thought to be unsuitable for cryptographic pur-
poses since the MOV reduction [22] from the el-
liptic curve discrete logarithm problem (ECDLP)
to the discrete logarithm in a finite field. In 2000,
Joux [20] showed how to use pairings over these
curves in constructive cryptographic applications.
Namely, he showed how to devise a one-round
tripartite Diffie–Hellman protocol using pairings.
Since that seminal paper, pairings provided a
couple of other applications [5, 7–11, 15, 18, 25,
28]. One of the most important was Boneh and
Franklin’s identity-based encryption protocol [5]
that is described further.

Overview of Pairings

Let us consider groups G1 and G2 of the same
prime order q. We need a bilinear map ê : G1 ×
G2 → G2 satisfying the following properties:
1. Bilinearity: ∀ P, Q ∈ G1, ∀ a, b ∈ Z

∗
q , we have

ê(aP, bQ) = ê(P, Q)ab.
2. Non-degeneracy: for any point P ∈

G1, ê(P, Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: there exists an efficient algo-

rithm to compute ê(P, Q) ∀ P, Q ∈ G1.
The modified Weil pairing [5] and the Tate pair-

ing are admissible applications. G1 is a cyclic sub-
group of the additive group of points of a super-
singular elliptic curve (i.e., a curve for which the
number of points is a multiple of the underlying
field’s characteristic) over a finite field. G2 is a
cyclic subgroup of the multiplicative group asso-
ciated to a finite extension of Fp. The security of
the schemes described in this section relies on the
hardness of the following problems.

DEFINITION 1.
� Given a group G1 with generator P, the Compu-

tational Diffie–Hellman problem (CDH) is,
given (aP, bP), to compute abP ∈ G1

� In a group G1, the Decisional Diffie–Hellman
problem (DDH) is, given (aP, bP, cP), to decide
whether c ≡ ab (mod q) or not. Tuples (aP, bP, cP)
satisfying this equality are called “valid Diffie–
Hellman tuple”.

� Given groups G1 and G2 of prime order q, a bi-
linear map ê : G1 × G2 → G2 and a generator
P of G1, the bilinear Diffie–Hellman prob-
lem (BDH) in (G1, G2, ê) is to compute ê(P, P)abc

given (P, aP, bP, cP).

So far, it is not known whether the BDH prob-
lem is strictly easier than the CDH problem or
not. However, no algorithm is known to solve it
in a polynomial time. It was shown by Joux and
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Nguyen [21] that elliptic curves for which pair-
ings can be efficiently computed give rise to groups
in which the CDH problem is still considered in-
tractable while the DDH problem is easy. Indeed,
given an instance (aP, bP, cP) of the DDH prob-
lem, it sufices to compare ê(aP, bP) and ê(P, cP)
to decide whether c ≡ ab (mod p) or not. This kind
of algebraic group is called “Gap Diffie–Hellman
groups” according to the terminology used in [24].
The separation between computational and de-
cisional problems is used in recent new crypto-
graphic constructions like [8, 11] and many others.

The Boneh–Franklin Identity-Based
Encryption Scheme [6]

We describe the basic version of the scheme
[6]. This version is only provably secure against
chosen-plaintext attacks and has some similar-
ities with El Gamal’s cryptosystem. Boneh and
Franklin showed that applying the Fujisaki-
Okamoto generic transformation [14] allows turn-
ing this basic scheme into a chosen-ciphertext
secure one. In fact, they introduced an extended
security model for chosen-ciphertext security in
the identity-based setting. That model considers
the fact that, before trying to find information
on the plaintext corresponding to a ciphertext pro-
duced using a given public key, an attacker might
be in possession of private keys associated to other
identities. Their scheme, proposed in 2001 (a short
time before Cocks’ one) turns out to be the first one
to be really secure and practical.

In the notation below, the symbol ⊕ denotes the
exclusive bitwise OR operation.
Setup: Given a security parameter k, the PKG

chooses groups G1 and G2 of prime order q > 2k.
A generator P of G1, a randomly chosen master
key s ∈ Z

∗
q and the associated public key Ppub =

s P are selected. The space of plaintexts is M =
{0, 1}n for a fixed n while C = G

∗
1 × {0, 1}n is the

ciphertext space. Cryptographic hash functions

H1 : {0, 1}∗ → G
∗
1 et H2 : G2 → {0, 1}n.

are also chosen. The system’s public parameters
are params = (G1, G2, ê, n, P, Ppub, H1, H2).

Keygen: Given identity ID ∈ {0, 1}∗, the PKG
computes QID = H1(ID) ∈ G1 and dID = sQID ∈
G1 that is given to the user as a private key.

Encrypt: To encrypt a message M ∈ M, the
sender follows the steps below:
1. Compute QID = H1(ID) ∈ G1.
2. Pick a random r ∈ Z

∗
q .

3. Compute gID = ê(QID, Ppub) ∈ G2.
The ciphertext C = (r P, M ⊕ H2(gr

ID)) is sent
to the receiver.

Decrypt: Given a ciphertext C = (U, V), the re-
ceiver uses his/her private key dID to decrypt by
computing M = V ⊕ H2(ê(dID,U)).

The protocol’s consistency is easy to check. Indeed,
if the sender correctly encrypted the message, we
have U = r P and

ê(dID,U) = ê(sQID, r P) = e(QID, Ppub)r = g r
ID.

We note that all the above algorithms make use of
a hash function that has the group G1 as a range.
It is explained in [5] how to efficiently implement
such a hash function.

It is shown in [5] that, when padded with
the Fujisaki-Okamoto transform, the above ba-
sic scheme is provably secure against adaptive
chosen-ciphertext attacks provided the Bilinear
Diffie–Hellman problem is hard.

In the version described above, the crucial infor-
mation is the PKG’s master key: all the system’s
privacy is compromised if that master key is ever
stolen by an attacker. In order to avoid having a
single target for attacks (and remove key escrow),
it is possible to split the PKG into several par-
tial PKGs in such a way that these partial PKGs
jointly generate a discrete logarithm key pair and
each of these eventually holds a piece of the mas-
ter key. Users then have to visit all the different
PKGs to obtain their partial private decryption
keys that can then be recombined into a full de-
cryption key (see also secret sharing scheme and
threshold scheme).

An Identity-Based Signature from Pairings

Guillou and Quisquater [17] showed an exam-
ple of identity-based signature that was based on
simple arithmetic and obtained from an identifi-
cation scheme using the Fiat–Shamir heuristic.
Their scheme is provably secure under the RSA
assumption using Pointcheval and Stern’s fork-
ing lemma [26, 27]. In 2000, Sakai et al. pro-
posed another identity-based signature based on
pairings over elliptic curves [28]. Unfortunately,
they did not provide any security proof for that
scheme. Paterson also proposed another ID-based
signature [25] that is still not provably secure. In
2002 appeared a first example of provably secure
identity-based signature obtained from these fash-
ionable bilinear maps. That scheme was proven
secure under the Diffie–Hellman assumption us-
ing the Pointcheval–Stern proof technique. It can
be depicted as follows.
Setup: The PKG generates the same public

parameters as in the Boneh–Franklin scheme.
The only difierence is that it uses hash functions
H1 : {0, 1}∗ × G1 → Zq and H2 : {0, 1}∗ → G1.
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The pubic parameters are (G1, G2, ê, P, Ppub,

H1, H2). The master key is s ∈ Zq .
Keygen: As in the Boneh–Franklin scheme, for an

identity ID, the PKG computes QID = H2(ID)
and the private key dID = sQID is transmitted
to the user.

Sign: Given his/her private key dID and a message
M ∈ M to sign, the signer randomly picks r ←R
Zq and computes

U = r QID, h = H1(M,U), et V = (r + h) dID.

The signature is σ = (U, V).
Verify: To verify a signature σ = (U, V) on a mes-

sage M and an identity ID, one first computes
h = H1(M,U) and then verifies if (P, Ppub,U +
hQID, V) is a valid Diffie–Hellman tuple (by
checking if ê(P, V) = ê(Ppub,U + hQID) as ex-
plained in Section “Overview of pairings”). If
this condition holds, the verifier accepts the sig-
nature. It rejects it otherwise.
To check the consistency of the scheme, one can

note that, if σ = (U, V) is a valid signature on a
message M and an identity ID, then we have

(P, Ppub,U + hQID, V)
= (P, Ppub, (r + h)QID, (r + h)dID)
= (P, s P, (r + h)QID, s(r + h)QID)
= (P, s P, x(r + h)P, xs(r + h)P),

because QID = xP for some x ∈ Zq since G1 is a
cyclic group. We thus actually have a valid Diffie–
Hellman tuple.

The signature generation algorithm is quite effi-
cient since it requires two multiplications in G1 as
most expensive operations. The verification algo-
rithm requires two pairing evaluations to solve an
instance of the DDH problem and is thus more ex-
pensive than the signature generation operation.
Globally, the performances of the complete proto-
col are comparable to those of the Boneh–Franklin
encryption scheme. From a bandwidth point of
view, if the scheme is implemented using a suitable
elliptic curve, one can obtain 320-bit signatures.

Hierarchical Identity-Based Cryptography

A shortcoming of the Boneh–Franklin identity-
based encryption scheme is that in a large net-
work, the PKG’s key generation task rapidly be-
comes a bottleneck since many private keys have
to be computed and secure channels have to
be established to transmit them to their legiti-
mate owner. To overcome this problem, a solu-
tion is to set up a hierarchy of PKGs in which
each PKG only computes private keys for enti-
ties (other PKGs or end-users) are immediately

below them in the hierarchy. In such hierarchies,
entities are represented by a tuple of identifying
strings IDs (i.e., a concatenation of their iden-
tifier to those of all their ancestors’one: for ex-
ample a child of 〈ID1, . . . , IDi〉 has an address
〈ID1, . . . , IDi, IDi+1〉) rather than a single iden-
tifier as in the Boneh–Franklin scheme.

In this section, we give an example, proposed by
Gentry and Silverberg [16], of such a hierarchical
scheme that can be viewed as a scalable extension
of Boneh and Franklin’s proposal (both schemes
are identical if the hierarchy has a single level).
Unlike another hierarchical scheme proposed by
Horwitz and Lynn [19], this one supports an arbi-
trary number of levels �. The end-users are always
located at the leafs of the hierarchy. Lower-level
PKGs (i.e., PKGs other than Root PKG located at
the top of the hierarchy) generate private keys for
their children by using some public information
coming from their ancestors together with a pri-
vate information that is only known to them. Each
of them then adds some information to the para-
meters that are known to their children.

In our notation, we call Leveli the set of entities
at level i, Level0 being the sole Root PKG. The
simplified version of the scheme is made of the
following algorithms:
Root Setup: Given a security parameter k, the

root PKG
1. generates groups G1 and G2 of prime order q

and a symmetric bilinear map ê : G1 × G1 →
G2.

2. picks a generator P0 ∈ G1.
3. chooses s0 ∈ Zq and sets Q0 = s0 P0.
4. chooses hash functions H1 : {0, 1}∗ → G1 and

H2 : G2 → {0, 1}n for some n denoting the size
of plaintexts.

The space of plaintexts M = {0, 1}n is that of ci-
phertexts C = G

t
1 × {0, 1}n where t is the level of

the ciphertext’s recipient in the hierarchy. The
public paramers are params := (G1, G2, ê, P0,

Q0, H1, H2). The master key is s0 ∈ Zq .
Lower Level Setup: An entity Et at level Levelt

randomly picks st ∈ Zq and keeps it secret.
Keygent−1: At level Levelt , we consider an

entity Et of address (ID1, . . . , IDt ), where
(ID1, . . . , IDi), for 1 ≤ i ≤ t − 1, is the address
of its ancestor at Leveli . Let S0 be the unit el-
ement of G1. At Levelt−1, the father Et−1 of Et
generates Et ’s private key as follows:
1. It computes Pt = H1(ID1, . . . , IDt ) ∈ G1.
2. It computes Et secret point St = St−1 + st−1 Pt

and transmits it to Et . We thus have

St = s0 P1 + s1 P2 + · · · + st−1 Pt =
t∑

i=1

si−1 Pi
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St then depends on secret elements St−1 ∈ G1
and st−1 ∈ Zq of Et−1.

3. Et−1 also transmits Qi = si P0 ∈ G1 to Et for
1 ≤ i ≤ t − 1 (it must have computed Qt−1 =
st−1 P0 itself from its secret st−1 and have re-
ceived Q0, . . . , Qt−2 from its ancestors).

Et thus obtains its private key
(St , Q1, . . . , Qt , st ). The part (St , Q1, . . . , Qt−1)
is received from its father Et−1 and it generates
the components st and Qt = st P0 itself.

Encrypt: To encrypt a message M ∈ M for an en-
tity Et of address (ID1, . . . , IDt ),
1. Alice computes Pi = H1(ID1, . . . , IDi) ∈

G1 for 1 ≤ i ≤ t .
2. She randomly picks r ∈ Zq .
3. The ciphertext is C = [r P0, r P2, . . . , r Pt , M ⊕

H2(gr )] avec g = ê(Q0, P1) ∈ G2.
Decrypt: Et receives C = [U0,U2, . . . ,Ut , V] ∈ C.

To decrypt it, he/she computes

V ⊕ H2

(
ê(U0, St )∏t

i=2 ê(Qi−1,Ui)

)
= M.

The bilinearity of the map ê allows verifying the
consistency of the scheme:

ê(U0, St ) = ê(r P0,

t∑
i−1

si=1 Pi)

= ê(P0, P1)rs0 ê(P0, P2)rs1 · · · ê(P0, Pt )rst−1

= ê(Q0, P1)r ê(Q1, P2)r · · · ê(Qt−1, Pt )r

= g r ê(Q1,U2) · · · ê(Qt−1,Ut )

and

ê(U0, St )∏t
i=2 ê(Qi−1,Ui)

= gr

for the g computed by Alice at the encryption.
The above version of the scheme is a simpli-

fied one satisfying only the security notion of
one-wayness against chosen-plaintexts attacks. To
convert it into a chosen-ciphertext secure one, the
Fujisaki-Okamoto generic transformation [14] is
simply applied to it. Unlike the 2-level solution
proposed by Horwitz and Lynn in 2002, the result-
ing scheme provably resists a collusion between
any number of dishonest users (i.e., a set of users
combining their private information in an attempt
to threaten the confidentiality of messages sent
to a honest user) provided the Bilinear Diffie–
Hellman problem is hard. It is shown in [16] how
to turn the above encryption scheme into a hierar-
chical identity-based signature and how to shorten
the ciphertexts produced by the scheme (as well as
the signatures outputted by the derived hierarchi-
cal signature).

CONCLUSIONS AND OPEN PROBLEMS: This
chapter gave a basic overview of the major ad-
vancements in the field of identity-based crypto-
graphy since 1984. Although many really interest-
ing breakthroughs have been achieved, there still
remain problems that might hamper this kind of
cryptosystem to replace today’s certificate based
public key infrastructures. For example, ID-based
cryptography only provides automatic revocation
of a user’s public key privileges by concatenating
a validity period to users’ identifying information
(in such a way that a key is never used outside
its validity period and different private keys have
to be given to a user for each time period). Except
a method proposed in [4] (which requires the use
of an online server holding a piece of each user’s
private key), no easy method to provide fine-grain
revocation (which is mandatory in case of a user’s
key compromise) has been found so far. Another
problem is the key escrow that might be unde-
sirable for some applications: except the case of
hierarchical encryption where it is somewhat re-
stricted (entities are only able to decrypt messages
intended for their children), PKGs are able to de-
crypt ciphertexts intended for any user depending
on them. Solutions to this problem have been pro-
posed [2, 15] but they imply the loss of the eas-
ier key management advantage that is provided
by human-memorizable public keys in ID-based
cryptography.

Other problems are still unsolved in this area:
for example no really practical identity-based en-
cryption scheme avoiding the use of pairings has
been proposed so far (Cocks’s one is not really prac-
tical from a bandwidth point of view since a ci-
phertext’s size is many times that of the plain-
text). Another open challenge is to devise an
identity-based cryptosystem that is provably se-
cure in the security model described in [5] in the
standard model rather than the random oracle
model [3] (such a result was obtained in [10] for
a security model weaker than the one presented
in [5]).

We also mention the existence of many other
proposals for ID-based cryptographic protocols
from pairings. They are not discussed here but are
referenced in [1].

Benoı̂t Libert
Jean-Jacques Quisquater
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IDENTITY-BASED
ENCRYPTION

An identity-based encryption (IBE) scheme (see
also identity-based cryptography) is a public key
encryption scheme in which the public key can be
an arbitrary string. For example, if Alice wants
to send a message to Bob at bob@yahoo.com,
she simply encrypts the message using the string
“bob@yahoo.com” as the public key.

HISTORY: The concept of identity-based encryp-
tion was first introduced by Shamir in 1984 [12].
His original motivation was to eliminate the need
for directories and certificates by using the iden-
tity of the receiver as the public key. Efficient solu-
tions for the related notion of identity-based signa-
ture were quickly found [5, 6], but identity-based
encryption proved to be much more challenging.
Most schemes proposed since 1984 [4,9,11,13,14]
were unsatisfactory because they were too compu-
tationally intensive, they required tamper resis-
tant hardware, or they were not secure if users col-
luded. The first usable IBE scheme was proposed
in 2001 by Boneh and Franklin [1]. Their scheme
was soon adapted to provide additional functional-
ities, such as authentication [10], non-repudiation
[2] and the ability to support a hierarchical struc-
ture [7, 8]. Cocks also proposed a relatively ef-
ficient scheme [3], but his scheme has not been
proven secure against chosen ciphertext attack.

DEFINITION: More formally, an identity-based
encryption scheme consists of four randomized
algorithms: Setup, Extract, Encrypt and De-
crypt.
Setup: takes as input a security parameter

and outputs params (system parameters) and
master-key. The system parameters must in-
clude the description of the message space M
and the ciphertext space C. The system parame-
ters will be publicly known while the master-key
is known only to the private key generator.

PKG

ID1 ID2 ID3

user 1 user 2 user 3

PKG
dID1

dID2
dID3

user 1 user 2 user 3

Fig. 1. Private key request in an IBE scheme

Extract: takes as input the system parameters
params, the master-key and an arbitrary string
ID ∈ {0, 1}∗ and outputs the private key dID cor-
responding to the public key ID.

Encrypt: takes as input the system parameters
params, a public key ID and a plaintext M ∈ M
and outputs a corresponding ciphertext.

Decrypt: takes as input the system parameters
params, a private key dID and a ciphertext C ∈ C
and outputs the corresponding plaintext.

The algorithm Setup is run by a trusted third
party, the private key generator (PKG). The PKG
also runs the algorithm Extract at the request
of a user who wishes to obtain the private key
corresponding to some string (see Figure 1). Note
that the user needs to prove to the PKG that
he is the legetimate “owner” of this string (for
example, to obtain the private key correspond-
ing to “bob@yahoo.com”, the user must prove that
bob@yahoo.com is truly his email address), and
the private key must be returned to the user on
a secure channel in order to keep the private key
secret. The algorithms Encrypt and Decrypt are
run by the users to encrypt and decrypt messages.
They must satisfy the standard consistency con-
straints, namely if all the algorithms are applied
correctly, then any message in the plaintext space
encrypted with the algorithm Encrypt should be
correctly decrypted by the algorithm Decrypt.

APPLICATIONS OF IDENTITY-BASED ENCRYP-
TION: We already mentioned that the original mo-
tivation for identity-based encryption was to sim-
plify certificate management. Here are a few other
applications.

Revocation of Public Keys

Public key certificates contain a preset expira-
tion date. In an identity-based encryption scheme,
we can make the keys expire by encrypting the
messages using the public key “receiver-address ‖
current-date” where current-date can be the day,
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week, month, or year depending on the frequency
at which we want the users to renew their pri-
vate key. Note that unlike traditional public key
infrastructure, the senders do not need to obtain
new certificates every time the private keys are
renewed, however, the receiver must query the
PKG each time to obtain the new private key. So
identity-based encryption is a very efficient way of
implementing ephemeral public keys. This is also
useful if, for example, the private key is kept on
a laptop: if the laptop is stolen, only the private
key corresponding to that period of time is compro-
mised, the master-key is unharmed. This approach
can also be used to send messages into the future
since the receiver will not be able to decrypt the
message until he gets the private key for the date
specified by the sender from the PKG.

Managing User Credentials

By encrypting the messages using the address
“receiver-address ‖ current-date ‖ clearance-level”,
the receiver will be able to decrypt the message
only if he has the required clearance. This way,
the private key generator can be used to grant
user credentials. To revoke a credential, the PKG
simply stops providing the private key in the next
time period.

Delegations of Decryption Keys

Suppose a manager has several assistants each re-
sponsible for a different task. Then the manager
can act as the private key generator and give his
assistants the private keys corresponding to their
responsibilities (so the public key would be ‘Duty’).
So each assistant can decrypt the messages whose
subject fall within his or her responsibilities, but
cannot decrypt messages intended for other assis-
tants. The manager can decrypt all the messages
using his or her master-key.

Example

We present the scheme proposed by Boneh and
Franklin [1]. It requires a bilinear map, i.e., a map
ê : G1 × G1 → G2, where G1 and G2 are groups,
such that for any g, h ∈ G1 and a, b ∈ Z,

ê(ga, hb) = ê(g, hb)a = ê(ga, h)b = ê(g, h)ab.

The security of this scheme is related to the
difficulty of computing ê(g, g)abc when given
g, ga, gb, gc for g ∈ G1 and a, b, c ∈ Z (see discrete
logarithm problem and for the sequel also modular
arithmetic).
Setup: Given a security parameter k,

(1) pick two cyclic groups G1, G2 of prime order
p and a bilinear map ê : G1 × G1 → G2 cor-
responding to the security parameter (say p
could be a k-bit prime),

(2) pick a random generator g ∈ G1,
(3) pick a random s ∈ Zp and compute gpub = gs ,
(4) pick cryptographic hash functions

H1 : {0, 1}∗ → G
∗
1, H2 : G2 → {0, 1}n,

H3 : {0, 1}n × {0, 1}n → Z
∗
p,

H4 : {0, 1}n → {0, 1}n for some integer n > 0.

The plaintext space is M = {0, 1}n and the
ciphertext space is C = G

∗
1 × {0, 1}n × {0, 1}n.

The public system parameters are params =
〈G1, G2, ê, p, n, g, gpub, H1, H2, H3, H4〉. The
master-key is s.

Extract: Given a string ID ∈ {0, 1}∗, the master-
key s and system parameters params, compute
hID = H1(ID) ∈ G1 and dID = hs

ID, and return dID.
Encrypt: Given a plaintext M ∈ M, a public key

ID and public parameters params,
(1) compute hID = H1(ID),
(2) pick a random σ ∈ {0, 1}n and compute r =

H3(σ, M),
(3) compute γ = ê(gpub, hID),
(4) set the ciphertext to C = 〈gr , σ ⊕ H2(γ r ),

M ⊕ H4(σ )〉.
Decrypt: Given a ciphertext 〈U, V, W〉 ∈ C, a pri-

vate key dID and system parameters params,
(1) compute γ ′ = ê(U, dID),
(2) compute σ = V ⊕ H2(γ ′),
(3) compute M = W ⊕ H4(σ ),
(4) compute r = H3(σ, M). If U 
= gr , reject the

ciphertext, else return M.

Martin Gagné
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IDENTITY MANAGEMENT

Identity Management is the set of processes, tools,
and social contracts surrounding the creation,
maintenance, and termination of a digital iden-
tity for people or, more generally, for systems and
services, to enable secure access to an expanding
set of systems and applications.

Traditionally, identity management has been
a core component of system security environ-
ments where it has been used for the mainte-
nance of account information for login access to

a system or a limited set of applications. An ad-
ministrator issues accounts so that resource ac-
cess can be restricted and monitored. Control has
been the primary focus for identity management.
More recently, however, identity management has
exploded out of the sole purview of information se-
curity professionals and has become a key enabler
for electronic business.

As the richness of our electronic lives mirrors
our physical world experience, as activities such as
shopping, discussion, entertainment and business
collaboration are conducted as readily in the cyber
world as in person, we begin to expect more con-
venience from our electronic systems. We expect
our personal preferences and profile to be read-
ily available so that, for example, when we visit
an electronic merchant we need not tediously en-
ter home delivery information; when participat-
ing in a discussion, we can check the reputation
of other participants; when accessing music or
videos, we first see the work of our favorite artists;
and when conducting business, we know that our
partners are authorized to make decisions. Today,
identity management systems are fundamental
to underpinning accountability in business rela-
tionships; providing customization to user experi-
ence; protecting privacy; and adhering to regula-
tory controls.

WHAT IS DIGITAL IDENTITY: Identity is a com-
plicated concept having many nuances ranging
from philosophical to practical. For the purposes
of this discussion, we define the identity of an indi-
vidual as the set of information known about that
person. For example, a person’s identity in the real
world can be a set of a name, an address, a driver’s
license, a birth certificate, a field of employment,
etc. This set of information includes items such
as a name which is used as an identifier—it al-
lows us to refer to the identity without enumer-
ating all of the items; a driver’s license or birth
certificate which are used as an authenticator—
they are issued by a relevant authority and allow
us to determine the legitimacy of someone’s claim
to the identity; a driver’s license which is used as a
privilege—it establishes the permission to operate
a motor vehicle.

Digital identity is the corresponding concept in
the digital world. As people engage in more activ-
ities in the cyber world, the trend has been to link
the real world attributes of identity with an indi-
vidual’s cyber world identity, giving rise to privacy
concerns.

ELEMENTS OF AN IDENTITY MANAGEMENT
SYSTEM: Identity management solutions are



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 18:24

Identity management 283

Repository

Single Sign-On

Personalization Access Management

Provisioning Longevity

Policy Control

Authentication
Provider

Auditing

Foundation

Lifecycle

Consumable

Fig. 1. Identity management system components

modular and composed of multiple service and
system components. This section outlines compo-
nents of an example identity management archi-
tecture illustrated in Figure 1.

Identity Management Foundation
Components

The following are some foundational components
of an identity management system.
� Repository—At the core of the system is the

logical data storage facility and identity data
model that is often implemented as an LDAP
(Lightweight Directory Access Protocol) accessi-
ble directory or meta-directory. Policy informa-
tion governing access to and use of information
in the repository is generally stored here as well.

� Authentication Provider—The authentica-
tion provider, sometimes referred to as the iden-
tity provider, is responsible for performing pri-
mary authentication of an individual that will
link them to a given identity. The authen-
tication provider produces an authenticator—
a token that allows other components to rec-
ognize that primary authentication has been
performed. Primary authentication techniques
include mechanisms such as password verifi-
cation, proximity token verification, smartcard
verification, biometric scans, or even X.509 PKI
certificate verification. Each identity may be
associated with more than one authentication
provider. The mechanisms employed by each
provider may be of different strengths and some
application contexts may require a minimum
strength to accept the claim to a given identity.

� Policy Control—Access to and use of iden-
tity information is governed by policy controls.
Authorization policies determine how informa-
tion is manipulated; privacy policies govern how
identity information may be disclosed. Policy
controls may cause events to be audited or even

for the subject of an identity to be notified when
information is accessed.

� Auditing—Secure auditing provides the mech-
anism to track how information in the reposi-
tory is created, modified and used. This is an
essential enabler for forensic analysis—which
is used to determine how and by whom policy
controls were circumvented.

Identity Management Lifecycle
Components

The following are two lifecycle components of an
identity management system.
� Provisioning—Provisioning is the automation

of all the procedures and tools to manage the
lifecycle of an identity: creation of the identifier
for the identity; linkage to the authentication
providers; setting and changing attributes and
privileges; and decommissioning the identity. In
large-scale systems, these tools generally allow
some form of self-service for the creation and on-
going maintenance of an identity and frequently
use a workflow or transactional system for ver-
ification of data from an appropriate authority
and to propagate data to affiliated systems that
may not directly consume the repository.

� Longevity—Longevity tools create the histor-
ical record of an identity. These tools allow the
examination of the evolution of an identity over
time.

Identity Management Consumable
Value Components

The following are some consumable value compo-
nents of an identity management system.
� Single Sign-on—Single sign-on allows a user

to perform primary authentication once and
then access the set of applications and systems
that are part of the identity management envi-
ronment.

� Personalization—Personalization and prefer-
ence management tools allow application spe-
cific as well as generic information to be
associated with an identity. These tools allow
applications to tailor the user experience for a
given individual leading to a streamlined inter-
face for the user and the ability to target infor-
mation dissemination for a business.

� Access Management—Similar to the policy
controls within the identity management sys-
tem foundation components, access control com-
ponents allow applications to make autho-
rization and other policy decisions based on
privilege and policy information stored in the
repository.
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TRENDS DRIVING IDENTITY MANAGEMENT:
Several trends have combined to drive the need
for identity management systems. Consumers,
e-businesses, enterprises, and governments all
see value in the emergence of mature identity
management systems. Often the requirements
of these communities are complementary, but in
some cases conflicting needs raise new issues.

Consumer Trends

With each new website a user discovers, con-
sumers find themselves creating a new digital
identity. This proliferation of accounts is tedious
both in the work needed to keep information cor-
rect and in the need to remember unique account
name password combinations. Often this leads to
security vulnerabilities such as when consumers
choose poor, easy-to-remember passwords, or use
the same password at a collection of independent
sites. Consumers are looking for web-based single
sign-on that allows easy access to a variety of sites.

The emergence of information aggregators for
financial services in the late 1990s is evidence
that consumers are driven to the convenience of
easy access—even at the expense of disclosing
some sensitive information to a third party. These
aggregators provided a portal that extracted in-
formation from the consumer’s financial service
providers. To access this information, consumers
needed to disclose account information and ac-
cess passwords to the independent aggregator
service.

Consumers, however, have demonstrated resis-
tance to the notion of a single universally usable
digital identity. The selective disclosure inherent
in managing independent identities allows users
to maintain different personas for different inter-
action environments. This is consistent with how
people interact in the physical world and is illus-
trated in Figure 2. As a result, consumers are look-

Views of Identity

Credit
Bureau

Foo.com view of me

“The Aggregate Me’’

Em
ployer

view of m
e

“My view of me’’Government view

Fig. 2. Multiple views of identity

ing for identity management systems that support
some degree of anonymity or pseudonymity.

e-Business Trends

Electronic businesses are motivated to please
their customers and therefore to deploy the ease
of use aspects enabled by identity management
systems. Perhaps more importantly, they are also
looking to extract direct value from the system.
For large conglomerates, an identity management
system allows e-businesses to consolidate their
relationship with customers—it allows the or-
ganization to present a single face to the con-
sumer. Personalization systems allow the busi-
ness to learn about the consumer and then target
advertisement and special offers based on individ-
ual history and stated preferences.

Enterprise Trends

User account and password management has long
been a major expense for enterprise IT organi-
zations. Network operating systems and environ-
ments have provided some relief, by allowing a sin-
gle account and password to work on a collection
of machines, but this has failed to provide true
single sign-on for heterogeneous environments. As
enterprises are driven to greater degrees of collab-
oration with business partners, as they integrate
supply chains the number and diversity of systems
and applications increases. Enterprises are driven
toward identity management solutions that will
address heterogeneity issues and allow them to
integrate with their business partners. They need
systems that will provide for independent admin-
istration and that will provide strong accountabil-
ity for business transactions.

Government Trends

With the evolution of e-government initiatives,
governments share many of the concerns moti-
vating e-businesses. Scale, however, is more of a
concern for government organizations—few busi-
nesses have a customer base the size of a govern-
ment’s citizenry.

Governments, however, do have some other con-
cerns. Privacy regulations such as the EU pri-
vacy directive or US sector specific legislation such
as the Gramm-Leach-Bliley act of 1999 or the
Health Insurance Portability And Accountability
act of 1996 create specific controls on how person-
ally identifiable information can be processed in
IT systems. These regulations establish require-
ments for the privacy policy control component
of an identity management system, and impose
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constraints on how businesses exploit identity
information.

MODELS FOR DEPLOYING IDENTITY MANAGE-
MENT: Identity management systems are primar-
ily being deployed in one of three models: as silos,
as walled gardens, and as federations.

Silo

This is the predominant model on the Internet to-
day. In this model the identity management envi-
ronment is put in place and operated by a single
entity for a fixed user community.

Walled Garden

Walled gardens represent a closed community of
organizations. A single identity management sys-
tem is deployed to serve the common user commu-
nity of a collection of businesses. Most frequently
this occurs in business-to-business exchanges and
specific operating rules govern the entity operat-
ing the identity management system.

Federation

Federated identity management environments
are now emerging. These include systems like
Microsoft’s .Net Passport and .Net TrustBridge
and the Liberty Alliance Project: Liberty Archi-
tecture. The central difference between federated
identity systems and walled gardens is that there
is no single entity that operates the identity man-
agement system. Federated systems support mul-
tiple identity providers and a distributed and
partitioned store for identity information. Clear
operating rules govern the various participants
in a federation—both the operators of components
and the operators of services who rely on the in-
formation provided by the identity management
system. Most systems exhibit strong end-user con-
trols over how identity information is dissemi-
nated amongst members of the federation.

IDENTITY MANAGEMENT ISSUES: Identity
management systems bring great value to the dig-
ital world and federated identity environments,
in particular, hold great promise for widespread
deployment. As the distinction between real
world identity and digital identity becomes more
blurred, however, a number of issues remain to be
considered1:

1 For a more detailed examination of issues with large
scale identity systems, see the National Research Coun-
cil’s Computer Science and Telecommunications Board report

� Authenticity of identity. How is the accuracy
and validity of identity information measured
and determined? What are the trust services
that must be in place to generate confidence
in information in the identity management
service?

� Longevity of information. Do identity man-
agement systems provide adequate care to track
changes to identity information over time? Do
they maintain the necessary artifacts to support
historical investigations?

� Privacy. Do identity management systems pro-
vide adequate controls to preserve individual
privacy? Does the system provide adequate sup-
port for anonymity and multiple user controlled
personas?

� Identity theft. Do widespread identity man-
agement systems make it easier to perpetrate
identity theft or identity fraud?

� Legal structures. What protections are in
place for the holder of the identity or for the rely-
ing party? Do these protections go beyond con-
tractual obligations when digital identity sys-
tems are used for interactions that today are
limited to the physical world?

Joe Pato

IDENTITY VERIFICATION
PROTOCOL

An identity verification protocol is a protocol used
to obtain entity authentication of one entity to an-
other entity. The authentication provided by the
protocol can be either unilateral (i.e., authenti-
cates just one of the entities to the other entity) or
mutual (i.e., authenticates both entities). In addi-
tion to the two entities directly involved in the au-
thentication (the claimant and verifier), some pro-
tocols require the participation of a trusted third
party in order to achieve authentication.

There are a number of different identity verifi-
cation protocols that exist, but most of them fall
into three main types. These are: password-based
schemes, challenge–response protocol schemes
and zero-knowledge identification techniques.
Password-based: These schemes typically in-

volve the claimant providing a password or PIN
that is either sent directly to the verifier or used
to generate a token (see authentication token),
or credentials, that can be validated by the
verifier, who also knows the password. Most of
these schemes are susceptible to replay attacks,

IDs—Not That Easy: Questions About Nationwide Iden-
tity Systems (2002) available at http://www.cstb.org/web/
project authentication.
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password guessing and dictionary attacks and
compromise of the password at either the
claimant or verifier. Thus, these schemes usu-
ally provide limited security, but have the ad-
vantage that they are easy to implement and
deploy.

Challenge–response: These protocols require
the claimant to verify its identity to the veri-
fier by proving knowledge of a secret value that
is known only to the claimant (and possibly
the verifier) and will not be revealed as part
of the protocol. Proving knowledge of this se-
cret is accomplished by responding to a particu-
lar challenge provided by the verifier. Typically
the verifier produces a time-variant parameter
(e.g., a nonce) and the claimant is required to ap-
ply some cryptographic transformation to that
parameter using a key that only it (or possibly
also the verifier) knows. Examples of challenge–
response identity verification protocols can be
found in ISO/IEC 9798-2 [1], ISO/IEC 9798-3
[2], FIPS 196 [3] and TLS (see Transport Layer
Security) [4].

Zero-knowledge: These protocols use asymmet-
ric techniques in order to prove the claimant’s
identity, but are based upon interactive proof
systems and zero-knowledge techniques and
thus differ from asymmetric-based challenge–
response protocols. These protocols are designed
to reveal no information whatsoever beyond
whether or not the claimant knows a secret (and
thus has the claimed identity) and then only to
the verifier. Examples of zero-knowledge identi-
fication protocols include the Fiat–Shamir iden-
tification protocol, the GQ identification proto-
col [5], and the Schnorr identification protocol.
It should be noted that identity verification pro-

tocols only provide entity authentication at the in-
stant of protocol execution and do not necessarily
prove that the authenticated entity was partici-
pating in an entire session. If entity authentica-
tion is required for the entire lifetime of a given
session then either the identity verification pro-
tocol can be repeatedly performed throughout the
lifetime of the session, or it can be combined with
a key establishment mechanism and an ongoing
integrity service, as is done in TLS.

Robert Zuccherato
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IMPERSONATION ATTACK

An impersonation attack is an attack in which
an adversary successfully assumes the identity of
one of the legitimate parties in a system or in
a communications protocol. The goal of a strong
identification or entity authentication protocol is
to make negligible the probability that, for a given
party A, any party C distinct from A, carrying out
the protocol and playing the role of A, can cause an-
other party B to complete and accept A’s identity.

Carlisle Adams
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IMPOSSIBLE
DIFFERENTIAL ATTACK

Impossible differential attack is a chosen plaintext
attack and is an extension of differential crypt-
analysis. Impossible differential attack [1] was de-
fined in 1998 and has been shown to break 31 out
of 32 rounds of the cipher Skipjack [5], designed by
the NSA and declassified in 1998. Independently,
an attack based on similar principles was used
by Knudsen in 1998 to cryptanalyse 6-rounds of
the cipher DEAL [3] which was one of his propos-
als for the AES (see Rijndael/AES). The attack,
using impossible differentials, was shown to be a
generic tool for cryptanalysis [2] and was applied
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to improve on the best known attacks for such
strong and long standing block ciphers as IDEA
and Khufu [4], breaking round-reduced versions of
these ciphers. The two main ideas were the miss-
in-the-middle technique for construction of impos-
sible events inside ciphers and the sieving tech-
nique for filtering wrong key-guesses.

Once the existence of impossible events in a ci-
pher is proven, it can be used directly as a distin-
guisher from a random permutation (see substi-
tutions and permutations). Furthermore one can
find the keys of a cipher by analyzing the rounds
surrounding the impossible event, and guessing
the subkeys of these rounds. All the keys that lead
to a contradiction are obviously wrong. The impos-
sible event in this case plays the role of a sieve,
methodically rejecting the wrong key guesses and
leaving the correct key. It is important to note that
the miss-in-the-middle technique is only one of the
ways to construct impossible events and that the
sieving technique is only one of the possible ways
to exploit them.

In order to get a feel of the attack, consider a
cipher E(·) with n-bit blocks, a set of input dif-
ferences P of cardinality 2p and a corresponding
set of output differences Q of cardinality 2q . Sup-
pose that no difference from P can cause an out-
put difference from Q. One may ask how many
chosen texts should be requested in order to dis-
tinguish E(·) from a random permutation? In gen-
eral about 2n−q pairs with differences from P are
required. This number can be reduced by using
structures (a standard technique for saving chosen
plaintexts in differential attacks). In the optimal
case one may use structures of 2p texts which con-
tain about 22p−1 pairs with differences from P. In
this case 2n−q/22p−1 structures are required, and
the number of chosen texts used by this distin-
guishing attack is about 2n−p−q+1 (assuming that
2p < n − q + 1). Thus the higher p+ q is, the bet-
ter is the distinguisher based on the impossible
event.

Alex Biryukov
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INDEX CALCULUS

Index calculus refers to a method for computing
discrete logarithms in a finite field in subexponen-
tial time complexity (see also Discrete Logarithm
Problem). The basic ideas appeared first in the
work of Western and Miller [9]. The original al-
gorithm was invented independently by Adleman
[1], Merkle [5] and Pollard [7] according to Odlyzko
[6]. The first partial analysis of the complexity of
the algorithm is due to Adleman [1].

Consider a finite field k with multiplicative
group G generated by g. The main and trivial ob-
servation on which index calculus relies is that
once the discrete logarithms logg(gi) are known,
then the discrete logarithm for an element defined
by

∏
i gni

i is given by the sum
∑

i

ni logg(gi) mod |G|.

Given the element h of G, index calculus computes
the discrete logarithm logg(h) in two main steps:
1. In a precomputation step, logg(gi) for suffi-

ciently many elements gi of G is computed.
2. Find an element gy such that hgy has the form

hgy = ∏
i gni

i . Then by the above remark the dis-
crete logarithm logg(h) can be computed easily.
The way the discrete logarithms in step 1 are

obtained is as follows:
Assume we have a surjective map φ : R → G

from a ring R, in which we have unique factoriza-
tion in prime elements, to G. In the case that the
surjection φ can be efficiently inverted we can lift
elements from G to R. Assume we have a factori-
zation

φ−1(gx) =
∏
p∈S

pnp,x ,

where S, the factor base, denotes a subset of the
set P of prime elements of R. This implies, via ap-
plication of φ, that the equality gx = ∏

p∈Sφ(p)np,x

in G holds. Hence taking discrete logarithms to
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the base g we obtain

x =
∑
p∈S

np,x logg(φ(p)) mod |G|.

In order to recover the values logg(φ(p)) for p ∈ S
it is now sufficient to run through two steps:
� In the first step (often referred to as sieving

step), we collect more than |S| distinct relations,
these then form an overdefined system of linear
equations modulo the order of the group |G|.

� Solve the resulting system of linear equations
mod|G| using linear algebra and obtain the val-
ues logg(φ(p)) for p ∈ S.
Given any element h ∈ G, we then search for an

element gy such that φ−1(hgy) has the form

φ−1(hgy) =
∏
p∈S

pnp,y .

logg(h) can then be computed by

logg(h) ≡ −y +
∑
p∈S

np,y logg(φ(p)) mod |G|.

IMPLEMENTATION CHOICE AND COMPLEXITY
ESTIMATE: The most obvious choices for the ring
R are:
1. The natural numbers N in the case of prime

fields G = F
∗
p.

2. The ring Fp[x] of polynomials over Fp in the
case of extension fields G = Fpn (see the entry
extension field).
For the set S we choose smooth prime elements

of the ring R (see smoothness):
1. The prime numbers less than or equal to a

smoothness bound B:

S = {p ∈ N prime | p ≤ B}
in the case of prime fields.

2. The irreducible polynomials of norm less than
or equal to a smoothness bound B:

S = { f ∈ Fp[x] irreducible | pdeg( f) ≤ B}
in the case of extension fields.
Using results on the distribution of smooth el-

ements one sees that using a smoothness bound
B = Lpn (1/2,

√
1/2), the first step of collecting re-

lations by computing random powers gx takes ex-
pected time Lpn (1/2,

√
2) (see the entry L-notation

for a definition of the preceding notation). In the
case of prime fields, we have n = 1 in this and all
subsequent expressions. Here one has to be care-
ful to also take into account the time needed for
the smoothness test of the lifted elements φ−1(gx).
However, using the Elliptic Curve Method for fac-
toring in the prime field case one has an expected
running time of Lp(1/2, 1) for factorization (in the
worst case), while in the case of extension fields,

for a polynomial f over Fp of degree n factor-
ization using the Berlekamp algorithm has com-
plexity O(n3 + tpn2) where t denotes the num-
ber of irreducible factors of the polynomial f (see
O-notation).

For the linear algebra part one notes that the
resulting system of around Lpn (1/2,

√
1/2) linear

equations is sparse, hence special methods can be
applied for the solution of this system which have
an expected running time Lpn (1/2,

√
2).

Finally for the last step of finding a smooth lift
of the form φ−1(gx) the running time estimation
of Lpn (1/2,

√
2) of the first step applies as well,

resulting in an overall expected running time of
Lpn (1/2,

√
2) for the complete index calculus algo-

rithm.

VARIANTS OF THE ALGORITHM: By replacing N

or Fp[x] with different rings also allowing unique
factorisation one obtains variants of the classical
index calculus algorithm.

One of the most important variants in the case
of prime fields uses the ring of Gaussian integers
Z[i] of the imaginary quadratic field Q(i) and is
therefore called the Gaussian integer method (re-
fer to [4] for more details). It has expected running
times Lp(1/2, 1) for the precomputation part of the
algorithm and Lp(1/2, 1/2) for the computation of
individual discrete logarithms.

In the case of extension fields Coppersmith’s
method is of special importance. It is applicable
only in the case of small characteristics and was
the first method to compute discrete logarithms in
subexponential complexity better than L2n (1/2, c),
its expected running time is L2n (1/3, 1.588) (see
[2]). It was realized later that this method in fact
is a special case of the function field sieve (see
sieving in function fields).

INDEX CALCULUS USING THE NUMBER FIELD
SIEVE: A different idea to solve the discrete loga-
rithm problem in a finite field k = Fp is to find in-
tegers s and t such that the equation gs · ht = wq

holds for some w ∈ k, where q is a divisor of the or-
der of the multiplicative group k×. If t is coprime
to q we have then computed logg(h) mod q since
we have

logg(h) ≡ −st−1 mod q.

Having computed logg(h) modulo the different
primes dividing the order of k× we can then
recover logg(h) using the Chinese Remainder
Theorem.

We are thus led to the problem of construct-
ing q–th powers in k, i.e., relations of the form
gs · ht = wq . Index calculus techniques can be ap-
plied to this problem. If we choose R to be the ring



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 18:24

Information theory 289

of integers of a more general, non trivial num-
ber field, we are led to techniques related to the
Number Field Sieve.

Contrary to the techniques described above, the
Number Field Sieve approach uses two factor
bases: one consisting of small rational primes, the
other consisting of algebraic primes of small norm.

This is due to the fact that the Number Field
Sieve approach uses two different maps φ: one is
the natural projection φ1 : N → Fp, while the sec-
ond one φ2 is a certain projection from the ring of
algebraic integers R to Fp.

In the sieving stage, pairs of smooth elements
s1, s2 are collected which have the additional prop-
erty that the equality φ1(s1) = φ2(s2) holds. Again
we are led to a system of linear equations, solv-
ing this system will lead to the construction of a
qth power in Fp and will thus yield the solution of
the discrete logarithm problem. Schirokauer pre-
sented an algorithm based on this approach that
has complexity Lp(1/3, (64/9)1/3) (see [8]).

Details regarding the application of the Number
Field Sieve in this setting can be found in [3] and
[8]. See also the entry on the Discrete Logarithm
Problem for more details on recent challenges and
attacks.

INDEX CALCULUS AND ELLIPTIC CURVES:
The elliptic curve discrete logarithm problem
(ECDLP) has attracted great interest since its
introduction to cryptography in 1985. One the
most interesting features of this problem is that
it has up till now resisted all attempts to apply
index calculus techniques to it.

Consider the ECDLP on a curve over the finite
field Fpn . The most naive idea would be to take a
surjection φ : K → Fpn , choose an elliptic curve E′

over K reducing to E via φ and thus obtain a map
between elliptic curves φ : E′(K) → E(Fpn ), the
most obvious one being φ : Q → Fp in the case of
prime fields. However, properties of elliptic curves
over global fields imply that there is no chance
to lift sufficiently many points from E(Fp) to E(Q)
with reasonably sized coefficients in order to be
able to apply index calculus techniques. The main
ingredient here is the existence of a quadratic form
called canonical height on the Mordell-Weil group
(modulo torsion) of the global elliptic curve.

A different approach (known as XEDNI calcu-
lus) suggested to first lift sufficiently many points
from E(Fp) to Q and then fit a globally defined ellip-
tic curve through these global points. However this
idea was proven to have expected running time
O(p), far worse then the square root complexity of
the exhaustive search approach.

Kim Nguyen
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INFORMATION THEORY

The entropy function H(X) is a measure of the un-
certainty of X, in formula

H(X) = −
∑

a : pX(a) > 0

pX(a) · log2 pX(a),

where pX(a) = Pr [X = a] denotes the probability
that random variable X takes on value a. The in-
terpretation is that with probability pX(a), X can
be described by log2 pX(a) bits of information.

The conditional entropy or equivocation
(Shannon 1949) H(X|Y) denotes the uncertainty
of X provided Y is known:

H(X|Y) = −
∑

a,b: pX|Y(a|b) >0

pX,Y(a, b) · log2 pX |Y(a|b)

where pX,Y(a, b) =def Pr[(X = a) ∧ (Y = b)] and
pX |Y(a|b) obeys Bayes’ rule for conditional
probabilities:

pX,Y(a, b) = pY(b) · pX |Y(a|b), thus
−log2 pX,Y(a, b) = −log2 pY(b) − log2 pX |Y(a|b).
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The basic relation on conditional entropy follows
from this:

H(X, Y) = H(X | Y) + H(Y).

In particular, we note that the entropy is additive
if and only if X and Y are independent:

H(X, Y) = H(X) + H(Y),

in analogy to the additive entropy of thermody-
namical systems.

The redundancy of a text is that part (ex-
pressed in bits) that does not carry information.
In common English, the redundancy is roughly 3.5
[bit/char], the information is roughly 1.2 [bit/char],
redundancy and information sum up to 4.7 = log2
26 [bit/char].

We shall now use the terminology above to de-
scribe three possible properties of a cryptosystem.
A cryptosystem is of Vernam type if H(K) = H(C),
where H(K) is the entropy of the key K and H(C)
is the entropy of the ciphertext C. A cryptosystem
has independent key if the plaintext P and keytext
K are mutually independent: H(P) = H(P | K) and
H(K) = H(K | P) (“knowledge of the keytext does
not change the uncertainty of the plaintext, and
knowledge of the plaintext does not change the
uncertainty of the keytext”).

A cryptosystem is called perfect if plaintext
and ciphertext are mutually independent: H(P) =
H(P | C) and H(C) = H(C | P) (“knowledge of the
ciphertext does not change the uncertainty of the
plaintext, and knowledge of the plaintext does not
change the uncertainty of the ciphertext”). This
means that the security of the system depends
entirely on the key; perfect cryptosystems corre-
spond to holocryptic keytexts (see key), which are
extremely difficult to achieve in practice.

SHANNON’S MAIN THEOREM: In a cryptosys-
tem, where the key character is uniquely deter-
mined by the plaintext character and the cipher-
text character (“ciphertext and plaintext together
allow no uncertainty on the keytext”), any two of
the following three properties of the cryptosystem
imply the third one:

Vernam type, independent key, perfect.

The unicity distance for a given language, a
given cryptosystem and a given cryptanalytic pro-
cedure of attack is the minimal length of the plain-
text such that decryption is unique. Example: let Z
be the cardinality of keytext space, assume simple
substitution (see substitutions and permutations)
and an attack by letter frequency. Then for English
with an alphabet of 26 letters the unicity distance
U is given by

(1) U ≈ 1
0.53 log2 Z for decryption with single-

letter frequencies,
(2) U ≈ 1

1.2 log2 Z for decryption with bigram fre-
quencies,

(3) U ≈ 1
1.5 log2 Z for decryption with trigram fre-

quencies,
(w) U ≈ 1

2.1 log2 Z for decryption with word fre-
quencies,

(∗) U ≈ 1
3.5 log2 Z for decryption using all gram-

matical and semantical rules.
For simple substitution with Z = 26 ! , one has
log2 Z ≈ 88.38 . This leads to the values 167, 74,
59, 42, and 25 for the unicity distance, which are
confirmed by practical experience.

For bigram substitution with Z = 676 ! , there
is log2 Z ≈ 5385.76 and U ≈ 1530 for decryption
using all grammatical and semantical rules.

The situation is rather similar for German,
French, Italian, Russian, and related Indo-
European languages.

For holocryptic sequences of key elements, the
unicity distance is infinite.

Friedrich L. Bauer
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INTEGER FACTORING

DEFINITION: Integer factoring is the following
problem: given a positive composite integer n, find
positive integers v and w, both greater than 1, such
that n = v · w.

RELATION TO INFORMATION SECURITY: Inte-
ger factoring is widely assumed to be a hard prob-
lem. Obviously, it is not hard for all composites,
but composites for which it is believed to be dif-
ficult can easily be generated. This belief under-
lies the security of RSA public-key encryption and
the RSA digital signature scheme. To the present
day, no proof of the difficulty of factoring has
been published. This is quite unlike the discrete
logarithm problem, where the difficulty is prov-
able for a generic group [19, 27]. However, this
result does not have much practical relevance.
In particular it does not say anything about the
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hardness of computing discrete logarithms in mul-
tiplicative groups of finite fields, a problem that is
widely regarded as being as hard (or as easy) as
integer factoring. On a quantum computer both
problems are easy in the sense that they allow
polynomial-time solutions. Given the current state
of the art in quantum computer manufacturing,
this is not yet considered to be a threat affect-
ing factoring or discrete logarithm based cryp-
tosystems. Quantum computer factoring is not dis-
cussed here.

METHODS FOR INTEGER FACTORIZATION: RSA
cryptosystems are faster when smaller composites
are used, but believed to be more secure for larger
ones. Finding the right middle-ground between ef-
ficiency and security requirements requires the
study of theoretical and practical aspects of the
integer factorization methods. Often, two types of
integer factoring methods are distinguished: gen-
eral purpose and special purpose methods. For
general purpose methods the factoring effort de-
pends solely on the size of the composite n to be
factored. For special purpose methods properties
of n (mostly but not always of one of the factors
of n) come into play as well. RSA composites are
generally chosen in such a way that special pur-
pose methods would be less efficient than general
purpose ones. Special purpose methods are there-
fore hardly relevant for RSA composites. For ran-
domly selected composites, however, special pur-
pose methods are on average very effective. For
example, almost 92% of all positive integers have
a factor <1000; if such a factor exists it will be
found very quickly using trial division, the sim-
plest of the special purpose methods (see below).

Here the following factoring methods are
sketched:
Special purpose—trial division; Pollard’s rho

method; Pollard’s p− 1 method and generaliza-
tions thereof; Elliptic Curve Method.

General purpose—Fermat’s method and con-
gruence of squares; Dixon’s random squares
method; continued fraction method (CFRAC);
linear sieve; Quadratic Sieve; Number Field
Sieve.

For a more complete survey refer to [6] and the
references therein.

ESTABLISHING COMPOSITENESS: Fermat’s
little theorem says that a p−1 ≡ 1 mod p if p is a
prime number and a is a positive integer <p (see
modular arithmetic). Thus, an a ∈ {1, 2, . . . , n − 1}
for which an−1 
≡ 1 mod n would establish the
compositeness of n at the cost of a single exponen-
tiation modulo n. The proof of compositeness does

not provide any information that may be useful
to find a nontrivial factor of n. Also, this type of
compositeness proof does not work for all compos-
ites, because for some composites an−1 ≡ 1 mod n
for all a that are coprime to n. There are in-
finitely many of such composites, the so-called
Carmichael numbers [1].

Fermat’s little theorem allows an alternative
formulation for which the converse is always use-
ful for compositeness testing. Let n − 1 = 2t · u
for integers t and u with u odd. If n > 2 were
prime, then any integer a ∈ {2, 3, . . . , n − 1} sat-
isfies the condition that either au ≡ 1 mod n or
a2i u ≡ −1 mod n for some i ∈ {0, 1, . . . , t − 1}. An
integer a ∈ {2, 3, . . . , n − 1} for which this condi-
tion does not hold is called a ‘witness to the com-
positeness of n.’ For odd composite n at least 75%
of the numbers in {2, 3, . . . , n − 1} are witnesses
to their compositeness [24]. Therefore, it can in
general be expected that n’s compositeness can
be proved at the cost of at most a few exponen-
tiations modulo n, simply be trying elements of
{2, 3, . . . , n − 1} at random until a witness has
been found. This probabilistic compositeness test
is often referred to as the Miller-Rabin probabilis-
tic primality test. If n itself is randomly selected
too (as may happen during the search for a prime
number), it is usually faster to establish its com-
positeness using trial division (see below).

DISTINCT FACTORS: Let a be a witness to the
compositeness of n, as above. This witness can be
used to check that n is not a prime power at neg-
ligible additional cost. By squaring the number
a2t−1u mod n that was last calculated, one calcu-
lates (an − a) mod n. If it is zero, then n is not a
prime power because the odd parts of the t + 2 fac-
tors

a · (au − 1) ·
t−1∏
i=0

(a2i u + 1)

of an − a are pairwise relatively prime; actually,
in that case one of those t + 2 factors has a non-
trivial factor in common with n, which can easily
be found. If (an − a) mod n 
= 0, one verifies that
gcd(an − a, n) = 1, which shows that n is not a
prime power: if n were pk for a prime p, then
a p ≡ a mod p and thus also an = a pk ≡ a mod p,
so that p would divide an − a.

REPEATED FACTORS: If n is an odd composite
and not a prime power, it may still be a proper
power of a composite (i.e., n = m� for m, � ∈ Z>1
with m composite) or it may properly contain
a square (i.e., n = m� · w for m, �, w ∈ Z>1 with
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gcd(m, w) = 1). Proper powers can be recognized
by approximating �th roots of n for 1 ≤ � ≤ [ log n

log 3 ]
using a standard numerical method such as New-
ton’s method. At present there is in general no bet-
ter way to find out if n properly contains a square
than factoring n.

Trial division up to bound B is the process of
checking for all primes ≤ B in succession if they
divide n, until the smallest prime factor p of n
is found or until it is shown that p > B. This
takes time proportional to log n · min(p, B). For
randomly selected n trial division can be expected
to be very effective. It cannot be recommended
to use B larger than, say, 106 (with the precise
value depending on the relative speeds of imple-
mentations) because larger p can be found more
efficiently using one of the methods described
below.

Pollard’s rho method [21] is based on the birth-
day paradox: if x0, x1, x2, . . . is a random walk
on Z/pZ, then for any p there is a fair probabil-
ity that xi = xj for some indices i 
= j up to about√

p. Similarly, if x0, x1, x2, . . . is a random walk
on Z/nZ, then for any p < n there is a fair prob-
ability for a collision xi ≡ xj mod p for i 
= j up to
about

√
p; if p is an unknown divisor of n, such a

collision can be recognized because it implies that
p divides gcd(n, xi − xj).

In Pollard’s rho method a walk on Z/nZ is de-
fined by selecting x0 ∈ Z/nZ at random and by
defining xi+1 = (x2

i + 1) mod n. There is no a pri-
ori reason why this would define a random walk
on Z/nZ, but if it does it may reveal the small-
est factor p of n after only about

√
p iterations.

At the i-th iteration, this would require i − 1
gcd-computations gcd(n, xi − xj) for j < i, mak-
ing the method slower than trial division. This
problem is overcome by means of Floyd’s cycle-
finding method: at the i-th iteration compute just
gcd(n, xi − x2i) (thus requiring computation of not
only xi but x2i as well). As a result, and under the
assumption that the walk is random, the expected
time to find pbecomes proportional to (log n)2 · √

p;
this closely matches practical observations. The
name of the method is based on the shape of
the Greek character rho (‘ρ’) depicting a sequence
that bites in its own tails. The method is related
to Pollard’s rho method for solving the discrete
logarithm problem.

In practice the gcd-computation per iteration
is replaced by a single gcd-computation of n
and the product modulo n of, say, 100 consec-
utive (xi − x2i)’s. In the unlikely event that the
gcd turns out to be equal to n, one backs up
and computes the gcd’s more frequently. See
also [16].

POLLARD’S p− 1 METHOD [20]: It follows from
Fermat’s little theorem that if a is coprime to a
prime p and k is an integer multiple of p− 1,
then ak ≡ 1 mod p. Thus, if p is a prime factor of
n, then p divides either gcd(a, n) or gcd(ak − 1, n)
where a is randomly selected from {2, 3, . . . , n −
2}. This means that primes p dividing n for which
p− 1 is B-smooth (smoothness), may be found by
selecting an integer a ∈ {2, 3, . . . , n − 2} at ran-
dom, checking that gcd(a, n) = 1, and comput-
ing gcd(ak − 1, n) where k is the product of the
primes ≤B and appropriately chosen small powers
thereof. This takes time proportional to (log n)2 · B.
In a ‘second stage’ one may successively try k · q as
well for the primes q between B and B′, thereby
finding p for which p− 1 is the product of a B-
smooth part and a single larger prime factor up
to B′; the additional cost is proportional to B′ − B.

For n with unknown factorization, the best val-
ues B and B′ are unknown too and, in general, too
large to make the method practical. However, one
may try values B, B′ depending on the amount of
computing time one finds reasonable and turn out
to be lucky; if not one gives up as far as Pollard’s
p− 1 method is concerned. Despite its low proba-
bility of success, the method is quite popular, and
has led to some surprising factorizations.

GENERALIZATIONS OF POLLARD’S p− 1
METHOD: Pollard’s p− 1 method is the special
case d = 1 of a more general method that finds
a prime factor p of n for which the order pd − 1
of the multiplicative group F∗

pd of Fpd is smooth.
Because

X d − 1 =
∏

t dividing d

�t (X),

where �t (X) is the tth cyclotomic polynomial
(thus, �1(X) = X − 1, �2(X) = X 2−1

X−1 = X + 1,

�3(X) = X 3−1
X−1 = X 2 + X + 1, �4(X) = X 4−1

(X−1)(X+1) =
X 2 + 1, etc.), the order of F∗

pd is smooth if and only
if �t (p) is smooth for all integers t dividing d.
For each t the smoothness test (possibly leading
to a factorization of n) consists of an exponenti-
ation in a ring modulo n that contains the order
�t (p) subgroup of the multiplicative group of the
subfield Fpt of Fpd . For t = d = 2 the method is
known as Williams’ p+ 1 method [31]; for general
d it is due to Bach and Shallit [3].

USAGE OF ‘STRONG PRIMES’ IN RSA: It is
not uncommon, and even prescribed in some stan-
dards, to use so-called strong primes as factors of
RSA moduli. These are primes for which both p− 1
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and p+ 1 have a very large prime factor, rendering
ineffective a p− 1 or p+ 1 attack against the mod-
ulus. This approach overlooks other �t (p) attacks
(which, for random moduli, have an even smaller
probability of success). More importantly it over-
looks the fact that the resulting RSA modulus is
just as likely to be vulnerable to a single elliptic
curve when using the Elliptic Curve Method for
Factoring. It follows that usage of strong primes
does in general not make RSA moduli more resis-
tant against factoring attacks. See also [26].

CYCLING ATTACKS AGAINST RSA: These at-
tacks, also called ‘superencryption attacks’ work
by repeatedly re-encrypting an RSA ciphertext, in
the hope that after k re-encryptions (for some rea-
sonable k) the original ciphertext appears. They
are used as an additional reason why strong
primes should be used in RSA. However, it is
shown in [26] that a generalized and more effi-
cient version of cycling attacks can be regarded as
a special purpose factoring method that is success-
ful only if all prime factors of p− 1 are contained in
ek − 1 for one of the primes pdividing n, where e is
the RSA public exponent. The success probability
of this attack is therefore small, even when com-
pared to the success probability of Pollard’s p− 1
method.

ELLIPTIC CURVE METHOD FOR FACTOR-
ING [13]: The success of Pollard’s p− 1 method
(or its generalizations) depends on the smoothness
of the order of one of the groups F∗

p (or F∗
pd ) with p

ranging over the prime factors of n. Given n, the
group orders are fixed, so the method works effi-
ciently for some n but for most n it would require
too much computing time. In the elliptic curve
method each fixed group F∗

p of fixed order (given n)
is replaced by the group Ep of points modulo pof an
elliptic curve modulo n. For randomly selected el-
liptic curves modulo n, the order #Ep of Ep behaves
as a random number close to p. If #Ep is smooth,
then p can efficiently be found using arithmetic in
the group of points of the elliptic curve modulo n.
It is conjectured that the smoothness behavior
of #Ep is similar to that of ordinary integers of
that size (smoothness probability), which implies
that the method works efficiently for all n. It also
implies that the method can be expected to find
smaller factors faster than larger ones. In the
worst case where n is the product of two primes
of about the same size the heuristic expected
runtime is Ln[1/2, 1], with Ln as in L-notation;
this is subexponential in log(n). See Elliptic Curve
Method for Factoring for a more complete descrip-
tion and more detailed expected runtimes.

FERMAT’S METHOD AND CONGRUENCE OF
SQUARES: Fermat’s method attempts to factor n
by writing it as the difference of two integer
squares. Let n = p · q for odd p and q with p < q,
so that q − p = 2y for an integer y. With x = p+ y
it follows that n = (x − y)(x + y) = x2 − y2. Thus,
if one tries x = [

√
n] + 1, [

√
n] + 2, [

√
n] + 3, . . . in

succession until x2 − n is a perfect square, one ul-
timately finds x2 − n = y2. This is efficient only if
the resulting y, the difference between the factors,
is small; if it is large the method is inferior even
to trial division.

Integers x and y that satisfy the similar but
weaker condition

x2 ≡ y2 mod n

may also lead to a factorization of n: from the
fact that n divides x2 − y2 = (x − y)(x + y) it fol-
lows that

n = gcd(n, x − y) gcd(n, x + y).

If x and y are random solutions to x2 ≡ y2 mod
n, then there is a probability of at least 50% that
this yields a non-trivial factorization of n. All gen-
eral purpose factoring methods described below
work by finding ‘random’ solutions to this equa-
tion.

THE MORRISON–BRILLHART APPROACH: To
construct solutions to x2 ≡ y2 mod n that may be
assumed to be sufficiently random, Kraı̈tchik in
the 1920s proposed to piece together solutions to
x2 ≡ a mod n. In the Morrison–Brillhart approach
this is achieved using the following two steps [18]:
Relation collection. Fix a set P of primes (often

called the factor base), and collect a set V of
more than #P integers v such that

v2 ≡
(∏

p∈P

pev,p

)
mod n, with ev,p ∈ Z.

These identities are often called ‘relations’ mod-
ulo n. If P is the set of primes ≤ B, then v’s such
that v2 mod n is B-smooth lead to relations. For
each v the exponents ev,p are regarded as a #P-
dimensional vector, denoted (ev,p)p∈P.

Relation combination. Because #V > #P, the #P-
dimensional vectors (ev,p)p∈P are linearly depen-
dent and there exist at least #V − #P linearly
independent subsets S of V such that

∑
v∈S

ev,p = 2(sp)p∈P, with (sp)p∈P ∈ Z#P.

These subsets S with corresponding vectors
(sp)p∈P give rise to at least #V − #P independent
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solutions to x2 ≡ y2 mod n, namely

x =
(∏

v∈S

v

)
mod n, y =

(∏
p∈P

psp

)
mod n,

and thereby at least #V − #P independent
chances to factor n.

All current general purpose factoring methods are
based on the Morrison–Brillhart approach. They
differ in the way the relations are collected, but
they are all based on, more or less, the same rela-
tion combination step.

MATRIX STEP: Because S and (sp)p∈P as above
can be found by looking for linear dependencies
modulo 2 among the rows of the (#V × #P)-matrix
(ev,p)v∈V,p∈P, the relation combination step is often
referred to as the ‘matrix step.’ With Gaussian
elimination the matrix step can be done in (#P)3

steps (since #V ≈ #P). Faster methods, such as
conjugate gradient, Lanczos, or Wiedemann’s co-
ordinate recurrence method, require O(w · #P)
steps (see O-notation), where w is the number of
non-zero entries of the matrix (ev,p mod 2)v∈V,p∈P.
See [5,11,17,23,29,30] for details.

In the various runtime analyses below, #P is
measured using the L-notation and w turns out
to be c · #P for a c that disappears in the o(1) of
the L-notation, so that the runtime O(w · #P) sim-
plifies to (#P)2.

DIXON’S RANDOM SQUARES METHOD [8]: The
simplest relation collection method is to define P
as the set of primes ≤B for some bound B and
to select different v’s at random from Z/nZ until
more than π (B) ones have been found for which
v2 mod n is B-smooth. The choice of B, and the
resulting expected runtime, depends on the way
the values v2 mod n are tested for B-smoothness.
If smoothness is tested using trial division, then
B = Ln[1/2, 1/2] (with Ln as in L-notation). For
each candidate v, the number v2 mod n is assumed
to behave as a random number ≤ n = Ln[1, 1], and
therefore, according to smoothness probability, B-
smooth with probability Ln[1/2, −1]. Testing each
candidate for B-smoothness using trial division
takes time #P = π (B) = Ln[1/2, 1/2] (using the
properties of Ln as set forth in L-notation), so col-
lecting somewhat more than #P relations can be
expected to take time

number
of relations

to be collected︷ ︸︸ ︷
Ln[1/2, 1/2] ·

trial
division︷ ︸︸ ︷

Ln[1/2, 1/2] ·

inverse of
smoothness
probability︷ ︸︸ ︷

(Ln[1/2, −1])−1

= Ln[1/2, 2].

Gaussian elimination on the #V × #P matrix
takes time

Ln[1/2, 1/2]3 = Ln[1/2, 3/2].

Because at most log2(n) entries are non-zero for
each vector (ev,p)p∈P, the total number of non-zero
entries of the matrix is #V · log2(n) = Ln[1/2, 1/2]
and the matrix step can be done in

Ln[1/2, 1/2]2 = Ln[1/2, 1]

steps using Lanczos or Wiedemann algorithms.
In either case the runtime is dominated by re-
lation collection and the total expected time re-
quired for Dixon’s method with trial division is
Ln[1/2, 2]. Unlike most methods described below,
the expected runtime of the trial division variant
of Dixon’s method can rigorously be proved, i.e.,
it does not depend on any heuristic arguments or
conjectures.

If B-smoothness is tested using the elliptic curve
method, the time to test each v2 mod n is reduced
to Ln[1/2, 0]: the entire cost of the smoothness
tests disappears in the o(1). As a result the two
stages can be seen to require time Ln[1/2, 3/2]
each when Gaussian elimination is used for the
matrix step. In this case, i.e., when using the ellip-
tic curve method for smoothness testing, the run-
time can be further reduced by using Lanczos or
Wiedemann methods and a different value for B.
Redefine B as Ln[1/2,

√
1/2] so that relation col-

lection takes time

Ln[1/2,
√

1/2] · Ln[1/2, 0] · (Ln[1/2, −
√

1/2])−1

= Ln[1/2,
√

2]

and the matrix step requires Ln[1/2,
√

1/2]2 =
Ln[1/2,

√
2] steps. The overall runtime of Dixon’s

method becomes

Ln[1/2,
√

2] + Ln[1/2,
√

2] = Ln[1/2,
√

2] :

asymptotically relation collection and combina-
tion are equally expensive. As described here, the
expected runtime of this elliptic curve based vari-
ant of Dixon’s method depends on the conjecture
involved in the expected runtime of the elliptic
curve method. It is shown in [22], however, that
the expected runtime of a variant of the elliptic
curve smoothness test can rigorously be proved.
That leads to a rigorous Ln[1/2,

√
2] expected run-

time for Dixon’s method.

CONTINUED FRACTION METHOD (CFRAC)
[18]: The quadratic residues v2 mod n in Dixon’s
method provably behave with respect to smooth-
ness probabilities as random non-negative inte-
gers less than n. That allows the rigorous proof
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of the expected runtime of Dixon’s method. How-
ever, this theoretical advantage is not a practi-
cal concern. It would be preferable to generate
smaller quadratic residues, thereby improving the
smoothness chances and thus speeding up relation
collection, even though it may no longer be possi-
ble to rigorously prove the expected runtime of the
resulting method. The earliest relation collection
method where quadratic residues were generated
that are substantially smaller than n was due to
Morrison and Brillhart and is based on the use of
continued fractions; actually, this method (dubbed
‘CFRAC’) predates Dixon’s method.

If ai/bi is the ith continued fraction conver-
gent to

√
n, then |a2

i − nb2
i | < 2

√
n. Thus, if v is

chosen as ai for i = 1, 2, . . . in succession, then
v2 mod n = a2

i − nb2
i is a quadratic residue mod-

ulo n that is < 2
√

n and thus much smaller than n.
In practice this leads to a substantially larger
smoothness probability than in Dixon’s method,
despite the fact that if prime p divides v2 mod n,
then (ai/bi)2 ≡ n mod p so that n is a quadratic
residue modulo p. With B = Ln[1/2, 1/2], P the set
of primes p ≤ B with ( n

p) = 1, and elliptic curve
smoothness testing, the heuristic expected run-
time becomes Ln[1/2, 1]. The heuristic is based
on the assumption that the residues v2 mod n
behave, with respect to smoothness properties, as
ordinary random integers ≤ n and that the set of
primes p ≤ B for which ( n

p) 
= 1 does not behave
unexpectedly. In that case, when the L-notation is
used to express smoothness probabilities, the dif-
ference with truly random integers disappears in
the o(1).

In [14] it is shown how this same expected run-
time can be achieved rigorously (by a method that
is based on the use of class groups). If elliptic curve
smoothness testing is replaced by trial division,
B = Ln[1/2,

√
1/8] is optimal and the heuristic ex-

pected runtime becomes Ln[1/2,
√

2].

NOTE ON THE SIZE OF RSA MODULI: In
the mid 1970s CFRAC (with trial division based
smoothness testing) was the factoring method of
choice. Strangely, at that time, no one seemed to
be aware of its (heuristic) subexponential expected
runtime Ln[1/2,

√
2]. Had this been known by the

time the RSA challenge [9] was posed, Ron Rivest
may have based his runtime estimates on CFRAC
instead of Pollard’s rho (with its exponential ex-
pected runtime) [25], come up with more realistic
estimates for the difficulty of factoring a 129-digit
modulus, and could have decided that 129 digits
were too close for comfort (as shown in [2]). As a
result, 512-bit RSA moduli may have become less
popular.

Linear Sieve

It was quickly realized that the practical perfor-
mance of CFRAC was marred by the trial division
based smoothness test. In the late 1970s Richard
Schroeppel therefore developed a new way to gen-
erate relatively small residues modulo n that can
be tested for smoothness very quickly: look for
small integers i, j such that

f (i, j) = (i + [
√

n])( j + [
√

n]) − n ≈ (i + j)
√

n

is smooth. Compared to CFRAC the residues are
somewhat bigger, namely (i + j)

√
n as opposed to

2
√

n. But the advantage is that smoothness can be
tested for many i, j simultaneously using a sieve
(see sieving): if p divides f (i, j) then p divides
f (i + kp, j + �p) for any k, � ∈ Z. This means that
if f (i, j) is tested for B-smoothness for 0 ≤ i < I
and 0 ≤ j < J, the smoothness tests no longer take
time I · J · π (B) ≈ I · J · B/ log B, but

∑
p≤B

∑
0≤i<I

∑
0≤ j<J

1
p

= O(I · J · log log(B)).

This leads to a heuristic expected runtime
Ln[1/2, 1]. Inconveniently, (i + [

√
n])( j + [

√
n]) is

not automatically a square, which means that
for all values i + [

√
n] and j + [

√
n] that occur in

smooth f (i, j)’s columns have to be included in the
matrix. The effect this has on the expected run-
time disappears in the o(1) in Ln.

This method, dubbed ‘linear sieve,’ was the first
factoring method that was heuristically shown (by
Schroeppel) to have subexponential expected run-
time. (That the earlier CFRAC also had subexpo-
nential expected runtime was realized only later;
see also [10].) Its main historical significance is,
however, that it led to the Quadratic Sieve, for
many years the world’s most practical factoring
method.

Quadratic Sieve

The first crude version of the quadratic sieve was
due to Carl Pomerance who realized that it may be
profitable to take i = j in Schroeppel’s linear sieve.
Although smoothness could still be tested quickly
using a sieve and the heuristic expected runtime
(with sieving) turned out to be a low Ln[1/2, 1],
in practice the method suffered from deteriorat-
ing smoothness probabilities (due to the linear
growth of the quadratic residue f (i, i)). This prob-
lem was, however, quickly overcome by Jim Davis
and Diane Holdridge which led to the first fac-
torization of a number of more than 70 decimal
digits [7]. Since then the method has been em-
bellished in various ways (most importantly by
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Peter Montgomery’s multiple polynomial version,
as described in [28]) to make it even more practi-
cal. See Quadratic Sieve for details. At this point
the largest factorization obtained using quadratic
sieve is the 135-digit factorization reported
in [15].

Number Field Sieve

Until the late 1980s the best factoring methods,
including the most practical one (quadratic sieve),
shared the same expected runtime Ln[1/2, 1] de-
spite the fact that the underlying mathematics
varied considerably: heuristically for quadratic
and linear sieve, CFRAC, and the worst case of the
elliptic curve method, and rigorously for the class
group method from [14]. This remarkable coinci-
dence fostered the hope among users of the RSA
cryptosystem that Ln[1/2, 1], halfway between lin-
ear time log n and exponential time n (L-notation),
is the ‘true’ complexity of factoring.

The situation changed, slowly, when in late 1988
John Pollard distributed a letter to a handful of
colleagues. In it he described a novel method, still
based on the Morrison–Brillhart approach, to fac-
tor integers close to a cube and expressed his hope
that, one day, the method may be used to factor
the ninth Fermat number F9 = 229 + 1, back then
the world’s ‘most wanted’ composite. It was quickly
established that for certain ‘nice’ n Pollard’s new
method should work in heuristic expected runtime
Ln[1/3, ( 32

9 )1/3] ≈ Ln[1/3, 1.526]. This was the first
indication that, conceivably, the complexity of fac-
toring would not be stuck at Ln[1/2, . . .]. The
initial work was soon followed by the factoriza-
tion of several large ‘nice’ integers, culminating
in 1990 in the factorization of F9 [12]. Further
theoretical work removed the ‘niceness’ restric-
tion and led to the method that is now referred
to as the ‘number field sieve’: a general purpose
factoring method with heuristic expected runtime
Ln[1/3, ( 64

9 )1/3] ≈ Ln[1/3, 1.923]. The method as it
applies to ‘nice’ numbers is now called the ‘spe-
cial number field sieve.’ See Number Field Sieve
for details. The first time a 512-bit RSA modulus
was factored, using the number field sieve, was in
1999 [4].

With hindsight the property that all Ln[1/2, 1]
factoring methods have in common is their de-
pendence, in one way or another, on smoothness
of numbers of order nO(1). The number field sieve
breaks through the nO(1) barrier and depends on
smoothness of numbers of order no(1).

Arjen K. Lenstra
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INTERACTIVE ARGUMENT

An interactive argument (or computationally
sound proof system) is a relaxation of an inter-
active proof, introduced in [1]. The difference is
that the prover is restricted to be a polynomial

time algorithm for an interactive argument,
whereas no such restrictions on the prover apply
for an interactive proof. The prover’s advantage
over the verifier is that the prover gets a private
input, which allows the prover to perform his or
her task in polynomial time (completeness).

The soundness condition for an interactive ar-
gument, referred to as computational soundness,
states as before that executions of the protocol be-
tween the prover and the verifier should result in
the verifier rejecting the proof, if x 
∈ L holds; here,
the prover is not required to follow the protocol,
that is, the prover may behave arbitrarily, but the
prover is limited to be a (probabilistic) polynomial-
time algorithm.

Hence, cheating by the prover is not required to
be impossible; rather, cheating is required to be
infeasible. Therefore, interactive arguments are
easier to achieve than interactive proofs; in par-
ticular, while perfect zero-knowledge arguments
are known to exist for every language in NP, it
is considered unlikely that perfect zero-knowledge
proofs exist for every language in NP.

Berry Schoenmakers
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INTERACTIVE PROOF

The notion of an interactive proof plays an im-
portant role in complexity theory. An interactive
proof is a protocol between two parties, called
the prover and the verifier. The crucial point is
that the verifier is restricted to be a (probabilistic)
polynomial time algorithm, whereas no such re-
striction applies to the prover. By means of an in-
teractive proof the prover convinces the verifier of
the validity of a given statement. A statement is
of the form x ∈ L, where L is a formal language.
The interesting languages are those for which no
polynomial time membership tests (are known to)
exist. It follows that the verifier cannot determine
on its own whether x ∈ L holds.
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An interactive proof is required to satisfy two
conditions. The first condition is completeness,
which means that executions of the protocol be-
tween the prover and the verifier should result in
the verifier accepting the proof, if x ∈ L holds. The
second condition is soundness, which means that
executions of the protocol between the prover and
the verifier should result in the verifier rejecting
the proof, if x 
∈ L holds; here, the prover is not
required to follow the protocol, that is, the prover
may behave arbitrarily.

A simple example of an interactive proof runs
as follows. Consider the language LH consisting of
graphs containing a Hamiltonian cycle. It is well-
known that the problem of determining member-
ship for LH is NP-complete. Hence, it is supposedly
hard to determine whether a given graph contains
a Hamiltonian cycle. However, given a purported
Hamiltonian cycle for a graph, it is easy to check
whether this is indeed the case. An interactive
proof for LH is obtained if the prover simply sends
a Hamiltonian cycle for the graph under consid-
eration to the verifier. The conditions of complete-
ness and soundness are clearly satisfied.

In the context of cryptography, interactive
proofs are usually required to satisfy some ad-
ditional conditions. Many interactive proofs are
in fact proofs of knowledge. Also, zero-knowledge
proofs are a main example of interactive
proofs used for cryptographic purposes, noting
that zero-knowledge interactive arguments and
witness hiding protocols are possible alternatives.
The above interactive proof for LH is not zero-
knowledge nor witness hiding, as the prover sim-
ply gives away a Hamiltonian cycle.

Berry Schoenmakers
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INTERPOLATION ATTACK

The interpolation attack is a technique for at-
tacking block ciphers built from simple algebraic

functions. It was introduced by Jakobsen and
Knudsen [2, 3] in 1997 and applied to variants of
SHARK, a predecessor of Rijndael/AES.

The attack is based on a well-known principle:
given an unknown polynomial y = f (x), if the de-
gree of f (x) does not exceed n − 1, then its coeffi-
cients can efficiently be recovered by taking n dis-
tinct samples (xi, yi) with yi = f (xi). The Lagrange
interpolation formula provides a general expres-
sion for the polynomial reconstructed this way:

f (x) =
∑

i

yi

∏
j
=i

x − xj

xi − xj
.

This mathematical property has interesting im-
plications when considering a block cipher with
a fixed but unknown secret key. If the ciphertext
is written as a polynomial (with unknown coeffi-
cients) of the plaintext, and if the degree of this
polynomial is sufficiently low, then a limited num-
ber of plaintext–ciphertext pairs suffice to com-
pletely determine the encryption function. This
allows the attacker to encrypt and decrypt data
blocks for the unknown key without doing any key-
recovery.

An interesting property of the basic interpola-
tion attack is that it is not affected by the internal
structure of the cipher, apart from the degree of
the polynomial representing the encryption func-
tion. In fact, a low degree is not strictly necessary
for an efficient attack; it suffices that the num-
ber of unknown coefficients is sufficiently small,
and this happens to be the case for a number of
ciphers which were optimized against linear and
differential attacks (for example, the KN cipher
by Knudsen and Nyberg).

The attack outlined above can be extended and
generalized in many ways. It can, for example, also
be applied by only expressing a part of the cipher-
text as a function of the plaintext, or by construct-
ing an implicit polynomial expression involving
parts of the plaintext and the ciphertext. The lat-
ter could be derived from a rational expression, or
obtained by applying a meet-in-the-middle attack.
Furthermore, in a subsequent paper [1], Jakobsen
demonstrated that the interpolation ideas can still
be applied when the polynomials are probabilis-
tic. The method is based on Sudan’s algorithm,
designed to decode Reed-Solomon codes (see cyclic
codes). Finally note that all attacks described
above can easily be turned into key-recovery at-
tacks by guessing the last round key of the cipher
and checking the correctness of the guess by ap-
plying the interpolation attack on the remaining
rounds.

Christophe De Cannière
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INTRUSION DETECTION

Intrusion Detection (ID) systems attempt to recog-
nize unauthorized or anomalous use of a computer
system or network. ID solutions use sensors to as-
certain the state of the environment. Intrusions
are detected by recognizing some characteristic in
the sensed data. These characteristics may reflect
overt illegal access or use of system resources, a
match with a known pattern of intrusive activity,
or deviate from some model of normal activity. The
intruder may or may not commit harmful activi-
ties as part of the sensed attack, and may not even
be successful in completing an attempted intru-
sion. ID is concerned with detecting the existence
of an intrusion, regardless of its nature or affect,
and initiating an appropriate response.

ID techniques are often categorized as either
misuse or anomaly detection. In both of these tech-
niques, collected data is compared against a model
of system behavior (see Fig. 1). Such data often
includes computer audit/log data and network
traffic data [6]. The difference between the two
techniques lies in the underlying model: misuse

Activity Data

ID Solution
System
Model

Alarm

System
Authority

Network of Hosts

Fig. 1. Intrusion detection techniques compare environ-
mental state (e.g., activity data) with a model of normal
or anomalous system behavior

detection uses a model of “bad” system behav-
ior, and anomaly detection uses a model of “nor-
mal” system behavior. Loosely speaking, an at-
tack is detected if the observed behavior matches
anomalous or diverges from normal behavior,
respectively.

Misuse Detection compares current system data
with models of known intrusive activities. The
model for this technique is designed using specifi-
cally known patterns of unauthorized behavior to
predict and detect subsequent similar attempts.
These signatures rely on information about known
intrusions. The signature consists of a specific
behavioral pattern or profile. The ID system at-
tempts to match a sequence of observed events
with known pattern of events in the signature
(e.g., password guessing, buffer overflow attacks
[2]). The events a particular misuse system will
measure is dependent on the environment and the
types of attacks it is attempting to detect. For ex-
ample, one might gage the number and frequency
of login failures when trying to detect password
guessing attacks. While active, any sequence of
events that do not match an attack signature is
deemed normal or at least harmless. While misuse
detection is highly effective at detecting known at-
tacks, it cannot detect attacks for which there is
no available signature.

Anomaly detection systems attempt to detect
abnormal behavior. An anomaly detection system
establishes a model of normalcy based on known or
expected system behavior (e.g., as measured from
past behavior). The model crucially relies on the
accuracy of this normal profile. The normal pro-
file is a data set or approximation that defines
the baseline state of the system under normal
operating conditions. The model may also con-
tain information gained from investigating user
patterns, such as profiling the programs a user
executes. Armed with this model, any signifi-
cant deviation from the norm profile is considered
anomalous, and is thus a potential indicator of in-
trusive activity. Unlike signature-based schemes,
anomaly-based techniques present the possibility
of detecting previously unknown attacks. While
this is certainly desirable, anomaly-based tech-
niques may generate false positives. In this case,
a normal activity is incorrectly flagged as intru-
sive, resulting in the initiation of unnecessary
counter-measures. High false positive rates have
limited the effectiveness of past anomaly detection
solutions.

To simplify, depending on the environments and
target attacks, intrusion detection techniques can
be deployed within hosts or networks. Host-based
ID techniques detect intrusions based on data
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collected from the operating system or user appli-
cations. Network-based techniques use observed
network state or protocol interactions to detect
attacks. Neither of these solutions make any as-
sumption about the source of the attack: an intru-
sion may emanate from a legitimate (insider) user
or an anonymous external adversary.

Host-based intrusions often involve adversaries
operating as authorized users of a computer sys-
tem, but conducting activities that violate a site’s
security policies (see policy). These types of in-
trusions are most often detected using operating
system audit and log data. These logs commonly
include actions that are restricted to access by sys-
tem administrators (such as adding or deleting
user accounts), as well those permitted by non-
administrative users (e.g., adding or deleting files,
executing processes or programs, logging in and
out of a system, etc.). Host-based ID is effective
for detecting attacks mounted by otherwise autho-
rized users because of the sensor’s visibility into
user behavior [3].

Network intrusions often involve adversaries
who are not authorized to use any particular part
of the environment, but abuse open network pro-
tocols and services. These types of intrusions may
be detected using network traffic data. Network-
based ID techniques often obtain the raw net-
work packets used to perform an intrusion by
passively tapping all traffic traversing a network
segment [3]. Some ID solutions examine packet
headers for signs of suspicious activity. For ex-
ample, many IP-based denial-of-service (DoS) and
fragmented packet (Teardrop) attacks can only
be identified by looking at the packet headers as
they travel across a network. An ID technique can
also investigate the packet payload, looking for
commands of syntax used in specific attacks to
recognize embedded payload attacks. An ID tech-
nique may also model traffic as flows. Flows are
virtual or real network connections that repre-
sent aggregated related and concurrent commu-
nication. Flows represent higher layer communi-
cation sessions, and can be used to infer malicious
intent, where the individual packets may appear
harmless (e.g., in a distributed Dos (DDdoS) at-
tack). Network-based ID is effective at detecting
foreign attacks because of their visibility into the
communication media (i.e., network).

Network-based ID techniques are often strate-
gically deployed at critical access points [5] (see
Fig. 2). These systems can alleviate much of the
need for hosts to monitor for network-based at-
tacks when such configurations are used. A net-
work ID solution may also be placed outside of
a network (or in the network demilitarized zone

IDS Device

Host Host
Log
Data

Network
Monitor Firewall Internet

ServerServer ...

Host...

Fig. 2. Deploying IDS—a network-based IDS can be
strategically deployed between the Internet and sensi-
tive data hosts and servers. In this way, all traffic coming
from the open Internet is monitored by the IDS

(DMZ)) to detect attacks intended for resources
behind the network’s perimeter defenses. Because
network-based ID often operates in real time and
on separate devices, it is difficult or impossible for
an adversary to later remove evidence of an at-
tack. Note that a network-based ID solution need
not only indicate the method of attack, but also in-
fer or extract other information that may help lead
to identification and prosecution of the adversary.

Host-based ID solutions frequently offer better
forensic tools than their network-based coun-
terparts. Because a host-based ID solution has
access to the operating system internals, it has
many more opportunities to collect sensor data.
For example, while an attack on a critical server
made via a keyboard cannot be detected by an ID
network-based system, a host-based ID system
that captures keystrokes can easily detect the
attack.

Ultimately, the kinds of attacks that host and
network-based systems most effectively detect are
quite different. The different approaches (host vs.
network) complement each other well. The com-
bination of these two technologies is a foundation
upon which many environments build their secu-
rity infrastructure.

The response to a detected attack varies from
system to system. More frequently than not, the
ID solution forwards an alarm event to a net-
work management system or authority for display
and resolution. In a host-based system, this may
be the administrator for the host or some local
network administrator. Many sensors may be de-
ployed throughout a network in a large network-
based ID solution. The sensors and ID components
communicate with each other to generate and cor-
relate alarms at, for example, a network manage-
ment console.

ID solutions are packaged as Intrusion De-
tection Systems (IDS). These software solutions
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come in a variety of forms due to the un-
constrained design space for detecting intru-
sions [1] (e.g., Generic Intrusion Detection Model,
Network Security Monitor Model, Autonomous
Agents Model, Behavior-based Intrusion De-
tection Model, Predictive Pattern Generation
Model, and Knowledge-based Intrusion Detection
Model [4]). An IDS may be deployed as the exam-
ple of a network IDS displays in Figure 2. One
popular open source network IDS available for
free downloading is called SNORT, and is avail-
able at www.snort.org. This system sniffs and
logs network packets, and employs a signature-
based technique for network-based ID.

Toni Farley
Jill Joseph
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INVASIVE ATTACKS

INTRODUCTION: A smart card contains an em-
bedded microchip with metallic contacts on the
front. The smartcard does not usually have its own
power supply, yet it operates as a very small com-
puter. The embedded operating system (OS) con-
trols application execution, access condition, cryp-
tographic routines and communication protocols
with the outside world (usually a terminal). Some
smartcards have several applications embedded at
a time; these are called “multi-application” smart
cards.

The largest application is the GSM. The sub-
scriber identity module (SIM) is found in all hand-
sets that use the GSM wireless communication
standard (Europe, Asia, Latin America and in-

creasingly North America). Smart cards are also
widely used in banking, pay TV, access control,
health insurance, public transportation, govern-
ment and online services. Broadly speaking, the
smartcard is used to control access to specific de-
vices, networks or services. When smart cards are
combined with a Public Key Infrastructure (PKI),
they efficiently implement secure spaces within a
broader IT environment, which are useful for ap-
plications such as online payment and identifica-
tion.

SMART CARD SECURITY: The purpose of a
smartcard is to ensure the secure storage of sen-
sitive data, and also the integrity and tamper-
resistant execution of cryptographic applications.
Highly sensitive data is never released outside the
card; all operations are carried out by the oper-
ating system inside the card. The operating sys-
tem also handles security and data access for each
of these applications. This section describes the
mechanisms that protect on-card data and appli-
cations.

Smartcards have an integrated CMOS circuit
commonly refered to as a chip comprising:
� Logical functions.
� CPU from 8 bits up to 32 bits.
� Different kinds of memories like ROM, EEP-

ROM, RAM and more recently Flash and Feram
(Ferroelectrics RAM). Here the ROM is a per-
manent memory storing all or part of the op-
erating system. The EEPROM is a nonvolatile
erasable memory that stores application data,
mainly keys, PIN codes or personal data and, in
some cases, parts of the operating system and
it’s applications. The RAM is a volatile memory
that stores temporary data such as intermedi-
ate internal application data or session keys or
access rights.

� I/O interface for communication with the exter-
nal world.

� Peripherals such as crypto-coprocessors,
Random-Number Generators.

OVERVIEW OF ATTACKS ON SMART CARDS:
Basically, smart card attacks can be classified into
three main categories: social, logical and physical
attacks.

Social Attacks

These are the oldest. The idea behind these at-
tacks is to obtain information directly from the
manufacturer using classical social engineering
techniques. Countermeasures in this case range
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Fig. 1. Microprocessor card architecture

from physical security such as access control to the
sites, physically isolated labs, and the education of
employees to the application of strict security pro-
cedures. This kind of attack falls outside the scope
of this document.

Logical Attacks

These attacks are used to recover secret data from
secure devices without actually damaging the de-
vice. By monitoring execution time, power con-
sumption or electromagnetic radiation of a chip,
it is frequently possible to infer information about
the processed data. Performing Side-channel
analysis on a secure device requires advanced
knowledge in electronics, cryptography, signal pro-
cessing and statistics. A well-known class of at-
tacks in this group is based on the analysis of
smart card power consumption. This class includes
Differential Power Analysis (DPA), Simple Power
Analysis (SPA), and timing analysis.
� SPA uses variations in the global power con-

sumption of the chip and infers information that
is normally held within the chip. For example,
an increase in power consumption might indi-
cate that a modular exponentiation (an impor-
tant cryptographic function) is being performed.
In general, SPA will give better results if the at-
tacker has extensive knowledge of the hardware
architecture.

� DPA is more sophisticated than the SPA. Sta-
tistical analysis of power consumption curves is
carried out for several executions of the same
algorithm. The input data is changed in such a
way that sensitive information can be deduced.

� Timing attacks have posed serious problems
in the past, because in older designs the exe-
cution time would vary according to the data
and/or the cryptographic keys that were being
processed. Current smart card chips have been

designed with constant timing; or at least tim-
ings that do not depend on data or secret keys.

� Electromagnetic analysis is a newer type of
attack. It is based on the same techniques as
those used for DPA and SPA, but the physical
quantities that are measured are not the same.
In this case, the RF signals provide the essen-
tial information. Such attacks fall into the cat-
egory of side-channel attacks, but they differ in
a number of crucial points from power attacks.

� Fault attacks are conducted using a combina-
tion of several environmental conditions that
cause the chip to produce computational er-
rors that can leak protected information. Sen-
sors that detect abnormal operating conditions
are thus used to preclude the need for costly
software and hardware countermeasures (it is
always better to anticipate rather than to cor-
rect errors).

� Software attacks target software flaws using
a normal communication channel to interface
with the card. These flaws may weaken the se-
curity features of the card or allow them to be
bypassed, leaving the system open to frauds.
There is a wide range of software attacks, some
of which are not specific to the smart card. Incor-
rect file access conditions, malicious code, flaws
in cryptographic protocols, design and imple-
mentation errors are common flaws in comput-
ing systems.

Invasive Attacks

This refers to attacks of physical systems where
the physical properties of the chip are irreversibly
modified. Different kinds of attacks are possible
using “standard” reverse engineering techniques
with optical or scanning electron microscopes
(SEM). The aim is to capture information stored
in memory areas, or data flowing through the data
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bus, registers, etc. Such techniques are also used
to disconnect circuits, to override sensors, or to
defeat blown fuse links (using probe stations or
Focused Ion Beam [FIB]). These attacks are not
specific to Smartcards. At first, tools used for in-
vasive attacks were dedicated to failure analysis
and debugging by semiconductor manufacturers.

Such attacks are detailed in the following
section.

INVASIVE ATTACKS: The goal of these attacks
is to unearth information stored in memories, or
data flowing through the data bus, registers, etc.
These attacks are not specific to smart cards but
are generic to CMOS components. Modifying an
electronic component requires considerable time
and resources, sophisticated and expensive tools
and extensive hardware expertise. This cost can
be considered as a first barrier. The more you know
about the internal architecture of the chip the eas-
ier these attacks will be.

Access to Silicon

Delayering. The first step consists in doing some
reverse engineering. Reverse engineering allows
block localization, like memories, buses, random
number generation, inputs etc. and also an under-
standing of the chip architecture.

The chip is covered by a globe-top made of epoxy
resin that can be removed by using hot fuming ni-
tric acid. At this stage, the chip’s surface is not yet
accessible for probing or modification; only optical
or electrical analysis could be feasible depending
on the chip manufacturer’s process.

CMOS chip structure is made of multiplayer
stacking going from three to five metal layers. The
upper layer is called the passivation layer (silicon
oxide), which protects the chip against environ-
mental hazards and ionic contaminations.

As a large amount of stress can be generated on
the die during the assembly process, a thick film of
polyimide over the passivation layer is deposited.
These stresses may lead to cracking of the pro-
tective passivation layer. Before getting access to
the silicon, the polyimide and passivation layers
must be removed using ethylendiamine and fluo-
ridric acid respectively. For the passivation layer
the most convenient depassivation technique is to
use a laser cutter, but this technique can only be
used for create small windows used for probing.

There is no particular way to prevent optical re-
verse engineering except by increasing the design
complexity and sharing specific parts of the circuit
among different layers.

Fig. 2. Example of window opened in the passivation
layer using laser cutter

Block Localization. Once the passivation layer has
been removed, the upper metal layer becomes ac-
cessible. Each metal layer can be selectively re-
moved by chemical attacks. Depending on the
layer structure, it can be dry-etched using plasma
or wet etching. This step can be destructive: sev-
eral chips are usually required for these attacks.

Memory blocks like ROM, EEPROM, RAM and
parts of analogue blocks such as charge pumps and
capacitors are easily recognizable, an example is
given in Figure 7.

Memory Content Extraction
� ROM

The ROM is a critical part of the circuit
because it is where the code (operating system,
JAVA virtual machine, API) is stored. In new
generations of products (0.18 µm) it is prefer-
able to use a metal or ionic implantation ROM
process. The difficulty of reverse-engineering
the ROM content in these two cases is iden-
tical. In the case of a metal ROM a selective
delayering of the chip metal layers is necessary
in order to reach the appropriate metal layer
(usually M1) and the metal connections. In the
case of an ionic implantation ROM a complete
delayering is required in order to reach the
silicon level. A chemical attack is further per-
formed to reveal doping1 differences and make
the content readable by optical observations, a
process that can be automated, and then ROM
mapping of zero and one is extracted.

In order to protect the ROM contents from il-
legal extraction, all chip manufacturers encrypt
the ROM. The ciphering algorithm depends on
both the data value and the address. So a com-
plete reverse engineering of the decoder’s logic

1 In order to create active region in the semiconductor, impu-
rities like Phosphor or boron are introduced.
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Fig. 3. Metal ROM showing unused area

is necessary. In addition, ROM code will be sys-
tematically filled with random data when the
code size is not equal to the complete ROM size.

� RAM
The RAM is a temporary working area. The
RAM data is, for example, used for crypto-
graphic calculations and session key transfers.
Using a SEM specialized in voltage contrast, it
is possible to observe RAM activity in operating
mode. These microscopes have the ability of de-
tecting variations in voltage. Applying power to
the chip and observing the chip in image mode
reveals the DC (direct current) conditions on the
surface layers of the chip.

Like for the ROM, chip manufacturers en-
crypt or scramble the RAM. Scrambling de-
pends only on the address, while ciphering de-
pends on both the address and the data: these
mechanisms can be static or dynamic. Fre-
quency sensors, used for restricting the operat-
ing range of the chip, could protect against the
use of SEM in voltage contrast.

Si

DATA BUS

Fig. 4. Mechanical probing

� EEPROM or FLASH
This write/erase nonvolatile memory is used to
store application data, part of executable code
and sensitive data like PIN code or session keys.
Reversing the EEPROM or Flash memory con-
sists in finding the state of the floating gate. At
this time, no method has been found to extract
the complete memory content. As before, non-
volatile memory can be encrypted or scrambled
to increase security level. There is an emergence
of new nonvolatile memory point like Flash and
Feram in the smartcard chip market. These new
memory maps have the particularity of being
very compact, of taking less space, and are prob-
ably more difficult to attack. We will soon have
Smartcards where the executable code will be
loaded in flash. With a strong memory man-
agement and a shrinking technology, one would
think that these products will be more secure.
However, the resulting level of security depends
on other factors such as the time available be-
fore the product needs to be finished.

Bus Localization. Using Voltage contrast tech-
niques, bus activity can be observed. Besides, in
a slow scan image mode, it is possible to visualize
different clock rates across the bus lines. Observ-
ing the changing contrast on the signal path can
be correlated to the changing logic state. However
manufacturers forecast specific countermeasures
comprising:
� Static ciphering
� Dynamic ciphering
� Complemented logic
� Buried Buses
� Dummy activity on buses.

Chip Probing

Once the first step of reverse engineering is com-
pleted, chip probing can start. As buses are con-
nected to the CPU and also to the memories, there
is a great interest in taping data passing through
these buses. Hence, it could be possible to retrieve
the full running program. In this case a small re-
verse engineering must have been done previously
and passivation removal or circuit modification is
sometimes required.

Probing could be mechanical using a micro-
probe on a micromanipulator with a probe station.
This technique is very difficult for sub-Micronics
technology smaller than 0.35 µm.

The smaller the line is, the more difficult it will
be to access them by mechanical probing. Instead,
e-beam probing which is a Contactless method
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based on secondary electron analysis giving volt-
age values, will be used.

Chip probing could be prevented by adding
countermeasures like:
� An active shield that is a metal mesh where data

passes continuously on lines. If there is a dis-
connection or modification of this mesh then the
chip does not operate anymore.

� A passive shield where a full metal mesh covers
some sensitive parts of the circuit.

� Bus static or dynamic scrambling.
� Buried lines.

Chip Modification. Modifying or disconnecting
part of a circuit in order can constitute an interest-
ing attack method. Using this method it is possible
to connect or disconnect hardware security mech-
anisms.

The Focused Ion Beam (FIB) is a convenient and
powerful tool. A FIB allows material deposited for
the creation of metal lines or metal cross-pads al-
lowing access to the bus, as illustrated in the fol-
lowing figure:

Fig. 6. Probe pads added by FIB to reach M1 through a
shield

In a similar manner, removing materials using
a FIB allows the track to be cut, the disconnec-
tion of security sensors, or the opening of a win-
dow through the passivation layer to get access to
buried levels. As mentioned previously, counter-
measures can be added in order to prevent such
attacks:
� Active shield
� Complexity of the design
� Glue logic.

PROTECTION AGAINST PHYSICAL ATTACKS:
Conducting physical attacks against smart cards
at the semiconductor level requires expensive
equipment and considerable technical expertize.
Therefore, the threat is limited to few organiza-
tions and specialists. However, smart card manu-
facturers cannot afford to release cards without
effective countermeasures against such attacks.
Some of the principles used to physically secure
cards are described below.

Modern smart cards use semiconductor tech-
nology for the chip, making reverse engineering
by observation difficult. The size and density of
the transistors on the chip surface has drasti-
cally shrunk (0.18 µm), and chips are now con-
sidered secure against visual analytical reverse
engineering.

Functional blocks are mixed, producing what
is called a glue logic design. This makes it much
more difficult for an attacker to analyze the struc-
ture of the chip and to localize functional blocks
(CPU, RAM, ROM, EEPROM, buses, registers,
etc.).

Easy to localize
Bloc

R
A
M

EEPROM R
O
M

Logic
Crypto

Fig. 7. Old chip design
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Fig. 8. New chip design

Moreover, the buses are scrambled or ciphered
and are thus inaccessible from outside the chip,
so connections cannot be easily made to re-
cover memory contents. Memories are also scram-
bled or ciphered in order to protect the chip
from selective access/erasure of individual data
bytes.

Chips are made of multiple layers, allowing
manufacturers to hide sensitive components (e.g.,
data lines, connections) in between different lay-
ers that contain less sensitive components. For in-
stance, the ROM is located in the lower (least ac-
cessible) layers of the chip.

A current-carrying protective layer or active
shield is added at the top of the chip for power

supply. If this layer is removed, the chip will no
longer operate. This layer prevents analysis of
electrical voltage on the chip to infer information.

Moreover, a set of sensors is activated to detect
abnormal variations of environmental variables
(see also smartcard tamper resistance). It guaran-
tees that the chip will not be able to operate in
abnormal conditions of use. These sensors mea-
sure values such as voltage, temperature, clock
frequency, and light. Such sensors offer protec-
tions against fault attacks (among others).

CONCLUSION: Smartcards turn out to be the
strongest components in the system. In practice,
it tends to be much easier to exploit weaknesses in
protocols or in the implementation, than to physi-
cally penetrate the card and extract its secrets. In
the last five years the level of hardware security
found in smartcards has increased enormously.
In 1998 the first publications on potential smart-
card vulnerabilities were written. Afterwards chip
manufacturers have made tremendous efforts to
increase the security levels.

This is illustrated in the following figure:

20001998
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Sensor improvement
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5  metal layers
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32-bit CPU
Complemented logic
Dynamic encryption
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However security by the use of countermea-
sures must be added at each smartcard process
level such as component, software layer, applica-
tive layer etc. Although, a smartcard device with
a good use security countermeasure is the most
secure token, soon:
� Chip design technologies will be smaller and

smaller (0.07 µm),
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Fig. 9. Part of Glue logic design

� CPU frequencies will reach 100 MHz
� New nonvolatile memories will be introduced

(Feram, MRam, etc.)
� More complex design and countermeasures will

be developed.
Hence, invasive attacks will be increasingly dif-
ficult and will require powerful tools and expert
knowledge in chip architecture and electronics.

Assia Tria
Hamid Choukri

INVERSION ATTACK

The inversion attack is a known plaintext attack
on some particular filter generators. It was pro-
posed by Golić in 1996 [1]. A generalization [2] to
any filter generator, called generalized inversion
attack, was presented by Golić, Clark and Dawson
in 2000. Both inversion attack and generalized in-
version attack aim at recovering the initial state
of the linear feedback shift register (LFSR) from a
segment of the running-key when the LFSR feed-
back polynomial, the tapping sequence, and the
filtering function are known.

Table 1. Inversion attack

Input. s0s1 . . . sN−1, N keystream bits.
Output. uγn . . . uL+γn−1, L consecutive bits of the LFSR sequence, where L is the LFSR length.
For each choice of the M-bit vector uγn . . . uγ1−1

Compute the next (L − M) bits of the LFSR sequence by

ut+γ1 ← st + g(ut+γ2 , . . . , ut+γn ), 0 ≤ t ≤ L − M .

Compute (N − L) additional bits of the LFSR sequence with the LFSR recurrence relation, and the
corresponding running-key bits, ŝt , for L − M ≤ t < N − M.

If the N − L bits ŝt are equal to the observed keystream sequence, then return (uγn . . . uL+γn−1).

ORIGINAL INVERSION ATTACK: The original in-
version attack only applies when the filtering func-
tion f is linear in its first input variable (forward
attack) or in its last input variable (backward at-
tack), i.e., when

f (x1, x2, . . . , xn) = x1 + g(x2, . . . , xn)

or

f (x1, x2, . . . , xn) = g(x1, . . . , xn−1) + xn,

where g is a Boolean function of n − 1 variables.
In the first case, the keystream s is defined by

st = f (ut+γ1 , ut+γ2 , . . . , ut+γn )
= ut+γ1 + g(ut+γ2 , . . . , ut+γn ),

where (ut )t≥0 is the sequence generated by the
LFSR and (γi)1≤i≤n is a decreasing sequence of
non-negative integers. The attack relies on the fact
that bit ut+γ1 can be deduced from the (γ1 − γn) pre-
vious terms, (ut+γ1+1, . . . , ut+γn ) if the running-key
bit st is known. The relevant parameter of the at-
tack is then the memory size of the filter genera-
tor, defined by M = γ1 − γn. Indeed, the complete
initialization of the LFSR can be recovered by an
exhaustive search on only M bits as described in
Table 1.

The backward attack, which applies when the
filter function is linear in its last variable, is simi-
lar. The complexity of both forward and backward
attacks is O(L2M). It follows that the memory size
of a filter generator should be large and preferably
close to its maximum possible value L − 1.

Moreover, the complexity of the attack dramat-
ically decreases when the greatest common divi-
sor of all spacings between the taps, d = gcd(γi −
γi+1), is large. Indeed, the inversion attack can
be applied to the d-decimation of the LFSR se-
quence, i.e., to the sequence obtained by sampling
the LFSR sequence at intervals of d clock cy-
cles (see maximum length linear sequence or [1]).
Therefore, the effective memory size of the filter
generator corresponds to

M′ = γ1 − γn

gcd(γi − γi+1)
.
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The related design criterion is then that the great-
est common divisor of all spacings between the
taps should be equal to 1.

GENERALIZED INVERSION ATTACK: A similar
attack can be mounted even if the filtering func-
tion is not linear in its first or last variable. In the
general case, the keystream is given by

st = f (ut+γ1 , ut+γ2 , . . . , ut+γn ).

Exactly as in the original inversion attack, the
basic step of the attack consists in deducing bit
ut+γ1 from the knowledge of the keystream bit
st and of the M previous terms of the LFSR se-
quence, (ut+γ1+1, . . . , ut+γn ). For fixed values of st
and of (ut+γ1+1, . . . , ut+γn ), the unknown bit ut+γ1

may take 0, 1 or 2 possible values. Then, an ex-
haustive search on the M bits uγn , . . . , uγ1−1 of
the LFSR sequence, can still be performed. For a
given value of the M-bit vector uγn , . . . , uγ1−1, a bi-
nary tree of depth L − M representing all the so-
lutions for the next (L − M) bits of u is formed.
Each node at level t corresponds to a guessed
value of (ut+γn , . . . , ut+γ1−1). Then, the number of
edges out of this node is 0, 1 or 2 according to
the number of solutions x of the equation st =
f (x, ut+γ2 , . . . , ut+γn ). If a tree of depth L − M can
be constructed from a given M-bit root, some addi-
tional bits of the LFSR sequence are computed and
their consistency with the observed keystream is
checked. It is shown that the typical number of
surviving nodes at level L − M is linear in L. Then,
the typical complexity of the attack is O(L2M). Ex-
actly as in the inversion attack, the parameter in-
volved in the attack is the effective memory size,
i.e.,

M′ = γ1 − γn

gcd(γi − γi+1)
.

Another technique based on a trellis represen-
tation and on the Viterbi algorithm is described
in [3]. Its efficiency is comparable to the general-
ized inversion attack.

Anne Canteaut
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INVERSION IN FINITE
FIELDS AND RINGS

The need to compute the multiplicative inverse of
an element of a finite field (or Galois field) or of a
finite ring occurs frequently in cryptography. The
main application domains are asymmetric cryp-
tosystems, for instance in the computation of the
private-public key pair in RSA (see RSA public
key encryption schems) or in the group operation
of elliptic curve cryptosystems. The finite struc-
tures in asymmetric algorithms are typically and
relatively large. A second application domains
are inversions in small finite fields which oc-
cur in the context of block ciphers, e.g., within
the S-box of the Advanced Encryption Standard
(Rijndael/AES).

In the case of inversion in a finite integer
ring or polynomial ring, the extended Euclidean
algorithm can be used. Let u be the element whose
inverse is to be computed and v the modulus. Note
that u and v must be relatively prime in order for
the inverse to exist. The extended Euclidean algo-
rithm computes the coefficients s and t such that:
us + vt = gcd(u, v) = 1. The parameter s is the in-
verse of u modulo v. In the case of integer rings,
using the binary Euclidean algorithm often leads
to faster executions on digital computers. The bi-
nary Euclidean algorithm does not require integer
divisions but only simple operations such as shifts
and additions.

There are several approaches to computing mul-
tiplicative inverses of non-zero elements in finite
fields:
Extended Euclidean algorithm. This is the

most general and in many cases most efficient
method. The application is completely analo-
gous to the case of finite rings as discussed
above. In the case of prime fields, the standard
extended Euclidean algorithm applies. The
binary Euclidean algorithm is often an advan-
tage, too, in this case. If the inverse in an ex-
tension field is to be computed, the Euclidean
algorithm with polynomials has to be used.

Fermat’s little theorem. This method has a
higher computational complexity than the ex-
tended Euclidean algorithm but can neverthe-
less be relevant in certain situations, e.g., if a
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fast exponentiation unit is available or if an
algorithm with a simple control structure is
desired. From Fermat’s little theorem it follows
immediately that for any element A ∈ GF(qm),
A 
= 0, the inverse can be computed as A−1 =
A(qm−2). For fields of characteristic two, i.e., fields
GF(2m), the use of addition chains allows to
dramatically reduce the number of multiplica-
tions (though not the number of squarings) re-
quired for computing the exponentiation to the
(2m − 2)th power. This method is referred to as
Itoh–Tsujii Inversion.

Look-up tables. A conceptually simple method
is based on look-up tables. In this case, the in-
verses of all field elements are pre-computed
once with one of the methods mentioned above,
and stored in a table. Assuming the table en-
tries can be accessed by an appropriate method,
e.g., by the field elements themselves in a bi-
nary representation, the inverses are available
quickly. The drawback of this method are the
storage requirements, since k memory locations
are needed for fields GF(k). Since the storage re-
quirements are too large for the finite fields com-
monly needed in public-key cryptography, inver-
sion based on look-up tables is mainly useful in
cases of small finite fields, e.g., GF(256), which
have applications in block ciphers or which are
subfields of larger extension fields.

Reduction to subfield inversion. In the case of
extension fields GF(qm), m ≥ 2, inversion in the
field GF(qm) can be reduced to inversion in the
field GF(q). This reduction comes at the cost of
extra operations (multiplications and additions)
in the field GF(qm). If the inversion in the sub-
field GF(q) is sufficiently inexpensive computa-
tionally compared to extension field inversion,
the method described in Theorem 1 of Itoh–
Tsujii Inversion can have a low over-all com-
plexity. The method was introduced for fields in
normal basis representation in [2] and general-
ized to fields in polynomial basis representation
in [1]. The method can be applied iteratively in
fields with multiple field extensions, sometimes
referred to as tower fields. In the case of fields
GF(2m), m a prime, the Itoh–Tsujii algorithm
degenerates into inversion based on Fermat’s
little theorem. It should be stressed that this
method is not a complete inversion algorithm
since it is still necessary to eventually perform
an inversion in the subfield. However, inversion
in a (small) subfield can often be done fast with
one of the methods described above.

Direct inversion. This method is applicable to
extension fields GF(qm), and mainly relevant
for fields where m is small, e.g., m = 2, 3, 4. Sim-

ilar to Itoh–Tsujii Inversion, direct inversion
also reduces extension field inversion to sub-
field inversion. As an example, we demonstrate
the method for fields GF(q2), introduced in [3].
Let us consider a non-zero element A = a0 + a1x
from GF(qm), where a0, a1 ∈ GF(q). Let us as-
sume the irreducible field polynomial has the
form P(x) = x2 + x + p0, where p0 ∈ GF(q). If
the inverse is denoted as B = A−1 = b0 + b1x,
the equation

A · B = [a0b0 + p0a1b1] + [a0b1 + a1b0 + a1b1]x
= 1

must be satisfied, which is equivalent to a set of
two linear equations in b0, b1 over GF(q) with
the solution:

b0 = a0 + a1

	

b1 = a1

	




,

where 	 = a0(a0 + a1) + p0a2
1 . (1)

The advantage of this algorithm is that all oper-
ations are performed in GF(q). Note that there
is one inversion in the subfield GF(q) of the pa-
rameter 	 required. The algorithm can be ap-
plied recursively. The relationship between di-
rection inversion and the Itoh–Tsujii method is
sketched in [4].

Christof Paar
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IPES

IPES is an alternative name for the IDEA ci-
pher. IPES stands for “improved PES”, where
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PES [1] is a cipher predecessor of IDEA which was
cryptanalysed by differential cryptanalysis in [2].
The only changes between IDEA and PES are in
the order of operations in the key-mixing sub-
round: PES uses the order (�, �, �, �), while
IDEA uses the order (�, �, �, �), and in the swap
of the words after the MA subround. In IDEA the
the outer words X1, X4 are not swapped.

Alex Biryukov
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IPsec

Prior to the explosion of computer networks in the
late 1980s, enterprize environments were largely
isolated collections of hosts. The protocols used to
connect those computers did not require much se-
curity. Indeed, few security issues were considered
by original designers of the Internet Protocol (IP)
suite upon which those and subsequent networks
are based. While the openness of these protocols is
a key ingredient to the Internet’s success, the lack
of security has led to many troublesome problems.
For example, many otherwise safe systems have
been compromised by an adversary who forges IP
addresses. Such address “spoofing” is trivial on the
current Internet. These and other security prob-
lems continue to confound the users and adminis-
trators of the Internet.

IPsec is a protocol suite that adds security to the
existing IP protocols [4]. Standardized by the In-
ternet Engineering Task Force [3], IPsec defines
new IP message formats and the infrastructure
used to define and manage security relevant state.
IPsec is a general purpose architecture. Hosts, net-
works, and gateways define policies for each class
of traffic they wish to secure. These policies define
what security services they desire to apply to the
traffic (e.g., authenticity, confidentiality).

IPsec provides security properties that are spe-
cific to the network medium. For example, the
IPsec authentication service ensures that a host

receiving a packet is able to determine that a
packet was transmitted by the host or network
that claims to have sent it. A related property,
integrity, allows that same host to assert that
the packet data, called payload, was not modified
in transit. Authenticity and integrity are imple-
mented in IPsec using the authentication header
(AH) transform and optionally by the encapsulat-
ing security payload.

Confidentiality is also defined by IPsec with re-
spect to the hosts and networks implementing it.
Where confidentiality is configured, an IPsec host
is guaranteed that the data transmitted between
hosts (e.g., payload) is only visible to the intended
recipient. To put it in another way, the payload and
optionally the IP header cannot be viewed by any
intermediate node or external entity on the inter-
mediate network. Confidentiality is implemented
in IPsec using the encapsulating security payload
(ESP) transform.

IPsec defines the requirements of end-point au-
thentication (e.g., credentials and methods) and
the protocols and procedures used for the creation
and management of state. These services define
not only how key agreement is reached, but also
how a concrete set of services and parameters is
negotiated. These procedures are implemented by
the abstract Internet Security Association and Key
Management Protocol (ISAKMP) [5] and concrete
Internet Key Exchange (IKE) [2] protocols.

IPsec provides a general architecture for se-
cure networks. It has been particularly useful in
supporting interesting network services. For ex-
ample, IPsec is an ideal technology for implement-
ing virtual private networks (VPNs). This is prin-
cipally because of its ability to operate in tunnel
mode, where intermediate gateways can securely
transport traffic between private networks over
untrusted networks like the Internet. IPsec has
also been extremely useful in providing security
in environments where the physical media is ex-
ceptionally vulnerable (e.g., wireless networks).

The remainder of this entry will explore the
architecture and operation of the IPsec protocol
suite. We begin in the next section by describing
the entities and services comprising the IPsec in-
frastructure.

THE IPSEC ARCHITECTURE: The IPsec architec-
ture [4] coordinates hosts and network elements
to ensure that the information flowing between
hosts is secured. How the security is defined for
a particular environment is determined by policy.
Policies are configured manually or obtained from
the emerging IPsec policy system [1] and applied
to packet traffic.
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The IPsec the Security Policy Database (SPD)
states processing rules for network traffic. The se-
lector is a unique (to the SPD) collection of address,
protocol, and type of service bits (TOS). The SPD
maps selectors onto IPsec policies. These policies
define the processing discipline applied to match-
ing packets. The processing policies are similar to
those found in firewalls, where a packet can be
processed by IPsec, passed (without modification),
or dropped. It is up to the host or network admin-
istration to determine which policy is most appro-
priate for particular network traffic.

A central and essential artifact of IPsec state
is the security association (SA). An SA is a data
structure used to define and track communication
state and configuration between IPsec end-points.
Each SA stores the packet-processing transform
(e.g., AH or ESP), parameters (e.g., cryptographic
algorithms) and other security-relevant data (e.g.,
keys, sequence numbers). The SA is created by the
key management service as defined below. An SA
is uniquely identified by its security parameter in-
dex (SPI). The SPI is negotiated at the start of an
IPsec session and is later placed in the header field
of all relevant IPsec packets. The SAs established
by a host are held in the Security Association
Database (SAD). Unlike most security protocols,
IPsec defines uni-directional security associations.
That is, the keys and policy are applied in a single
direction. The advantage of this approach is that
network administrators are free to establish dif-
ferent security policies for each direction or even
to restrict the flow of data to one direction.

The following example illustrates the processing
of IP traffic by the elements of the IPsec architec-
ture. Assume initially that a local host A (in Fig-
ure 1) has not communicated with B recently.1 An
arbitrary application on A attempts to send data
to some external host B via the User Data Proto-
col (UDP) [6] (1). Upon reception at the IPsec im-
plementation on A in the host operating system,
the protocol (UDP), target address (B), and other
information is mapped in the SPD to an IPsec pol-
icy. In this example, the policy mandates that ESP
in confidentiality only mode and automated key
management be used. In response, the IKE proto-
col is executed between the two hosts and session
keys are established (2). The successful comple-
tion of the IKE protocol results in the creation of an
SA defining the keying material, ESP policy, and
SA lifetime. The original packet is transformed per
the ESP policy specification (3) and transmitted

1 IPsec SAs have an explicit lifetime, after which the state
is discarded. This example assumes the lifetime of any such
previous communication between the hosts has been exceeded.

Application

Operating System

SPD

SAD

Message

(1)
(2)

IKE

SA Transformed Message

(3)
(4)

Remote

Host

Fig. 1. IPsec packet processing

to the remote host (4). Note that each subsequent
packet sent during the SA’s lifetime and match-
ing the original selector will use the same SA (and
hence, will not require further involvement of the
key management protocol, IKE).

TRANSFORMS: An IPsec transform defines a
packet format and a set of associated processing
rules that address a particular set of security guar-
antees. IPsec defines two transforms, the authen-
tication header (AH) and the encapsulating secu-
rity payload (ESP). These transforms operate in
either transport or tunnel mode. A transform oper-
ating transport mode secures the payload but not
the IP header. This is useful when you need to ap-
ply security to the upper layer protocols only (e.g.,
authenticate TCP header and payload data only).
Tunnel mode provides the guarantees over the en-
tire IP packet. This is useful when you need to pro-
vide guarantees over the IP header fields (e.g., con-
fidentiality of source and target addresses), and is
very useful when dealing with operational issues
(e.g., simplifies private addressing).

In transport mode, AH includes a message au-
thentication code (MAC algorithms) in the IPsec
header. The keyed MAC is calculated using the
keys defined in the SA and over the payload data.
ESP ensures confidentiality by encrypting the
payload with the key defined in the SA. Where en-
abled, ESP includes an authenticating MAC simi-
lar to AH. Conversely, AH and ESP tunnel modes
completely encapsulate the IP header and pay-
load. The entirety of the IP packet is treated as
payload, and a new IP packet is formed around it.

The original IP header data is protected (and
not visible in the case of ESP) in tunnel mode.
This has the advantage that an observer will (and
again in ESP can only) see the packet as originat-
ing from the device that tunneled it. This allows
network architects to use IPsec tunneling devices
as security gateways. These gateways serve to sep-
arate and conceal sensitive traffic traveling across
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untrusted networks. Such gateways are a central
element of contemporary virtual private networks
(VPNs).

Another security guarantee supported by both
transforms is replay protection (e.g., also known
as anti-replay). Replay prevention ensures that
packets are processed by the receiving host at most
once, and hence are not “replayed” maliciously or
accidentally. This feature is implemented by au-
thenticating packet sequence numbers. Every SA
has a sequence number that is initially set to 0 and
incremented by one after a packet transmission. A
transmission window set by policy to some agreed
size (typically 64 or 128). Every time a packet is re-
ceived, the sequence number is checked. Any cor-
rectly authenticated packet who’s sequence num-
ber falls in the window and has not been seen
before is accepted. If the packet it newer (has a
sequence larger than the the right side of the win-
dow), the window is moved to the right to accept
the packet. If the packet is older (to the left of the
window), it is dropped.

KEY MANAGEMENT: IPsec would not be very
useful without key management. The purpose
of key management facility in IPsec is to de-
termine and distribute the keys used by the
payload-processing transforms, and to secondar-
ily negotiate the policy defining the SAs. All of
these functions are implemented in the abstract
ISAKMP architecture by IKE. Strictly speak-
ing, ISAKMP, IKE, and IPsec are separate stan-
dards, but in recent years have become largely
inseparable.

IPsec provides for two kinds of key manage-
ment, static and automatic. Environments with
static key management simply identify the keys
to be used to secure the communication between
the end-points (e.g., the IPsec SAs). While avoid-
ing the complexity and cost of implementing a key
management protocol, this approach can be diffi-
cult to manage. Each end-point must be configured
with an SA used to communicate with every other
end-point. This is time-consuming and error prone
where many end-points must be managed. More-
over, because it potentially exposes a large amount
cipher-text (because the same key may be used for
an indeterminate time), manual keying is not fre-
quently viewed as good security practice.

ISAKMP is an abstract key management archi-
tecture. It defines the possible states, transitions,
and (abstract) exchanges one uses to establish
a shared key. Based on an authenticated Diffie–
Hellman key agreement and built on the ISAKMP
architecture, IKE is a concrete protocol. IKE
serves three purposes: (a) to establish the policy

ResponderIntiator

IKE Phase 1
(main or aggressive)

IKE SA IKE SA
IKE Phase 2
(quick mode)

IPsec SA 1 IPsec SA 1

IPsec SA 2 IPsec SA 2

IKE Phase 2
(quick mode)

(Possibly many other IKE Phase 2 exchanges …)

Fig. 2. IKE Phase 1 and 2 protocol flow

for an IKE session, (b) to establish a key for the
IKE SA (see below), and (c) to establish particular
SAs for the IPsec processing of IP and upper layer
data.

As illustrated in Figure 2, IKE works in two
phases. The first phase (creatively called phase 1)
allows the two end-points to establish an IKE SA.
An IKE SA defines the keys and policy used to
establish regular payload processing SAs, called
IPsec SAs. Phase one can operate in two modes. In
main-mode, IKE implements a six message pro-
tocol which provides identity protection. Identity
protection ensures the initiator’s (the host that
first tries to initiate communication) identity is
not exposed to an attacker who is actively attack-
ing the system (e.g., by hijacking the address of
the intended host). Where such protection is not
needed, the protocol can use a simpler, but less se-
cure, three message aggressive mode protocol. The
end result of either the main or aggressive mode
protocol is the same, an IKE SA.

The simpler IKE Phase two exchange is appro-
priately named quick mode. This phase uses a pre-
viously established IKE SA to create an IPsec SA.
The hosts perform the quick mode operation in
three messages: an initial request with keying ma-
terial, a response to the request, and an acknowl-
edgment of the response. To simplify, the keys and
configuration used to define the IPsec SA are gen-
erated from the values passed between the parties.
If such a thing is deemed desireable, the parties
may optionally engage in another Diffie–Hellman
exchange. Note that a single IKE SA can be used
to establish many different IPsec SA, even simul-
taneously.

CONSIDERATIONS: If all these modes and trans-
forms seem complicated, they are. A central criti-
cism of IPsec has been its complexity, mostly due to
its attempt to be a suite of protocols that addresses
the requirements of many constituents. The rea-
sons for its broad task are obvious: because the
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world uses IP, IPsec must address the problems
of the world. However, addressing such problems
have evidently led to extremely difficult to imple-
ment (and often to manage) protocols. Recently,
draft proposals have surfaced within the Internet
Engineering Task Force (IETF) standards organi-
zation that attempt to simplify IKE, so there may
be some relief on the horizon.

Patrick McDaniel
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IRREDUCIBLE
POLYNOMIAL

A polynomial that is not divisible by any smaller
polynomials other than trivial ones is an irre-
ducible polynomial. Let f (x) be a polynomial

f (x) = fd xd + fd−1xd−1 + · · · + f1x + f0,

where the coefficients f0, . . . , fd are elements of a
field F. If there is another polynomial g(x) over F
with degree between 1 and d − 1 such that g(x) di-
vides f (x), then f (x) is reducible. Otherwise, f (x)
is irreducible. (Nonzero polynomials of degree 0,
i.e., nonzero elements of F, divide every polyno-
mial so are not considered.)

As an example, the polynomial x2 + 1 over the
finite field F2 is reducible since x2 + 1 = (x + 1)2,
whereas the polynomial x2 + x + 1 is irreducible.

A representation of the finite field Fqd can be
constructed from a representation of the finite
field Fq together with an irreducible polynomial of
degree d, for any d; the polynomial f (x) is called
the field polynomial for this field. In the example
just given, x2 + x + 1 would be a field polynomial
for F4 over F2. See extension field.

Burt Kaliski

ISSUER

In retail payment schemes and electronic com-
merce, there are normally two parties involved:
a customer and a shop. The Issuer is the bank of
the customer.

Peter Landrock

ITOH–TSUJII INVERSION
ALGORITHM

Originally introduced in [5], the Itoh and Tsujii
algorithm (ITA) is an exponentiation-based algo-
rithm for inversion in finite fields which reduces
the complexity of computing the inverse of a non-
zero element in GF(2n), when using a normal ba-
sis representation, from n − 2 multiplications in
GF(2n) and n − 1 cyclic shifts using the binary
exponentiation method to at most 2�log2(n − 1)�
multiplications in GF(2n) and n − 1 cyclic shifts.
As shown in [4], the method is also applicable to fi-
nite fields with a polynomial basis representation.

For the discussion that follows, it is important to
point out that there are several possibilities to rep-
resent elements of a finite field. Thus, in general,
given an irreducible polynomial P(x) of degree m
over GF(q) and a root α of P(x) (i.e., P(α) = 0),
one can represent an element A ∈ GF(qm),
q = pn and p prime, as a polynomial in α, i.e., as
A = am−1α

m−1 + am−2α
m−2 + · · · + a1α + a0 with

ai ∈ GF(q). The set {1, α, α2, . . . , αm−1} is then
said to be a polynomial basis (or standard basis)
for the finite field GF(qm) over GF(q) (see also
extension field). Another type of basis is called
a normal basis. Normal bases are of the form
{β, βq , βq2

, . . . , βqm−1} for an appropriate element
β ∈ GF(qm). Then, an element B ∈ GF(qm) can be
represented as B = bm−1β

qm−1 + bm−2β
qm−2 + · · ·

+ b1β
q + b0β where bi ∈ GF(q). It can be shown

that for any field GF(q) and any extension
field GF(qm), there exists always a normal
basis of GF(qm) over GF(q) (see [6, Theo-
rem 2.35]). Notice that (βqi

)qk = βqi+k = βqi+k mod m

which follows from the fact that βqm ≡ β (see also
Fermat’s little theorem). Thus, raising an element
B ∈ GF(qm) to the qth power can be easily accom-
plished through a cyclic shift of its coordinates,
i.e., Bq = (bm−1β

qm−1 + bm−2β
qm−2 + · · · + b1β

q +
b0β)q = bm−2β

qm−1 + bm−3β
qm−2 + · · · + b0β

q +
bm−1β, where we have used the fact that in any
field of characteristic p, (x + y)q = xq + yq , where
q = pn.
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Now, we can show how to compute the multi-
plicative inverse of A ∈ GF(2n), A 
= 0, according
to the binary method for exponentiation. From
Fermat’s little theorem we know that A−1 ≡ A2n−2

can be computed as

A2n−2 = A2 · A22 · · · A2n−1
.

This requires n − 2 multiplications and n − 1
cyclic shifts. Notice that because we are working
over a field of characteristic two (see finite field),
squaring is a linear operation. In addition, if a nor-
mal basis is being used to represent the elements
of the field, we can compute A2 for any A ∈ GF(2n)
with one cyclic shift.

Itoh and Tsujii proposed in [5] three algo-
rithms. The first two algorithms describe addi-
tion chain (see fixed-exponent exponentiation) for
exponentiation-based inversion in fields GF(2n)
while the third one describes a method based on
subfield inversion. The first algorithm is only ap-
plicable to values of n such that n = 2r + 1, for
some positive r , and it is based on the observa-
tion that the exponent 2n − 2 can be re-written
as (2n−1 − 1) · 2. Thus if n = 2r + 1, we can com-
pute A−1 ≡ (A22r −1)2. Furthermore, we can rewrite
22r − 1 as

22r − 1 = (22r−1 − 1) 22r−1 + (22r−1 − 1). (1)

Equation (1) and the previous discussion lead to
Algorithm 1.

ALGORITHM 1. Multiplicative inverse computa-
tion in GF(2n) with n = 2r + 1 [5, Theorem 1]

Input: A∈ GF(2n), A 
= 0, n = 2r + 1
Output: C = A−1

C ← A
for i = 0 to r − 1 do

D← C22i

{NOTE: 2i cyclic shifts}
C ← C · D

end for
C ← C2

Return (C)

Notice that Algorithm 1 performs r = log2(n − 1)
iterations. In every iteration, one multiplication
and i cyclic shifts, for 0 ≤ i < r , are performed
which leads to an overall complexity of log2(n − 1)
multiplications and n − 1 cyclic shifts.

EXAMPLE 1. Let A ∈ GF(217), A 
= 0. Then accord-
ing to Algorithm 1 we can compute A−1 with the

following addition chain:

A2 · A = A3

(
A3

)221

· A3 = A15

(
A15

)222

· A15 = A255

(
A255

)223

· A255 = A65535

(
A65535

)2
= A131070.

A quick calculation verifies that 217 − 2 = 131070.
Notice that in accordance with Algorithm 1 we
have performed four multiplications in GF(217)
and, if using a normal basis, we would also require
24 = 16 cyclic shifts.

Algorithm 1 can be generalized to any value of
n [5]. First, we write n − 1 as

n − 1 =
t∑

i=1

2ki , where k1 > k2 > · · · > kt . (2)

Using the fact that A−1 ≡ (A2n−1−1)2 and (2), it can
be shown that the inverse of A can be written
as:

(A2n−1−1)2 =
[
(A22kt −1)

((
A22kt−1 −1

)
· · ·

[
(A22k2 −1)(A22k1 −1)22k2

]22k3

· · ·



22kt



2

. (3)

An important feature of (3) is that in comput-

ing A22k1 −1 all other quantities of the form A22ki −1

for ki < k1 have been computed. Thus, the overall
complexity of (3) can be shown to be:

#MUL = �log2(n − 1)� + HW(n − 1) − 1
#CSH = n − 1, (4)

where HW(·) denotes the Hamming weight of the
operand, i.e., the number of ones in the binary rep-
resentation of the operand (see also cyclic codes),
MUL refers to multiplications in GF(2n), and CSH
refers to cyclic shifts over GF(2) when using a nor-
mal basis.

EXAMPLE 2. Let A ∈ GF(223), A 
= 0. Then accord-
ing to (2) we can write n − 1 = 22 = 24 + 22 + 2
where k1 = 4, k2 = 2, and k3 = 1. It follows that
we can compute A−1 ≡ A223−2 with the following



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 18:24

Itoh–Tsujii inversion algorithm 315

addition chain:

A22−1 = A2 · A

A24−1 =
(

A3
)22

· A3

A28−1 =
(

A15
)24

· A15

A216−1 =
(

A255
)28

· A255

A223−2 =
(

A22−1 ·
(

A24−1 ·
(

A216−1
)24)22)2

.

The above addition chain requires 6 multiplica-
tions and 22 cyclic shifts which agrees with the
complexity of (4).

In [5], the authors also notice that the previous
ideas can be applied to extension fields GF(qm),
q = 2n. Although this inversion method does not
perform a complete inversion, it reduces inversion
in GF(qm) to inversion in GF(q). It is assumed
that subfield inversion can be done relatively eas-
ily, e.g., through table look-up or with the extended
Euclidean algorithm. These ideas are summarized
in Theorem 1. The presentation here follows [4]
and it is slightly more general than [5] as a sub-
field of the form GF(2n) is not required, rather we
allow for general subfields GF(q).

THEOREM 1. [5, Theorem 3] Let A ∈ GF(qm), A 
=
0, and r = (qm − 1)/(q − 1). Then, the multiplica-
tive inverse of an element A can be computed as

A−1 = (Ar )−1 Ar−1. (5)

Computing the inverse through Theorem 1 re-
quires four steps:
Step 1. Exponentiation in GF(qm), yielding Ar−1.
Step 2. Multiplication of Aand Ar−1, yielding Ar ∈

GF(q).
Step 3. Inversion in GF(q), yielding (Ar )−1.
Step 4. Multiplication of (Ar )−1 Ar−1.
Steps 2 and 4 are trivial since both Ar , in Step 2,
and (Ar )−1, in Step 4, are elements of GF(q) [6].
Both operations can, in most cases, be done with
a complexity that is well below that of one sin-
gle extension field multiplication. The complex-
ity of Step 3, subfield inversion, depends heavily
on the subfield GF(q). However, in many cryp-
tographic applications the subfield can be small
enough to perform inversion very efficiently, for ex-
ample, through table look-up [2,3], or by using the
Euclidean algorithm (see also inversion in finite
fields). What remains is Step 1, exponentiation to
the (r − 1)th power in the extension field GF(qm).

First, we notice that the exponent can be ex-
pressed in q-adic representation as

r − 1 = qm−1 + · · · + q2 + q = (1 · · · 110)q . (6)

This exponentiation can be computed through re-
peated raising of intermediate results to the q-th
power and multiplications. The number of multi-
plications in GF(qm) can be minimized by using
the addition chain in (3). Thus, computing Ar−1

requires [5]:

#MUL = �log2(m − 1)� + HW(m − 1) − 1
#q−EXP = m − 1, (7)

where q-EXP refers to the number of exponentia-
tions to the qth power in GF(q).

EXAMPLE 3. Let A ∈ GF(q19), A 
= 0, q = pn for
some prime p. Then, using the q-adic represen-
tation of r − 1 from (6) and the addition chain
from (3), we can find an addition chain to com-
pute Ar−1 = Aq18+q17+···+q2+q as follows. First, we
write m − 1 = 18 = 24 + 2 where k1 = 4, and k2 =
1. Then, Ar−1 = (Aq16+q15+···+q2+q )q2 · (Aq2+q ) and
we can compute Aq16+q15+···+q2+q as

Aq2 = (
Aq)q

Aq2+q = Aq · Aq2

A
∑4

i=1 qi =
(

Aq2+q
)q2

· Aq2+q

A
∑8

i=1 qi =
(

A
∑4

i=1 qi
)q4

· A
∑4

i=1 qi

A
∑16

i=1 qi =
(

A
∑8

i=1 qi
)q8

·
(

A
∑8

i=1 qi
)

.

Notice that in computing Aq16+q15+···+q2+q , we have
computed Aq2+q . The complexity to compute Ar−1

(and, thus, the complexity to compute A−1 if
the complexity of multiplication and inversion in
GF(q) can be neglected) in GF(q19) is found to be 5
multiplications in GF(q19) and 18 exponentiations
to the qth power in agreement with (7).

We notice that [5] assumes a normal basis repre-
sentation of the field elements of GF(qm), q = 2n,
in which the exponentiations to the qth power
are simply cyclic shifts of the m coefficients that
represent an individual field element. In poly-
nomial (or standard) basis, however, these ex-
ponentiations are, in general, considerably more
expensive.

Reference [4] takes advantage of finite field
properties and of the algorithm characteristics to
improve on the overall complexity of the ITA in
polynomial basis. The authors make use of two
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facts: (i) the algorithm performs alternating mul-
tiplications and several exponentiations to the qth
power in a row and (ii) raising an element A ∈
GF(q), q = pn, to the qeth power is a linear op-
eration in GF(qm), since q is a power of the field
characteristic.

In general, computing Aqe
has a complexity

of m(m − 1) multiplications and m(m − 2) + 1 =
(m − 1)2 additions in GF(q) [4]. This complexity
is roughly the same as one GF(qm) multiplica-
tion, which requires m2 subfield multiplications
if we do not assume fast convolution techniques
(e.g., the Karatsuba algorithm for multiplication).
However, in polynomial basis representation com-
puting Aqe

, where e > 1, can be shown to be as
costly as a single exponentiation to the qth power.
Thus, [4] performs as many subsequent exponen-
tiations to the qth power in one step between
multiplications as possible, yielding the same mul-
tiplication complexity as in (7), but a reduced num-
ber of qe-exponentiations. This is summarized in
Theorem 2.

THEOREM 2. [4, Theorem 2]. Let A ∈ GF(qm). One
can compute Ar−1 where r − 1 = q + q2 + · · · +
q (m−1) with no more than

#MUL = �log2(m − 1)� + HW(m − 1) − 1
#qe-EXP = �log2(m − 1)� + HW(m − 1)

operations, where #MUL and #qe-EXP refer to mul-
tiplications and exponentiations to the qeth power
in GF(qm), respectively.

We would like to stress that Theorem 2 is just
an upper bound on the complexity of this expo-
nentiation. Thus, it is possible to find addition
chains which yield better complexity as shown
in [1]. In addition, we see from Theorem 2 that
Step 1 of the ITA algorithm requires about as
many exponentiations to the qeth power as multi-
plications in GF(qm) if a polynomial basis repre-
sentation is being used. In the discussion earlier in
this section it was established that raising an ele-
ment A ∈ GF(qm) to the qeth power is roughly as
costly as performing one multiplication in GF(qm).
Hence, if it is possible to make exponentiations to

the qeth power more efficient, considerable speed-
ups of the algorithm can be expected. Three classes
of finite fields are introduced in [4] for which the
complexity of these exponentiations is in fact sub-
stantially lower than that of a general multiplica-
tion in GF(qm). These are:
� Fields GF((2n)m) with binary field polynomials.
� Fields GF(qm), q = pn and p an odd prime, with

binomials as field polynomials.
� Fields GF(qm), q = pn and p an odd prime, with

binary equally spaced field polynomials (ESP),
where a binary ESP is a polynomial of the form
xsm + xs(m−1) + xs(m−2) + · · · + x2s + xs + 1.

Jorge Guajardo

References

[1] Chung, Jae Wook, Sang Gyoo Sim, and Pil Joong
Lee (2000). “Fast Implementation of Elliptic Curve
Defined over GF(pm) on CalmRISC with MAC2424
Coprocessor.” Workshop on Cryptographic Hard-
ware and Embedded Systems—CHES 2000, Lecture
Notes in Computer Science, vol. 1965, eds. Ç.K. Koç
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J
JACOBI SYMBOL

The Jacobi symbol generalizes the Legendre sym-
bol to all odd integers. Let n be an odd, positive
integer with prime factorization

n = pa1
1 pa2

2 · · · pak
k ,

where the prime numbers p1, . . . , pk are distinct,
and let x be an integer. The Jacobi symbol of x
modulo n equals the product of Legendre symbols
of x with respect to each of the primes:

( x
n

)
=

(
x
p1

)a1
(

x
p2

)a2

· · ·
(

x
pk

)ak

.

If n is prime then the Jacobi symbol is the same
as the Legendre symbol.

The Jacobi symbol may be computed efficiently
even when the prime factorization of n is unknown
by the Quadratic Reciprocity Theorem, which was
proved by Gauss (see Chapter 5 of [1]). See also
Quadratic Residuosity Problem.

Burt Kaliski
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K
KARATSUBA ALGORITHM

The Karatsuba algorithm (KA) for multiplying two
polynomials was introduced in 1962 [3]. It saves
coefficient multiplications at the cost of extra addi-
tions compared to the schoolbook or ordinary mul-
tiplication method. The basic KA is performed as
follows. Consider two degree-1 polynomials A(x)
and B(x) with n = 2 coefficients:

A(x) = a1x + a0

B(x) = b1x + b0.

Let D0, D1, D0,1 be auxiliary variables with

D0 = a0b0

D1 = a1b1

D0,1 = (a0 + a1)(b0 + b1).

Then the polynomial C(x) = A(x)B(x) can be cal-
culated in the following way:

C(x) = D1x2 + (D0,1 − D0 − D1)x + D0.

This method requires three multiplications and
four additions. The schoolbook method requires
n2 multiplications and (n − 1)2 additions, i.e.,
four multiplications and one addition. Clearly,
the KA can also be used to multiply integer
numbers.

The KA can be generalized for polynomials of
arbitrary degree [6]. The following algorithm de-
scribes a method to multiply two arbitrary poly-
nomials with n coefficients using the one-iteration
KA.

ALGORITHM 1. Generalized One-Iteration KA
Consider two degree-d polynomials with n = d + 1
coefficients

A(x) =
d∑

i=0

ai xi, B(x) =
d∑

i=0

bi xi .

Compute for each i = 0, . . . , n − 1

Di := aibi .

Calculate for each i = 1, . . . , 2n − 3 and for all s
and t with s + t = i and t > s ≥ 0

Ds,t := (as + at )(bs + bt ).

Then C(x) = A(x)B(x) = ∑2n−2
i=0 ci xi can be com-

puted as

c0 = D0

c2n−2 = Dn−1

ci =




∑
s+t=i;t>s≥0 Ds,t

− ∑
s+t=i;n−1≥t>s≥0 (Ds + Dt )

for odd i, 0 < i < 2n − 2∑
s+t=i;t>s≥0 Ds,t

− ∑
s+t=i;n−1≥t>s≥0 (Ds + Dt )

+Di/2
for even i, 0 < i < 2n − 2.

The number of auxiliary variables is given as:

#Di = n
#Ds,t = n2/2 − n/2

#D = #Di + #Ds,t = n2/2 + n/2.

The operational complexity is as follows:

#MUL = n2/2 + n/2
#ADD = 5/2 n2 − 7/2 n + 1.

For example, consider the KA for three coeffi-
cients. Let A(x) and B(x) be two degree-2 polyno-
mials:

A(x) = a2x2 + a1x + a0

B(x) = b2x2 + b1x + b0

with auxiliary variables

D0 = a0b0

D1 = a1b1

D2 = a2b2

D0,1 = (a0 + a1)(b0 + b1)
D0,2 = (a0 + a2)(b0 + b2)
D1,2 = (a1 + a2)(b1 + b2).

Then C(x) = A(x)B(x) is computed by an ex-
tended version of the KA using 6 multiplica-
tions and 13 additions. The schoolbook method re-
quires in this case nine multiplications and four
additions:

C(x) = D2x4 + (D1,2 − D1 − D2)x3

+ (D0,2 − D2 − D0 + D1)x2

+ (D0,1 − D1 − D0)x + D0.

319
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The KA can be performed recursively to multi-
ply two polynomials as shown in algorithm 2. Let
the number of coefficients be a power of 2, n = 2i .
To apply the algorithm both polynomials are split
into a lower and an upper half:

A(x) = Au(x)xn/2 + Al(x)
B(x) = Bu(x)xn/2 + Bl(x).

These halves are used as before, i.e., as if they
were coefficients. The polynomials Au, Al , Bu, and
Bl are split again in half in the next iteration step.
In the final step of the recursion, the polynomi-
als degenerate into single coefficients. Since every
step exactly halves the number of coefficients, the
algorithm terminates after t = log2 n steps. Note
that there are overlaps of the coefficient positions
when combining the result that lead to further ad-
ditions. For example, consider algorithm 2 where
N is the number of coefficients of A(x) and B(x).
The polynomial D0 has N − 1 coefficients such that
the upper N/2 − 1 coefficients of D0 are added to
the lower N/2 − 1 coefficients of (D0,1 − D0 − D1).

Let #MUL and #ADD be the number of multi-
plications and additions, respectively, in the un-
derlying coefficient ring. Then the complexity to
multiply two polynomials with n = 2i coefficients
is as follows [5]:

#MUL = nlog2 3

#ADD ≤ 6nlog2 3 − 8n + 2.

ALGORITHM 2. Recursive KA, C = KA(A, B)
INPUT: Polynomials A(x) and B(x)
OUTPUT: C(x) = A(x) B(x)
N ← max(degree(A), degree(B)) + 1
if N = 1 return A · B
Let A(x) = Au(x) xN/2 + Al(x)
and B(x) = Bu(x) xN/2 + Bl(x)
D0 ← K A(Al , Bl)
D1 ← K A(Au, Bu)
D0,1 ← K A(Al + Au, Bl + Bu)
return D1xN + (D0,1 − D0 − D1)xN/2 + D0

The recursive KA can be generalized in various
ways. If the number of coefficients n is not a power
of 2, algorithm 2 is slightly altered by splitting
the polynomials into a lower part of �N/2� coef-
ficients and an upper part of �N/2� coefficients.
We call this variant the simple recursive KA. In
this case the KA is less efficient than for powers
of 2. A lower bound for the number of multiplica-
tions is given by #MULlow = nlog2 3 whereas an up-
per bound is #MULup = 1.39nlog2 3. When applying
the one-iteration KA for two and three coefficients
as basis of the recursion, i.e., when applying the
KA for two and three coefficients as final recursion

step, the upper bound improves to #MULup =
1.24nlog2 3. When applying the one-iteration KA for
two, three, and nine coefficients as basis of the
recursion, the upper bound further improves to
#MULup = 1.20nlog2 3.

In the same manner we obtain bounds for the
number of additions #ADDlow = 6nlog2 3 − 8n + 2
and #ADDup = 7.30nlog2 3 which improves for a
basis of two and three coefficients to #ADDup =
6.85nlog2 3. For a basis of two, three, and nine coeffi-
cients, it further improves to #ADDup = 6.74nlog2 3.

When using the recursive KA for n = pj coef-
ficients, i.e., applying the KA for p coefficients
for j recursion levels, the number of multipli-
cations is given as #MUL = nlogp(1/2p2+1/2p). For
p = 2 the number of multiplications is given by
#MUL = nlog2 3 whereas for large p this converges
to (1/2) jn2.

Now consider two polynomials A(x) and B(x)
with n = ∏ j

i=1 ni coefficients that we multiply with
a variant of the KA, that we call generic recur-
sive KA. First we write A(x) = ∑nj−1

s=0 As xs·∏ j−1
i=1 ni as

polynomial with nj coefficients Ai and do the same
for B(x). Each of these “coefficients” is itself a poly-
nomial with

∏ j−1
i=1 ni coefficients. Then we use the

recursive KA for nj coefficients, and so on until
the recursion eventually terminates. The number
of needed multiplications is as follows:

#MUL∏ j
i=1 ni

=
(

1
2

) j j∏
i=1

ni(ni + 1).

The number of additions is a complex expres-
sion [6]. There is a simple rule for the generic
recursive KA to be most efficient: use the fac-
torization of a number n with multiple prime
factors combined with an increasing sequence of
steps, i.e., KA for n = ∏ j

i=1 ni with ni ≥ ni+1, e.g.,
2 · 2 · 3 · 5 for polynomials with 60 coefficients. In
this case the polynomials with 60 coefficients are
first split into an upper and lower half of 30 co-
efficients each, and the KA for two coefficients is
applied to these halves. These polynomials of 30
coefficients are again split in half, and the KA
for two coefficients is applied to the two halves.
In the next recursion step the polynomials of
15 coefficients are split into three parts of five co-
efficients each, and so on. Note that in most cases
the simple recursive KA that splits the operands
in two halves of size �n/2� and �n/2� is more
efficient than the general recursive KA, especially
when the number of coefficients n has large prime
factors.

The recursive KA versions are more efficient
than the one-iteration KA. For example, instead of
using the one-iteration KA for n = 31 coefficients
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one can use the recursive KA and split the 31-
coefficient polynomial into two polynomials of 15
and 16 coefficients, respectively. Alternatively you
could split the 31-coefficient polynomial into three
parts of 10, 10, and 11 coefficients, respectively. In
the next recursion step the polynomials are again
split in two or three parts, and so on. However, a
number of intermediate results have to be stored
due to the recursive nature. This might reduce the
efficiency of the recursive KA variants for small-
sized polynomials.

The simple recursive KA is the easiest and most
efficient way to implement the KA when the num-
ber of coefficients is unknown at implementation
time or if it often changes. It is especially effi-
cient if special cases are implemented as basis
of the recursion. Providing special cases for n = 2
and n = 3 coefficients using the one-iteration KA
as well as for n = 9 using the KA that splits the
operands into three parts recursively yield effi-
cient running times.

Further improvements are possible due to the
use of dummy coefficients. For example, to multi-
ply two polynomials of n = 15 coefficients it might
be useful to append a zero coefficient and use a
recursive KA for k = 16 coefficients. Some opera-
tions can be saved whenever the leading zero coef-
ficient is involved. However, this gains only little
improvement to the simple recursive KA without
using dummy coefficients.

We now introduce the time ratio between a mul-
tiplication and an addition on a given platform
r ′ = tm/ta where tm and ta denote the cost for a
multiplication and an addition, respectively. Let
#MUL and #ADD be the number of multiplications
and additions that the KA needs to multiply two
polynomials of n coefficients, and r = #ADD−(n−1)2

n2−#MUL .
If the actual ratio r ′ on a given hardware platform
is larger than r then it is more efficient to use
the KA instead of the ordinary method. One can
show that the KA always outperforms the ordinary
multiplication method if r ′ > 3, i.e., if one mul-
tiplication takes longer than three additions the
KA performs faster than the ordinary schoolbook
method. For some cases the KA is always faster
than the schoolbook method, i.e., it needs less mul-
tiplications and additions. However, there are also
cases where it is more efficient to use a combina-
tion of KA and the schoolbook method. For exam-
ple, consider the case n = 8 and a platform with
r ′ = 2. When applying the elementary recursive
KA it needs 27 multiplications and 100 additions,
resulting in r = 1.38. Since r ′ > r it is more effi-
cient to use the KA. However, for n = 4 we obtain
the ratio r = 2.14. Thus it is more efficient to use
the ordinary method to multiply polynomials with

four coefficients. Therefore it is efficient to apply
one recursive KA step, and then use the school-
book method to multiply the polynomial halves of
degree 3.

For some applications it is wise to use efficient
underlying macros to multiply two polynomials
with w coefficients. For example, there might be
a macro to multiply two polynomials with four co-
efficients. Then two polynomials with n = 20 co-
efficients can be multiplied by using the KA for
20/4 = 5 coefficients. In most cases it is efficient
to use a mixture of different recursive steps com-
bined with different underlying macros. Note that
there might be optimized versions of the KA for
special underlying coefficient rings like binary or
prime fields. Also note that the KA can be applied
to squaring polynomials by simply replacing all
the coefficient multiplications by coefficient squar-
ings. Although there is no special form of a squar-
ing KA there might still be a performance gain
compared to the ordinary squaring method which
requires n squarings, n(n − 1)/2 multiplications
and (n − 1)2 additions. However, this varies for dif-
ferent platforms and depends on the ratio in time
between a squaring and a multiplication. In most
cases, i.e., if n is not very small, the squaring KA
outperforms the ordinary squaring method [6].

Further information about the Karatsuba and
similar algorithms can be found in [1, 4]. Further
aspects of efficient implementations are presented
in [2, 6].

André Weimerskirch
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KASUMI/MISTY1

MISTY1 [3] is a 64-bit block cipher designed by
Mitsuru Matsui and first published in 1996. A
variant of this cipher, called KASUMI [4], was
adopted in 1999 as part of the confidentiality
and integrity system for mobile communication
specified by the Third Generation Partnership
Project (3GPP). MISTY1 itself was submitted to
the NESSIE project and included in its portfolio of
recommended cryptographic primitives in 2003.

MISTY1 and KASUMI operate on 64-bit blocks
and require a 128-bit secret key. Both have a simi-
lar recursive structure. The top level consists of an
8-round Feistel cipher built around a 32-bit non-
linear Boolean function FO (Figure 1). The func-
tion FO itself is a 3-round Feistel-like “ladder”
network containing a 16-bit non-linear function
FI. The function FI, on its turn, consists of a sim-
ilar 3-round (MISTY1) or 4-round (KASUMI) lad-
der network, using 7 × 7-bit and 9 × 9-bit S-boxes
called S7 and S9. Note that these S-boxes differ
slightly in both ciphers.

The key material is mixed with the data at dif-
ferent stages in the cipher, both in the FO and the
FI functions. An additional component present
in MISTY1 and KASUMI is the FL-function (see
also Camellia). These functions are key dependent
linear transformations, used in different ways in
both ciphers: in MISTY1, FL-layers separate ev-
ery two rounds of the cipher; in KASUMI, they are
inserted before and after the FO-functions for odd

and even rounds respectively. Another notewor-
thy difference between both ciphers is the expan-
sion of the key. The key schedule (see block cipher)
consists of a cyclical network of non-linear FI-
functions in the case of MISTY1, but is completely
linear in KASUMI. More details and motivations
for the differences between MISTY1 and KASUMI
can be found in [5].

MISTY1 has been widely studied since its pub-
lication, but no serious flaws have been found.
Currently, the best attack on reduced-round vari-
ants of MISTY1 is the 5-round integral attack by
Knudsen and Wagner [1]. The attack requires 234

chosen plaintexts and has a time complexity of 248.
Many other attacks have been proposed for vari-
ants without the FL-layers. The best attack on
KASUMI was suggested by Kühn [2] and breaks
6 rounds using impossible differentials.

Christophe De Cannière
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KERBEROS
AUTHENTICATION
PROTOCOL

Kerberos is a network authentication protocol that
uses symmetric cryptography (i.e., cryptography
based upon a common secret key such as the Data
Encryption Standard DES) to provide strong au-
thentication for client/server applications. A client
and a server prove their identity to each other
through the mediation of a trusted third party
called a Key Distribution Center (KDC). The Ker-
beros protocol also establishes a session key that
may be used to provide confidentiality and in-
tegrity for subsequent communications between
the authenticated participants.

Kerberos was created at the Massachusetts In-
stitute of Technology (MIT) and is based upon
the Needham–Schroeder protocol. A high-level de-
scription of the Kerberos protocol is provided in
the key management entry.

Carlisle Adams

References

[1] Kerberos information (including papers and doc-
umentation) may be found at the following site:
http://web.mit.edu/kerberos/www/

[2] Kohl, J. and B.C. Neuman (1993). “The Kerberos
network authentication service (V5).” Internet Re-
quest for Comments 1510.

[3] Kohl, J., B.C. Neuman, and T.Y. Ts’o (1994). “The
evolution of the kerberos authentication system.”
Distributed Open Systems. IEEE Computer Society
Press, Los Alamitos, CA, 78–94.

[4] Neuman, B.C. and T. Ts’o (1994). “Kerberos: An au-
thentication service for computer networks.” IEEE
Communications, 32 (9), 33–38.

KEY

A key is an element from an alphabet (the key
alphabet) that selects, resp. defines a particular

encryption step. A keytext is a sequence of key
elements from a key alphabet that select, resp. de-
fine a sequence of particular encryption steps.

A polyalphabetic encryption, which is also called
a polyalphabetic substitution cipher, is a substi-
tution (see substitutions and permutations) with
more than one alphabet, each one designated by a
key element.

A double key is a polyalphabetic encryption with
shifted mixed alphabets (see Alberti encryption).
It is cryptologically equivalent to a polyalphabetic
encryption with a Vigenère table (“tabula recta”)
whose plaintext standard alphabet is replaced by
a mixed alphabet—the mixed alphabet being the
‘second key’. Moreover, a treble key is a double key
with the additional proviso that the standard al-
phabet for the keys of a Vigenère table is replaced
by a mixed alphabet—this mixed alphabet being
the ‘third key’.

A periodic key or repeated key is a key sequence
which repeats itself after d steps (d > 1), while a
nonperiodic key is a key sequence that cannot be
viewed as the repetition of a shorter sequence. A
running key is an infinitely long nonperiodic key.

With autokey (French: autochiffrant, German:
Selbstchiffrierung) one means the method to de-
rive a nonperiodic key from the plaintext itself,
using a priming key character or key phrase � to
begin with. A simple example (Blaise de Vigenère,
1586) with priming key character � = D, is the
following encryption, that makes use of the Porta
encryption table:

plain a u n o m d e l e t e r n e l
key D A U N O M D E L E T E R N E
cipher X I A H G U P T M L S H I X T

A disadvantage is the spreading of encryption
errors—a general weakness of all autokeying
methods.

Arvid Damm (1919) proposed an autokeying
variant of encryption (“influence letter”) that was
used in the German WW II teletype cipher ma-
chines SZ 40 and T 52. Claude Shannon gave
(1949) the warning that autokeying Vigenère en-
cryption with a priming key � of length d is
equivalent to Vigenère encryption of d-grams with
period 2 · d, i.e. by successively adding and sub-
tracting �; thus it offers little security.

Chaitin defines a random sequence as an infi-
nite sequence such that no finite subsequence has
a shorter algorithmic characterization than the
listing of the subsequence—no subsequence can be
condensed into a shorter algorithmic description.
A keytext, i.e., a sequence of key elements, with
this property is called holocryptic. No sequence
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Fig. 1. One-time pad of Russian origin

generated by a deterministic, finite-state machine,
i.e. by a deterministic algorithm, even if it does not
terminate, has this property.

An individual key is a keytext (German
‘i-Wurm’) that is not copied from any source what-
soever. A one-time key is a keytext that is used just
one time. Any written version of it (one-time pad,
OTP) should be destroyed after use.

A random key is a random sequence used as a
key sequence. To be cryptographically useful, it
should by necessity be an individual key and a one-
time key. Randomness should be achieved during
the generation of the key sequence. Tests for ran-
domness can only disprove it, but cannot prove it.
Chaitin’s definition has only theoretical value—it
is mainly used as an instrument to show that a
particular key sequence is nonrandom.

In an endomorphic cryptosystem, the encryp-
tion steps (governed by the key characters) may

form a group under composition: the key group.
Such a cryptosystem is a pure cryptosystem. Ex-
amples are the Vigenère encryption and the Beau-
fort encryption, where the key group is a cyclic
group, and the Vernam encryption by addition
mod. 2, where the key group is (C2)n, the n-fold
direct group of the cyclic group of order 2. A trivial
example is encryption by a monoalphabetic selfre-
ciprocal permutation π , where the key group is C2,
the cyclic group of order 2 consisting of π and the
identity. Encryption with a key group, although
it offers technical convenience, should be avoided
since it opens particular ways of cryptanalytic
attack.

We conclude this entry with some words on vari-
ous roles that keys can play and how they are com-
municated in cryptosystems. (This is called key
negotiation.)

In a classical setting, if a communication from
participant A to participant B should be pro-
tected by encryption, A has to tell B what key
to use for decryption, or B has to tell A what
key to use for encryption. In command struc-
tures, there is also the possibility that the com-
mand tells both participants which keys to use.
To this end, they make use of key directives: di-
rectories containing all relevant keys. Of course,
transmission of all the information concerning the
key should be done after encryption with a differ-
ent cryptosystem. Violating this maxime for their
Enigma traffic was a serious cryptographic blun-
der of the German Wehrmacht staff. (We note that
modern cryptographic protocols (e.g., the Diffie–
Hellman key agreement) scheme) may generate
the same key for A and B without encrypted
communication.

A session key or message-encrypting key is a
keytext used during one communication session.
In the Enigma traffic a session key was called
‘Spruchschlüssel ’ (text setting). A base key is a key
used for encrypting keys (‘key-encrypting key’). In
the Enigma traffic, they were called ‘Grundstel-
lung’ (basic wheel setting) and formed part of the
‘Tagesschlüssel ’ (daily key).

A symmetric or conventional or classical cryp-
tosystem is a communication line with two part-
ners who are at different times both sender and
receiver and use the same cryptosystem, each one
having a private key for encryption and one for
decryption—altogether four keys. If in an endo-
morphic cryptosystem selfreciprocal permutations
(see substitutions and permutations) are used as
key elements, keys for encryption and for decryp-
tion coincide.

A private key cryptosystem is a cryptosystem
where sender and recipient share encryption and
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decryption keys (to be kept secret). In a secret key
cryptosystem sender and recipient share one com-
mon key (to be kept secret).

Key symmetric cryptosystem: If two operations
defined by keys A,B commute and are mutually
reciprocals: A · B = B · A = identity, A may be
used by partner A for encryption and by partner B
for decryption, while B may be used by partner A
for decryption and by partner B for encryption—
altogether only two keys. If in an endomor-
phic cryptosystem selfreciprocal permutations are
used as key elements, only one key is needed.

In many cryptosystems, actually in all classical
ones, knowledge of the encryption key allows for
an easy determination of the decryption key. This,
however, is not necessarily so: As James H. Ellis
pointed out in 1970, there may exist encryption
methods where the knowledge of an encryption
key does not suffice to derive the decryption key
efficiently—in 1973 Clifford Cocks found in the
multiplication of sufficiently large prime numbers
the wanted, practically non-invertible operation.
This led to the idea of public key cryptography,
which is also called asymmetric cryptography. It
was published in this form for the first time in 1976
by Whitfield Diffie and Martin E. Hellman. In this
system, a key A is publicly announced by partici-
pant A with the proviso that he possesses a key B
such that he can decrypt with B any message sent
to him by anybody as long as it is encrypted with
A. This allows a star-like communication system.
The advantage that no key negotiation is neces-
sary and the key directory is open to the public is
burdened by the fact that secrecy is only guaran-
teed to the extent that reconstruction of the (se-
cret) decryption key (private key) from the public
key needs exponential time and therefore is in-
tractable.

Friedrich L. Bauer
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KEY AGREEMENT

Key agreement refers to one form of key exchange
(see also key encryption key) in which two or more
users execute a protocol to securely share a re-
sultant key value. As an alternative to key agree-
ment, a key transport protocol may be used. The
distinguishing feature of a key agreement proto-
col is that participating users each contribute an

equal portion toward the computation of the resul-
tant shared key value (as opposed to one user com-
puting and distributing a key value to other users).

The original, and still most famous, protocol
for key agreement was proposed by Diffie and
Hellman (see Diffie–Hellman key agreement)
along with their concept for public-key cryptogra-
phy. Basically, users Alice and Bob send public-key
values to one another over an insecure channel.
Based on the knowledge of their corresponding pri-
vate keys, they are able to correctly and securely
compute a shared key value. An eavesdropper,
however, is unable to similarly compute this key
using only knowledge of the public key values.

There are numerous variations to the basic
Diffie–Hellman key agreement protocol. One clas-
sification is based upon the longevity of the pub-
lic keys shared between Alice and Bob. For exam-
ple, the public keys may be long-term, or static, in
which case each public key would likely be con-
tained in a public-key certificate. Alternatively,
the public keys may be short-term, or ephemeral,
in which case the public keys would be for one-time
use during the protocol session. Hybrid protocols
combine both uses; for example, Alice may use an
ephemeral public key while Bob might use a static
public key.

The protocol instantiation in which both Alice
and Bob use ephemeral public keys is vulnera-
ble to a man-in-the-middle attack (see man-in-the-
middle attack), unless additional precautions are
taken. Use of static public keys helps to ensure
that exchanged values are properly authenticated.
In addition, the exchanged values may be further
protected against attack. The station-to-station
protocol is such a protocol in which exchanged val-
ues are encrypted and signed.

Although the original Diffie–Hellman key
agreement protocol is presented as a communica-
tion between two users, the protocol has been ex-
tended to allow more than two users to agree upon
a key. Several variations for such a protocol have
been described in the literature, and vary based
upon the number of protocol rounds, the amount
of information exchanged, the number of broad-
cast messages, and other parameters.

Mike Just
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KEY AUTHENTICATION

Key authentication is the property obtained when
performing a key establishment protocol (see also
key agreement and key management) and one en-
tity has the assurance that only a particularly
identified other party may possibly know the ne-
gotiated key. This property may be unilateral if
only one party participating in the protocol has
the assurance, or it may be mutual if both parties
have the assurance. Key authentication is some-
times referred to as “implicit key authentication”
to distinguish it from “explicit key authentica-
tion”, which is discussed below.

(Implicit) Key authentication can be obtained
within a key establishment protocol in a number
of ways. One possible method of obtaining this
property is to encrypt the key to be established,
k, for the other party using his (symmetric or
asymmetric) key. In this case, since the only other
party that could possibly decrypt the encrypted
key is the intended recipient, the appropriate as-
surance is obtained. Many of the variants of the
Diffie–Hellman protocol (see Diffie–Hellman key
exchange protocol) also provide key authentica-
tion. For example, consider the case where both
parties A and B have static authenticated (i.e.,
certified) Diffie–Hellman public keys αa and αb,
respectively. If the agreed-upon key is simply k =
αab, then both parties have assurance that only
the other party could possibly compute this key.

A property of key establishment protocols that
is similar to key authentication is the property
known as “key confirmation”. Key confirmation
is the property obtained when one party has
the assurance that some other party actually
has possession of the negotiated key. Notice that
this property is distinct from key authentica-
tion in that the assurance is obtained relative
to “some other party” instead of “a particularly
identified other party”. Thus, with key confirma-
tion the other party need not be identified or
even known at all. Also note that key confirma-
tion provides assurance that the key is actually
known by the other party whereas key authen-
tication only provides assurance that the other
party could possibly know the key. As with key au-
thentication, key confirmation may be mutual or
unilateral.

Typically key confirmation is obtained in one
of three ways. First, a (one-way) hash of the ne-
gotiated key could be sent from one party to the
other. Second, the key (or a key derived from
the negotiated key) could be used in a MAC
(see message authentication code) to authenticate
a message. Finally, the key (or a key derived from

the negotiated key) could be used to encrypt an
agreed upon message. Any of these mechanisms
will prove to the legitimate recipient that some-
one has possession of the key and used it to create
the received values.

In many environments both (implicit) key au-
thentication and key confirmation are required
properties. In such circumstances, when both
properties are obtained, it is said that “explicit
key authentication” has been achieved. Explicit
key authentication is the property obtained when
one party has assurance that only a particularly
identified other party actually has knowledge or
possession of the negotiated key. Again, this prop-
erty may be either mutual or unilateral.

A popular, typical example of a key establish-
ment protocol that provides mutual explicit key
authentication is the station-to-station protocol/
STS protocol. In fact most of the protocols in use
today that provide explicit key authentication are
based upon the STS protocol. Examples include
the SSL protocol (see secure socket layer) and
the protocols used in IPSEC.

Entity authentication is the assurance that the
identified party is actually alive and participating
in the protocol at that time. Quite often protocols
that provide explicit key authentication will also
provide entity authentication since the identified
party must prove knowledge of the negotiated key.
However, it is not always the case that any key
negotiation protocol that includes entity authen-
tication will also provide explicit (or implicit) key
authentication. Care must be taken to ensure that
the entity whose identity has been authenticated
is the same entity as the one establishing the key.
Otherwise, subtle attacks may allow one entity to
have its identity authenticated and another entity
to establish the key.

Robert Zuccherato

KEY ENCRYPTION KEY

Most cryptographic systems require some sup-
porting Key Management, e.g., to enable key ex-
change or key transport. In order to ensure that
keys are not used for different purposes, as oth-
erwise lack of duality indirectly might thwart the
system, one introduces key labels and key usage as
well as key layers. Whereas data keys (used to en-
crypt data) at the bottom layer are exchanged fre-
quently as so-called session keys, key encryption
keys are used to exchange session keys or other
key exchange keys belonging to layers just below,
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and are typically rarely or even never exchanged,
and if so, then either by key custodians or public
key techniques.

Peter Landrock

KEY ESCROW

Key Escrow: “Something (e.g., a document, an en-
cryption key) is delivered to a third person to be
given to the grantee only upon the fulfillment of a
condition.”

Escrowed Encryption Standard (EES),
FIPS 185 [1]

On April 16, 1993, the U.S. Government an-
nounced a new encryption initiative aimed at pro-
viding a high level of communications security and
privacy without jeopardizing effective law enforce-
ment, public safety, and national security. This ini-
tiative involved the development of tamper resis-
tant cryptographic chips (Clipper and Capstone)
that implemented an encryption/decryption algo-
rithm (SKIPJACK) for the protection of sensi-
tive information transmitted between two parties.
What was special about these chips was that each
one contained a device unique key that would give
a third party, in possession of the key, the ca-
pability to decrypt all data encrypted using the
chip. The purpose of this feature was to provide a
means by which properly authorized law enforce-
ment officials could decrypt encrypted communi-
cations. Authorization involved procedures mod-
eled on those required for the authorization of a
wiretap [2].

SKIPJACK was designed by the National Se-
curity Agency. A review group of four experts
reviewed the originally classified Skipjack algo-
rithm, and reported that there was no significant
risk that the algorithm had “trapdoors” or could
be broken by any known method of attack [3]. The
National Institute of Standards and Technology
(NIST) specified some details of the escrow param-
eters in FIPS 185. NIST also worked with repre-
sentatives of the Justice Department, the Trea-
sury Department, the National Security Agency,
and the Federal Bureau of Investigation to develop
and implement a Key Escrow System for the pro-
tection and controlled release of the information
necessary to reconstruct the device unique keys
[4]. The system was designed so that no single per-
son or organization could compromise the device
unique key.

Although the use of escrow cryptography was
not mandatory, it raised concerns from the civil

libertarian, product vendor, and academic com-
munities. Civil libertarians feared that escrow
might someday be made mandatory; product ven-
dors wondered whether the marked would support
cryptographic systems that provided the U.S. Gov-
ernment access to the protected information; and
academics worried about whether the risks were
worth the benefits. An ad hoc group of cryptog-
raphers and computer scientists argued that key
escrow systems “are inherently less secure, more
costly, and more difficult to use” [5].

Nevertheless, many data storage system own-
ers wished to recover data encrypted by the users
in the event that the user loses, destroys, or is un-
able to produce the encryption key. Researchers
and encryption product vendors began to design
and implement systems that provided for the re-
covery of user keys (often by the system adminis-
trator) [6]. This process is commonly referred to
as key recovery. Today, many encryption product
manufacturers provide a key recovery capability
in their products or in the systems that make use
of their products. Key recovery in these systems
is primarily for the benefit of the user or the sys-
tem owner. Authorized law enforcement officials
would have to present their authorization to the
system administrator/owner before obtaining ac-
cess to any keys or information. The system ad-
ministrator/owner would then be able to decide on
the appropriate action. This is a well-understood
and accepted process that has been used for many
years.

While the initial concept of Key Escrow was not
successful, it led to a greater appreciation for the
need of users and system owners to have backup
capabilities for the recovery of encryption keys or
the data that they protect.

Miles E. Smid
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KEY MANAGEMENT

INTRODUCTION: Cryptographic keys are used to
encrypt/decrypt data or to create/verify digital sig-
natures (see key). One of the biggest issues associ-
ated with cryptography is the secure distribution
of these keys to the appropriate communicating
parties. This is referred to as key distribution or
key establishment. The life cycle associated with
this keying material (i.e., the initialization, distri-
bution, and cancellation of the keys) is referred to
as key management. The purpose of this section is
to discuss key management, with particular em-
phasis on key distribution.

Before we discuss key management, it is impor-
tant to understand that there are two basic types
of cryptography: (1) symmetric or secret key and (2)
asymmetric or public key.

Symmetric cryptography is characterized by the
fact that the same key is used to perform both
the encryption and decryption. This means that
the communicating parties must have copies of the
same cryptographic key, and a method to securely
convey these keys to the appropriate parties must
be available. Compromise of the secret key natu-
rally leads to the compromise of any data that was
encrypted using that key.

Public key cryptography is characterized by the
fact that the key used to perform a crypto-
graphic operation (e.g., digital signature creation)
is not the key used to perform the inverse cryp-
tographic operation (e.g., digital signature verifi-
cation). Public key cryptography is based on the
notion of key pairs. One key is referred to as
the public key and can be revealed to anyone.
The other key is referred to as the private key and
is not revealed to anyone other than the end-entity
associated with that key (although there are ex-
ceptions such as private key backup with a trusted
third party when required). These keys are mathe-
matically related; however, knowledge of the pub-
lic key does not divulge enough information to
allow an attacker to determine the private key

efficiently. The concept of asymmetric cryptogra-
phy was first introduced to the general public in
1976 (see [3]), but much of the technology neces-
sary to support public key cryptography was not
available until the mid-1990s.

As illustrated below, symmetric cryptography
and asymmetric cryptography are not necessarily
mutually exclusive. In fact, these techniques can
be used together in order to offer a complemen-
tary set of services. For example, symmetric cryp-
tography can be used to encrypt a message and
asymmetric cryptography can be used to securely
transfer the secret key used to encrypt the file to
the intended recipient(s). However, this is not al-
ways possible and other distribution mechanisms
may be required.

To illustrate these concepts in more detail, we
will first discuss key management associated with
a secret key only system. This will be followed
by a discussion of public key cryptography and
how public key and secret key cryptography can
be used together.

SYMMETRIC OR SECRET KEY CRYPTOGRAPHY

Background

When the first electronic symmetric cryptosys-
tems were deployed, key management was physi-
cal in nature and it required a significant amount
of human involvement. Keys were centrally gen-
erated and recorded on media such as paper or
magnetic tape and the keying material was physi-
cally distributed to the appropriate locations. This
was sometimes accomplished through the use of
couriers (sometimes humorously referred to as
“sneaker net”). The keying material was physi-
cally destroyed when no longer needed.

However, modern symmetric cryptosystems are
more advanced and typically use some form of
electronic key distribution. One possible model for
electronic distribution of symmetric keys is based
on a trusted third party component known as a
Key Distribution Center (KDC) (e.g., see [5]). Be-
fore an end-entity (e.g., an end user) can access
a target resource (e.g., a server), the end-entity
makes a request to the KDC to establish a session
key that can be used to secure the communication
between the end-entity and the target resource.
This model is illustrated in Figure 1.

The outbound arrows between the KDC and the
communicating parties are logical representations
of the key distribution process. In practice, The
KDC may distribute one copy of the symmetric key
directly to the end-entity and another copy to the
target resource, or both copies of the symmetric
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Fig. 1. Key distribution center model

key may be distributed back to the end-entity and
the end-entity would then pass the symmetric key
to the target resource. In both cases two copies
are needed since the symmetric key is encrypted
for the intended recipients (i.e., one copy of the key
is encrypted for the end-entity and another copy of
the key is encrypted for the target resource). This
is necessary to prevent someone in a position to
intercept the session key from being able to use
the key to eavesdrop on the subsequent commu-
nication. This implies that the KDC and the com-
municating parties must have been pre-initialized
with keys that can be used to protect the distribu-
tion of the session keys. These are sometimes re-
ferred to as Key Encrypting Keys (KEKs).1 Note
that this pre-initialization step should not be con-
sidered unusual since some form of initial boot-
strap process is typically required in any crypto-
graphic system.

A classic example of an electronic secret key dis-
tribution based on this model is Kerberos V5 (see
[4]). Kerberos enables electronic key distribution
in a client/server network environment. Kerberos
is comprised primarily of two logical components:
(1) the Authentication Server (AS) and (2) the
Ticket Granting Server (TGS). The AS and TGS
may be physically separate, or they may reside on
the same platform, or they may even be part of the
same process. Collectively, these two logical com-
ponents can be thought of as the KDC as described
above. Since Kerberos is a well known, publicly
available symmetric cryptosystem, we will use

1 It is possible to have all communicating parties pre-
initialized with the same KEK; however, this practice is gener-
ally considered to be less secure since compromise of the single
KEK would impact the entire community rather than a single
entity.

Kerberos to illustrate the concepts associated with
symmetric key management.

Initialization

In the Kerberos scheme, end-entities and target
resources are referred to as Principals. Kerberos
maintains a database of all Principals and their
associated symmetric keys. This allows the ses-
sion keys for each principal to be protected when
they are in transit. These symmetric keys are ini-
tialized separately and must be established before
an end-entity can send a request to the AS.

Distribution

When an end-entity needs to communicate with a
target resource for the first time, the end-entity
makes a request to the AS. The request contains
the end-entity’s identifier as well as the identifier
of the target resource. Typically the initial target
resource is the TGS and for the purposes of this
example, we will assume that the request is for
a session with the TGS. However, this may not
always the case (see [4] for more information).

Assuming that the end-entity and target re-
source (i.e., TGS) are in the Kerberos database,
the AS will generate a symmetric key (referred to
as a session key) and encrypt one copy of the ses-
sion key using the symmetric key of the end-entity
and another copy of the session key using the sym-
metric key of the target resource (this is referred to
as a ticket). These encrypted copies of the session
key are returned to the requesting end-entity.

The end-entity decrypts its copy of the session
key and uses it to encrypt the end-entity’s iden-
tity information and a time stamp (this is referred
to as the authenticator). The time stamp is nec-
essary to prevent replay attacks. The session key
encrypted by the AS for the target resource (i.e.,
the ticket for the TGS) and the encrypted au-
thenticator are then sent to the target resource.
The two communicating parties now have copies
of the session key and are able to communicate
securely.

From that point forward the end-entity can
make additional requests to either the AS or the
TGS (usually the TGS, but see [4] for more de-
tails) in order to establish a session key between
the end-entity and any other target resource. The
difference between requesting this information
from the AS and from the TGS is that the end-
entity’s copy of the session key is encrypted with
the end-entity’s symmetric key obtained from the
Kerberos database when dealing with the AS,
but the end-entity’s copy of the session key is
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encrypted using the TGS session key when dealing
with the TGS.

Cancellation

In terms of key cancellation, we need to consider
that there are actually two types of keys being
used. Each principal (i.e., end user or server) has a
shared secret key used to protect the distribution
of the session keys. The lifetime of these shared
secret keys is typically very long. Cancellation of
a given key is usually facilitated through replace-
ment (i.e., keys can be changed in accordance with
local policy) or deletion of an entry (e.g., when a
principal no longer belongs within the Kerberos
realm). The second type of key is the session key.
The lifetime of the session keys is directly coupled
with the lifetime of the session itself. Once the ses-
sion between the client and server is terminated,
the session key is no longer used.

Summary and Observations

In summary, the Kerberos database is initialized
with entries for each principal. Each entry in-
cludes the shared secret key associated with that
principal which is used to protect the session
keys. The session keys are generated by the KDC
in response to requests from clients and are se-
curely distributed to the appropriate principals.
The shared secret keys generally have long life-
times, but the session keys are ephemeral (i.e.,
short-lived).

One of the criticisms associated with symmet-
ric only key management is that it does not scale
well. It has also been criticized for having a single
point of failure (i.e., what happens when the KDC
goes down?) as well as a single point of attack (all
of the pre-initialized symmetric keys are stored
in the KDC database). However, alternative key
management schemes exist that help to alleviate
some of these problems. In particular, asymmetric
cryptography can be used to exchange secret keys
as discussed in the next section.

ASYMMETRIC OR PUBLIC KEY CRYPTOG-
RAPHY: Asymmetric cryptography is often im-
plemented in association with a supporting
infrastructure referred to as Public Key Infra-
structure (PKI). PKI refers to the policies, pro-
cedures, personnel, and components necessary to
support the key management process. The pri-
mary components of the PKI include the Certi-
fication Authority (CA) and Local Registration
Authority (LRA). (Other components may also
be present, but these are not relevant for the
purposes of this discussion.) The consumers of

the PKI-related services are referred to as end-
entities and may be end users, devices, processes,
or servers.

Initialization

The generation of the public/private key pairs as-
sociated with the end-entities can occur within the
CA, LRA, or the end-entity’s system. If necessary
(depending on where key generation occurred), the
private component of the public/private key pair
must be securely distributed to the appropriate
end-entity. Several protocols have been defined to
accomplish this (e.g., see [6] or [1]). The private
key is stored securely in standard formats such
as PKCS #5 and #8. The public key component is
populated in a signed data structure issued by a
CA. This data structure is referred to as a pub-
lic key certificate. The latest version of the public
key certificate (version 3) is defined in [7] and a
high-level representation of a version 3 public key
certificate is provided in Figure 2.

The digital signature appended to the public key
certificate provides two things. First, the integrity
of the certificate can be verified so any modifica-
tions to the data contained within the certificate
after it was issued can be detected. Second, the
identity of the issuing CA can be verified. This al-
lows the users of the certificate to determine if the
certificate originated from a trustworthy source.
Since both the content and source of the certificate
can be verified, the certificate can be distributed
via potentially nonsecure channels. For example,
the public key certificate can be stored “in the
clear” in a public repository (e.g., an X.500 direc-
tory) which allows end-entities to retrieve these
certificates easily when required.

When end-entities enroll with the PKI, they typ-
ically use one or more shared secrets to demon-
strate they are the end-entity that they claim to be.
The shared secrets may have been established at
some point in the past, or they may be distributed
to the end-entity as part of a formal registration
process. This latter method is typically required
when the certificate(s) are used in conjunction
with high assurance and/or sensitive transactions.
This often requires that the end-entity present
himself or herself to an LRA along with accept-
able forms of identification (e.g., a driver’s license
or employee ID). In any case, the shared secrets fa-
cilitate the initial bootstrap process in which end-
entities are first initialized with their keys.

Distribution

Once the end-entities are initialized with the
PKI, they can engage in secure communication
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Version 3 Public Key Certificate
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Fig. 2. Version 3 public key certificate

(e.g., secure e-mail) with their peers. Theoret-
ically, it would be possible for end-entities to
use public key cryptography to encrypt data for
their peers by using the public key of each peer
(assuming that the asymmetric algorithm sup-
ports encryption/decryption). However, there are
a few practical issues that make this an unattrac-
tive approach. First, asymmetric cryptography is
notoriously slow when compared to symmetric
cryptography. Asymmetric cryptography is there-
fore suitable only for the encryption of small
amounts of data. Second, it would be extremely
wasteful to encrypt the data N times, once for
each intended recipient—especially when deal-
ing with large amounts of data (consider an e-
mail with file attachments). (Note that this is also
true even when symmetric algorithms are used.)
Third, not all asymmetric algorithms support
encryption/decryption (e.g., RSA does, but DSA

does not). Thus, we would like to take advantage of
the speed of symmetric cryptography, but we want
to avoid the key distribution problems mentioned
in the previous section. We also want to avoid en-
cryption of the data multiple times (once for each
recipient). This is why PKI supports both asym-
metric and symmetric cryptography. Symmetric
cryptography is used for data encryption (but the
data is only encrypted once regardless of the num-
ber of recipients), and asymmetric cryptography
is used for the distribution of the secret key to the
intended recipients.

We can illustrate how this works using the ex-
ample illustrated in Figure 3. In this example, we
are using a symmetric algorithm to encrypt data
(e.g., an e-mail message) and an asymmetric al-
gorithm such as RSA (see RSA public key encryp-
tion) to enable the secure distribution of the se-
cret key that was used to encrypt the e-mail.

Fig. 3. Asymmetric key distribution
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Essentially, the system generates a secret key that
is then used to encrypt the message. Any number
of symmetric algorithms could be used for this pur-
pose (e.g., CAST-128 or Rijndael/AES). The secret
key is then encrypted using the intended recipi-
ent’s public (encryption) key. If multiple recipients
were involved, the original data would still be en-
crypted once using the generated secret key, and
the secret key would be encrypted N times, once for
each recipient. The public key certificate for each
recipient can be retrieved from a repository, or per-
haps the certificate may have been conveyed to the
originator in a previous exchange. On receipt, each
recipient can use his/her corresponding private de-
cryption key to decrypt the symmetric key neces-
sary to decrypt the original data. This provides an
efficient and secure key distribution mechanism
that does not suffer from the drawbacks discussed
in the previous section.

Asymmetric cryptography can also be used to
support a process known as key agreement. In
this case, the communicating parties negotiate
an ephemeral secret key. (See Diffie–Hellman key
exchange protocol for additional information.)

Cancellation

In terms of key cancellation, there are two things
to consider: (1) the secret key used to encrypt the
data and (2) the public/private key pair. In terms
of the secret key, this survives as long as the data
is encrypted, which could be indefinitely. How-
ever, the secret key is deleted/destroyed when
the associated file is deleted or (permanently)
decrypted. There may also be cases when the pro-
tection is no longer considered adequate (e.g., the
symmetric algorithm has been compromised or the
key length used no longer provides adequate pro-
tection). In this event, the file is decrypted and re-
encrypted using a new algorithm and/or key. The
original key would be deleted/destroyed.

In terms of the public/private key pairs, public
key certificates are issued with a fixed lifetime,
typically on the order of 2–5 years depending on
the purpose of the certificate and the associated
local policy. In some PKIs, the certificates (and as-
sociated private key) are renewed automatically
before the existing certificate(s) expire. In other
PKIs, end-entities must request new certificate(s)
when their existing certificate(s) expire.

It is possible to establish a different lifetime for
the private component of the public/private key
pair when that key pair is used in conjunction with
digital signatures (see digital signature schemes).
This is done in comprehensive PKIs where it is de-
sirable to have a grace period between the time

the private signing key can no longer be used
and the time that the associated public key cer-
tificate expires so that digital signatures created
before the corresponding private key expired can
still be verified without exposing the end user to
needless warning messages. These comprehensive
PKIs generally update the public/private key pairs
(and public key certificate) automatically.

Finally, it is possible to revoke certificates be-
fore they naturally expire. This might be done for
a variety of reasons, including suspected private
key compromise. (See certificate revocation for ad-
ditional information related to certificate revoca-
tion.)

The interested reader can find a more compre-
hensive discussion of public key life cycle manage-
ment in Chapter 7 of [2].

Summary and Observations

PKI provides comprehensive key management
through a combination of asymmetric and sym-
metric cryptography. Symmetric cryptography is
used for bulk data encryption/decryption and
asymmetric cryptography is used for key distri-
bution. The use of asymmetric cryptography to
facilitate key distribution is an extremely pow-
erful tool that serves to eliminate many of the
problems associated with symmetric-only crypto-
systems.

Steve Lloyd
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KNAPSACK
CRYPTOGRAPHIC
SCHEMES

INTRODUCTION: The knapsack problem origi-
nates from operational research. Suppose one
wants to transport some goods which have a given
economical value and a given size (e.g., volume).
The transportation medium, for example a truck,
is however limited in size. The question then is
to maximize the total economical value to trans-
port, given the size limitations of the transporta-
tion medium.

The above mentioned knapsack problem is not
the one that was proposed for cryptographic pur-
poses. The one used is only a special case namely,
the one in which the economical value of each
good is equal to its size. This special problem is
known as the subset sum problem [24]. Merkle and
Hellman initiated the use of the subset problem—
which they called knapsack—for cryptographic
purposes.

DEFINITION 1. In the subset sum problem n in-
tegers ai are given (the size of n goods). Given a cer-
tain integer (the size of the transportation medium)
S, the problem is to decide whether a subset of the
n numbers exist such that by adding them together
one obtains S, formally to decide/find (whether
there are) bits xi such that:

S =
n∑

i=1

xi · ai . (1)

The problem to decide whether such a subset ex-
ists is NP-complete [24].

For now on, when the “the knapsack problem”
is mentioned, it is used as a synonym for “the sub-
set sum problem”. Note that there is also a subset
product problem, which was used in the so-called
multiplicative public key knapsack cryptographic
systems [38]. The multiplicative knapsack and its
security will be surveyed in Section “The multi-
plicative knapsack scheme and its history”.

Most research on cryptographic knapsack
schemes was related to public key encryption/
decryption, i.e., to protect privacy. Cryptographic
knapsack schemes which protect the authentic-
ity are briefly discussed in Section “The trap-
door knapsack schemes to protect signatures and
authenticity.”

THE CRYPTOGRAPHIC KNAPSACK SCHEME:
AN INTRODUCTION: Except for x which is usu-
ally binary and except when explicitly mentioned,
all numbers used are natural numbers or integers
(depending of the context).

The Encryption in Additive
Knapsack Schemes

In most additive knapsack systems the encryption
operation works as follows: Suppose Bob wants to
send a binary x = (x1, x2, . . . , xn) message to Alice,
and Alice’s public key is a = (a1, a2, . . . , an). To en-
crypt the message Bob computes the ciphertext
(see cryptosystem):

S =
n∑

i=1

xi · ai (2)

which he sends to Alice. So this defines an encryp-
tion function Ea(·) that maps x into S.

Since the encryption key is public and S can be
eavesdropped, it must be “difficult” to find x from
S and a. This problem is the subset sum problem,
which is an NP-complete problem. So, no efficient
polynomial time algorithm exist to find x in the
worst case (over all S and a). So it seemed that
breaking the cryptographic knapsack was hard. It
is important to notice the term “worst case.” In-
deed if a = (1, 2, 4, 8, . . . , 2n−1) it is trivial to find
for all S the corresponding x, by writing S in bi-
nary form. Sequences a for which it is easy to
find, for all S, its corresponding x, have been called
easy.

To allow unique decryption, the encryption func-
tion Ea(·) has to be one-to-one. Shamir [47] called
a sequence a that leads to such a one-to-one en-
cryption function a one-to-one system. It is co-NP-
complete to decide whether a given sequence is a
one-to-one system [47].

The Decryption

If a is chosen randomly by Alice, there is no known
method for her to decrypt Sand find the plaintext
(see cryptosystem). To allow this, Merkle and Hell-
man [38] introduced some trapdoor (see trapdoor
one-way function). The secret information used to
make the trapdoor is called the decryption key. It is
now the trapdoor technique which turns out to al-
low the breaking of the cryptographic public knap-
sacks.

Most knapsack schemes differ only in the use of
other trapdoor techniques. However, some knap-
sack schemes allow the xi to have more values than
just binary. Others add some kind of noise to the
plaintext.

THE MERKLE–HELLMAN TRAPDOOR: In the
Merkle–Hellman case, when Alice constructs her
public encryption key a she will first generate a
superincreasing sequence a1 of natural numbers
(a1

1, a1
2, . . . , a1

n), which is defined as follows:
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DEFINITION 2. A vector a1 = (a1
1, a1

2, . . . , a1
n) is

said to be a superincreasing sequence if:

for each i (2 ≤ i ≤ n) : a1
i >

i−1∑
j=1

a1
j .

(1, 2, 4, 8, . . . , 2n−1) is a superincreasing sequence.
As will be explained further on, a superincreasing
sequence is an “easy” sequence.

To hide the superincreasing structure Alice
transforms a j into a j+1 starting with j = 1. For
each transformation j, she chooses an (wj, mj)
such that Conditions 3 and 4 are satisfied

n∑
i=1

a j
i < mj (3)

gcd(wj, mj) = 1 (4)

and then computes:

a j+1
i ≡ a j

i ·wj (mod mj), where 0 < a j+1
i < m (5)

(see modular arithmetic). When Alice used k
transformations, her public key is given by: a =
ak+1.

We will refer to the transformation defined in
Equations (3)–(5) as the Merkle–Hellman trans-
formation. We call the condition in (3) the Merkle–
Hellman dominance condition. In the case one
uses this transformation in the direction from a j+1

to a j, we call it the reverse Merkle–Hellman trans-
formation:

a j
i ≡ a j+1

i ·w−1
j (mod mj), where 0 < a j

i < m. (6)

When a1 is superincreasing and only one trans-
formation is used, the resulting public key scheme
is called the basic Merkle–Hellman scheme, or
sometimes the single iterated Merkle–Hellman
scheme. The case that two transformations are
used instead of one is called the doubly iterated
one.

Let us now explain the decryption for the
Merkle–Hellman scheme. When Alice receives the
ciphertext S, she iteratively computes S j from
S j+1 starting from j = k and Sk+1 = S as follows:

S j = S j+1 ·w−1
j (mod m), where 0 ≤ S j< mj.

(7)

It is trivial to understand that S j ≡ ∑n
i=1 xia

j
i mod

m and, as a consequence of the inequality in Equa-
tion (7) and the Merkle–Hellman dominance con-
dition (see Equation (3)), S j = ∑n

i=1 xia
j
i . So fi-

nally, Alice ends up with S1. Finally, it is “easy”
to find the message x from S1. Indeed, start with
h = n. If S1 >

∑h−1
i=1 a1

i then xh has to be 1, else 0.

Continue iteratively by subtracting xhah from S1,
with h decrementing from n to 1 during the iter-
ations. In fact a rather equivalent process is used
to write numbers in binary notation. Indeed the
sequence (1, 2, 4, 8, . . . , 2n−1) is superincreasing.

In Section “The decryption” we have seen that
an important condition for the public key is that
it has to form a one-to-one system. This is the
case for the Merkle–Hellman knapsack scheme
by applying the following Lemma as many times
as transformations were used, and by observing
that a superincreasing sequence forms a one-to-
one system.

LEMMA 1. Suppose that (a1
1, a1

2, . . . , a1
n) is a one-

to-one knapsack. If m >
∑

a1
i and gcd(w, m) = 1,

then any set (a1, a2, . . . , an), such that ai ≡ a1
i · w

mod m, is a one-to-one system.

PROOF. By contradiction: Suppose that (a1,
a2, . . . , an) does not form a one-to-one sys-
tem. Then there exist x and y such that x �=
y and

∑
xiai = ∑

yiai . Thus evidently,
∑

xiai ≡∑
yiai mod m, and also (

∑
xiai) · w−1 ≡ (

∑
yiai) ·

w−1 mod m, because w−1 exists (gcd(w, m) = 1).
So

∑
xia1

i ≡ ∑
yia1

i mod m. Since 0 ≤ ∑
xia1

i ≤∑
a1

i < m and analogously 0 ≤ ∑
yia1

i ≤ ∑
a1

i <

m we have
∑

xia1
i = ∑

yia1
i . Contradiction.

A SURVEY OF THE HISTORY OF THE
CRYPTOGRAPHIC KNAPSACK: We will mainly
survey (see Section “The trials to avoid weak-
nesses and attacks for the class of usual knap-
sacks”) the additive knapsack public key systems
protecting privacy and using the same encryption
function as the Merkle–Hellman one. We will ab-
breviate this as the usual knapsack cryptographic
schemes. (Our survey will not be exhaustive.)
Then we will shortly discuss similar schemes but
using different encryption functions (see Section
“The case of usual knapsacks with other encryp-
tion functions”). We very briefly discuss the his-
tory of: the multiplicative knapsack schemes (see
Section “The multiplicative knapsack scheme and
its history”), and the use of trapdoor knapsacks in
signatures (see Section “The trapdoor knapsack
schemes to protect signatures and authenticity”).

The Trials to Avoid Weaknesses and
Attacks for the Class of Usual Knapsacks

In 1979 Shamir found that a knapsack system
with a very high density can (probabalistically)
easily be cryptanalyzed. The density of a knapsack
system with public key a is equal to the cardinality
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of the image of the encryption function (see Equa-
tion (2)) divided by

∑
ai . This result is indepen-

dent of the trapdoor used to construct the public
key.

To construct public keys in Graham–Shamir
[48] and Shamir–Zippel schemes one starts from
other easy sequences than the superincreasing
ones. Then one applies Merkle–Hellman trans-
formations to obtain the public key. The case
that only one transformation is used is called the
basic Graham–Shamir and basic Shamir–Zippel
scheme. For example in the Graham-Shamir
scheme a1 is not superincreasing but can be writ-
ten as:

a1 = a′ + 2qa′′, with a′
n < 2q−1

and a′ superincreasing.

It is trivial to understand that such a sequence is
easy.

In the beginning of 1981, Lenstra [34] found
a polynomial time algorithm to solve the integer
linear programming problem, when the number
of unknowns is fixed. The complexity of the algo-
rithm grows exponentially if the size of the num-
ber of unknowns increases. A part of Lenstra’s al-
gorithm uses a lattice reduction algorithm (more
details are given in Section “The LLL algorithm”).
The importance of Lenstra’s work on the secu-
rity of knapsack cryptosystems will be explained
later.

When in 1981 Henry [27] found a method to
speed up the decryption in knapsack schemes, Bell
Laboratories started designing a VLSI chip for
knapsack cryptosystems, boosting the perceived
importance of cryptographic knapsack schemes.

In 1982 Desmedt, Vandewalle and Govaerts [16,
17] and independently Eier and Lagger [23]
demonstrated that any public key which is ob-
tained from a superincreasing sequence using the
Merkle–Hellman transformation, has infinitely
many decryption keys. In general, if some public
key is obtained using a Merkle–Hellman transfor-
mation, then there exist infinitely many other pa-
rameters, which would result in the same public
key when used to construct it. This has been called
“a key observation that led eventually to the com-
plete demise of these knapsack systems” [10].

Desmedt et al. [17] also proposed a different
way to decrypt and build public keys. In previous
schemes one can find all plaintext bits xi from the
same S1. In their approach, the size of the knap-
sack, n, grows during the construction of the public
key. Each transformation only allows to recover
some bit(s) xi of the plaintext. Let us briefly ex-
plain the other type of partially easy sequence,

called ED (where ED indicates that the property to
find one bit xi is Easy based on a Divisibility prop-
erty). If d divides all a j

i , except a j
r , then if S j =∑n

i=1 xia
j
i , it is easy to find xr , by checking if d di-

vides S j or not. The method discussed here to con-
struct the public key, together with the partially
easy sequence already discussed will be called the
Desmedt–Vandewalle–Govaerts knapsack.

In the beginning of 1982 Lenstra, Lenstra and
Lovasz found some algorithm for factoring polyno-
mials with rational coefficients [35]. A part of this
algorithm is an improvement of the lattice reduc-
tion algorithm (described in [34]). This improve-
ment is known in the cryptographic world as the
LLL algorithm (see shortest vector problem). Note
that the LLL algorithm speeds up the algorithm
to solve the integer linear programming (with the
number of variables fixed) [36]. Another applica-
tion of it is that it allows to find some simultaneous
Diophantine approximations [35].

In April 1982 Shamir broke the basic Merkle–
Hellman scheme [49, 51]. His attack uses the
integer linear programming problem. Shamir was
able to dramatically reduce the number of un-
knowns (in almost all cases) in the integer lin-
ear programming problem. In fact, the cryptan-
alyst first guesses the correct subsequence of the
public key corresponding with the smallest super-
increasing elements. The number of elements in
the subsequence is small. Because the Lenstra al-
gorithm (to solve the integer linear programming
problem) is feasible if the number of unknowns is
small, Shamir was able to break the basic Merkle–
Hellman scheme.

A few months later Brickell et al. [3] found that
by a careful construction of the public key (using
the basic Merkle–Hellman scheme) the designer
could avoid Shamir’s attack. This work clearly
demonstrated that one has to be careful with at-
tacks, which break systems in almost all cases.
However, as a consequence of further research,
this work has made a technical mark.

About the same time Davio came up with a
new and easy sequence [15]. This easy sequence is
based on ED, but it allows to find all xi at once. The
construction is similar to the proof of the Chinese
Remainder Theorem.

Adleman broke the basic Graham–Shamir
scheme [1]. The main idea of Adleman was to treat
the cryptanalytic method as a lattice reduction
problem and not as a linear integer programming
problem. This idea was one of the most influential
in the area of breaking cryptographic knapsack al-
gorithms. To solve the lattice problem he used the
LLL algorithm [35]. The choice of a good lattice
plays a key role in his paper.
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In August 1982 Shamir presented a new knap-
sack scheme, known as Shamir’s ultimate knap-
sack scheme [50]. The main idea is that instead
of applying k Merkle–Hellman transformations,
Alice uses “exactly” n − 1 of such transforma-
tions when constructing her public key. “Exactly”
means here, that after each transformation (e.g.
jth) one checks if a j is linearly independent of
(a1, . . . , a j−1), if not, one drops a j, makes a new
one and tries again. The final result an is the
public key. To decrypt S, Alice applies her n − 1
reverse secret transformations. She starts with
Sn = Sand by calculating the other S j, similar as
in the Merkle–Hellman case (see Section “The de-
cryption”). So she obtains a set of linear equations:




S1

...
Sn−1

Sn


 =




a1
1 . . . a1

n
...

. . .
...

an−1
1 . . . an−1

n
an

1 . . . an
n


 ·




x1
...

xn−1
xn


 . (8)

After the discussed transformations to find x, Alice
only has to solve a set of linear equations. It is
important to observe that the obtained public key
is one-to-one, even if a1 is not an easy sequence, or
even if no partially easy sequences are used. This
follows from the nonsingularity of the matrix in
Equation (8).

Other research continued, trying to obtain
other easy (or partially easy) knapsack sequences.
Petit’s [42] defined lexicographic knapsacks. Let
w(·) be the Hamming weight function. a is called
lexicographic, if and only if, aTx < aTy for all bi-
nary x and y, with x �= y and one of the two cases
(i) w(x) < w(y) or (ii) w(x) = w(y) and x and y sat-
isfy together xk yk = 1 and xi ⊕ yi = 0 for all i < k,
with ⊕ the exclusive or. The construction of the
public key is as in the Merkle–Hellman case, us-
ing Merkle–Hellman transformations.

Willett [53] also came up with another easy se-
quence and a partially easy sequence, which were
then used similar as in the Merkle–Hellman and
in the Desmedt–Vandewalle–Govaerts knapsack.
We will only discuss the easy sequence. It is not to
difficult to figure out how it works in the case of the
partially easy sequence. The i th row of the matrix
in Equation (9) corresponds with the binary rep-
resentation of a1

i .

(Tn Cn On−1 Tn−1 Cn−1 . . .

O2 T2 C2 O1 T1 C1). (9)

In Equation (9) the Ti are randomly chosen binary
matrices, the Ci are n × 1 binary column vectors
such that they (Ci) are linearly independent mod-
ulo 2, and the Oi are n × li zero binary matrices,
where li ≥ log2 n. Let us call the locations of the Ci

ti . To find x out of S1, we first represent S1 binary,
and we call these bits sh. As a consequence of the
choice of li , the bits sti are not influenced by Ti−1
and Ci−1. To find x we have to solve modulo 2:




st1

...
stn−1

stn


=




c1
1 . . . c1

n
...

. . .
...

cn−1
1 . . . cn−1

n
cn

1 . . . cn
n


 ·




x1
...

xn−1
xn


mod 2,

where the c j
i are coefficients of Ci .

McAuley and Goodman [37] proposed in
December 1982 a very similar knapsack scheme
as the one proposed by Davio (see higher). The
differences are that no Merkle–Hellman trans-
formations are used and that the x can have
more values than binary (they have to be smaller
than a given value and larger than or equal to
zero). The trapdoor information consists only in
the secrecy of the primes which were used in the
construction.

By the end of 1982 and the beginning of 1983
Desmedt, Vandewalle and Govaerts [19] general-
ized Shamir’s ultimate knapsack scheme by gener-
alizing the Merkle–Hellman transformation, call-
ing it the general knapsack scheme. All previously
discussed knapsack systems are special cases of
this one [20]. In Shamir’s scheme one can only
choose one vector and start the transformation,
while here n choices of vectors are necessary (or
are done implicitly).

Around the same time Brickell cryptanalyzed
low density knapsacks [4, 5]. A similar attack
was independently found by Lagarias and Odlyzko
[30]. To perform his attack, Brickell first gen-
eralized the Merkle–Hellman dominance condi-
tion. The integers he used may also be negative.
Brickell called a modular mapping ∗w mod m
from a into c to have the small sum property if ci ≡
aiw mod m, and m >

∑ |ci |. He called mappings
satisfying this property SSMM. Given

∑
xiai one

can easily calculate
∑

xici . This is done exactly
as in the reverse Merkle–Hellman case. If the re-
sult is greater than

∑
ci>0 ci M is subtracted from

it. He tries to find n − 1 such transformations
all starting from the public key a. He can then
solve a set of equations similar as in the ultimate
scheme of Shamir (remark the difference in ob-
taining the matrix). To obtain such transforma-
tions in order to break, he uses the LLL algorithm
choosing a special lattice. If all the reduced lattice
basis vectors are short enough, he will succeed.
This happens probably when the density is less
than 1/ log2 n. In the other cases he uses some
trick to transform the problem into one satisfy-
ing the previous condition. Arguments were given
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that this will succeed almost always when the den-
sity is less than 0.39. The low density attack pro-
posed by Lagarias and Odlyzko is expected to work
when the density of the knapsack is less than
0.645. These attacks break the ultimate scheme
of Shamir, because the density of the public key is
small as a consequence of construction method of
the public key.

Lagarias found a good foundation for the attacks
on the knapsack system, by discussing what he
called unusually good simultaneous Diophantine
approximations [31]. Lagarias used similar ideas
[32] to analyze Shamir’s attack on the basic
Merkle–Hellman scheme. The main result is that
Shamir overlooked some problems, but neverthe-
less his attack almost always works.

Brickell, Lagarias and Odlyzko performed an
evaluation [6] of the Adleman’s attack on multiple
iterated Merkle–Hellman and Graham–Shamir
schemes. They concluded that his attack on the
basic Graham–Shamir scheme works, but that
the version to break iterated Merkle–Hellman or
Graham–Shamir scheme failed. The main rea-
son for it was that the LLL algorithm found so-
called undesired vectors, which could not be used
to cryptanalyze the cited systems. Even in the case
that only two transformations were applied (to
construct the public key) his attack fails.

In 1983 Karnin proposed an improved time-
memory-processor tradeoff [29] for the knapsack
problem. The idea is related to exhaustive key
search [21] and Hellman’s time-memory trade-off
[26], in which an exhaustive key search is used to
break the system using straightforward or more
advanced ideas. The result has only theoretical
value if the dimension of the knapsack system n
is large.

In 1984 Goodman and McAuley proposed a
small modification [25] to their previous system
[37]. In the new version some modulo transforma-
tion was applied.

In the same year Brickell proposed how to
cryptanalyze [8] the iterated Merkle–Hellman and
Graham–Shamir scheme. As usual no proof is pro-
vided that the breaking algorithm works; argu-
ments for the heuristics are described in [8]. Sev-
eral public keys were generated by the Merkle–
Hellman and Graham–Shamir scheme and then
turned out to be breakable by Brickell’s attack.
Again the LLL algorithm is the driving part of
the attack. First the cryptanalyst picks out a sub-
set of the sequence corresponding with the pub-
lic key. These elements are entered in a special
way in the LLL algorithm. A reduced basis for
that lattice is obtained. Then one calculates the
linear relation between the old and new basis for

the lattice. This last information will allow to de-
cide whether the selected subset is “good.” If it
was not, one restarts at the beginning. If it was
a good set, one can calculate the number of iter-
ations that were used by the designer during the
construction of the public key. Some calculation of
determinants will then return an almost super-
increasing sequence. Proceeding with almost su-
perincreasing sequences was already discussed by
Karnin and Hellman [28] (remarkable is the con-
tradiction in the conclusion of their paper and its
use by Brickell!).

In October 1984, Odlyzko found an effective
method to cryptanalyze the McAuley–Goodman
and the Goodman–McAuley scheme, using mainly
gcd’s [41].

Later on Brickell [9] was able to break, with
a similar idea as in [8], a lot of other knap-
sack schemes, e.g., the Desmedt–Vandewalle–
Govaerts, the Davio, the Willett, the Petit and
the Goodman–McAuley. The attack affects also
the security of the so-called general knapsack
scheme.

At Eurocrypt 85 Di Porto [22] presented two
new knapsack schemes, which are very close to
the Goodman–McAuley one. However they were
broken during the same conference by Odlyzko.

The Case of Usual Knapsacks with other
Encryption Functions

In 1979 Arazi proposed a new knapsack based ad-
ditive knapsack algorithm to protect the privacy
of the message [2]. The main difference with the
Merkle–Hellman encryption is that random noise
is used in the encryption function. The param-
eters which are chosen during the construction
of the public key have to satisfy some properties
(see [2]).

In 1983 Brickell also presented a new knapsack
system [7], which is similar to the Arazi one.

One year later Brickell declared his own new
scheme insecure, as a consequence of his attack
on iterated knapsacks [8].

Chor and Rivest proposed in 1984 another knap-
sack based system [13]. The encryption process
is very close to the one in the Merkle–Hellman
scheme. The main difference in the encryption is
that

∑
xi ≤ h for some given h. The trapdoor tech-

nique does not use a modular multiplication (as do
almost all other knapsack schemes). The trapdoor
uses the discrete logarithm problem [40, 43] (see
also Section “The multiplicative knapsack scheme
and its history”). A study of possible attacks was
done, but it turned out that by a good choice of
parameters all attacks known at that point of time
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could be avoided. New attacks were set up by the
authors [13] but this did not change the above
conclusion.

In 1985 Brickell broke the Arazi knapsack sys-
tem [9]. In 1985 Cooper and Patterson [14] also
proposed some new trapdoor knapsack algorithm,
which can however be cryptanalyzed by Brickell
[9]. The same attack of Brickell can break this
knapsack as well as the Lagger knapsack [33].

Since 1985 interest in public key knapsacks
almost vanished completely. In 1998 the Chor–
Rivest scheme was finally cryptanalyzed [52].

The Multiplicative Knapsack Scheme
and its History

The so called multiplicative knapsack here uses
exactly the same encryption function as the
Merkle–Hellman additive knapsack scheme. How-
ever the trapdoor is completely different in nature,
because it is mainly based on a transformation
from an additive knapsack problem into a mul-
tiplicative one. It was presented by Merkle and
Hellman in their original paper [38].

Let us first explain the construction of the public
key. One chooses n relative prime positive num-
bers (p1, p2, . . . , pn), some prime number q, such
that q − 1 has only small primes and such that

q >

n∏
i=1

pi (10)

and some primitive root b modulo q (see modu-
lar arithmetic). One then finds integers ai , where
1 ≤ ai ≤ q − 1, such that pi ≡ bai mod q. So, ai is
the discrete logarithms of pi base b modulo q. This
explains why q − 1 was chosen as the product of
small primes, since the Pohlig–Hellman algorithm
(see discrete logarithm problem) can easily calcu-
late these discrete logarithms in that case [43].

To decrypt one calculates S′ = bS mod q, be-
cause bS = b

∑
xi ·ai = ∏

bxi ·ai = ∏
pxi

i mod q. The
last equality is a consequence of the condition in
Equation (10). One can easily find the correspond-
ing x starting from S′, using the fact that the num-
bers pi are relative prime. This last point is im-
portant, because in the general case the subset
product problem is NP-complete [24].

This scheme can be cryptanalyzed by a low den-
sity attack [5, 30]. However the disadvantage is
that it requires a separate run of the lattice reduc-
tion algorithm (which takes at least on the order
of n4 operations) to attack each n bit message. To
overcome that problem, Odlyzko tried another at-
tack [39]. Herein he starts from the assumption
that some of the pi are known. He then tries to

find q and b. He also assumes that b, q and the
ai consist of approximately m bits. His attack will
take a polynomial time if m = O(n log n). Also in
this attack the LLL algorithm is the driving force.
A special choice [39] of the lattice is used to attack
the system. Once the b and q are found the crypt-
analyst can easily cryptanalyze ciphertexts as the
receiver can decrypt them.

The Trapdoor Knapsack Schemes to
Protect Signatures and Authenticity

To make a digital signature the sender applies the
decryption function on the plaintext. From this
point of view it is easy to understand that the
higher discussed knapsack schemes are not well
suited for this purpose. Indeed if the decryption
function is not “enough” (pseudo) invertible the
sender has to perform other trials in order to gen-
erate a signature. Such a scheme was presented in
the original Merkle–Hellman paper [38]. Shamir
suggested a more practical one [46] in 1978.

In 1982 Schöbi and Massey proposed another
version of [45] as a fast signature scheme.

In 1982–1983 Odlyzko broke [39] the Shamir’s
fast signature and the Schöbi-Massey one. Here
also the LLL algorithm plays an important role.

SOME DETAILS: A small encyclopedia is required
to discuss all schemes, weaknesses and attacks in
details. Only three issues are discussed in more
depth, these being: (i) why the Merkle–Hellman
transformation leads to the possibility of more
than one decryption key to break, (ii) the LLL
algorithm and (iii) its use in the low density at-
tack of Brickell.

The Existence of Infinitely Many
Decryption Keys

Let us focus on the basic Merkle–Hellman scheme.
Suppose w−1 and m correspond with the re-
verse Merkle–Hellman transformation and that
a′

i was the used superincreasing sequence. We will
demonstrate that other values allow to break (call
these V, M, and a′′

i ). In order to analyze for which
V and M Equations (3)–(5) (see also Equation (6))
holds let us reformulate the Merkle–Hellman
transformation in terms of linear inequalities.
a′′

i ≡ ai · V mod M and 0 < a′′
i < M can be refor-

mulated into:

0 < a′′
i = (ai · V − si · M) < M, si integer. (11)

Note that si is equal to �(ai · V)/M� with �·� the
floor function.
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Using Equation (11) the conditions in Equa-
tions (3)–(5) (see also Equation (6)) and the
condition of superincreasing of a′′ can be expressed
as linear inequalities on V/M:

Equation (11) gives:
si

ai
<

V
M

<
1 + si

ai
≤ 1

(12)

Equation (3) gives:
V
M

<
1 + ∑n

i=1 si∑n
i=1 ai

(13)

the condition requiring a′′ be superincreasing
gives for all j, with 2 ≤ j ≤ n:

if aj <

j−1∑
i=1

ai :
V
M

<
s j −

∑ j−1
i=1 si

a j −
∑ j−1

i=1 ai

(14)

if aj >

j−1∑
i=1

ai :
V
M

>
s j −

∑ j−1
i=1 si

a j −
∑ j−1

i=1 ai

. (15)

Observe that the condition in Equation (4) does
not impose an extra condition on the ratio V/M.
Indeed, for any V/M which satisfies the conditions
in Equations (12)–(14) one can take coprime V, M
in order to satisfy Equation (4).

THEOREM 1. For each encryption key (a1, a2, . . . ,

an) constructed using Equations (3)–(5) from a su-
perincreasing sequence (a′

1, a′
2, . . . , a′

n), there exist
infinitely many superincreasing sequences satisfy-
ing the conditions in Equations (3)–(5).

PROOF. The conditions Equations (3) and (5) and
superincreasing reformulated as Equations (12)–
(15) can be summarized as: L < V

M < U, where
L and U are rational numbers. Since there ex-
ists a superincreasing decryption key, which sat-
isfies Equations (3)–(5) there exists an L and U
such that L < U. So, infinitely many (V, M) sat-
isfy the bound conditions and the condition that
gcd(V, M) = 1.

It is easy to generalize Theorem 1 to knapsack se-
quences a obtained by multiple Merkle–Hellman
transformations [16, 17, 20, 23].

The LLL Algorithm

First we define a lattice (in the geometrical sense
of the word).

DEFINITION 3. Let (v1, . . . , vn) be a linearly in-
dependent set of real vectors in a n-dimensional
real Euclidean space. The set {u1v1 + · · · + unvn |
u1, . . . , un ∈ Z}, is called the lattice with basis
(v1, . . . , vn).

THEOREM 2. Let (v1, . . . , vn) be a basis of a lattice
L and let v′i be the points

v′i =
∑

j

zi
jv

j, for 1 ≤ i ≤ n

and 1 ≤ j ≤ n,

where zi
j are integers, then the set (v′1, . . . , v′n) is

also a base for the same lattice L, if and only if
det(zi

j) = ±1. An integer matrix Z with det(zi
j) =

±1 is called an unimodular matrix.

PROOF. See [12].

As a consequence of Theorem 2 | det(v1, . . . , vn)|
is independent of a particular basis for the
lattice.

For a lattice L there does not necessarily exist a
set of n vectors that form an orthogonal basis for
the lattice. The Lenstra Lenstra Lovasz (LLL, see
shortest vector problem or [35, pp. 515–525]) algo-
rithm finds in polynomial time a basis for a lattice
L, which is nearly orthogonal with respect to a
certain measure of non-orthogonality. The LLL al-
gorithm does however not find in general the most
orthogonal set of n independent vectors. As a con-
sequence of Theorem 2 it finds short (probably not
the shortest) vectors. A basis is called reduced if it
contains relatively short vectors.

Let us briefly describe LLL. Let v1, v2, . . . , vn
belong to the n-dimensional real vector space. To
initialize the algorithm an orthogonal real basis
v′

i is calculated, together with µi
j (1 ≤ j < i ≤ n),

such that

v′
i = vi −

i−1∑
j=1

µi
jv

′
j (16)

µi
j =

(vi, v′
j)

(v′
j, v′

j)
, (17)

where (·, ·) denotes the ordinary inner (scalar)
product. In the course of the algorithm the vec-
tors v1, v2, . . . , vn will be changed several times,
but will always remain a basis for L. After ev-
ery change the v′

i and µi
j are updated using Equa-

tions (16) and (17). A current subscript k is used
during the algorithm. LLL starts with k = 2. If
k = n + 1 it terminates. Suppose now k ≤ n, then
we first check that |µk

k−1| ≤ 1/2 if k > 1. If this
does not hold, let r be the integer nearest to µk

k−1,
and replace vk by vk − rvk−1, (do not forget the up-
date). Next we distinguish two cases. Suppose that
k ≥ 2 and |v′

k + µk
k−1v′

k−1|2 < (3/4)|v′
k−1|2, then we

interchange vk−1 and vk, (do not forget the update),
afterwards replace k by k − 1 and restart. In the
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other case we want to achieve that

|µk
j | ≤ 1

2 , for 1 ≤ j ≤ k − 1. (18)

If the condition in Equation (18) does not hold,
then let l be the largest index < k with µk

l > 1/2,
let r be the nearest to µk

l and replace bk by bk − rbl
(do not forget the update), repeat until the condi-
tions Equation (18) hold, afterwards replace k by
k + 1 and restart. Remark that if the case k = 1
appears one replaces it by k = 2.

The Use of the LLL Algorithm in Brickell’s
Low Dense Attack

In Section “The trials to avoid weaknesses and at-
tacks for the class of usual knapsacks” we briefly
discussed Brickell’s low dense attack. We intro-
duced the concept of SSMM and have given a
sketch of Brickell’s low density attack. Remem-
ber also that if the density is not low enough
(>1/ log2 n) it has to be artificially lowered. We will
only discuss the case that it is indeed low enough.
This last part is always used as the main technique
of the breaking algorithm.

The breaking is based on Theorem 3. Hereto we
first have to define short enough vector.

DEFINITION 4. A vector c in a lattice L is called
short enough related to a1 if

n∑
i=2

|c′
i | < a1,

where c′
1 = 0 and c′

i = ci/n for 2 ≤ i ≤ n.

THEOREM 3. If all vectors in the reduced basis for
the lattice, with basis vectors ti defined in Equa-
tion (19), are short enough related to a1, then we
can find n − 1 independent SSMM for a1, . . . , an.

t1 = (1 na2 na3 na4 . . . nan)
t2 = (0 na1 0 0 . . . 0)
t3 = (0 0 na1 0 . . . 0)
t4 = (0 0 0 na1 . . . 0)
...

...
...

...
...

. . .
...

tn = (0 0 0 0 . . . na1).

(19)

PROOF. Call the vectors of the reduced basis
v1, v2, . . . , vn. We will first prove that a mod-
ular mapping by v j

1 mod a1 has the small sum
property (see Section “The trials to avoid weak-
nesses and attacks for the class of usual knap-
sacks”). Since v j is an integral linear combination
of the vectors in Equation (19), there exist inte-

gers (y j
1, . . . , y j

n) such that v j
1 = y j

1 and v j
i = y j

i na1 +
y j

1nai for 2 ≤ i ≤ n. Since n divides v j
i let uj

i = v j
i /n

for 2 ≤ i ≤ n. This implies evidently that 0 ≡ a1y j
1

and uj
i ≡ ai y

j
1 for 2 ≤ i ≤ n. As a consequence of

the short enough property we have indeed the
small sum property. The independence of the n − 1
vectors so obtained with SSMM, is then easy to
prove.

Arguments are given in [5] that the condition
in Theorem 3 are almost satisfied if the density is
low enough.

CONCLUSION: The encryption in the Merkle–
Hellman knapsack is based on NP-completeness,
however, its trapdoor was not. In secure public
key cryptosystems the encryption process must be
hard to invert but it must also be hard to find
the original trapdoor or another trapdoor. Non-
public key use of knapsack was investigated, e.g.
in [18, 44].

For further details on the research on public key
knapsack before 1992, consult [11].

Yvo Desmedt
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KNOWN PLAINTEXT
ATTACK

Known plaintext attack is a scenario in which the
attacker has access to pairs (Pi, Ci), i = 1, . . . , N
of known plaintexts and their corresponding ci-
phertexts. This attack is considered to be highly
practical, especially if the amount of pairs N is
not too large. This attack scenario is more prac-
tical than the chosen plaintext attack. Probable
word method which is a popular technique for
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solving classical simple substitution or transposi-
tion ciphers is an example of a known-plaintext
attack. Another example is the cryptanalysis of
the German Enigma cipher (see cryptomachines
or [1]) using the so called bombs. It relied
heavily on properly guessed opening words of
the cryptograms (which were at the time called
cribs). One of the most popular cribs was “Noth-
ing to report”. In modern cryptography linear

cryptanalysis is a typical example of a known
plaintext attack.

Alex Biryukov
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LATTICE

In mathematics, the term lattice is used for
two very different kinds of mathematical objects,
arising respectively in order theory and number
theory. Here, by lattice, we always mean number-
theoretical lattices. Lattice theory [3, 7] is called
Geometry of numbers, a name due to its founder
Hermann Minkowski [5].

A lattice can be defined in many equivalent
ways. Informally speaking, a lattice is a regular
arrangement of points in n-dimensional space. To
be more formal, we need to recall a few defini-
tions. Let x, y ∈ R

n denote two vectors (x1, . . . , xn)
and (y1, . . . , yn), where the xis and yis are real
numbers. Let 〈x, y〉 denote the Euclidean inner
product of x with y: 〈x, y〉 = ∑n

i=1 xi yi . Let ‖x‖ de-
note the Euclidean norm of x: ‖x‖ = 〈x, x〉1/2. A
set of vectors {b1, . . . , bd} are said to be R-linearly
independent if and only if any equality of the
form µ1b1 + · · · + µdbd = 0, where the µis are real
numbers, implies that the µis are all zero. Then
the two most usual definitions of a lattice are the
following ones:
� A lattice is a discrete (additive) subgroup of R

n,
that is, a non-empty subset L ⊆ R

n such that
x − y ∈ L whenever (x, y) ∈ L2 (this is the group
axiom), and where there exists a real ρ > 0
such that the simultaneous conditions x ∈ L
and ‖x‖ ≤ ρ imply that x be zero. With this defi-
nition, it is obvious that Z

n is a lattice (the group
axiom is satisfied, and ρ = 1/2 works), and that
any subgroup of a lattice is a lattice.

� A lattice is the set of all integer linear combi-
nations of some set of R-linearly independent
vectors of R

n, that is: if b1, . . . , bd are linearly
independent, then L =

{∑d
i=1 nibi | ni ∈ Z

}
is a

lattice, and [b1, . . . , bd ] is said to be a basis of
L. With this definition, it is still obvious that Z

n

is a lattice, but it is not clear that a subgroup of
a lattice is still a lattice.

It is not difficult to prove that the above definitions
are in fact equivalent (see [7]). To decide at first
sight whether or not a given subset L of R

n is a
lattice, the second definition is useful only when
one already knows a potential basis, which is not
necessary with the first definition.

Both definitions suggest that lattices are dis-
crete analogues of vector spaces: as a result, lattice
theory bears much resemblance to linear algebra.

Lattice bases are not unique, but they all have the
same number of elements, called the dimension or
the rank of the lattice. Any lattice L of rank ≥2 has
infinitely many bases. Indeed, one can see that to
transform a lattice basis into another lattice basis,
it is necessary and sufficient to apply a unimodu-
lar transformation, that is, a linear transforma-
tion represented by an integer matrix with deter-
minant ±1. This implies that the d-dimensional
volume of the parallelepiped spanned by a lattice
basis only depends on the lattice, and not on the
choice of the basis: it is called the volume or deter-
minant of the lattice, denoted by vol(L) or det(L).
By definition, it is equal to the square root of the
following d × d determinant, where (b1, . . . , bd ) is
an arbitrary basis of L:

det(〈bi, b j〉)1≤i, j≤d

=




〈b1, b1〉 〈b1, b2〉 . . . 〈b1, bd〉
〈b2, b1〉 〈b2, b2〉 . . . 〈b2, bd〉

...
. . .

...
〈bd , b1〉 〈bd , b2〉 . . . 〈bd , bd〉


 .

The volume is useful to estimate the norm of lat-
tice short vectors. See the entries lattice reduction
and Shortest Vector Problem.

Lattices have many applications in computer
science (see [2]), notably in cryptology (see [6]). See
also lattice based cryptography, lattice reduction,
Closest Vector Problem, Shortest Vector Problem.
A classical mathematical reference about lattices
is the book [1]. For an introduction to lattices,
specifically from a computational point of view,
the reader is referred to [4], and the references
therein.

Phong Q. Nguyen
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LATTICE REDUCTION

Among all the bases of a lattice, some are more
useful than others. The goal of lattice reduction
(also known as lattice basis reduction) is to find
interesting bases. From a mathematical point of
view, one is interested in proving the existence of
at least one basis (in an arbitrary lattice) satisfy-
ing strong properties. From a computational point
of view, one is rather interested in computing such
bases in a reasonable time, given an arbitrary ba-
sis. In practice, one often has to settle for a tradeoff
between the quality of the basis and the running
time.

Interesting lattice bases are called reduced, but
there are many different notions of reduction,
such as those of Minkowski, Hermite–Korkine–
Zolotarev, Lenstra–Lenstra–Lovász, etc. Typically,
a reduced basis is made of vectors which are in
some sense short, and which are somehow orthog-
onal. To explain what we mean by short, we need
to introduce the so-called successive minima of a
lattice.

The intersection of a d-dimensional lattice L ⊆
R

n with any bounded subset of R
n is always finite.

It follows that there is a shortest nonzero vector in
L, that is, there is v ∈ L \ {0} such that ‖u‖ ≥ ‖v‖
for all u ∈ L \ {0}. Such a vector is not unique (for
instance, −v satisfies the same property), but all
such vectors must have the same norm. The first
minimum of L is thus defined as λ1(L) = ‖v‖. One
might wonder how one could define a second-to-
shortest vector: If v is a shortest vector, −v is also
short but is not very interesting. To avoid such
problems, one defines the successive minima as
follows. For any integer k such that 1 ≤ k ≤ d, the
kth successive minimum of L, denoted by λk(L),
is the radius of the smallest hyperball centered
at the origin and containing at least k linearly
independent vectors of L. The successive minima
can be defined with respect to any norm, but the
Euclidean norm is the most common.

One can show that there are linearly indepen-
dent vectors v1, . . . , vd in L such that ‖vi‖ = λi(L)

for all 1 ≤ i ≤ d. Surprisingly, as soon as d ≥ 4,
such vectors may not form a basis of L: the in-
teger linear combinations of the vis may span a
strict subset of L. Furthermore, as soon as d ≥ 5,
there may not exist a basis reaching all the min-
ima: there exist d-dimensional lattices such that
for all bases (b1, . . . , bd ), ‖bi‖ �= λi(L) for at least
some i. This is one of the reasons why there is
no definition of reduction which is obviously bet-
ter than all the others: for instance, one basis may
minimize the maximum of the vector norms, while
another minimizes the product of the norms, and
it is not clear if one is better than the other. When
we say that a reduced basis should have rela-
tively short vectors, we mean that the ith vector of
the vector is not far away from the ith minimum
λi(L). The orthogonality of a basis is often mea-
sured by the product of the norms of the vectors
divided by the volume of the lattice: this ratio is
always ≥1, with equality if and only if the basis is
orthogonal.

Minkowski’s theorem states that for all 1 ≤
k ≤ d, the geometric mean of the first k minima
(
∏k

i=1 λi(L))1/k is at most γdvol(L)1/d , where γd is
an absolute constant (approximately equal to

√
d)

that depends only on the dimension d, and vol(L)
is the volume of the lattice (see the entry lattice
for a definition). In particular, λ1(L) ≤ γdvol(L)1/d ,
but this upper bound does not hold in general for
the other minima (one can easily construct lattices
such that the first minimum is arbitrarily small,
while the other minima are large). In a typical lat-
tice though, we expect all the minima to be very
roughly equal to γdvol(L)1/d .

Minkowski, Hermite, Korkine and Zolotarev in-
troduced strong notions of reduction: the corre-
sponding reduced bases have very good properties
but are very difficult to obtain. For instance, bases
reduced in the sense of Minkowski or of Hermite–
Korkine–Zolotarev both include a shortest lattice
vector, therefore finding such bases is already an
NP-hard problem under randomized reductions
as the lattice dimension increases (see shortest
vector problem). Lenstra et al. [5] introduced the
first notion of reduction to be interesting from both
a mathematical and a computational point of view,
in the sense that such reduced bases are provably
made of relatively short vectors (altough maybe
not as short as, say, a Minkowski-reduced basis)
and can be computed efficiently. More precisely,
the celebrated LLL or L3 algorithm, given as in-
put an arbitrary basis of a d-dimensional lattice
L in Q

n, outputs (in time polynomial in the size
of the basis—see polynomial time) a lattice basis
(b1, . . . , bd ) such that ‖bi‖ = O((2/

√
3)d )λi(L) for

all i. This approximation factor is exponential in
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the dimension d (see exponential time). Smaller
approximation factors (slightly subexponential in
the dimension d—see subexponential time for a
definition) can be achieved in polynomial time in
the size of the basis using more complex algo-
rithms like Schnorr’s Block Korkine–Zolotarev re-
duction [10].

Lattice reduction algorithms are useful because
they enable to solve various lattice problems:
approximating the Shortest Vector Problem and
the Closest Vector Problem (see [1, 3, 6]), finding
many short lattice vectors. This has proved invalu-
able in many areas in computer science (see [3]),
notably in cryptology (see the survey [9]). In
cryptanalysis, lattice reduction algorithms have
been used to break various public-key cryptosys-
tems, including many knapsack and lattice cryp-
tosystems, and more recently certain settings of
discrete-log signature schemes (see [8]). Interest-
ingly, they are also used in the most sophisti-
cated attacks known against the RSA public key
encryption and the RSA digital signature scheme:
RSA with a small private exponent, chosen-
message attacks on RSA signatures with pecu-
liar paddings, certain settings of RSA encryption
with a small public exponent, etc. In particular,
Coppersmith opened in [2] a new avenue for crypt-
analytic applications of lattice reduction when
he revisited the connection between lattices and
small solutions of polynomial equations. For in-
stance, it can be shown using the LLL algorithm
that, given an integer polynomial f (X) ∈ Z[X] of
degree d such that the gcd of all the coefficients
of f is coprime with an integer N, then one can
find in time polynomial in (d, log N) all the in-
tegers x0 such that f (x0) ≡ 0 (mod N) and |x0| ≤
N1/d .

It should be emphasized that lattice reduction
algorithms typically perform much better than
their worst-case theoretical bounds would sug-
gest. For instance, the LLL algorithm often out-
puts bases which are quite close to the successive
minima (by a factor much smaller than the theo-
retical exponential factor): in low dimension, the
LLL algorithm often outputs a shortest nonzero
vector. This phenomenon has yet to be explained:
the average-case behaviour of lattice reduction al-
gorithms is mostly unknown, and it is hard to pre-
dict beforehand how good a resultant basis will be.
The effectiveness of lattice reduction algorithm is
another reason why lattice reduction has been so
popular in cryptanalysis.

Lattice reduction is a very active research area:
a lot of work is required to deepen our understand-
ing of lattice reduction algorithms and to invent
new lattice reduction algorithms.

See also lattice based cryptography, lattice
reduction, Closest Vector Problem, and Shortest
Vector Problem.

Phong Q. Nguyen
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LATTICE BASED
CRYPTOGRAPHY

Cryptographic applications of lattices include both
cryptanalysis and the design of (provably secure)
cryptographic functions. Cryptanalysis applica-
tions are usually based on lattice reduction tech-
niques. The name “lattice based cryptography”
typically refers to the second kind of applications:
using lattices as a source of computational hard-
ness in the construction of cryptographic functions
which are at least as hard to break as solving some
underlying lattice problem.

The study of lattice based public key crypto-
graphy has been largely stimulated by Ajtai’s
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discovery in 1996 [1] that certain variants of the
knapsack problem (see knapsack cryptosystem)
are at least as hard to break on the average as
the worst-case instance of certain lattice problems,
e.g., solving the Shortest Vector Problem (SVP)
approximately within polynomial factors. Specifi-
cally, assuming that there is no efficient algorithm
to approximate SVP within a factor g = dc in the
worst case (where d is the dimension of the lat-
tice, and c is an arbitrary constant independent of
d), one can build knapsack-like cryptographic one-
way functions that are almost certainly hard to
break (when the key is chosen at random). In 1997
Ajtai and Dwork [2] also proposed a cryptosys-
tem with similar average-case/worst-case connec-
tion properties: decrypting random challenges is
at least as hard as solving the worst-case instance
of a variant of the shortest vector problem, called
the unique SVP (uSVP). Since finding approxi-
mate solutions to lattice problems gets easier and
easier as the approximation factor grows, an im-
portant question in the area is to determine the
smallest factor g such that one can build crypto-
graphic functions that are as hard to break as find-
ing g-approximate solutions to lattice problems. At
the time of this writing, the strongest known re-
sults are Micciancio’s collision resistant hash func-
tions [5] based on the inapproximability of the cov-
ering radius problem within g ≈ d2.5, and Regev’s
cryptosystem [7] based on the inapproximability
of uSVP within g ≈ d1.5.

All these results about lattice based cryptog-
raphy are mostly interesting from a theoretical
point of view, as they are the only known cryp-
tographic constructions that can be proved secure
based on a worst-case complexity assumption (see
the entry computational complexity for further
discussion on complexity assumptions). In prac-
tice, most lattice based cryptographic functions
need extremely large keys in order to avoid known
cryptanalytic attacks. The reason is that the stor-
age typically required by a d-dimensional lattice
grows at least as the square of the security para-
meter d. So, even if the security parameter is set
to a few hundreds, the resulting key can easily ex-
ceed hundreds of thousands of bits. However, prac-
tical lattice based crytographic constructions may
be possible. The main practical lattice based cryp-
tosystem is NTRU, proposed by Hoffstein et al.
in 1996 [3]. NTRU achieves small key size using a
special class of lattices (convolutional modular lat-
tices) that allow for very compact representation.
Unfortunately, NTRU is not known to be prov-
ably secure based on any worst-case complexity
assumptions, so the security of this system relies
on traditional cryptanalytic methods.

Lattice based cryptography is still a young and
very active research area, and work is being done
toward the design of cryptosystems that are both
very efficient, and have provable security guar-
antees similar to Ajtai’s original construction. A
recent result pointing in this direction is the dis-
covery by Micciancio [4] that certain generalized
compact knapsacks are at least as hard to break
as solving the worst-case instance of some lattice
problems. These compact knapsacks achieve very
small key size using a class of different lattices,
but related to those used by NTRU. However, they
do not provide an encryption scheme because they
lack the trapdoor (secret key) necessary for decryp-
tion (see trapdoor one-way function). Other recent
results, that may lead to provably secure practical
constructions, are the lattice based identification
schemes of Micciancio and Vadhan [6], where the
same lattice can be shared by all users, and the
public key consists of a single vector (with secret
key given by the lattice point closest to the public
vector).

For a detailed study of lattice based crypto-
graphic functions with provable security proper-
ties and an expository overview of the main lat-
tice based cryptosystems, the reader is referred
to [5]. See also lattice reduction for information
about the use of lattices in cryptanalysis.

Daniele Micciancio
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LEAST COMMON
MULTIPLE

The least common multiple (lcm) of a set of pos-
itive integers {a1, . . . , ak} is the smallest positive
integer that is an integer multiple of every ele-
ment of the set. This is denoted by lcm(a1, . . . , ak).
For example, lcm(21, 91) = 273, because 273 is a
multiple of both 21 and 91, and no positive integer
smaller than 273 has this property.

(Square brackets, i.e., [a1, . . . , ak], are also
sometimes used to denote the lcm of integers
{a1, . . . , ak}.)

Scott Contini

LEGENDRE SYMBOL

Let p be an odd prime number and let x be an
integer. If x is a quadratic residue, i.e., if x is rel-
atively prime to p and the equation (see modular
arithmetic)

x ≡ y2 (mod p)

has an integer solution y, then the Jacobi symbol
of x modulo p, written as (x/p) or ( x

p), is +1. If x is
a quadratic nonresidue—i.e., relatively prime to p
and no square roots—then its Legendre symbol is
−1. If x is not relatively prime to p then ( x

p) = 0.
The Legendre symbol may be efficiently com-

puted by modular exponentiation (see exponentia-
tion algorithms) as(

x
p

)
= x(p−1)/2 (mod p).

See also Jacobi symbol.

Burt Kaliski

LINEAR COMPLEXITY

The linear complexity of a semi-infinite sequence
s = (st )t≥0 of elements of the finite field Fq , �(s),
is the smallest integer � such that s can be gener-
ated by a linear feedback shift register (LFSR) of
length � over Fq , and is ∞ if no such LFSR exists.
By way of convention, the linear complexity of the
all-zero sequence is equal to 0. The linear complex-
ity of a linear recurring sequence corresponds to
the degree of its minimal polynomial.

The linear complexity �(sn) of a finite sequence
sn = s0s1 . . . sn−1 of n elements of Fq is the length
of the shortest LFSR which produces sn as its first
n output terms for some initial state. The linear
complexity of any finite sequence can be deter-
mined by the Berlekamp–Massey algorithm. An
important result due to Massey [1] is that, for
any finite sequence sn of length n, the LFSR of
length �(sn) which generates sn is unique if and
only if n ≥ 2�(sn).

The linear complexity of an infinite linear re-
curring sequence s and the linear complexity of
the finite sequence sn composed of the first n dig-
its of s are related by the following property: if s
is an infinite linear recurring sequence with lin-
ear complexity �, then the finite sequence sn has
linear complexity � for any n ≥ 2�. Moreover, the
unique LFSR of length � that generates s is the
unique LFSR of length � that generates sn for ev-
ery n ≥ 2�.

For a sequence s = s0s1 · · ·, the sequence of the
linear complexities (�(sn))n≥1 of all subsequences
sn = s0 · · · sn−1 composed of the first n terms of s is
called the linear complexity profile of s.

The expected linear complexity of a binary se-
quence sn = s0 · · · sn−1 of n independent and uni-
formly distributed binary random variables is

E[�(sn)] = n
2

+ 4 + ε(n)
18

+ 2−n
(

n
3

+ 2
9

)
,

where ε(n) = n mod 2.
If s is an infinite binary sequence of period

2n which is obtained by repeating a sequence
s0 · · · s2n−1 of 2n independent and uniformly dis-
tributed binary random variables, its expected lin-
ear complexity is

E[�(s)] = 2n − 1 + 2−2n
.

Further results on the linear complexity and on
the linear complexity profile of random sequences
can be found in [2].

Anne Canteaut
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LINEAR CONGRUENTIAL
GENERATOR

A linear congruential generator is a pseudoran-
dom generator that produces a sequence of num-
bers x1, x2, x3, . . . according to the following linear
recurrence:

xt = axt−1 + b (mod n)

for t ≥ 1 (see also modular arithmetic); integers
a, b and n characterize entirely the generator, and
the seed is x0.

EXAMPLE. Let us take, for example, a = 3, b =
5, n = 17, and x0 = 2; the sequence produced by
the linear congruential generator will then be
11, 4, 0, 5, 3, 14, 13, 10, 1, 8, 12, 7, 9, 15, 16, . . .

Such a generator is easy to implement, and pass
the following statistical tests: Golomb’s random-
ness postulates, frequency test, serial test, poker
test, runs test, autocorrelation test, and Maurer’s
universal statistical test. Hence, it can be consid-
ered as a good candidate for generating strong
pseudorandom sequences. However, there is an
important drawback: the sequence is predictable:
given a piece of the sequence, it is easy to recon-
struct all the rest of it, even if the attacker does
not know the exact values of a, b and n [5, 6]. So,
it would be very dangerous to use it in a crypto-
graphic purpose.

Some variants have been considered, using
either several terms in the linear recurrence
equation,

xt = a1xt−1 + a2xt−2 + · · · + a�xt−� + b (mod n),

or a quadratic recurrence relation,

xt = ax2
t−1 + bxt−1 + c (mod n).

In both cases, it can be shown that the sequence re-
mains predictable [1, 4]. Another variant has also
been studied, considering that some least signifi-
cant bits of the produced integers are discarded;
but such sequences are still predictable [1, 3, 7].
A more precise state-of-the-art about cryptana-

lytic attacks of such generators can be found
in [2].

Caroline Fontaine
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LINEAR CONSISTENCY
ATTACK

The linear consistency attack is a divide-and-
conquer technique which provides a known plain-
text attack on stream ciphers. It was introduced
by Zeng et al. in 1989. It has been applied to var-
ious keystream generators, like the Jenning gen-
erator [2], the stop-and-go generator of Beth and
Piper [2], and the E0 cipher used in Bluetooth [1].

The linear consistency attack applies as soon as
it is possible to single out a portion K1 of the secret
key and to form a system Ax = b of linear equa-
tions, where the matrix A only depends on K1 and
the right-side vector b is determined by the known
keystream bits. Then, an exhaustive key search
on K1 can be performed. The correct value of K1
can be distinguished from a wrong one by check-
ing whether the linear system is consistent or not.
Once K1 has been recovered, the solution x of the
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system may provide some additional bits of the
secret key.

Anne Canteaut
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LINEAR CRYPTANALYSIS
FOR BLOCK CIPHERS

Linear cryptanalysis is a powerful method of
cryptanalysis of block ciphers introduced by Mat-
sui in 1993 [1]. The attack in its current form
was first applied to the Data Encryption Standard
(DES), but an early variant of linear cryptanalysis,
developed by Matsui and Yamagishi, was already
successfully used to attack FEAL in 1992 [12].
Linear cryptanalysis is a known plaintext attack
in which the attacker studies probabilistic linear
relations (called linear approximations) between
parity bits of the plaintext, the ciphertext, and
the secret key. Given an approximation with high
probability, the attacker obtains an estimate for
the parity bit of the secret key by analyzing the
parity bits of the known plaintexts and cipher-
texts. Using auxiliary techniques he can usually
extend the attack to find more bits of the secret key.

The next section provides some more details
about the attack algorithm. Sections “Piling-up
Lemma,” to “Provable security against linear
cryptanalysis” discuss a number of practical and
theoretical aspects which play a role in linear
cryptanalysis. Section “Comparison with differen-
tial cryptanalysis” points out analogies between
linear and differential cryptanalysis, and Section
“Extensions” concludes with some extended vari-
ants of linear cryptanalysis.

OUTLINE OF A LINEAR ATTACK: Following
Matsui’s notation, we denote by A[i] the ith
bit of A and by A[i1, i2, . . . , ik] the parity bit
A[i1] ⊕ A[i2] ⊕ · · · ⊕ A[ik]. The first task of the at-
tacker is to find a suitable linear approximation.

For simple linear operations such as an XOR with
the key or a permutation of bits, very simple linear
expressions can be written which hold with proba-
bility one. For nonlinear elements of a cipher such
as S-boxes one tries to find linear approximations
with probability pthat maximizes |p− 1

2 |. Approx-
imations for single operations inside a cipher are
then further combined into approximations that
hold for a single round of a cipher. By appropiate
concatenation of one-round approximations, the
attacker eventually obtains an approximation for
the whole cipher of the type:

P[i1, i2, . . . , ia] ⊕ C[ j1, j2, . . . , jb]
= K[k1, k2, . . . , kc], (1)

where i1, i2, . . . , ia , j1, j2, . . . , jb and k1, k2, . . . , kc
denote fixed bit locations. Note that Such approx-
imation is interesting only if it holds with a prob-
ability p �= 1

2 (how this probability is calculated is
explained in the next section). For DES Matsui
found such an approximation with probability
1
2 + 2−24. Using this approximation, a simple al-
gorithm based on the maximum likelihood method
can be used to find one parity bit K[k1, k2, . . . , kc]
of the key:

Given a pool of N random known plaintexts, let
T be the number of plaintexts such that the left
side of the Equation (1) is 0.

if (T − N/2) · (p − 1/2) > 0 then
K[k1, . . . , kc] = 0

else
K[k1, . . . , kc] = 1

end if

In order for the parity bit K[k1, k2, . . . , kc] to be
recovered correctly with a reasonable probability,
Matsui demonstrated that the amount of plaintext
N needs to be in the order of |p− 1

2 |−2. More ef-
ficient algorithms for linear cryptanalysis, which
find more key bits, are described in [12].

PILING-UP LEMMA: The first stage in linear
cryptanalysis consists in finding useful approxi-
mations for a given cipher (or in demonstrating
that no useful approximations exist, which is usu-
ally much more difficult). Although the most bi-
ased linear approximation can easily be found
in an exhaustive way for a simple component
such as an S-box, a number of practical prob-
lems arise when trying to extrapolate this method
to full-size ciphers. The first problem concerns
the computation of the probability of a linear ap-
proximation. In principle, this would require the
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cryptanalyst to run through all possible combina-
tions of plaintexts and keys, which is clearly infea-
sible for any practical cipher. The solution to this
problem is to make a number of assumptions and
to approximate the probability using the so-called
Piling-up Lemma.

LEMMA 1. Given n independent random variables
X1, X2, . . . , Xn taking on values from {0, 1}, then
the bias ε = p− 1/2 of the sum X = X1 ⊕ X2 ⊕
· · · ⊕ Xn is given by:

ε = 2n−1
n∏

j=1

ε j, (2)

where ε1, ε2, . . . , εn are the biases of the terms
X1, X2, . . . , Xn.

Notice that the lemma can be further simplified
by defining c = 2ε, known as the imbalance or the
correlation of an expression. With this notation,
Equation (2) reduces to c = ∏n

j=1 c j.
In order to estimate the probability of a linear

approximation using the Piling-up Lemma, the
approximation is written as a chain of connected
linear approximations, each spanning a small part
of the cipher. Such a chain is called a linear charac-
teristic. Assuming that the biases of these partial
approximations are statistically independent and
easy to compute, then the total bias can be com-
puted using Equation (2).

Although the Piling-up Lemma produces very
good estimations in many practical cases, even
when the approximations are not strictly indepen-
dent, it should be stressed that unexpected effects
can occur when the independence assumption is
not fulfilled. In general, the actual bias in these
cases can be both much smaller and much larger
than predicted by the lemma.

MATSUI’S SEARCH FOR THE BEST APPROX-
IMATIONS: The Piling-up Lemma in the previ-
ous section provides a useful tool to estimate the
strength of a given approximation, but the prob-
lem remains how to find the strongest approxi-
mations for a given cipher. For DES, this open
problem was solved by Matsui in 1994 [15]. In
his second paper, he proposes a practical search
algorithm based on a recursive reasoning. Given
the probabilities of the best i-round characteris-
tic with 1 ≤ i ≤ n − 1, the algorithm efficiently de-
rives the best characteristic for n rounds. This is
done by traversing a tree where branches are cut
as soon as it is clear that the probability of a par-
tially constructed approximation cannot possibly
exceed some initial estimation of the best n-round
characteristic.

Matsui’s algorithm can be applied to many other
block ciphers, but its efficiency varies. In the first
place, the running time strongly depends on the
accuracy of the initial estimation. Small estima-
tions increase the size of the search tree. On the
other hand, if the estimation is too large, the algo-
rithm will not return any characteristic at all. For
DES, good estimations can be easily obtained by
first performing a restricted search over all char-
acteristics which only cross a single S-box in each
round. This does not work as nicely for other ci-
phers, however. The specific properties of the S-
boxes also affect the efficiency of the algorithm.
In particular, if the maximum bias of the S-box
is attained by many different approximations (as
opposed to the distinct peaks in the DES S-boxes),
this will slow down the algorithm.

LINEAR HULLS: Estimating the bias of approx-
imations by constructing linear characteristics is
very convenient, but in some cases, the value de-
rived in this way diverges significantly from the
actual bias. The most important cause for this dif-
ference is the so-called linear hull effect, first de-
scribed by Nyberg in 1994 [16]. The effect takes
place when the correlation between plaintext and
ciphertext bits, described by a specific linear ap-
proximation, can be explained by multiple linear
characteristics, each with a non-negligible bias,
and each involving a different set of key bits. Such
a set of linear characteristics with identical input
and output masks is called a linear hull. Depend-
ing on the value of the key, the different character-
istics will interfere constructively or destructively,
or even cancel out completely. If the sets of keys
used in the different linear characteristics are in-
dependent, then this effect might considerably re-
duce the average bias of expression (1), and thus
the success rate of the simple attack described
above. Nyberg’s paper shows, however, that the
more efficient attacks described in [12], which only
use the linear approximations as a distinguisher,
will typically benefit from the linear hull effect.

PROVABLE SECURITY AGAINST LINEAR
CRYPTANALYSIS: The existence of a single
sufficiently biased linear characteristic suffices
for a successful linear attack against a block
cipher. A designer’s first objective is therefore to
ensure that such characteristic cannot possibly
exist. This is usually done by choosing highly
nonlinear S-boxes and then arguing that the
diffusion in the cipher forces all characteristics
to cross a sufficiently high minimal number of
“active” S-boxes.

The above approach provides good heuristic ar-
guments for the strength of a cipher, but in order
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to rigorously prove the security against linear
cryptanalysis, the designer also needs to take
into account more complex phenomena such as
the linear hull effect. For DES-like ciphers, such
security proofs were studied by Knudsen and
Nyberg, first with respect to differential cryptanal-
ysis [17], and then also applied to linear crypt-
analysis [16]. The results inspired the design of a
number of practical block ciphers such as MISTY
(or its variant KASUMI; see KASUMI/MISTYI),
Rijndael/AES, Camellia and others. Later, simi-
lar proofs were formulated for ciphers based on
SP-networks [5, 8].

A somewhat more general theory for provable
security against a class of attacks, including ba-
sic linear cryptanalysis, is based on the notion of
decorrelation, introduced by Vaudenay [23]. The
theory suggests constructions were a so-called
Decorrelation Module effectively blocks the prop-
agation of all traditional linear and differential
characteristics.

An important remark with respect to the previ-
ous notions of provable security, however, is that
ciphers which are provably optimal against some
restricted class of attacks often tend to be weak
when subject to other types of attacks [21, 24].

COMPARISON WITH DIFFERENTIAL CRYPT-
ANALYSIS: Linear cryptanalysis has many
methodological similarities with differential
cryptanalysis as is noted in [1]. Differential char-
acteristics correspond to linear approximations.
Difference distribution tables are replaced by
linear approximation tables. Concatenation rule
for differential characteristics: “match the differ-
ences, multiply the probabilities” corresponds to
concatenation rule for linear approximations (the
piling-up lemma): “match the masks, multiply
the imbalances”. The algorithms that search for
the best characteristic or the best linear approx-
imation are essentially the same. The notion of
differentials has a corresponding notion of linear
hulls. Together with striking methodological
similarity between the two techniques, there is
also duality [15] of operations: “XOR branch”
and “three-forked branch” are mutually dual
regarding their action on differences and masks,
respectively. An important distinction between
the two methods is that differential cryptanalysis
works with blocks of bits, while linear cryptanal-
ysis typically works with a single bit. The bias
of the linear approximation has a sign. Thus
given two approximations with the same input
and output masks and equal probability but
opposite signs, the resulting approximation will
have zero bias, due to the cancellation of the two
approximations by each other.

EXTENSIONS: The linear cryptanalysis technique
has received much attention since its invention
and has enjoyed several extensions. One technique
is a combined differential–linear approach pro-
posed by Langford and Hellman. Other extensions
include key-ranking which allows for a tradeoff
between data and time of analysis [6, 14, 19]; parti-
tioning cryptanalysis [4] which studies correlation
between partitions of the plaintext and ciphertext
spaces (no practical cipher has been broken via
this technique so far);X 2 cryptanalysis [10, 22] has
been applied successfully against several ciphers,
including round-reduced versions of RC6; the use
of nonlinear approximations was suggested [12,
20], but so far it provided only small improvements
over the linear cryptanalysis. A full nonlinear gen-
eralization still remains evasive. The-idea to use
multiple approximations has been proposed in [6]
though the problem of estimating the attacker’s
gain as well as information extraction from such
approximations largely remained opened. In [7]
by using a maximal likelihood framework explicit
gain formulas have been derived. Define capacity
c̄2 of a system of m approximations as c̄2 =
4 · ∑m

j=1 ε2
J, where ε j—are the biases of individual

approximations. For a fixed attacker’s gain over
the exhaustive search the data complexity N of the
multiple-linear attack is proportional to c̄2—the
capacity of the “information channel” provided by
multiple approximations. The paper also describes
several algorithms which provide such gains. A
conversion of a known plaintext linear attack to a
chosen plaintext linear attack has been proposed
in [9]. Finally note that similar techniques have
been applied to stream ciphers (see Linear Crypt-
analysis for Stream Ciphers).

Alex Biryukov
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LINEAR CRYPTANALYSIS
FOR STREAM CIPHERS

A linear cryptanalysis technique for stream ci-
phers was presented by Golić in 1994. It relies
on the same basic principles as the linear crypt-
analysis for block ciphers introduced by Matsui.
The linear cryptanalysis provides a known plain-
text attack on various synchronous stream ciphers,
which enables to distinguish the keystream from
a truly random sequence. Such a distinguishing
attack can be used for reducing the uncertainty
of unknown plaintexts, or for recovering the
unknown structure of the keystream generator.
It may also lead to a divide-and-conquer attack
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when the structure of the keystream generator
depends on a portion of the secret-key.

The linear cryptanalysis consists in finding
some linear functions of the keystream bits which
are not balanced, that is, which are not uniformly
distributed. Such linear correlations are used for
distinguishing the keystream sequence from a
random sequence by a classical statistical test. Ef-
ficient techniques for finding biased linear rela-
tions among the keystream bits are presented in
[2, 3].

The linear cryptanalysis leads to distinguishing
attacks on several types of stream ciphers [2, 3]
and to a reconstruction attack on combination
generators [1].

Anne Canteaut
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LINEAR FEEDBACK
SHIFT REGISTER

Linear Feedback Shift Registers (LFSRs) are the
basic components of many running-key generators
for stream cipher applications, because they are
appropriate to hardware implementation and they

produce sequences with good statistical proper-
ties. LFSR refers to a feedback shift register with a
linear feedback function (see Nonlinear Feedback
Shift Register).

An LFSR of length L over Fq (see finite field) is
a finite state automaton which produces a semi-
infinite sequence of elements of Fq , s = (st )t≥0 =
s0s1. . . , satisfying a linear recurrence relation of
degree L over Fq

st+L =
L∑

i=1

cist+L−i, ∀t ≥ 0.

The L coefficients c1, . . . , cL are elements of Fq .
They are called the feedback coefficients of the
LFSR.

An LFSR of length L over Fq has the following
form:

The register consists of L delay cells, called stages,
each containing an element of Fq . The contents
of the L stages, st , . . . , st+L−1, form the state of
the LFSR. The L stages are initially loaded with
L elements, s0, . . . , sL−1, which can be arbitrary
chosen in Fq ; they form the initial state of the
register.

The shift register is controlled by an external
clock. At each time unit, each digit is shifted one
stage to the right. The content of the rightmost
stage st is output. The new content of the left-
most stage is the feedback bit, st+L. It is obtained
by a linear combination of the contents of the reg-
ister stages, where the coefficients of the linear
combination are given by the feedback coefficients
of the LFSR:

st+L =
L∑

i=1

cist+L−i .

Therefore, the LFSR implements the linear recur-
rence relation of degree L:

st+L =
L∑

i=1

cist+L−i, ∀t ≥ 0.
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Table 1. Successive states of the LFSR with feedback coefficients (c1, c2, c3, c4) = (0, 0, 1, 1) and with initial state
(s0, s1, s2, s3) = (1, 0, 1, 1)

(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(st ) 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
(st+1) 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
(st+2) 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
(st+3) 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

EXAMPLE. Table 1 gives the successive states of
the binary LFSR of length 4 with feedback co-
efficients c1 = c2 = 0, c3 = c4 = 1 and with initial
state (s0, s1, s2, s3) = (1, 0, 1, 1). This LFSR is de-
picted in Figure 1. It corresponds to the linear re-
currence relation

st+4 = st+1 + st mod 2.

The output sequence s0s1 . . . generated by this
LFSR is 1011100 . . . .

FEEDBACK POLYNOMIAL AND CHARACTERIS-
TIC POLYNOMIAL: The output sequence of an
LFSR is uniquely determined by its feedback co-
efficients and its initial state. The feedback coeffi-
cients c1, . . . , cL of an LFSR of length L are usually
represented by the LFSR feedback polynomial (or
connection polynomial) defined by

P(X) = 1 −
L∑

i=1

ci X i .

Alternatively, one can use the characteristic poly-
nomial, which is the reciprocal polynomial of the
feedback polynomial:

P∗(X) = XLP
(

1
X

)
= XL −

L∑
i=1

ci XL−i .

For instance, the feedback polynomial of the bi-
nary LFSR shown in Figure 1 is P(X) = 1 + X3 +
X4 and its characteristic polynomial is P∗ = 1 +
X + X4.

An LFSR is said to be non-singular if the de-
gree of its feedback polynomial is equal to the
LFSR length (i.e., if the feedback coefficient cL dif-
fers from 0). Any sequence generated by a non-
singular LFSR of length L is periodic, and its pe-

+

Fig. 1. Binary LFSR with feedback coefficients
(c1, c2, c3, c4) = (0, 0, 1, 1)

riod does not exceed qL − 1. Indeed, the LFSR has
at most qL different states and the all-zero state
is always followed by the all-zero state. Moreover,
if the LFSR is, singular, all generated sequences
are ultimately periodic, that is, the sequences ob-
tained by ignoring a certain number of elements
at the beginning are periodic.

CHARACTERIZATION OF LFSR OUTPUT SE-
QUENCES: A given LFSR of length L over Fq
can generate qL different sequences correspond-
ing to the qL different initial states and these se-
quences form a vector space over Fq . The set of
all sequences generated by an LFSR with feed-
back polynomial P is characterized by the fol-
lowing property: a sequence (st )t≥0 is generated
by an LFSR of length L over Fq with feedback
polynomial P if and only if there exists a poly-
nomial Q ∈ Fq [X ] with deg(Q) < L such that the
generating function of (st )t≥0 satisfies

∑
t≥0

st X t = Q(X)
P(X)

.

Moreover, the polynomial Q is completely deter-
mined by the coefficients of P and by the initial
state of the LFSR:

Q(X) = −
L−1∑
i=0

X i

(
i∑

j=0

ci− js j

)
,

where P(X) = ∑L
i=0 ci X i . This result, which is

called the fundamental identity of formal power
series of linear recurring sequences, means that
there is a one-to-one correspondence between the
sequences generated by an LFSR of length L
with feedback polynomial P and the fractions
Q(X)/P(X) with deg(Q) < L. It has two major con-
sequences. On the one hand, any sequence gener-
ated by an LFSR with feedback polynomial P is
also generated by any LFSR whose feedback poly-
nomial is a multiple of P. This property is used
in some attacks on keystream generators based
on LFSRs (see Fast Correlation attack). On the
other hand, a sequence generated by an LFSR
with feedback polynomial P is also generated by
a shorter LFSR with feedback polynomial P′ if
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1 0 0 1 0 0 1 0 0 1

++++

Fig. 2. Example of an LFSR of length 10

the corresponding fraction Q(X)/P(X) is such that
gcd(P, Q) �= 1. Thus, among all sequences gen-
erated by the LFSR with feedback polynomial
P, there is one which can be generated by a
shorter LFSR if and only if P is not irreducible
over Fq .

Moreover, for any linear recurring sequence
(st )t≥0, there exists a unique polynomial P0 with
constant term equal to 1, such that the generating
function of (st )t≥0 is given by Q0(X)/P0(X), where
P0 and Q0 are relatively prime. Then, the short-
est LFSR which generates (st )t≥0 has length L =
max(deg(P0), deg(Q0) + 1), and its feedback poly-
nomial is equal to P0. The reciprocal polynomial
of P0, XLP0(1/X), is the characteristic polynomial
of the shortest LFSR which generates (st )t≥0; it
is called the minimal polynomial of the sequence.
It determines the linear recurrence relation of
least degree satisfied by the sequence. The degree
of the minimal polynomial of a linear recurring
sequence is the linear complexity of the sequence.
It corresponds to the length of the shortest LFSR
which generates it. The minimal polynomial of a
sequence s = (st )t≥0 of linear complexity �(s) can
be determined from the knowledge of at least 2�(s)
consecutive bits of s by the Berlekamp–Massey
algorithm.

EXAMPLE. The binary LFSR of length 10 depicted
in Figure 2 has feedback polynomial

P(X) = 1 + X + X 3 + X 4 + X 7 + X 10,

and its initial state s0, . . . , s9 is 1001001001.
The generating function of the sequence pro-

duced by this LFSR is given by

∑
t≥0

st X t = Q(X)
P(X)

,

where Q is deduced from the coefficients of P and
from the initial state:

Q(X) = 1 + X + X7.

Therefore, we have

∑
t≥0

st X t = 1 + X + X 7

1 + X + X 3 + X 4 + X 7 + X10

= 1
1 + X 3

,

since 1 + X + X 3 + X 4 + X 7 + X10 = (1 + X +
X 7)(1 + X 3) in F2[X]. This implies that (st )t≥0
is also generated by the LFSR with feedback
polynomial P0(X) = 1 + X 3 depicted in Figure 3.
The minimal polynomial of the sequence is then
1 + X 3 and its linear complexity is equal to 3.

PERIOD OF AN LFSR SEQUENCE: The min-
imal polynomial of a linear recurring sequence
plays a major role since it completely determines
the linear complexity and the least period of the
sequence. Actually, the least period of a linear
recurring sequence is equal to the period of its
minimal polynomial. The period (also called the
order) of a polynomial P in Fq [X], where P(0) �= 0,
is the least positive integer e for which P(X) di-
vides Xe − 1. Then, s has maximal period q�(s) − 1
if and only if its minimal polynomial is a primitive
polynomial (i.e., if the period of its minimal poly-
nomial is maximal). For instance, the sequence
generated by the LFSR shown in Figure 3 has
period 3 because its minimal polynomial 1 + X 3

has period 3. This sequence is 100100100 . . . . On
the other hand, any non-zero sequence gener-
ated by the LFSR of length 4 depicted in Fig-
ure 1 has period 24 − 1 = 15. Actually, the mini-
mal polynomial of any such sequence corresponds
to its characteristic polynomial P∗(X) = 1 + X +
X4, because P∗ is irreducible. Moreover, P∗ is a
primitive polynomial. Any sequence s = (st )t≥0,
generated by an LFSR of length L which has
a primitive feedback polynomial, has the high-
est possible linear complexity �(s) = L and the
highest possible period qL − 1. Such sequences
are called maximal-length linear sequences (m-
sequences). Because of the previous optimal prop-
erties, the linear recurring sequences used in cryp-
tography are always chosen to be m-sequences.
Moreover, they possess good statistical properties
(see maximal-length linear sequences for further
details). In other terms, the feedback polynomial of
an LFSR should always be chosen to be a primitive
polynomial.

0 0 1

Fig. 3. LFSR of length 3 which generates the same se-
quence as the LFSR of Figure 2
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KEYSTREAM GENERATORS BASED ON
LFSRS: However, it is clear that an LFSR
should never be used by itself as a keystream
generator. If the feedback coefficients of the LFSR
are public, the entire keystream can obviously be
recovered from the knowledge of any � consecu-
tive bits of the keystream, where � is the linear
complexity of the running-key (which does not
exceed the LFSR length). If the feedback coeffi-
cients are kept secret, the entire keystream can
be recovered from any 2� consecutive bits of the
keystream by the Berlekamp–Massey algorithm.
Therefore, a commonly used technique to produce
a pseudo-random sequence which can be used as
a running-key is to combine several LFSRs in dif-
ferent ways in order to generate a linear recurring
sequence which has a high linear complexity (see,
e.g., combination generator, filter generator, . . . ).

Anne Canteaut
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LINEAR SYNDROME
ATTACK

The linear syndrome attack is an attack on
linear feedback shift register-based keystream
generators which was presented by Zeng and
Huang in 1988 [2]. It is a weak version of the
fast correlation attack which was independently
proposed by Meier and Staffelbach [1].

Anne Canteaut
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L-NOTATION

For t, γ ∈ R with 0 ≤ t ≤ 1, the notation Lx[t, γ ] is
used for any function of x that equals

e(γ+o(1))(log x)t (log log x)1−t
, for x → ∞,

where logarithms are natural and where o(1) de-
notes any function of x that goes to 0 as x → ∞
(see O-notation). This function has the following
properties:
� Lx[t, γ ] + Lx[t, δ] = Lx[t, max(γ, δ)],
� Lx[t, γ ]Lx[t, δ] = Lx[t, γ + δ],
� Lx[t, γ ]Lx[s, δ] = Lx[t, γ ], if t > s,
� for any fixed k:

– Lx[t, γ ]k = Lx[t, kγ ],
– if γ > 0 then (log x)k Lx[t, γ ] = Lx[t, γ ].

� π (Lx[t, γ ]) = Lx[t, γ ] where π (y) is the number
of primes ≤y.

When used to indicate runtimes and for γ

fixed, Lx[t, γ ] for t ranging from 0 to 1 ranges from
polynomial time to exponential time in log(x):
� runtime

Lx[0, γ ] = e(γ+o(1)) log log x = (log x)γ+o(1)

is polynomial in log(x),
� runtimes Lx[t, γ ] with 0 < t < 1 are examples of

runtimes that are subexponential time in log(x),
i.e., asymptotically greater than polynomial and
less than exponential,

� runtime

Lx[1, γ ] = e(γ+o(1)) log x = xγ+o(1)

is exponential in log(x).

Arjen K. Lenstra

LUBY–RACKOFF CIPHERS

In their celebrated paper [5], Luby and Rackoff
showed how to construct 2n-bit pseudorandom
permutations from n-bit random Boolean func-
tions. The constructions (see substitutions and
permutations) use three and four rounds in Feis-
tel networks [3] with randomly chosen functions
in the round functions (see also block ciphers). Let
L and R be respectively the left and the right n-
bit halves of a 2n-bit input. Then one round of a
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Feistel network is defined as follows:

F(L, R) = (R, L ⊕ f (R)),

where f : {0, 1}n → {0, 1}n is a randomly chosen
function. In order to make the encryption and de-
cryption routines similar, it is custom to swap the
halves of the output of the last round in an r -round
Feistel network. The entry on Feistel ciphers pro-
vides an overview of practical designs.

Luby and Rackoff ’s result says that in order to
be able to distinguish the three-round construc-
tion from a randomly chosen 2n-bit function with
probability close to 1, an attacker needs at least
2n/2 chosen plaintexts and their corresponding ci-
phertexts. Such a permutation is called pseudo-
random [5]. However, if an attacker can mount a
chosen plaintext and a chosen ciphertext attack,
he is able to distinguish the construction from a
randomly chosen 2n-bit function using two cho-
sen plaintexts and one chosen ciphertext. To see
this, choose two plaintexts with left halves L1 and
L2, where L1 �= L2 and with equal right halves R.
From the corresponding ciphertexts (T1, S1) and
(T2, S2), compute the ciphertext (T1 ⊕ L1 ⊕ L2, S1)
and get the corresponding plaintext. Then the
right half of this plaintext equals R⊕ S1 ⊕ S2,
whereas this would be the case only with probabil-
ity 2−n in the random case. Luby and Rackoff also
showed that in a combined chosen plaintext and
chosen ciphertext attack for the four-round con-
struction, an attacker will need roughly 2n/2 cho-
sen texts to win with probability close to 1. Such a
permutation is called super pseudorandom.

With q chosen plaintexts one can distinguish the
three-round construction from a random function
with probability

p = 1 − e−q(q−1)/2n+1
,

which is close to 1 for q � 2n/2 [1, 8]. Choose
plaintexts (Li, R) for i = 1, . . . , q, where the Lis
are (pairwise) distinct and R is a fixed, arbitrary
value. The corresponding ciphertexts are denote
by (Ti, Si). Then for the three-round construc-
tion with probability p, one finds at least one
pair (i, j) for which i �= j, Li ⊕ Lj = Ti ⊕ Tj and
Si = Sj. For a random 2n-bit function and with
q � 2n/2, this happens with only very small proba-
bility. Also, with roughly 2n/2 chosen plaintexts,
one can distinguish the four-round construction
from a random function. Choose plaintexts (Li, R)
for i = 1, . . . , c2n/2, where c is an integer, the Lis
are (pairwise) distinct and R is a fixed, arbitrary
value. The corresponding ciphertexts are denote
by (Ti, Si). Then for the four-round construction
one expects to find c pairs of plaintexts for which
Li ⊕ Lj = Si ⊕ Sj, whereas for a random 2n-bit

function one expects to find only c/2 such pairs [8].
These results show that the inequalities by Luby
and Rackoff are tight, that is, to distinguish the
three-round and four-round constructions from a
randomly chosen function with probability close to
1, an attacker needs at least but not much more
than 2n/2 chosen plaintexts and their correspond-
ing ciphertexts.

The Luby–Rackoff result has spawned a lot of
research in this area, and many different construc-
tions have been proposed, of which only a few are
mentioned here. In [9, 11] it was shown that four-
round super pseudorandom permutations can be
constructed from only one or two (pseudo)random
n-bit functions. In the four-round construction, the
first and fourth functions can be replaced by sim-
pler “combinatorial” constructions achieving the
same level of security as the original construction
as shown in [7], which is also a good reference for
a survey of this area.

Coppersmith [2] analyzed the four-round con-
struction. It was shown that with n2n chosen
plaintexts, the round functions can be identified
up to symmetry. With 8 × 2n texts 99.9% of the
functions are identified.

There is a trivial upper bound of O(2n) (see
O-notation) for distinguishing constructions with
r rounds for any r from a randomly chosen 2n-
bit function. This follows from the fact that the
Luby–Rackoff constructions are permutations and
with 2n chosen distinct plaintexts, the resulting ci-
phertexts will all be distinct, whereas a collision
is likely to occur for a truly random function [1, 8].
It has been studied how to distinguish the Luby–
Rackoff constructions from randomly chosen 2n-
bit permutations (bijective mappings). However,
in the cases using O(2n/2) inputs this does not
make much of a difference, since in these cases
the probability to distinguish a 2n-bit randomly
chosen permutation from a 2n-bit randomly cho-
sen function is small. Also, for a fixed number of
rounds, r , it has been shown that there is an upper
bound of O(2n) for distinguishing the r -round con-
struction from a randomly chosen 2n-bit permuta-
tion [8]. More recent results [4, 6, 10] indicate that
with a larger number of rounds, the lower bound
for the security of the Luby–Rackoff constructions
approaches 2n.

Lars R. Knudsen
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The Message Authentication Algorithm (MAA; see
also MAC algorithms) was published in 1983 by
Davies and Clayden in response to a request of the
UK Bankers Automated Clearing Services (BACS)
[1, 2]. In 1987 it became a part of the ISO 8731
banking standard [3], which was revised in 1992.
The algorithm is software oriented and has a 32-
bit result; as MAA was designed for mainframes
in the 1980s, its performance on 32-bit PCs is
excellent (about five times faster than the Data
Encryption Standard (DES)).

Several undesirable properties of MAA have
been identified by Preneel et al. [4]; all these at-
tacks exploit internal collisions. A forgery attack
requires 217 messages of 256 kbytes or 224 mes-
sages of 1 kbyte; the latter circumvents the spe-
cial MAA mode for long messages defined in the
ISO standard. A key recovery attack on MAA re-
quires 232 chosen texts consisting of a single mes-
sage block. The number of off-line 32-bit multipli-
cations for this attack varies from 244 for one key
in 1000 to about 251 for one key in 50. This repre-
sents a significant reduction w.r.t. exhaustive key
search, which requires 3 × 265 multiplications. Fi-
nally it is shown that MAA has 233 weak keys for
which it is rather easy to create a large cluster of
collisions. These keys can be detected and recov-
ered with 227 chosen texts.

None of these attacks offer an immediate threat
to banking applications, in which a single cho-
sen text is often sufficient to perform a serious
attack. Therefore the MAA has not been with-
drawn from ISO 8731 [3] after publication of these
weaknesses. Nevertheless, it would be advisable to
check for the known classes of weak keys [4], and
to change the key frequently. The main concern for
the next years is that exhaustive key search for a
64-bit key may no longer offer an adequate secu-
rity level.

B. Preneel
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MAC ALGORITHMS

INTRODUCTION: Electronic information stored
and processed in computers and transferred over
communication networks is vulnerable to both
passive and active attacks. In a passive attack,
the opponent tries to obtain information on the
data sent; in an active attack, the opponent will at-
tempt to modify the information itself, the claimed
sender, and/or intended recipient.

Cryptographic techniques for information au-
thentication focus on the origin of the data (data
origin authentication) and on the integrity of the
data, that is, the fact that the data has not been
modified. Other aspects that can be important are
the timeliness, the sequence with respect to other
messages, and the intended recipient(s). Informa-
tion authentication is particularly relevant in the
context of financial transactions and electronic
commerce. Other applications where information
authentication plays an important role are alarm
systems, satellite control systems, distributed con-
trol systems, and systems for access control. One
can anticipate that authentication of voice and
video will become increasingly important.

One can distinguish between three mechanisms
for information authentication: MAC algorithms
(here MAC is the abbreviation of Message Authen-
tication Code), authentication codes, and digital
signatures. The first two mechanisms are based on
a secret key shared between sender and recipient.
This means that if the sender authenticates a mes-
sage with a MAC algorithm or an authentication
code and later denies this, there is no way one

361
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can prove that she has authenticated the message
(as the recipient could have done this as well). In
technical terms, MAC algorithms and authentica-
tion codes cannot provide non-repudiation of ori-
gin. MAC algorithms are computationally secure:
a necessary (but not sufficient) condition for their
security is that the computing power of the oppo-
nent is limited. Authentication codes are combi-
natorial objects; one can compute the probability
of the success of an attack exactly; this probability
is independent on the computing power of the at-
tacker. Digital signatures, introduced in 1976 by
W. Diffie and M. Hellman, allow us to establish in
an irrefutable way the origin and content of digi-
tal information. As they are an asymmetric cryp-
tographic technique, they can resolve disputes be-
tween the communicating parties.

MAC algorithms have been used for a long time
in the banking community and are thus older
than the open research in cryptology that started
in the mid seventies. However, MAC algorithms
with good cryptographic properties were only in-
troduced after the start of open research in the
field. The first reference to a MAC is a 1972 patent
application by Simmons et al. (reference 10 in
[31]). Financial applications in which MACs have
been introduced include electronic purses (such as
Proton, CEPS (Common European Purse Specifi-
cation), and Mondex) and credit/debit applications
(e.g., the EMV-standard). MACs are also being de-
ployed for securing the Internet (e.g., IP security,
see Ipsec and transport layer security, see Trans-
port Layer Security (TLS)). For all these applica-
tions MACs are preferred over digital signatures
because they are two to three orders of magni-
tude faster, and MAC results are 4 . . . 16 bytes
long compared to 40 . . . 128 bytes for signatures.
On present day computers, software implementa-
tions of MACs can achieve speeds from 8 . . . 50 cy-
cles/byte, and MAC algorithms require very little
resources on inexpensive 8-bit smart cards and on
the currently deployed Point of Sale (POS) termi-
nals. The disadvantage is that they rely on shared
symmetric keys, the management of which is more
costly and harder to scale than that of asymmetric
key pairs.

DEFINITION: A MAC algorithm MAC() consists
of three components:
� A key generation algorithm; for most MAC al-

gorithms the secret key K is a random bit-string
of length k – typical values for k are 56 . . . 256.

� A MAC generation algorithm; this algorithm
computes from the text input x and the secret
key K a MAC value MACK(x), which is bit-
string of fixed length m—typical values for m

are 24 . . . 96. A MAC generation algorithm can
be randomized; in this case, a random string is
added to the set of inputs and outputs of this
algorithm. A MAC generation algorithm can be
stateful; in this case the MAC generation algo-
rithm keeps an internal state, which influences
the result (e.g., a counter which is incremented
after every use).

� A MAC verification algorithm; on input the text
x, the MAC value MACK(x), the key K (and pos-
sibly a random string), the algorithm verifies
whether the MAC value is correct or not; in prac-
tice this verification consists of a computation of
the MAC value on the text and a check whether
the result is identical to the MAC value pro-
vided.

Note that it is common to abuse terminology by
abbreviating both the “MAC value” and the “MAC
algorithm” as the “MAC.”

In a communication context, sender and re-
ceiver will agree on a secret key (using a key agree-
ment protocol. The sender will compute a MAC
value for every message and append this to the
message; on receipt of the message, the receiver
will apply the MAC verification algorithm, which
typically corresponds to recomputing the MAC
value (see Figure 1).

The main security requirement for a MAC al-
gorithm is that it should be hard to forge a MAC
value on a new text, that is, to compute a MAC
for a new text. The resistance of a MAC algorithm
against forgeries is also known as computation re-
sistance. The next section investigates in more de-
tail the security of MAC algorithms.

SECURITY OF MAC ALGORITHMS: Attacks on
MAC algorithms can be classified according to the
type of control an adversary has over the device
computing or verifying the MAC value. In a cho-
sen text attack, an adversary may request and re-
ceive MACs corresponding to a number of texts
of his choice, before completing his attack. In an
adaptive chosen-text attack, requests may depend
on the outcome of previous requests. In a MAC-
verification attack, the opponent can submit text-
MAC pairs of his choice to the verification device.

An opponent who tries to deceive the receiver,
knows the description of the MAC algorithm, but
he does not know the secret key. Attacks can be
further distinguished based on their goals:
Forgery attack: This attack consists of predict-

ing the value of MACK(x) for a text x without
initial knowledge of K. If the adversary can do
this for a single text, he is said to be capable
of existential forgery. If the adversary is able
to determine the MAC for a text of his choice,
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Fig. 1. Using a MAC algorithm for data authentication

he is said to be capable of selective forgery.
Ideally, existential forgery is computationally
infeasible; a less demanding requirement is that
only selective forgery is so. Practical attacks of-
ten require that a forgery is verifiable, i.e., that
the forged MAC is known to be correct on before-
hand with probability near 1. The text on which
a MAC is forged shall be new, which means that
it should not be one of the texts used in the MAC
generation or verification queries (as this would
allow for a trivial attack).

Key recovery attack: This attack consists of
finding the key K itself from a number of
text/MAC pairs. Such an attack is more pow-
erful than forgery, since it allows for arbitrary
selective forgeries. One distinguishes between
exhaustive search and shortcut key recovery at-
tacks; ideally no shortcut key recovery attacks
should exist.
We can now informally state the security re-

quirement for a MAC algorithm: it should be
computationally infeasible to generate an existen-
tial forgery under an adaptive chosen text attack
(which also includes MAC verification queries).
The success probability of an attacker is often com-
puted as a function of m (the bit-length of the
MAC) and the number q of queries.

Note that in certain environments, such as in
wholesale banking applications, a chosen text at-
tack is not a very realistic assumption: if an oppo-
nent can choose a single text and obtain the corre-
sponding MAC, he can already make a substantial
profit. Moreover, texts that are relevant may have
a specific structure, which implies that an existen-
tial forgery may not pose a threat at all. However,
it is better to be on the safe side, and to require
resistance against chosen text attacks.

Below four attacks on MAC algorithms are con-
sidered: brute force key search; guessing of the

MAC; a generic forgery attack based on internal
collisions; and attacks based on cryptanalytical
weaknesses.

Brute Force Key Search

If k denotes the bit-length of the key K, one can
always try all 2k key values and check which one
is correct. If m is the size of the MAC and if one
assumes that MACK(x) is a random function from
the key to the MAC, then verification of such an at-
tack requires about �k/m� text-MAC pairs. To see
this, note that the expected number of keys which
will take the text x to a certain given MAC value
is 2k−m. Extending this argument, the expected
number of keys which will take �k/m� texts to cer-
tain given MAC values is 2k−(m�k/m�) ≤ 1. For most
MAC algorithms, the value of k/m lies between 1
and 4; it is reasonable to assume that such a small
number of text-MAC pairs is available. The only
exceptions are certain banking systems which use
one key per transaction; in this case one exploits
the combinatorial rather than the cryptographic
properties of the MAC algorithm; this corresponds
to the use of an authentication code.

Note that unlike for confidentiality protection,
the opponent can only make use of the key if it
is recovered within its active lifetime (which can
be reasonably short). On the other hand, a single
success during the lifetime of the system might
be sufficient. This depends on a cost/benefit anal-
ysis, i.e., how much one loses as a consequence of
a forgery.

The only way to preclude a key search is to
choose a sufficiently large key. In 2004, the protec-
tion offered by a 56-bit key is clearly insufficient.
One also has to take into account what is known
as a variant of ‘Moore’s Law’: the computing power
for a given cost is multiplied by four every three
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years. This implies that if a system is deployed
with an intended lifetime of 15 years, an extra se-
curity margin of about 10 bits is recommended.
Keys of 80–90 bits are adequate for medium term
security (10–15 years), and long term protection
(50 years or more) is offered by keys of 128 bits.
The entry on exhaustive key search provides more
details.

MAC Guessing Attack

A second very simple attack is to choose an arbi-
trary (fraudulent) text, and to append a randomly
chosen MAC value. An alternative strategy is to
guess the key value and compute the correspond-
ing MAC value. Ideally, the probability that this
MAC value is correct is equal to max(1/2m, 1/2k),
where m is the number of bits of the MAC value
and k is the number of bits in the key. This value
should be multiplied with the expected profit cor-
responding to a fraudulent text, which results in
the expected value of one trial. Repeated trials can
increase this expected value, but note that in a
good implementation, repeated MAC verification
errors will result in a security alarm (the forgery
is not verifiable). For most applications k > m and
m = 32 . . . 64 is sufficient to make this attack un
economical.

Internal Collision Attack on Iterated
MAC Algorithms

Most common message authentication algorithms
today are iterated MAC algorithms. The MAC in-
put x is padded to a multiple of the block size, and
is then divided into t blocks denoted x1 through
xt . The MAC involves an initial value H0 = IV, a
compression function f, an output transformation
g, and an n-bit (n ≥ m) chaining variable Hi be-
tween stage i − 1 and stage i:

Hi = f (Hi−1, xi), 1 ≤ i ≤ t
MACK(x) = g(Ht ).

The secret key may be employed in f and/or in g.
Next we describe a general forgery attack by

Preneel and van Oorschot [27, 29] that applies
to all iterated MACs. Its feasibility depends on
the bit sizes n of the chaining variable and m of
the MAC result, the nature of the output trans-
formation g, and the number s of common trail-
ing blocks of the known texts (s ≥ 0). The basic
attack requires several known texts, but only a
single chosen text. However, under certain condi-
tions restrictions are imposed on the known texts;
for example, if the input length itself is an input

to the output transformation, all inputs must have
an equal length.

First some terminology is introduced. For
an input pair (x, x′) with MACK(x) = g(Ht ) and
MACK(x′) = g(H′

t ), a collision is said to occur if
MACK(x) = MACK(x′). This collision is called an
internal collision if Ht = H′

t , and an external colli-
sion if Ht �= H′

t but g(Ht ) = g(H′
t ).

The attack starts with the following simple
observation:

LEMMA 1. An internal Collision for an iterated
MAC algorithm allows a verifiable MAC forgery,
through a chosen-text attack requiring a single cho-
sen text.

This follows since for an internal collision
(x, x′), MACK(x ‖ y) = MACK(x′ ‖ y) for any single
block y; thus a requested MAC on the chosen text
x ‖ y provides a forged MAC (the same) for x′ ‖ y
(here ‖ denotes concatenation). Note this assumes
that the MAC algorithm is deterministic. Also, the
forged text is of a special form, which may limit the
practical impact of the attack.

The following propositions indicate the complex-
ity to find an internal collision. They are based on
the birthday paradox and extensions thereof.

PROPOSITION 1. Let MAC() be an iterated MAC
algorithm with n-bit chaining variable and m-bit
result, and an output transformation g that is a
permutation. An internal collision for MAC can
be found using an expected number of u = √

2 · 2n/2

known text-MAC pairs of at least t = 2 blocks
each.

PROPOSITION 2. Let MAC() be an iterated MAC
algorithm with n-bit chaining variable and m-bit
result, and output transformation g, which is a
random function. An internal collision for h can
be found using u known text-MAC pairs of at
least t = 2 blocks each and v chosen texts of at
least three blocks. The expected values for u and
v are as follows: u = √

2 · 2n/2 and v ≈ min (2n/2,

2n−m).

PROPOSITION 3. Let MAC() be an iterated MAC
with n-bit chaining variable, m-bit result, a com-
pression function f which behaves like a random
function (for fixed xi), and output transformation
g. An internal collision for MAC can be found us-
ing u known text-MAC pairs, where each text has
the same substring of s ≥ 0 trailing blocks, and v
chosen texts. The expected values for u and v are:
u = √

2/(s + 1) · 2n/2; v = 0 if g is a permutation or
s + 1 ≥ 2n−m+6, and otherwise v ≈ 2n−m/(s + 1).
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Weaknesses of the Algorithm

The above attacks assume that no shortcuts exist
to break the MAC algorithm (either for forgery or
for key recovery). The security of existing MAC al-
gorithms relies on unproven assumptions: even if
the security of the MAC algorithm is reduced in
a provable way to the pseudo-randomness proper-
ties of a block cipher or of the compression function
of a hash function, these properties themselves
cannot be proved. Therefore, it is recommended to
use only well established algorithms which have
been subjected to an independent evaluation and a
regular review of the algorithm based on progress
in cryptanalysis is recommended. A typical exam-
ple of a weak construction for a MAC algorithm is
one which consists of inserting a secret key into
the input of a hash function.

PRACTICAL MAC ALGORITHMS: Compared to
the number of block ciphers and hash functions,
relatively few dedicated MAC algorithms have
been proposed [12]. The main reason is that MACs
have been derived from other primitives (initially
from block ciphers, but also from hash functions),
which reduces the need for dedicated proposals.
The following section lists the most important
constructions.

Based on Block Ciphers

The oldest and most popular MAC algorithm is
certainly CBC-MAC, which is based on a block
cipher and which has been widely standardized.
For a more detailed discussion see CBC-MAC and
variants. CBC-MAC is an iterated MAC algo-
rithm. The most common padding method consists
of appending a one bit followed by between 0 and
n − 1 zero bits such that the resulting string has
an input length that is a multiple of n [17]. De-
note the resulting string as x1, x2, . . . , xt . The com-
pression function for CBC-MAC has the following
form:

Hi = EK(Hi−1 ⊕ xi), 1 ≤ i ≤ t.

Here EK(x) denotes the encryption of x using the k-
bit key K with an n-bit block cipher E and H0 = IV
is a fixed initial value, which is set equal to the
all zero string. The MAC is then computed as
MACK(x) = g(Ht ), where g is the output transfor-
mation.

Bellare et al. [5] have provided a security proof
for this scheme with g the identity mapping;
their proof is based on the pseudo-randomness
of the block cipher and requires that the inputs

are of fixed length. They show that CBC-MAC
is a pseudo-random function, which is in fact a
stronger requirement than being a secure MAC.
Most of these variants are vulnerable to an inter-
nal collision attack, which requires a single chosen
text and about 2n/2 known texts with n the block
length of the block cipher; for a 64-bit block cipher
such as DES (see the Data Encryption Standard)
this corresponds to 232 known texts. For m < n, an
additional 2m−n chosen texts are required, which
makes the attack less realistic. It is important
to note that for most schemes the gap between
the lower bound (security proof) and upper bound
(best known attack) is quite small. For several of
these schemes shortcut key recovery attacks ex-
ist as well; lower bounds for the security against
these attacks are not known for these schemes.

In practice one needs security for inputs of vari-
able length, which can be achieved by using a dif-
ferent mapping g. These variants and attacks on
them are discussed in more detail under CBC-
MAC and variants.

The most popular choice for g was the selec-
tion of the leftmost m < n bits, m = 32 being a
very popular variant for CBC-MAC based on DES.
However, Knudsen has shown that a forgery at-
tack on this scheme requires 2 · 2(n−m)/2 chosen
texts and two known texts [20].

A better solution for g is the encryption of the
last block with a different key, which is known as
EMAC. This solution was proposed by the RIPE
Consortium in [30]; Petrank and Rackoff have pro-
vided a security proof in [24].

g(Ht ) = EK ′ (Ht ) = EK ′ (EK(xt ⊕ Ht−1)),

where K ′ is a key derived from K. Further op-
timizations which reduce the overhead due to
padding are known as XCBC (three-key MAC) [7]
and OMAC [18]. EMAC and OMAC are recom-
mended for use with the Rijndael/AES.

An alternative for g which is popular for use
with DES consists of replacing the processing of
the last block by a two-key triple encryption (with
keys K1 = K and K2); this is commonly known as
the ANSI retail MAC, since it first appeared in [1]:

g(Ht ) = EK1 (DK2 (Ht )).

Here DK() denotes decryption with key K. This
construction increases the strength against ex-
haustive key search, but it is not without its weak-
nesses [29]. A better alternative is MacDES [21].

XOR-MAC by Bellare et al. [4] is a random-
ized construction that allows for a full parallel
evaluation; a fixed number of bits in every block
(e.g., 32 bits) is used for a counter, which reduces
the performance. It has the advantage that it is
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incremental: small modifications to the input (and
to the MAC) can be made at very low cost. Im-
proved variants of XOR-MAC are XECB [14] and
PMAC [8].

RMAC increases the security level of EMAC
against an internal collision attack by modifying
the key in the last encryption with a random-
izer [19]. It has the disadvantage that its security
proof requires resistance of the underlying block
cipher against related key attacks. It was included
in NIST’s draft special publication [23] which has
been withdrawn.

3GPP-MAC and RIPE-MAC are discussed in the
item CBC-MAC and variants.

Based on Cryptographic Hash Functions

The availability of very fast dedicated hash func-
tions (such as MD4 and MD5) has resulted in
several proposals for MAC algorithms based on
these functions. As it became clear that these hash
functions are weaker than intended, they were re-
placed by RIPEMD-160 and by SHA-1.

The first proposed constructions were the se-
cret prefix and secret suffix methods which
can be described as follows: MACK(x) = h(K‖x),
MACK(x) = h(x‖K). However, these schemes have
some security problems [29]. Consider the secret
prefix method and assume that the hash function
is an iterated hash function, wherein each itera-
tion n bits of the text (or the key) is processed.
Then if one has the MAC of a text x such that
the length of K‖x (including padding) is a multi-
ple of n, then it is trivial to compute the value of
MACK(x‖y) from MACK(x) (this assumes that the
output transformation is the identity function).
Moreover, if the inputs x and x′ have the same
MAC value and if this is the result of an inter-
nal collision, the inputs x‖y and x′‖y will have the
same MAC values.

Consider the secret suffix method and assume
that the hash function is an iterated hash func-
tion. Here an attacker can try to find an internal
collision for two texts x and x′ ignoring the secret
key K. Then if an attacker succeeds the MACs of x
and x′ will be identical, regardless of the value of
K. It is important to notice here that the attacker
can perform the computations off-line, that is, one
needs no access to the MAC generation device dur-
ing the first step.

A better proposal is the secret envelope method,
or envelope MAC which can be described as
MACK(x) = h(K1‖x‖K2). For this method, Bellare
et al. provide a security proof in [2]. This method
has been shown to be secure based on the
assumption that the compression function of the
hash function is a pseudo-random function (when

keyed through the chaining variable). While this
is an interesting result, it should be pointed out
that the compression function of most hash func-
tions has not been evaluated with respect to this
property. For the particular envelope method of In-
ternet RFC 1828 [22], it was shown by Preneel and
van Oorschot [28] that an internal collision attack
(which requires about 2n/2 known texts) does not
only allow for a forgery but also a key recovery at-
tack. This attack exploits the standard padding al-
gorithms in modern hash functions and illustrates
that one has to be very careful when transforming
a hash function into a MAC algorithm.

To account for such pitfalls the MDx-MAC has
been proposed which extends the envelope method
by also introducing secret key material into every
iteration [27]. This makes the pseudo-randomness
assumption more plausible. Moreover, it precludes
the key recovery attack by extending the keys to
complete blocks. MDx-MAC has been included in
the ISO standard [17].

HMAC is the most popular hash function
variant, which uses a nested construction (with
padded keys):

MACK(x) = h(K2‖h(K1‖x)).

The security of HMAC is guaranteed if the hash
function is collision resistant for a secret value H0,
and if the compression function itself is a secure
MAC for one block (with the secret key in the Hi in-
put and the text in the xi input) [3]. While these as-
sumptions are weaker than for the secret envelope
method, it still requires further validation for ex-
isting hash functions. HMAC is used for providing
message authentication in the Internet Protocol
Ipsec, TLS (see Transport Layer Security) and
has been included in an ISO [17] and FIPS stan-
dard [13].

Two-Track-MAC is another construction which
exploits the presence of two parallel internal trails
in RIPEMD-160 [11].

Dedicated MAC Algorithms

The Message Authentication Algorithm (MAA)
was designed in 1983 by Davies and Clayden [9,
10]. In 1987 it became a part of the ISO 8731 bank-
ing standard [16]. Several weaknesses of MAA
have been identified by Preneel et al. [26], but
none of these form an immediate threat to existing
applications. However, it would be advisable to
check for the known classes of weak keys [26] and
to change the key frequently.

A cryptanalysis of an early MAC algorithm can
be found in [25]. A few MAC algorithms in use
have not been published, such as the S.W.I.F.T.
authenticator and the Swedish algorithm Data
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Seal. Several proprietary MAC algorithms that
can process only short messages algorithm have
been leaked: this includes the Sky Videocrypt
system of British Sky Broadcasting (which was
leaked out in 1993 and replaced), the COMP128
algorithm which was used by certain GSM op-
erators as A3/A8 algorithm (a fix for its weak-
nesses is proposed in [15]; it has been upgraded
to COMP128-2 and COMP128-3) and the function
used in the SecureID token (for which an anal-
ysis can be found in [6]). Proprietary algorithms
which have not been leaked include Telepass 1
(from Bull) and the DECT Standard Authentica-
tion Algorithm (DSAA) for cordless telephony.

B. Preneel
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MAN-IN-THE-MIDDLE
ATTACK

The man-in-the-middle attack is a very old attack
that has been used against a wide range of proto-
cols, going from login protocols, entity authentica-
tion protocols, etc.

To illustrate, consider Secure Socket Layer
(SSL), used to protect the privacy and authenticity
of WWW traffic. Current Public Key Infrastruc-
tures are either nonexistent or have very poor se-
curity, if any (for an incident example, see [4]). This
implies that a man-in-the-middle can be launched
as following. Suppose Alice wants to have a se-
cure WWW connection to Bob’s WWW page. When
Eve is between Alice and Bob, Eve will pretend
that her made up public key is the one of Bob.
So, when Alice accepts the fake certificate, she is

in fact sending information to Eve. Eve can then
start an SSL connection with the real WWW page
of Bob. Even though encryption and authentica-
tion (see also MAC algorithms and digital signa-
ture schemes) is used, once Eve has convinced
Alice that her made up key is the public key of
Bob, Eve can be an active eavesdropper.

Man-in-the-middle attacks can also be launched
against entity authentication schemes [1], allow-
ing a third party, let us say Eve, to pretend to be
Alice. For possible solutions consult [1–3].

Yvo Desmedt
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MARS

MARS [2] is a block cipher designed by IBM. It was
proposed as an Advanced Encryption Standard
(Rijndael/AES) candidate in 1998 and was one of
the five finalists in the AES selection process.

MARS has a block size of 128 bits and accepts
secret keys of variable lengths, ranging from 128
to 1248 bits. It is a word-oriented cipher, i.e., all op-
erations are performed on 32-bit words. The main
distinguishing feature of MARS is its heteroge-
neous structure, inspired by the theoretical work
of Naor and Reingold. The cipher consists of three
stages:
Forward mixing: First, four 32-bit subkeys are

added to the data entering the cipher. The re-
sulting block of four 32-bit words is then passed
through 8 rounds of a “type-3” Feistel network.
In each round, one data word is used to modify
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plaintext: D[3]

key addition

eight rounds of keyed
forward transformation

eight rounds of keyed
backwards transformation

eight rounds of
unkeyed backwards mixing

key subtraction

eight rounds of
unkeyed forward mixing

D[2] D[1]

forward mixing

backwards mixing

"cryptographic
core"

D[0]

ciphertext: D́ [3] D´[2] D´[1] D´[0]

Fig. 1. High-level structure of MARS

the three other words. The Feistel network uses
two fixed 8 × 32-bit S-boxes S0 and S1, and does
not depend on the secret key in any way.

Cryptographic core: The core of the encryption
algorithm consists of a type-3 Feistel network of
2 × 8 rounds. In each round, the data is modi-
fied using an E-function which takes as input
one data word and two key words, and pro-
duces three output words. The E-function itself
uses many different components: a 9 × 32-bit S-
box S, a 32-bit multiplication, fixed and data-
dependent rotations, an addition, and XORs. Af-
ter eight “forward” rounds, eight slightly differ-
ent “backwards” rounds are applied.

Backwards mixing: This layer is essentially the
inverse of the forward mixing layer. Notice, how-
ever, that different subkeys are used.
At present, only a few attacks on reduced-round

versions of MARS have been presented. Note that,
due to its heterogeneous structure, MARS can be

A2A1

out1

out2

out3

E-Function

13

B1

C1

D1

B2

C2

D2

Fig. 2. One round of the type-3 Feistel network of the
core (forward mode)

downscaled in many different ways. A first ap-
proach is to concentrate on the core rounds. In [1],
Biham and Furman have shown impossible dif-
ferentials over 8 out of 16 core rounds. An attack
breaking 11 rounds using amplified boomerang
techniques is presented by Kelsey, Kohno, and
Schneier [3, 4]. The same authors also proposed
a straight forward meet-in-the-middle attack on a
MARS version with only five core rounds, but with
full forward and backwards mixing.
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MASH HASH FUNCTIONS
(MODULAR ARITHMETIC
SECURE HASH)

MASH-1 and MASH-2 are constructions for hash
functions based on modular arithmetic. A hash
function is a cryptographic algorithm that takes
input strings of arbitrary (or very large) length,
and maps these to short fixed length output
strings. MASH-1 and MASH-2 are unkeyed cryp-
tographic hash functions that have been designed
to have the following properties: preimage resis-
tance, second preimage resistance and collision
resistance.

In the following, N denotes an RSA modulus (see
RSA public key encryption), that is, the product of
two large primes and m denotes its length in bits
or m = �log2 N�. The length n of the chaining vari-
ables in bits is then equal to the largest multiple of
16 strictly smaller than m. The length of the mes-
sage blocks is equal to n/2 bits. The specification
also needs a prime number p with �log2 p� ≤ m/2;
the prime p shall not be a divisor of N and the
three most significant bits of p shall be equal to
1. The operation ‖ denotes the concatenation of
strings.

MASH-1 is defined for input strings of length
<2n/2 bits. If necessary, the string X is right-
padded with ‘0’ bits to obtain a string with bit-
length a multiple of n/2 and the resulting string
is divided into t n/2-bit blocks denoted with X1,
X2, . . . , Xt . Next a block Xt+1 is added which con-
tains the binary representation of the input string
X in bits, left-padded with ‘0’ bits. Subsequently
each block Xi is expanded to an n-bit block X̃i as
follows: insert four 1 bits before every 4-bit sub-
string of Xi .

The MASH-1 compression function, which maps
3n/2 bits to n bits, is defined as follows (see mod-
ular arithmetic):

Hi =
(((

X̃i ⊕ Hi−1
) ∨ A

)2 (mod N)
)

∼ n ⊕ Hi−1 .

Here A = 0xF00 . . .00 and ∼ n denotes that the
rightmost n bits of the m-bit result are kept. The
iteration starts with the all ‘0’ string or H0 = 0n

and runs for 1 ≤ i ≤ t + 1.
At the end, a rather complex output transfor-

mation is applied to Ht+1. First Ht+1 is divided
into four n/4-bit blocks defined as follows: Ht+1 =
Y0‖Y1‖Y1‖Y3. Define 12 n/4-bit blocks Yi = Yi−1 ⊕
Yi−4, 4 ≤ i ≤ 15. Combine the Yi to eight addi-
tional n/2-bit blocks Xt+1+i = Y2i−2‖Y2i−1, 1 ≤ i ≤
8, transform the Xt+1+i blocks to X̃t+1+i , and per-
form eight additional iterations of the compression

function with these blocks. Finally the hash result
is computed as Ht+1+8 mod p.

MASH-2 is obtained by replacing in MASH-1 the
exponent 2 by the exponent 257 = 28 + 1.

The redundancy in the block X̃i (four ‘1’ bits in
every byte) and the additional operations (∨A and
∼ n) intend to preclude a correcting block attack.
The complex output transformation destroys some
of the mathematical structure of the modular ex-
ponentiation.

When the factorization of the modulus is not
known, the best known (see integer factoring)
(2nd) preimage and collision attacks on MASH-1
require 2n/2 and 2n/4 operations [2]; they are thus
no better than brute force attacks. While to date
no efficient attacks are known that exploit the fac-
torization of the modulus, knowledge of the factor-
ization may reduce the security level. Therefore it
is strongly recommended that the modulus N is
generated by a trusted third party (who deletes
the factors after generation) or by using multi-
party computation (e.g. Boneh and Franklin [1]
and Frankel et al. [3]).

Both MASH-1 and MASH-2 have been included
in Part 4 of ISO/IEC 10118 [4].

Bart Preneel
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MASTER KEY

A master key is a cryptographic key (typically
a symmetric key (see symmetric cryptosystem))
whose sole purpose is to protect other keys, such
as session keys, while those keys are in storage, in
use, or in transit. This protection may take one of
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two forms: the master key may be used to encrypt
the other keys; or the master key may be used to
generate the other keys (for example, if the master
key is k0, session key k1 may be formed by hashing
(see hash function) the concatenation of k0 and the
digit “1”, session key k2 may be formed by hashing
the concatenation of k0 and the digit “2”, and so
on).

Master keys are usually not themselves crypto-
graphically protected; rather, they are distributed
manually or initially installed in a system and pro-
tected by procedural controls and/or by physical or
electronic isolation.

Carlisle Adams
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MAURER’S METHOD

Maurer’s method generates provably prime num-
bers, which are nearly random. The method is de-
scribed in [2].

In Maurer’s method, a certificate of primality
for a number n is a triplet of numbers, (R, F, a),
plus the prime factorization of F, where 2RF + 1 =
n, and such that (see modular arithmetic)
1. an−1 ≡ 1 mod n and
2. a(n−1)/q j − 1 is relatively prime to n for all 1 ≤

j ≤ r , where F = qβ1
1 , . . . , qβr

r is the prime fac-
torization of F.
This triplet of numbers guarantees that all

prime factors of n are of the form mF + 1 for some
positive integer m (the proof of this lemma can
be found in [2] but is too complicated to be in-
cluded here). In particular, if F ≥ √

n then n must
be prime as the product of any two primes of the
form mF + 1 is at least F2 + 2F + 1 > F2 ≥ n.

Maurer’s algorithm generates a prime at ran-
dom by generating R and F at random with the
prime factorization of F known, and testing to see
if a random a makes a certificate of primality with
R and F for n = 2RF + 1. In order to generate F
at random with known factorization, we pick sizes
for the primes of F at random according to a prop-
erly constructed distribution, and then generate
primes of those sizes recursively. (As a base case,
random selection and trial division or some other
simple test is used to generate sufficiently small

primes.) The manner in which these sizes are gen-
erated is rather complicated and involved number-
theoretically, but is essentially along the lines of
Bach’s algorithm [1]. As any certificate actually
proves that n is prime, none will ever be found
for a composite number. (In fact, most will fail the
single Fermat test included in the certificate. See
Fermat primality test.) Furthermore, the proba-
bility that a random base a does form a certificate
for n = 2RF + 1 when n is prime is approximately
φ(F)/F, where φ(n) is Euler’s totient number, the
number of positive values less than or equal to n
which are relatively prime to n. This ratio is high
(approximately 1 − ∑r

j=1 1/q j), so the probability
that a prime number will be recognized is nearly 1.

As is, Maurer’s method generates prime num-
bers close to uniformly, so they are “nearly” ran-
dom. More efficient variants are also possible at
the cost of a less uniform distribution.

Moses Liskov
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MAXIMS

Here the most often quoted cryptological security
maxims are listed [1].
Maxim Number One: “One should not underrate

the adversary.”
Della Porta’s maxim: Only a cryptanalyst, if any-

body, can judge the security of a cryptosys-
tem (Auguste Kerckhoffs, [5] formulating the
knowledge of the 16th century cryptologist Gi-
ambattista Della Porta [6]). To this, David Kahn
remarked: “Nearly every inventor of a cipher
system has been convinced of the unsolvability
of his brainschild.”

Kerckhoffs’ maxim: “No inconvenience should oc-
cur if the cryptosystem falls into the hands of
the enemy” [5].

Givierge’s maxim: “Superficial complications can
be illusory, for they can provide the cryptog-
rapher with a false sense of security” (Marcel
Givierge, French cryptanalyst in WWI [2,3].

Rohrbach’s maxim: “In judging the encryption se-
curity of a class of methods, cryptographic faults
and other infringements of security discipline
are to be taken into account.” To this, Otto Horak
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remarked: “Security of a weak cipher method is
not increased by trying to keep it [the method]
secret.” Thus, among other recommendations,
the key has to be changed frequently, a peri-
odic key is dangerous and, in the ideal case, a
random one-time key is to be used [7].

Shannon’s maxim: “The enemy knows the general
system being used” [8].

Kahn’s maxim: “Cryptographic errors, blunders,
and faults, can significantly simplify unau-
thorized decryption. To this, David Kahn [4]
remarked “A cryptographer’s error is the cryp-
tranalysts only hope.”

Friedrich L. Bauer
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MAXIMAL-LENGTH LINEAR
SEQUENCE

Among the most popular sequences for applica-
tions are the maximal-length linear feedback shift
register sequences (m-sequences). The balance,
run distribution and auto-correlation properties of
these sequences resemble properties one expects
to find in random sequences. The m-sequences
are the main ingredients in many important se-
quence families used in communication and in
many stream cipher systems. We give a descrip-

Fig. 1. Shift register for st+3 = st+1 + st (mod2)

tion of m-sequences over the binary alphabet
GF (2) = {0, 1}, even though the sequences can be
defined with symbols from any finite field with q
elements, where q is a prime power.

A simple and efficient method to generate a se-
quence is using a linear recursion. For example
the recurrence relation (see modular arithmetic)

st+3 = st+1 + st (mod 2)

with initial state (s0, s1, s2) = (001) generates a pe-
riodic sequence

0010111 0010111 0010111 0010111 . . .

of period e = 7. Different initial states lead to dif-
ferent sequences which can be cyclic shifts of each
other.

Binary sequences can easily be generated in
hardware using a linear shift register. One exam-
ple of a shift register is shown in Figure 1. The
register consists of “flip-flops” each containing a 0
or a 1. The shift register is controlled by an ex-
ternal clock (not shown in the figure). Each time
unit shifts each bit one step to the left and re-
places the right most bit by the sum (mod 2) of
the two leftmost bits. The register implements the
recursion st+3 = st+1 + st (mod 2), which with ini-
tial state (s0, s1, s2) = (001) gives the periodic se-
quence 0010111 . . . above. Table 1 shows the con-
tent of the shift register at each time unit.

A linear recursion of degree n is given by
n∑

i=0

fi st+i = 0,

Table 1. Shift register content in Figure 1 generating
an m-sequence

t S0 S1 S2

0 0 0 1
1 0 1 0
2 1 0 1
3 0 1 1
4 1 1 1
5 1 1 0
6 1 0 0

7 0 0 1
. . . .



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 13:26

Maximal-length linear sequence 373

where coefficients fi ∈ GF (2) for 0 < i < n and
f0 = fn = 1. The characteristic polynomial of the
recursion is defined by

f (x) =
n∑

i=0

fi xi .

The initial state and the given recurrence rela-
tion uniquely determine the generated sequence.
A linear shift register with a characteristic polyno-
mial of degree n generates 2n different sequences
corresponding to the 2n different initial states and
these form a vector space over GF (2).

An n-bit linear shift register has at most 2n

different states. Since the zero state is always
followed by the zero state, all sequences gener-
ated by a linear shift register have period at most
2n − 1. A maximal length shift register sequence
(m-sequence) is a periodic sequence of maximal
period 2n − 1 generated by a linear shift register
of degree n. The period of a polynomial f (x) is de-
fined as the smallest positive integer e such that
f (x)|xe − 1. Let f (x) be an irreducible polynomial
of degree n and period e = 2n − 1. Such a polyno-
mial is called a primitive polynomial (see prim-
itive element). The corresponding shift register
generates an m-sequence when the initial state
is nonzero. Any m-sequences has a primitive char-
acteristic polynomial.

Binary m-sequences is perhaps the best known
family of sequences. Table 2 shows some m-
sequences and the corresponding characteristic
polynomials. Figure 1 shows a shift register hav-
ing f (x) = x3 + x + 1 as characteristic polynomial
and that generates an m-sequence of period e = 7
when the initial state is nonzero. Important prop-
erties for a binary m-sequence {st } of period 2n − 1
are:
� (Balance property) In a period of the m-

sequence there are 2n−1 ones and 2n−1 − 1 zeros.
� (Multigram property) When t runs through

0, 1, . . . , 2n − 2, the n-tuple

(st , st+1, . . . , st+n−1)

runs through all binary n-tuples except for the
n-tuple (0, 0, . . . , 0) which do not occur.

Table 2. Characteristic polynomials and m-sequences

Degree f (x) m-sequence Period

2 x2 + x + 1 011 3

3 x3 + x + 1 0010111 7
3 x3 + x2 + 1 0011101 7

4 x4 + x + 1 000100110101111 15
4 x4 + x3 + 1 000111101011001 15

� (Shift-and-add property) For any τ , 0 < τ ≤
2n − 2, there exists a δ, depending on τ , such
at

st+τ + st = st+δ

for all t = 0, 1, 2, . . . .
� (Invariance under decimating by 2) There exists

a shift τ of the m-sequence such that the shifted
sequence {ut } = {s t+τ } is invariant under deci-
mation with two (when every second term of the
sequence is selected), i.e., {ut } = {u2t }.

� (Run property) Let a run denote a consecutive
set of zeros or ones in the sequence. In a pe-
riod of the m-sequence half of the runs have
length 1, one-fourth have length 2, one-eight
have length 3, etc., as long as the number of runs
exceeds 1. Moreover, for each of these lengths,
there are equally many 0-runs (gaps) and 1-runs
(blocks).

EXAMPLE 1. Consider the sequence with charac-
teristic polynomial x4 + x + 1. This is a primitive
polynomial and generates the m-sequence {st } =
000100110101111. The sequence has the proper-
ties above, it is balanced and contains 7 zeros and
8 ones. Each 4-tuple except the all zero 4-tuple oc-
curs exactly once during a period of the sequence.
The shift-and-add property is illustrated by the
example

st+3 + st = 100110101111000 + 000100110101111
= 100010011010111
= st+11.

The sequence {st } is invariant by decimating by
2, i.e., in this case τ = 0, since {s2t } = {st }. Fur-
ther, there are 4 runs of length 1, 2 runs of length
2, 1 run of length 3 and 1 run of length 4. The
number of 0-runs and 1-runs of length <3 are the
same.

Given a sequence {st } of period e. In many ap-
plications it is important to compare the sequence
with its cyclic shifts. The autocorrelation of the bi-
nary sequence {st }, at shift τ , is defined as

A(τ ) =
e−1∑
t=0

(−1)st+τ −st.

In particular A(τ ) gives the number of agree-
ments minus the number of disagreements be-
tween {st+τ } and {st }. In most applications it is
desirable that a shift of the sequence looks like
a “random” sequence compared to itself, i.e., that
|A(τ )| is small for all τ �≡ 0 (mod e). A very impor-
tant property for an m-sequence is its two-level
out-of-phase auto-correlation when τ �≡ 0 (mod e).



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 13:26

374 Maximal-length linear sequence

The autocorrelation of an m-sequence {st } of
period e = 2n − 1 is given by:

A(τ ) =
{−1, for τ �≡ 0 (mod 2n − 1),

2n − 1, for τ ≡ 0 (mod 2n − 1).

To prove this, define ut = st+τ − st and observe
that {ut } obeys the same linear recursion as {st }.
This implies that {ut } is an m-sequence when
τ �≡ 0 (mod 2n − 1) and the balance property of m-
sequences gives

A(τ ) =
e−1∑
t=0

(−1)st+τ −st =
e−1∑
t=0

(−1)ut = −1 .

Balance, multigram and autocorrelation proper-
ties of m-sequences are properties one can expect
in random binary sequences. The m-sequences
obey the three Golomb’s randomness postulates
R1, R2 and R3. R1 is the balance property, R2
the run property and R3 the two-level autocor-
relation property. Actually, these properties of m-
sequences were the models for his postulates.

The pseudorandom properties of m-sequences
have made them a popular building block in many
communication systems and has lead to numerous
practical applications, including synchronization,
positioning systems, random number generation,
stream cipher systems tall and multiple-access-
communication.

In order to describe the m-sequence it is useful to
introduce the trace function Tr which is a mapping
from the finite field GF (2n) to the subfield GF (2)
given by:

Tr(x) =
n−1∑
i=0

x2i
.

The trace function satisfies the following:
(i) Tr(x + y) = Tr(x) + Tr(y), for all x, y ∈

GF (2n).
(ii) Tr(x2) = Tr(x), for all x ∈ GF(2n).

(iii) |{x ∈ GF (2n) | Tr(x) = b}| = 2n−1 for all b ∈
GF (2).

(iv) Let a ∈ GF (2n). If Tr(ax) = 0 for all x ∈ GF 2n,
then a = 0.

Let f (x) be the characteristic polynomial of the
binary m-sequence {st }. It is well-known that
the zeros of f (x) belong to the finite field GF (2n).
The zeros are α2i

for i = 0, 1, . . . , n − 1 where α is a
primitive element of GF (2n), i.e., an element of or-
der 2n − 1. The m-sequence can be written simply
in terms of the trace representation as

st = Tr(aαt ), a ∈ GF (2n)∗,

where GF (2n)∗ = GF (2n)\{0}. This follows from
the properties of the trace function. First observe
that {st } has f(x) as its characteristic polynomial

since,
n∑

i=0

fist+i =
n∑

i=0

fi Tr(aαt+i)

= Tr

(
aαt

n∑
i=0

fiαi

)

= Tr(aαt f (αi))
= 0.

The 2n − 1 different nonzero values of a = ατ , 0 ≤
τ ≤ 2n − 2 correspond to all the cyclic shifts of the
m-sequence. The case a = 1 gives the sequence
with the property that {s2t } = {st }.

Given an m-sequence {st } of period 2n − 1 and
let d be relatively prime to 2n − 1. The sequence
{sdt } defined by selecting every dth term in {s(t)}
is also an m-sequence and all m-sequences of the
same period can be obtained in this way. It follows
from the trace representation that the characteris-
tic polynomial of {sdt } is the primitive polynomial
whose zeros are dth powers of the zeros of f (x).
The properties of the trace function implies that
different m-sequences of the same period gener-
ated by distinct primitive characteristic polynomi-
als are cyclically distinct. The number of binary
primitive polynomials of degree n is φ(2n − 1)/n
where φ(x) is the Euler totient function, the num-
ber of positive integers less than x that are rela-
tively prime to x (see modular arithmetic). Thus,
there are φ(2n − 1)/n cyclically distinct distinct
m-sequences of period 2n − 1. The example be-
low shows the two φ(7)/3 = 2 cyclically distinct
m-sequences of period e = 7.

EXAMPLE 2. The primitive polynomial f1(x) =
x3 + x + 1, generates the m-sequence {at } =
0010111 . . . of period e = 23 − 1 = 7. The primitive
polynomial f2(x) = x3 + x2 + 1 generates the m-
sequence {bt } = 0011101 . . . of period e = 23 − 1 =
7. Note that {bt } = {a3t } is the sequence obtained
by selecting every third element of {at }, where in-
dices are calculated modulo e.

A well-studied problem is to compare two dif-
ferent m-sequences of the same period. Let Cd (τ )
denote the cross-correlation function between the
m-sequence {st } and its decimation {sdt }. By defi-
nition, we have

Cd (τ ) =
2n−2∑
i=0

(−1)st+τ −sdt .

If d �∈ {1, 2, . . . , 2n−1}, (i.e., when the two m-
sequences are cyclically distinct), then Cd (τ ) takes
on at least three distinct values as τ varies over
the set {0, 1, . . . , 2n − 2}. It is therefore of special
interest to study the cases when exactly three
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values occur. The following six decimations give
three-valued cross-correlation:
(1) d = 2k + 1, n/gcd(n, k) odd.
(2) d = 22k − 2k + 1, n/gcd(n, k) odd.
(3) d = 2

n
2 + 2

n+2
4 + 1, n ≡ 2 (mod 4).

(4) d = 2
n+2

2 + 3, n ≡ 2 (mod 4).
(5) d = 2

n−1
2 + 3, n odd.

(6) d =
{

2
n−1

2 + 2
n−1

4 − 1, if n ≡ 1 (mod 4)
2

n−1
2 + 2

3n−1
4 − 1, if n ≡ 3 (mod 4).

The crosscorrelation function of m-sequences have
many applications. Gold sequences, that are based
on adding m-sequences that differ by the deci-
mation (1) above, have found extensive practical
applications during several decades. The crosscor-
relation of m-sequences has also several close con-
nections to almost bent functions as well as to
Almost Perfect Nonlinear (APN) functions which
are very important in studying S-boxes in cryp-
tography (see cyclic codes). In the Advanced En-
cryption Standard (see Rijndael/AES), properties
of the S-boxes come from properties of the cross-
correlation of an m-sequence and its reversed m-
sequence. Recently the crosscorrelation of binary
and nonbinary m-sequences has been important in
constructing new families of sequences with two-
level autocorrelation.

Tor Helleseth
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MCELIECE PUBLIC KEY
CRYPTOSYSTEM

THE CRYPTOSYSTEM: This system was intro-
duced by McEliece in 1978 [7] and is among the

oldest public-key cryptography schemes. It’s se-
curity is related to hard algorithmic problems of
algebraic coding theory whereas for most other
public-key systems it is connected to algorithmic
number theory (see RSA public key encryption,
Elliptic Curve Cryptography, etc.). Its main ad-
vantages are very efficient encryption and decryp-
tion procedures and a good practical and the-
oretical security. On the other hand, its main
drawbacks are a public key of large size and a ci-
phertext which is larger than the cleartext.

General Idea

The cleartext of k binary digits is encoded into a
codeword of n > k binary digits by means of some
public encoder of a linear code of length n and di-
mension k (for the standard terminology of coding
theory, we refer the reader to cyclic codes). Then
the ciphertext is obtained by flipping t randomly
chosen bits in this codeword.

If t is less than half the minimum Hamming
distance of the linear code, only one cleartext will
correspond to a given ciphertext. If n, k, and t are
large enough, computing the cleartext from the ci-
phertext is intractable, unless some side informa-
tion on the structure of the code is known.

Description

Let F denote a family of binary linear codes of
length n, dimension k for which computationally
effective t-error correcting procedure is known.
Key generation: The legal user picks randomly

and uniformly a code C from the family F . Let
G0 be a generator matrix of C. The public key
is equal to G = SG0 P where S is a random non-
singular binary k × k-matrix and P is a random
permutation n × n-matrix. All calculations are
done in the finite field F2 of two elements.

Encryption: The cleartext x is a k-bit word of Fk
2.

The ciphertext y is an n-bit word of Fn
2 equal to

xG + e where e is randomly chosen with Ham-
ming weight t.

Decryption: The cleartext is recovered as zS−1

where z is the result of applying the t-error cor-
recting procedure of C to yP−1.

In practice: McEliece proposed the use of binary
Goppa codes (see Appendix) with m = 10, n =
1024 and t = 50. The dimension of this code
is then k = 524. To keep up with 25 years of
progress in algorithms and computers, larger
codes are required and we now need m = 11, n =
2048 and 30 ≤ t ≤ 120. Using another family of
linear codes is possible but must be done with
great care since it has a significant impact on the
security. For instance using concatenated codes
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[11] or (generalized) Reed–Solomon codes [16] is
unsafe.

Related Public Key Cryptosystems

A dual encryption technique, equivalent in terms
of security [6], was proposed in 1986 by Nieder-
reiter [9] (see Niederreiter encryption scheme). A
variant of the latter using Reed-Muller code was
proposed a few years later [15]. A digital signature
scheme was proposed in 2001 [4]. It is also possi-
ble to use the rank metric instead of the Hamming
distance to build other encryption schemes [5] in
a similar manner.

PRACTICE AND SECURITY: In this section, we
assume that the family F is the family Gm,n,t of
binary Goppa codes (see Appendix). We denote k =
n − mt , the (designed) dimension and r = mt , the
codimension, where n ≤ 2m.

Implementation Aspects

Key Size. The size of the public key is probably
the worst drawback of this system. Its size is kn
where k is the information block size and n the en-
crypted block size. For instance, with McEliece’s
original parameters, each encrypted block has a
size of 1024 bits (for 524 bits of information) and
the public-key size is 536,576 bits. If the cleart-
exts are uniformly distributed, the public key can
be chosen in systematic form (see [13]), that is
G = (I | U) where I is the k × k identity matrix
and U is k × (n − k). This reduces the key size
to k(n − k) bits (only the rightmost part U of G
needs to be stored). This is still roughly quadratic
in the block length, with the original parameters
this gives 262,000 bits.

Encryption. We consider that the public key is in
systematic form. Encryption consists of multiply-
ing the information x, a binary vector of length
k, by the k × (n − k) binary matrix U. The cryp-
togram is obtained by flipping t distinct ran-
dom bits in the binary vector (x, xU) of length
n. The cost of this procedure is the cost of the
vector/matrix multiplication1, that is, on average,
k(n − k)/2 binary operations.

Decryption. Again we assume that the public key
is in systematic form. Decryption consists in recov-
ering x from y = xG + e. The legal user will have to
apply the t-error correcting procedure for a Goppa

1 The cost for flipping t bits is negligible, it requires a random
number generator though.

code (see Appendix ). The actual algorithmic com-
plexity is implementation dependent, but the cost
of one decoding is roughly λtn operations in the
finite field F2m , where λ can vary between 2 and 5.
Assuming m binary operations for each field oper-
ation, we get λtmn = λ(n − k)n binary operations
for one decryption.

Security

Two aspects of security will now be discussed. The
first, theoretical, gives no number and is of no help
to choose the parameters; it states that any signif-
icant progress in the cryptanalysis would imply
some kind of breakthrough in algorithmic coding
theory. The second, practical, describes what can
be done and at what cost today on a computer to
break the system, and also how these costs evolve
with the parameters.

Theoretical Security. The security of the system
can be reduced to two well-identified problems.
Both these problems address old coding theory
problems and are conjectured difficult [14] on an
average.
Problem 1 (Designed Distance Bounded

Decoding—DDBD)
Instance: An r × n binary matrix H and a

words of Fr
2.

Question: Is there a word e in Fn
2 of weight ≤ r/

log2 n such that HeT = s?
Problem 2 (Goppa Code Distinguishing—

GD)2

Instance: An r × n binary matrix H.
Question: Is Ker(H) a binary Goppa code?

Problem 1 is a specialized version of the well-
known NP-complete syndrome decoding problem
[2] in which the expected minimum weight in the
coset is explicitly related to the code parameters.
Problem 2 is a structural problem: can we some-
how make a difference between a parity check ma-
trix of a Goppa code and a random matrix?

Practical Security: Cryptanalysis. For a given set
of parameters n, k and t, the two approaches for
the ryptanalysis are:
� the decoding attack: decode t error in a known

binary linear code of length n and dimension k,
� the structural attack: deduce from the public key

G an efficient t-error correcting procedure.
The decoding attack is related to the syndrome
decoding problem [2] and rapidly becomes in-
tractable when the parameters grow. In prac-
tice, for a fixed rate (R = k/n) the best known

2 Ker(H) denotes the linear code of parity check matrix H.
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Fig. 1. Binary work factor for the decoding attack of
McEliece cryptosystem

algorithms and implementations [1, 3] have a
computation cost growing exponentially with t.
The binary work factor, that is the average number
of binary operations, required to correct t errors in
a linear code of length n and transmission rate R is

WF(n, R, t) = P(n)2t log2
1

1−R ,

where P(n) roughly behaves as a polynomial
in n of small degree (0–3 depending on the
implementation). Therefore for an arbitrary code
with the same parameters as a Goppa code (i.e.,
t = (n − k)/m = n(1 − R)/m) the work factor can
be written in the following way

WF(n, R, t) = P(n)2
n
m (1−R) log2

1
1−R .

The expected cost of algorithm [3] can be obtained
by a Markov chain computation. An estimate for
the binary work factor for decoding in various
Goppa codes (whose structure is hidden) is given
in Figure 1.

For the structural attack (with Goppa codes),
nothing significantly better is known than enu-
merating all possible generator polynomial for a
given support until one is found which is equal,
up to a permutation, to the code generated by the

Table 1. Some parameters for the McEliece system

n = 1024 n = 2048 n = 4096 n = 2048
m = 10 m = 11 m = 12 m = 11
t = 50 t = 30 t = 20 t = 70

Ciphertext size (in bits) 1024 2048 4096 2048
Message size (in bits) 524 1718 3856 1278
Information rate 0.51 0.84 0.94 0.62
Public key size (in KB) 32 69 113 120
Security exponenta 62.1 86.4 86.1 108.4
Encryption costb 1 0.66 0.48 1.54
Decryption costb 1 0.40 0.26 1.26

aLogarithm in base two of the binary work factor
bPer message bit, relatively to the original parameters

public-key (this can be done by using the support
splitting algorithm [12]). The cost grows exponen-
tially with tm and is always higher than the cost
of the decoding attack.

Choosing the Parameters

It is usually agreed that, with the technology avail-
able at the start of the third millennium, a binary
work factor of 285 is required to insure security.
Today we will thus need Goppa codes of length
n = 2048 with a generator of degree t ≥ 30. If we
follow Moore’s law (a factor 2 gain in time and
memory every 18 months) and if there is no sig-
nificant algorithmic improvement, a binary work
factor of 2108 (maximum value for m = 11) should
be enough in the 2030s. Table 1 presents the
main features of the system with some parameters
choice. It is interesting to note that one can simul-
taneously increase the security and the speed (per
information bit) of the encryption/decryption pro-
cedures. Other tradeoffs between public key size,
information rate and encryption/decryption speed
are possible.

APPENDIX

Binary Goppa Code

Let m be a positive integer, and let n and t be two
positive integers such that n ≤ 2m and t < n/m.
A binary Goppa code �(L, g) is defined by an or-
dered subset L = (α1, . . . , αn) of F2m of cardinality
n, called support, and a square-free monic poly-
nomial g(z) ∈ F2m [z] of degree t without roots in
L, called generator. It consists of all words a =
(a1, . . . , an) ∈ Fn

2 such that

Ra(z) �=
n∑

j=1

aj

z − α j
≡ 0 mod g(z) .
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This code is linear, has dimension3 k ≥ n − tm and
minimum distance 2t + 1 at least. We denoteGm,n,t
the set of all binary Goppa codes with a support of
cardinality n in F2m and an irreducible generator
of degree t over F2m .

Algebraic Decoding of Goppa Codes

Let a be a codeword of �(L, g) and let b = a + e
with e ∈ Fn

2 of Hamming weight t or less. Because
of the distance properties of the code, given b, the
words a and e are unique. There exists a unique
monic polynomial σ (z) in F2m [z] of degree at most
t which verifies

σ (z)Rb(z) ≡ ω(z) mod g(z) (1)

with ω(z) in F2m [z] of degree at most t − 1. The
polynomial σ (z) has exactly t roots in L which cor-
respond to the non zero positions of the error vec-
tor e. Starting from vector b, the decoding proce-
dure will require
� the computation of Rb(z) mod g(z),
� the resolution of the key equation (1),
� the computation of the roots of σ (z).
There are several variants for solving (1), includ-
ing the extended Euclidean algorithm [8,10] .

Nicolas Sendrier
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MD4-MD5

MD4 and MD5 are the initial members of the MD4
type hash functions. Both were designed by Rivest
[1, 2]. They take variable length input messages
and hash them to fixed-length outputs. Both oper-
ate on 512-bit message blocks divided into 32-bit
words and produce a message digest of 128 bits.
First, the message is padded according to the
so-called Merkle-Damgård strengthening tech-
nique (see hash functions for more details). Next,
the message is processed block by block by the
underlying compression function. This function
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initializes four 32-bit chaining variables to a fixed
value prior to hashing the first message block, and
to the current hash value for the following mes-
sage blocks. Each step of the compression function
updates in turn one of the chaining variables ac-
cording to one message word. Both compression
functions are organised into rounds of 16 steps
each. MD4 has three such rounds, while MD5 con-
sists of 4 rounds. In each round every message
word is used just once in updating one of the chain-
ing variables. The order in which the message
words are used is different for each round. MD4
and MD5 differ in the functions used in each step,
in the order in which the message words are used
in different rounds, and in the number of rounds.
There also exists an extended version of MD4 [1],
which consists of concatenating the result of two
loosely coupled instances of MD4 into a 256-bit
message digest.

SECURITY CONSIDERATIONS: MD4 and MD5
have been designed to provide collision resistance.
Following early collision attacks on reduced ver-
sions of MD4 (2 out of 3 rounds) by Merkle and
den Boer and Bosselaers [3], Rivest designed the
strengthened version MD5. It was however shown
by den Boer and Bosselaers [4] that the com-
pression function of MD5 is not collision resis-
tant, although the collisions are of a form that is
not immediately usable in practice. Late in 1995
Dobbertin found collisions for MD4. In his attack
he combines algebraic techniques and optimiza-
tion techniques such as genetic algorithms [5]. It
can be extended in such a way that even colli-
sions on meaningful messages are obtained: ex-
cept for a few dozen bytes the complete message
is under control of the attacker. His attack also
applies to the compression function of extended
MD4. Later Dobbertin showed that a reduced ver-
sion of MD4 (2 rounds out of 3) does not offer
preimage resistance [6]. Dobbertin also extended
his attack on MD4 to yield collisions for the com-
pression function of MD5. These collisions are of a
different and more practical nature than those by
den Boer and Bosselaers, but up to now the attack
has not been extended to collisions for MD5 itself
(i.e., also taking into account the initial value).
Of independent interest for both MD4 and MD5
are brute force collision search attacks. In [7], van
Oorschot and Wiener estimate that with a 10 mil-
lion US$ machine collisions of MD5 could be found
in 21 days in 1994, which corresponds to 4 hours
in 2004. To counter such collision search attacks,
message digests of at least 160 bits are required.

Antoon Bosselaers
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MDC-2 AND MDC-4

MDC-2 and MDC-4 are constructions for hash
functions based on a block cipher, where the
length in bits of the hash result is twice the
block length of the block cipher. A hash func-
tion is a cryptographic algorithm that takes input
strings of arbitrary (or very large) length and maps
these to short fixed length output strings. MDC-2
and MDC-4 are unkeyed cryptographic hash func-
tions which may have the following properties:
preimage resistance, second preimage resistance,
and collision resistance; these properties may or
may not be achieved depending on the properties
of the underlying block cipher. MDC-2 and MDC-4
have been designed by Brachtl et al. [1]; they are
also known as the Meyer–Schilling hash functions
after the authors of the first paper describing these
schemes [4].

In the following, the block length and key length
of the block cipher will be denoted with n and k,
respectively. The encryption with the block cipher
E using the key K will be denoted with EK(·) and
‖ denotes the concatenation of strings.

MDC-2 is an iterated hash function with a com-
pression function that maps 2k + n bits to 2n bits.
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It requires two encryptions to hash an n-bit block,
hence its rate is 1/2.

T1
i = Eu(H1

i−1)(Xi) ⊕ Xi = LT1
i ‖ RT1

i

T2
i = Ev(H2

i−1)(Xi) ⊕ Xi = LT2
i ‖ RT2

i

H1
i = LT1

i ‖ RT2
i

H2
i = LT2

i ‖ RT1
i .

The variables H1
0 and H2

0 are initialized with the
values IV1 and IV2 respectively, and the hash re-
sult is equal to the concatenation of H1

t and H2
t .

The functions u, v map the ciphertext space to
the key space and need to satisfy the condition
u(IV1) �= v(IV2). For the Data Encryption Stan-
dard (DES), these mappings from 64 to 56 bits
drop the parity bits in every byte and fix the sec-
ond and third key bits to 01 and 10 respectively
(to preclude attacks based on the complementa-
tion property and based on weak keys and semi-
weak keys). By iterating this compression func-
tion in combination with MD-strengthening (see
hash functions) one can construct a hash function
based on this compression function.

For k = n, the best known preimage and colli-
sion attacks on MDC-2 require 23n/2 and 2n opera-
tions respectively [5]. A collision attack on MDC-2
based on DES (n = 64, k = 56) requires at most
255 encryptions, which is not an acceptable secu-
rity level in 2004. Note that the compression func-
tion of MDC-2 is rather weak: preimage and colli-
sion attacks on the compression function require
at most 2n and 2n/2 encryptions. As a consequence,
one cannot obtain a meaningful lower bound for
the strength of MDC-2 with a security proof based
on the strength of its compression function.

The compression function of MDC-4 consists of
the concatenation of two MDC-2 steps, where the
plaintexts in the second step are equal to H2

i−1 and
H1

i−1. MDC-4 requires four encryptions to hash an
n-bit block, hence its rate is 1/4. For k = n, the
best known preimage attack for MDC-4 requires
27n/4 operations. This shows that MDC-4 is proba-
bly more secure than MDC-2 against preimage at-
tacks. However, finding a collision for MDC-4 itself
requires only 2n+2 encryptions. The best known
attacks on the compression function of MDC-4 re-
quire 23n/2 encryptions for a (2nd) preimage and
23n/4 encryptions for a collision [3, 6]. Again, one
cannot obtain a meaningful lower bound for the
collision resistance of MDC-4 with a security proof
based on the strength of its compression function.

A first observation is that no security proofs are
known for MDC-2 and MDC-4. However, it is con-
jectured that both MDC-2 and MDC-4 achieve an

acceptable security level (in 2004) against (2nd)
preimage attacks for block ciphers with a block
length and key length of 64 bits or more (e.g.,
CAST-128, IDEA, KASUMI/MISTY1). It is also
conjectured that both functions achieve an accept-
able security level (in 2004) against collision at-
tacks for block ciphers with a block length and
key length of 128 bits or more (e.g., Rijndael/AES,
Camellia, CAST-256, MARS, RC6, TWOFISH, and
SERPENT).

It is also important to note that a block cipher
may have properties which pose no problem at all
when they are used only for encryption, but which
may result in MDC-2 and/or MDC-4 to be insecure
[6,7]. Any deviation from ‘random behavior’ of the
encryption steps or of the key schedule could result
in security weaknesses (for example, it would not
be advisable to use DES-X due to the absence of a
key schedule for part of the key).

MDC-2 has been included in ISO/IEC 10118-2
[2].

Bart Preneel
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MEET-IN-THE-MIDDLE
ATTACK

Meet-in-the-middle is a classical technique of
cryptanalysis which applies to many construc-
tions. The idea is that the attacker constructs
patterns that propagate from both ends to the
middle of the cipher, in some cases by partial key-
guessing. If the events do not match in the middle,
the key-guess was wrong and may be discarded.
Such attack has been applied to 7-round DES
(see the Data Encryption Standard) [1], and
to structural cryptanalysis of multiple-encryption
(for example, two-key triple encryption [2,3]. A re-
cent miss-in-the-middle attack may also be seen
as a variant of this technique in which the events
in the middle should not match, and the keys that
suggest a match in the middle are filtered as wrong
keys.

Alex Biryukov
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MERSENNE PRIME

A Mersenne number is a number of the form
Mn = 2n − 1 where n is a positive integer. If Mn
is also prime, then it is said to be a Mersenne
prime. The number Mn can only be prime if n is
prime. Some authors reserve the term “Mersenne
number” for the numbers Mp for p prime. The
Mersenne primes Mp for 80 ≤ p ≤ 700 occur for
p = 89, 107, 127, 521, and 607.

Mersenne primes have been a topic of interest in
number theory since ancient times. They appear
in the theory of linear feedback shift registers
(LFSR). If Mp is prime, then any binary LFSR

of length p with irreducible feedback polynomial
and nonzero initial state generates a maximal-
length shift register sequence. Equivalently, every
nonzero element of the finite field of 2p elements
is a generator for the entire group of nonzero
elements.

Mersenne primes are also of interest in public-
key cryptography. In public-key settings such as
elliptic curve cryptography, the prime modulus p
(see modular arithmetic) can be chosen to opti-
mize the implementation of the arithmetic op-
erations in the implementation of the cryptog-
raphy. Mersenne primes provide a particularly
good choice because modular reduction can be per-
formed very quickly. One typically wishes to re-
duce modulo Mp a 2p-bit integer n (e.g., as a step
in modular multiplication). In general, modular
reduction requires an integer division. However,
in the special case of reduction modulo Mp, one
has

2p ≡ 1 (mod Mp).

Thus one can reduce n by writing

n = a · 2p + b,

where a and b are each positive and less than Mp.
Then

n ≡ a + b (mod Mp),

so that

n mod Mp =
{

a + b if a + b < Mp,

a + b + 1 − 2p otherwise.

Thus reduction modulo a Mersenne prime re-
quires an integer addition, as opposed to an inte-
ger division for modular reduction in the general
case. There are two drawbacks to this method of
modular reduction:
� Finding the integers a and b is easiest when p

is a multiple of word size of the machine, since
then there is no actual shifting of bits needed to
align a and b for the modular addition. But word
sizes are in practice powers of two, whereas p
must be an odd prime.

� The Mersenne primes are so rare, with none be-
tween M127 and M521, that usually there will be
none of the desired magnitude.

For these reasons, cryptographers tend not to
use Mersenne primes, preferring similar moduli
such as pseudo-Mersenne primes and generalized
Mersenne primes.

Jerome Solinas
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MILLER–RABIN
PROBABILISTIC
PRIMALITY TEST

The Miller–Rabin probabilistic primality test is a
probabilistic algorithm for testing prime numbers
using modular exponentiation (see exponentiation
algorithms) and the Chinese Remainder Theorem.

One property of primes is that any number
whose square is congruent to 1 modulo a prime
p must itself be congruent to 1 or −1. This is not
true of composite numbers. If a number n is the
product of k distinct prime powers, then there will
be 2k distinct “square roots” of 1 modulo n. For ex-
ample, there are four square roots of 1modulo 77.
The roots must be either 1 or −1 modulo 7, and
either 1 or −1 modulo 11, since 7 and 11 divide
77. In order to solve these square roots, one must
solve sets of equations like these:

a ≡ 1 mod 7, a ≡ 1 mod 11
b ≡ −1 mod 7, b ≡ 1 mod 11
c ≡ 1 mod 7, c ≡ −1 mod 11
d ≡ −1 mod 7, d ≡ −1 mod 11.

The solutions in this case are a ≡ 1 mod 77,
b ≡ 34 mod 77, c ≡ 43 mod 77, and d ≡ −1 ≡
76 mod 77. (This is a simple application of the
Chinese Remainder Theorem.)

The Miller–Rabin test uses this fact about com-
posite numbers to test them. A single round of
Miller–Rabin tests whether a given base a is a
“witness” to the compositeness of n, by computing
an−1 modulo n. This is the same as the Fermat pri-
mality test, but that test fails if n is a Carmichael
number. However, to compute an−1 mod n we per-
form a series of squarings. The Miller–Rabin test
also checks after each squaring to see if we have
found a square root of 1 other than 1 or n − 1 mod
n. If so, the number is composite; this additional
check also catches the Carmichael numbers.

The procedure is the following, where s, the
number of rounds, is a security parameter:
1. On input p, find k such that p− 1 = q2k, where

q is odd.
2. For j = 1 to s, do:

(a) Generate a random base a between 2 and
p− 2.

(b) Compute b = aq mod p.
(c) For i = 1 to k, compute b′ = b2 mod p.

If b′ ≡ 1 mod p and b ≡/ ± 1 mod p, output
COMPOSITE. Set b = b′.

(d) If b ≡/ 1 mod p, output COMPOSITE.
3. Output PROBABLY PRIME.

(Note that the output COMPOSITE is certain;
the output PROBABLY PRIME is not.)

For any odd composite n, at least 3(n − 1)/4 of
the bases a are Miller–Rabin witnesses that n is
composite (a good presentation of a proof for the
simpler bound (n − 1)/2 is in [1]). Each round of
the Miller–Rabin test thus gives at least a 3/4
probability of finding a witness, if n is composite.
These probabilities are independent, so if we run
a 50-round Miller–Rabin test, then the probability
that n is composite and we never find a composite-
ness witness is at most 2−100. For a random prime,
the probability of not finding a witness is much
smaller. The number of rounds is a parameter to
the primality test that can be easily changed de-
pending on the application.

The Miller–Rabin test was described initially
by Miller [2]; Rabin [3] provided further analysis,
hence the name.

Moses Liskov
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MINIMAL POLYNOMIAL

The minimal polynomial of a linear recurring se-
quence S = (st )t≥0 of elements of Fq is the monic
polynomial P in Fq [X] of lowest degree such
that (st )t≥0 is generated by the linear feedback
shift register (LFSR) with characteristic polyno-
mial P. In other terms, P = ∑L−1

i=0 pi Xi + XL is
the characteristic polynomial of the linear re-
currence relation of least degree satisfied by the
sequence:

st+L +
L−1∑
i=0

pist+i = 0, t ≥ 0.

The minimal polynomial of a linear recurring se-
quence s is monic and unique; it divides the char-
acteristic polynomial of any LFSR which gener-
ates s. The degree of the minimal polynomial of
s is called its linear complexity. The period of the
minimal polynomial of s is equal to the least period
of s (see linear feedback shift register for further
details).
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The minimal polynomial of a linear recurring se-
quence with linear complexity � can be recovered
from any 2� consecutive terms of the sequence by
the Berlekamp–Massey algorithm.

Anne Canteaut

MIPS-YEAR

A MIPS-year is perhaps the “standard” measure
of computational effort in cryptography: It refers
to the amount of work performed, in one year,
by a computer operating at the rate of one mil-
lion operations per second (1 MIPS). The actual
type of operation is undefined but assumed to be
a “typical” computer operation. A MIPS-year is
thus approximately 245 operations. The difficulty
of solutions to the the RSA Factoring Challenge as
well as challenges involving the Data Encryption
Standard is usually given in MIPS-years; for in-
stance, the RSA-512 benchmark took about 8000
MIPS-years, or approximately 258 operations, dis-
tributed across a large number of computers. (This
is somewhat less than the number of operations to
search for a 56-bit DES key, as multiple operations
are required to test each DES key.)

The MIPS-year is a convenient measurement,
but not a perfect one. In practice, there is no “typ-
ical” computer operation, and the actual difficulty
of an effort must also consider other factors such
as the cost of hardware and the amount of memory
required. (See Silverman [2] for discussion of some
of these issues.) Recent research into the difficulty
of factoring 1024-bit RSA moduli has taken a more
precise approach, by giving a specific hardware
design and estimating both the cost of the hard-
ware involved and the number of operations (see
factoring circuits, TWIRL). The MIPS-year never-
theless remains a helpful guideline.

The term “MIPS” is fairly old in the computer
industry; Digital Equipment Corporation’s VAX-
11/780 is often considered the benchmark of a 1-
MIPS machine. An early use of the term “MIPS-
year” in cryptography may be found in a 1991 let-
ter from Rivest to NIST regarding the security of
the then-proposed Digital Signature Standard, a
revised version of which is published as part of [1].

Burt Kaliski
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MISS-IN-THE-MIDDLE
ATTACK

Following the idea behind the meet-in-the-middle
approach, the miss-in-the-middle attack is one of
the techniques to construct distinguishers for the
impossible differential attack. The idea is that one
finds two events that propagate half way through
the cipher top and bottom with certainty, but
which do not match in the middle. This results in
an event which is impossible for the full cipher,
i.e., has zero probability. A typical tool for con-
structing such events would be truncated differen-
tials. Note that it is sufficient that events contra-
dict each other in a single bit in the middle. This
technique was first introduced in the papers by
Biham et al. [1, 2] to cryptanalyse round-reduced
versions of Skipjack, IDEA and Khufu.

Alex Biryukov
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MIX NETWORKS

It is not difficult to imagine scenarios in which
message secrecy in communication is desirable. In
such scenarios, encryption is a crucial tool. Un-
fortunately, encryption of message contents by it-
self may not be sufficient. Even if the contents of
sensitive messages are protected, much can be in-
ferred merely by the fact that one party is sending
a message to another party. If an authoritarian
regime already suspects that one party to a com-
munication is a dissident, then the other parties
to the communication become suspect as well. Ac-
cessing a crisis hotline or a patent database is a
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strong clue about the intentions of the user, even
if the exact wording of the query remains secret.
In settings where encryption is rare, the mere fact
that certain messages are encrypted may cause
increased scrutiny.

In 1981, Chaum [3] published a beautifully sim-
ple and elegant method to protect the identities of
communicating parties: “mix networks.” The basic
functionality of a mix network is to provide sender
anonymity, i.e., the identity of the originator of a
message is difficult or impossible to discern for any
given message delivered to any given recipient. A
mix network can also provide receiver anonymity,
i.e., the identity of the intended recipient of a mes-
sage is difficult or impossible to discern for any
given message originating from any given sender.

We describe Chaum’s idea using the simplest
mix network, which consists of a single mix. If
Alice wants to send a message M to Bob, she
first encrypts it using Bob’s public key (see public
key cryptography): C1 = E(M,PKBob). Then she
re-encrypts this ciphertext (together with Bob’s
name!) using the mix’s public key: C2 = E(C1·
“Bob”, PKMix ). Then the following steps occur:
1. Alice sends C2 to the mix.
2. The mix decrypts C2 to recover C1 and “Bob”.
3. The mix sends C1 to Bob.
4. Bob decrypts C1 to recover the message M.
The identity of the originator (Alice) is protected
if many senders are using the same mix at the
same time. The identity of the recipient (Bob) is
protected if many receivers have messages routed
to them through the same mix at the same time.
Of course, the mix knows who is communicating to
whom. That is, there is perfect linkability by the
mix of originator to recipient for every message
that passes through the mix.

A general mix network is constructed simi-
larly, except that Alice re-encrypts several times
using a “chain” (or “cascade”) of mixes. For ex-
ample, a chain of three mixes would have Alice
compute:

C1 = E(M, PKBob),
C2 = E(C1 · “Bob”, PKMix1),
C3 = E(C2 · “Mix1”, PKMix2),
C4 = E(C3 · “Mix2”, PKMix3). (1)

Then Alice would send C4 to Mix3, and Mix3 would
send C3 to Mix2, and Mix2 would send C2 to Mix1,
and Mix1 would send C1 to Bob. Notice that now
the mixes would have to collude to know who is
communicating to whom.

Of course, this is just the high-level descrip-
tion of a mix network. In practice, a variety of
attacks on anonymity are possible, and various

design countermeasures would have to be incor-
porated (see also [1]):
Timing attacks: Careful observation of the tim-

ing of inputs and outputs of a single mix could
enable an eavesdropper to link specific inbound
and outbound messages. One defense against
this is for a mix to delay the forwarding of mes-
sages until a certain number of them can be sent
at the same time (“batching”).

Message Length Attacks: Encryption by itself
does not necessarily conceal the size of the
plaintext message. If certain messages passing
through the mix network differ in size, then
these might be distinguishable by an outside
attacker. Defenses include splitting large mes-
sages (“fragmentation”) and lengthening short
messages (“padding”).

Absence of Communication Attacks: Certain
suspects can be eliminated from consideration
as potential senders of a message simply be-
cause they were idle during some relevant time
period, i.e., sent no encrypted messages to a
particular mix. One defense against this is for
senders to continue to send null (“dummy”) mes-
sages when they have nothing to communicate.

Abundance of Communication Attacks: If an
adversary can inject a lot of messages into the
mix network, then only a small amount of legiti-
mate messages can be routed through the mixes
at the same time. The adversary can choose his
messages so that they are easily recognized as
they pass through the network, and thus he may
be able to infer quite a lot about the origin and
destination of the few remaining messages. This
is closely related to a denial of service attack,
and similar defenses are possible. For example,
one could limit and balance the rate at which
any given sender can route messages through
any given mix (“fair allocation”).

Chaum’s original work included several other in-
teresting extensions. There was a technique for
the receiver to reply to an anonymously transmit-
ted message. He also showed how a mix network
can be combined with pseudonyms to achieve a
“general purpose” untraceable mail system. Fur-
thermore, there was a method for the sender to
specify a different chain of mixes for each message.

Chaum’s mix network ideas have been imple-
mented numerous times. Notable instances in-
clude Freedom [2], Onion Routing [5], Babel [6],
and the Cypherpunk remailer system. Serjantov
et al. [11] provide a good taxonomy of mix imple-
mentations and their properties.

The Crowds system of Reiter and Rubin [9] is
a kind of mix network with on-the-fly randomized
decisions for how many mixes a message should
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pass through. In fact, parties in their scheme act
as both message initiators and the mixes them-
selves. In the Crowds protocol, some set of parties
form a group called a “jondo.” When a sender ini-
tiates a message, it is mixed by passing it along
a path of other parties in the jondo. The length
and constituency of this path is chosen randomly.
Specifically, each party in the path makes a ran-
domized decision whether to end the path. If the
path is not to be ended, a second randomized deci-
sion chooses another jondo member to receive the
message next. Perfect concealment is not possible
for the Crowds system, but a level of “probable in-
nocence” can be achieved.

Crowds is also vulnerable to a “predecessor at-
tack” [9, 12]. An attacker joins a jondo, and keeps
track of how often any other jondo member imme-
diately precedes the attacker in a path. Suppose
that a single sender is involved in a number of
related transmissions, e.g., if a jondo member is
using Crowds to anonymously surf the web, and
often returns to the same website. Then the at-
tacker will be included in some of the paths for
these related transmissions. The attacker’s imme-
diate predecessor in each of these paths could be
any member of the jondo, but the most frequent oc-
cupant of this position will be the original sender.

Mix networks can simplify the design of a cryp-
tographic protocol for conducting a secret ballot
election [4]. The basic idea is that each eligible
voter encrypts his ballot using the public key of the
tallying authority. All of the encrypted ballots from
eligible voters pass through a mix network to the
tallying authority. The tallying authority decrypts
all of the received messages, throws away the ones
that are not well-formed ballots, and then deter-
mines the outcome of the election. The privacy of
each individual voter’s choices is ensured by the
proper functioning of the anonymizing mixes.

For applications such as a secret ballot election,
it is reasonable to assume that all of the mix net-
work inputs are available for processing at the
same time. This means that the mix network de-
sign can be “synchronous.” By contrast, Chaum’s
mix network design is asynchronous, since this is
a more reasonable assumption for his motivating
application of hiding traffic patterns in ongoing
communication. The “re-encryption mix net” [8] is
a synchronous design that makes use of more so-
phisticated cryptographic tools to achieve robust-
ness despite the failure of some of the mix servers.
Some of the fastest mix-based election schemes are
based on this design.

Verifiable mix protocols [10] are a variant of
the basic mix protocol in which correct function-
ing of any given mix can be publicly verified by

any external observer. The primary motivation of
verifiable mix protocols is to enhance the secu-
rity of mix-based election protocols. Typically, the
mix generates a short “proof” of correctness that
can be checked against the encrypted inputs and
encrypted outputs of the mix. Another recent ap-
proach to verifiable mixes is based on a “cut-and-
choose” (challenge/response) approach [7].

Matthew K. Franklin
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MODES OF OPERATION OF
A BLOCK CIPHER

A n-bit block cipher with a k-bit key is a set of 2k

bijections on n-bit strings. A block cipher is a flex-
ible building block; it can be used for encryption
and authenticated encryption, to construct MAC
algorithms and hash functions [2].

When a block cipher is used for confidentiality
protection, the security goal is to prevent a passive
eavesdropper with limited computational power to
learn any information on the plaintext (except for
maybe its length). This eavesdropper can apply
the following attacks: known plaintext attacks,
chosen plaintext attacks and chosen ciphertext
attacks.

Applications need to protect the confidentiality
of strings of arbitrary length. A mode of opera-
tion of a block cipher is an algorithm which spec-
ifies how one has to apply an n-bit block cipher
to achieve this. One approach is to pad the data
with a padding algorithm such that the bit-length
of the padded string is a multiple t of n bits, and
to define a mode which works on t n-bit blocks. For
example, one always appends a ‘1’-bit followed by
as many ‘0’ bits as necessary to make the length of
the resulting string a multiple of n. An alternative
is to define a mode of operation that can process
data in blocks of j ≤ n bits.

We first discuss the five modes of operation
which have been defined in the FIPS [12] (see also
[22]) and ISO/IEC [16] standards: the ECB mode,
the CBC mode, the OFB mode, the CTR mode, and
the CFB mode. Next we discuss t some alternative
modes that have been defined for triple-DES and
modes which allow to encrypt values from finite
sets.

We use the following notation: EK(pi) denotes
the encryption with a block cipher of the n-bit
plaintext block pi with the key K; similarly DK(ci)
denotes the decryption of the iphertext ci . The op-
eration rchop j(s) returns the rightmost j bits of the
string s, and the operation lchop j(s) returns the
leftmost j bits. The symbol ‖ denotes concatenation
of strings and ⊕ denotes addition modulo 2 (exor).

THE ELECTRONIC CODE BOOK (ECB) MODE:
The simplest mode is the ECB (Electronic Code-
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Fig. 1. The ECB mode of a block cipher

Book) mode. After padding, the plaintext p is di-
vided into t n-bit blocks pi and the block cipher is
applied to each block; the decryption also operates
on individual blocks (see Figure 1):

ci = EK(pi) and pi = DK(ci), i = 1, . . . , t.

Errors in the ciphertext do not propagate beyond
the block boundaries (as long as these can be re-
covered). However, the ECB mode is the only mode
covered in this article which does not hide pat-
terns (such as repetitions) in the plaintext. Usage
of this mode should be strongly discouraged. In the
past the ECB mode was sometimes recommended
for the encryption of keys; however, authenticated
encryption would be much better for this applica-
tion (or the Rijndael/AES key wrapping algorithm
proposed by NIST).

THE CIPHER BLOCK CHAINING (CBC) MODE:
The most popular mode of operation of a block ci-
pher is the CBC (Cipher Block Chaining) mode.
The plaintext p is divided into t n-bit blocks pi .
This mode adds (modulo 2) to a plaintext block the
previous ciphertext block and applies the block ci-
pher to this result (see Figure 2):

ci = EK(pi ⊕ ci−1),
pi = DK(ci) ⊕ ci−1, i = 1, . . . , t .

Note that in the CBC mode, the value ci−1 is used
to randomize the plaintext; this couples the blocks
and hides patterns and repetitions. To enable the
encryption of the first plaintext block (i = 1), one
defines c0 as the initial value IV, which should
be randomly chosen and transmitted securely to
the recipient. By varying this IV, one can en-
sure that the same plaintext is encrypted into a
different ciphertext under the same key, which is
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Fig. 2. The CBC mode of a block cipher

essential for secure encryption. The IV plays a
similar role in the OFB, CTR and CFB modes.

The CBC decryption has a limited error propa-
gation: errors in the ith ciphertext block will gar-
ble the ith plaintext block completely, and will be
copied into the next plaintext block. The CBC de-
cryption allows for parallelism and random access:
if necessary, one can decrypt only a small part of
the ciphertext. However, the encryption mode is
a serial operation. To overcome this restriction,
ISO/IEC 10116 [16] has defined a variant of the
CBC mode which divides the plaintext into r par-
allel streams and applies the CBC mode to each of
these streams. This requires, however, r different
IV values.

A security proof of the CBC mode (with ran-
dom and secret IV) against an adversary who
has access to chosen plaintexts has been provided
by Bellare et al. [3]; it shows that if the block
cipher is secure in the sense that it is hard to
distinguish it from a random permutation, the
CBC mode offers secure encryption in the sense
that the ciphertext is random (which implies that
it does not provide the opponent additional in-
formation on the plaintext). The security result
breaks down if the opponent can obtain approxi-
mately q = 2n/2 plaintext/ciphertext pairs due to
a matching ciphertext attack [18]. This can be
seen as follows. Note that the ciphertext blocks
ci are random n-bit strings. After observing q
n-bit ciphertext blocks, one expects to find ap-
proximately q2/2n+1 pairs of matching ciphertexts
that is, indices (v, w) with cv = cw (see also the
birthday paradox). As a block cipher is a permu-
tation, this implies that the corresponding plain-
texts are equal, or pv ⊕ cv−1 = pw ⊕ cw−1 which can
be rewritten as pv ⊕ pw = cv−1 ⊕ cw−1. Hence, each
pair of matching ciphertexts leaks the sum of two

plaintext blocks. To preclude such a leakage, one
needs to impose that q � 2(n+1)/2 or q = α · 2n/2

where α is a small constant (say 10−3, which leads
to a collision probability of 1 in 2 million). If this
limit is reached, one needs to change the key. Note
that the proof only considers security against cho-
sen plaintext attacks; the CBC mode is not secure
if chosen ciphertext attacks are allowed. The secu-
rity against these attacks can be obtained by using
authenticated encryption.

For some applications, the ciphertext should
have exactly the same length as the plaintext,
hence padding methods cannot be used. Two
heuristic constructions have been proposed to ad-
dress this problem; they are not without problems
(both leak information in a chosen plaintext set-
ting). A first solution encrypts the last incomplete
block pt (of j < n bits) in OFB mode (cf. Section
“The output mode”):

ct = pt ⊕ rchop j(EK(ct−1)) .

A second solution is known as ciphertext stealing
[21]: one appends the rightmost n − j bits of ct−1
to the last block of j bits pt , to obtain a new n-bit
block:

ct−1 = EK(pt−1 ⊕ ct−2),
ct = EK(pt ‖ rchopn− j(ct−1)) .

For the last two blocks of the ciphertext, one keeps
only the leftmost j bits of ct−1 and n bits of ct .
This variant has the disadvantage that the last
block needs to be decrypted before the one but last
block.

It turns out that the common padding methods
are vulnerable to side channel attacks that require
chosen ciphertexts: an attacker who can submit
ciphertexts of her choice to a decryption oracle
can obtain information on the plaintext by noting
whether or not an error message is returned stat-
ing that the padding is incorrect. This was first
pointed out for symmetric encryption by Vaude-
nay in [24]; further results on concrete padding
schemes can be found in [8, 9, 23]. The specific
choice of the padding rule makes a difference: for
example, the simple padding rule described in the
introduction seems less vulnerable. Moreover, the
implementation can to some extent preclude these
attacks, for example by interrupting the session
after a few padding errors. However, the preferred
solution is the use of authenticated encryption.

THE OUTPUT FEEDBACK (OFB) MODE:
The OFB mode transforms a block cipher into a
synchronous stream cipher. This mode uses only
the encryption operation of the block cipher. It con-
sists of a finite state machine, which is initialized
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Fig. 3. The m-bit OFB mode of an n-bit block cipher

with an n-bit initial value or s0 = IV. The state
is encrypted and the encryption result is used as
key stream and fed back to the state (see also
Figure 3):

si = EK(si−1) and ci = pi ⊕ si, i = 1, 2, . . .

Treating an incomplete last block in the OFB mode
is very simple: one selects the leftmost m bits of the
last key word. The OFB mode can also be applied
when the strings pi and ci consist of m < n bits; in
that case one uses only the m leftmost bits of each
key word si . This results in a performance penalty
with a factor n/m.

It is essential for the security of the OFB mode
that the key stream does not repeat. It can be
shown that the average period equals n · 2n−1 bits
[14] and that the probability that an n-bit state
lies on a cycle of length < c is equal to c/2n. This
implies that after 2n/2 n-bit blocks one can distin-
guish the output of the OFB mode from a random
string (in a random string one expects to see rep-
etitions of n-bit blocks after 2n/2 blocks as a con-
sequence of the birthday paradox, but it is highly
unlikely that such repetitions occur in an OFB key
stream). This suggests that one should rekey the
OFB mode after α · 2n/2 n-bit blocks for a small
constant α. A repetition could also be induced in
a different way: if IV is chosen uniformly at ran-
dom for every message, the birthday paradox im-
plies that IV values will repeat with high probabil-
ity after approximately 2n/2 messages. The impact
of such a repetition is dramatic, since it will leak
the sum of all the plaintext blocks of the two mes-
sages encrypted with this IV value (for simplicity
it is assumed here that all messages have equal
length).

The main advantage of the OFB mode is that
it has no error propagation: errors in the ith ci-
phertext bit will only affect the ith plaintext bit.
The OFB mode does not allow for parallelism or
random access.

It can be shown that the OFB mode is secure
against chosen plaintext attacks if the block ci-
pher is secure in the sense that it is hard to dis-

tinguish it from a random permutation. The proof
requires that one changes the key after α · 2n/2 n-
bit blocks for small α (say 10−3).

Note that an early draft of [12] included a vari-
ant of the OFB mode were only m < n bits were
fed back to the state, which acted as a shift reg-
ister. However, this variant of the OFB mode has
an average period of about n · 2n/2 bits [11]. This
variant was removed because of this weakness.

THE COUNTER (CTR) MODE: The CTR mode
is another way to transform a block cipher into
a synchronous stream cipher. As the OFB mode,
this mode only uses the encryption operation of
the block cipher. It consists of a finite state ma-
chine, which is initialized with an n-bit integer IV.
The state is encrypted to obtain the key stream;
the state is updated as a counter mod 2n (see also
Figure 4):

ci = pi ⊕ EK(< (IV + i) mod 2n) >), i = 1, 2, . . .

The mapping < · > converts an n-bit integer to an
n-bit string. The processing of an incomplete final
block or of shorter blocks is the same as for the
OFB mode.

The period of the key stream is exactly n · 2n

bits. This implies that after 2n/2 n-bit blocks one
can distinguish the output of the CTR mode from
a random string (as for the OFB mode). This sug-
gests that one should rekey the CTR mode after
α · 2n/2 n-bit blocks for a small constant α. A re-
peating value of IV has the same risks as for the
OFB mode.

As the OFB mode, the CTR mode has no error
propagation. Moreover the CTR mode allows for
parallelism and for random access in both encryp-
tion and decryption.

It can be shown that the CTR mode is secure
against chosen plaintext attacks if the block ci-
pher is secure in the sense that it is hard to dis-
tinguish it from a random permutation [3]. Again
it is recommended to change the key after α · 2n/2

n-bit blocks for small α (say 10−3).
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Fig. 4. The m-bit CTR mode of an n-bit block cipher
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Fig. 5. The m-bit CFB mode of an n-bit block cipher

THE CIPHER FEEDBACK (CFB) MODE: The
CFB mode transforms a block cipher into a self-
synchronizing stream cipher. As the OFB and
CTR mode, this mode only uses the encryption op-
eration of the block cipher. It consists of a finite
state machine, which is initialized with an n-bit
initial value s0 = IV. The state is encrypted and
the leftmost m bits of the result are added to the
m-bit plaintext block; the resulting ciphertext is
fed back to the state (see also Figure 5):

ci = pi ⊕ lchopm(EK(si−1)),
si = lchopn−m(si−1)‖ ci, i = 1, 2, . . .

Treating an incomplete last block in the CFB mode
is very simple: one selects the required number of
bits from the output of the block cipher. The CFB
mode is a factor n/m times slower than the CBC
mode, since only m bits are used per encryption
operation. In practice one often uses m = 1 and
m = 8; this results in a significant speed penalty.

It can be shown that the CFB mode is secure
against chosen plaintext attacks if the block ci-
pher is secure in the sense that it is hard to distin-
guish it from a random permutation. A matching
ciphertext attack also applies to the CFB mode (cf.
Section “The cipher . . . mode”) [19]; the analysis is
more complex since one can now consider n-bit ci-
phertext blocks which are shifted over m positions.
To preclude leakage of information on the plain-
texts one needs to impose that the number q of
m-bit ciphertext blocks to which an opponent has
access satisfies q � 2(n+1)/2 or q = α · 2n/2 where
α is a small constant (say 10−3). If this limit is
reached, one needs to change the key.

The CFB decryption has a limited error propa-
gation: errors in the ith ciphertext block will be
copied into the ith plaintext block; about n sub-
sequent plaintext bits will be completely garbled,
since the error will stay for n/m steps in the state
register s. From then on the decryption will re-
cover. Moreover, if a multiple of m bits of the ci-
phertext are lost, synchronization will return as
soon as n consecutive correct ciphertext bits have

been received. Particularly when m = 1, this is
very attractive, since this allows for a recovery af-
ter loss of an arbitrary number of bits. The CFB
decryption allows for random access and parallel
processing, but the encryption process is serial.

ISO/IEC 10116 [16] specifies two extensions of
the CFB mode: a first extension allows to encrypt
plaintext blocks of length m′ < m; m − m′ ‘1’ bits
are then prepended to the ciphertext ci before feed-
ing it back to the state. This mode offers a bet-
ter speed, but increases the risk of a matching
ciphertext attack. For example, if n = 64, m = 8,
and m′ = 7, on expects repetitions of the state af-
ter 228 blocks, since the 64-bit state always con-
tains eight ‘1’ bits. A second extension allows for
a larger state s (for example of r · n bits). This al-
lows for parallel processing (with r processors) in
the CFB encryption, at the cost of r IVs, a delayed
error propagation and a slower synchronization.

Yet another variant of the CFB mode [1] im-
proves the efficiency by using all the bits of
EK(si−1). A new encryption is only calculated if all
bits of the n-bit block have been used or if a specific
pattern of fixed length is observed in the cipher-
text. The latter property allows resynchronization:
the shorter the pattern, the faster the resynchro-
nization, but the slower the performance.

OTHER MODES OF OPERATION: In the early
1990s, modes for multiple encryption of DES (see
Data Encryption Standard) were analyzed. The
simplest solution is to replace DES by triple-DES
and to use triple-DES in one of the five modes
discussed above. For triple-DES, these solutions
are known as the outer modes [17]. However, their
disadvantage is that one can only encrypt α · 2n/2

blocks with a single key for small α (for exam-
ple due to matching ciphertext attacks on CBC
and CFB mode). This motivated research on in-
ner modes, also known as interleaved or combined
modes, where the modes themselves are consid-
ered as primitives (e.g., inner-CBC for triple-DES
consists of three layers of single-DES in CBC
mode). Biham has analyzed all the 36 double and
216 triple interleaved modes [4, 5], where each
layer consists of ECB, OFB, CBC, CFB and the
inverses of CBC and CFB. His goal is to recover
the secret key (total break). He notes that by
allowing chosen plaintext and chosen ciphertext
attacks, “all triple modes of operation are theo-
retically not much more secure than a single en-
cryption.” The most secure schemes in this class
require for DES 267 chosen plaintexts or cipher-
texts, 275 encryptions, and 266 storage. Biham also
proposes a small set of triple modes, where a sin-
gle key stream is generated in OFB mode and
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exored before every encryption and after the last
encryption, and a few quadruple modes [4] with a
higher conjectured security. However, Wagner has
shown that if one allows chosen ciphertext/chosen
IV attacks, the security of all but two of these im-
proved modes with DES can be reduced to 256 en-
cryptions and between 2 and 232 chosen chosen-IV
texts [25]. A further analysis of the influence of the
constraints on the IVs has been provided by Hand-
schuh and Preneel [15]. The ANSI X9.52 standard
[2] has opted for the outer modes of triple-DES.
Coppersmith et al. propose the CBCM mode [10],
which is a quadruple mode; this mode has also
been included in ANSI X9.52. Biham and Knudsen
present a certificational attack on this mode with
DES requiring 265 chosen ciphertexts and mem-
ory that requires 258 encryptions [6]. In conclu-
sion, one can state that it seems possible to im-
prove significantly over the matching ciphertext
attacks. However, the security results strongly de-
pend on the model, security proofs have not been
found so far and the resulting schemes are rather
slow. It seems more appropriate to upgrade DES
to Rijndael/AES [13].

A second area of research is on how to encrypt
plaintexts from finite sets, which are not necessar-
ily of size 2n; this problem is partially addressed
by Davies and Price in [11]; a formal treatment
has been developed by Black and Rogaway in [7].

B. Preneel
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MODULAR ARITHMETIC

INTRODUCTION: Modular arithmetic is a key
ingredient of many public key crypto-systems. It
provides finite structures (called “rings”) which
have all the usual arithmetic operations of the
integers and which can be implemented without
difficulty using existing computer hardware. The
finiteness of the underlying sets means that they
appear to be randomly permuted by operations
such as exponentiation, but the permutation is
easily reversed by another exponentiation. For
suitably chosen cases, these operations perform
encryption and decryption or signature and verifi-
cation. Direct applications include RSA public-key
encryption and RSA digital signature scheme [17];
ElGamal public key encryption and the ElGamal
digital signature scheme [3]; the Fiat–Shamir id-
entification protocol [4]; the Schnorr Identification
Protocol [18]; and the Diffie–Hellman key agree-
ment [2].

Modular arithmetic is also used to construct
finite fields and in tests during prime generation
[9] (see also probabilistic primality test). Several
copies of the modular structures form higher di-
mensional objects in which lines, planes, and
curves can be constructed. These can be used to
perform elliptic curve cryptography (ECC) [8, 12]
and to construct threshold schemes threshold
cryptography [19].

There are many examples of modular arithmetic
in everyday life. It is applicable to almost any mea-
surement of a repeated, circular, or cyclic process.
Clock time is a typical example: seconds range
from 0 to 59 and just keep repeating; hours run
from 0 to 11 (or 23) and also keep repeating; days
run from Sunday (0, say) to Saturday (6, say).
These are examples of arithmetic modulo 60, 12
(or 24) and 7, respectively. Measuring angles in
degrees uses arithmetic modulo 360.

To understand arithmetic in modulus N, imag-
ine a line of length N units, where the whole num-
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Fig. 1. Geometric view of arithmetic modulo 12

ber points 0, . . . , N − 1 are labelled. Now connect
the two end points of the line so that it forms a cir-
cle of circumference N. Performing modular arith-
metic with respect to modulus N is equivalent to
arithmetic with the marked units on this circle.

An example for N = 12 is shown in Figure 1. If
one starts at number 0 and moves 14 units for-
ward, the number 2 is reached. This is written
14 = 2 (mod 12), and clearly 12 divides their differ-
ence 14 − 2. Every 12 is thrown away in this arith-
metic. Similarly, one can walk backwards 15 units
from 0 and end up at 9. Hence, −15 = 9 (mod 12).

Modular addition is the same as addition of
units on this circle. For example, if N = 12 and the
numbers 10 and 4 are added on this circle, the re-
sult is 2. This is because if one starts at position 10
and moves ahead 4 units, position 2 is reached. So
4 hours after 10 o’clock is 2 o’clock. This is written
10 + 4 = 2 (mod 12). We just keep the remainder
(or “residue”) after division by 12, i.e., 10 + 4 = 14
becomes 14 −12, namely 2.

The notation for modular arithmetic is almost
identical to that for ordinary (integer) arithmetic.
The main difference is that most expressions and
equations specify the modulus. Thus,

14 = 2 (mod 12)

states that 14 and 2 represent the same element
in a set which is called the ring of residues mod
12. When the modulus is clear, it may be omitted.
Then we write

14 ≡ 2.

The different symbol ≡ is needed because 14 and
2 are not equal as integers. The equation (or “con-
gruence”) is read as “14 is congruent to 2”. All
the integers in the set {. . . , −22, −10, 2, 14, 26, . . .}
represent the same residue class (or congruence
class) modulo 12 because they all give the same
remainder on division by 12, i.e., the difference be-
tween any two of them is a multiple of 12. In gen-
eral, the numbers A, A+N, A+2N, A+3N, . . . and
A−N, A−2N, A−3N, . . . are all equivalent modulo
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N. Normally we work with the least non-negative
representative of a class, 2 in this case, because of
the convenience of the unique choice when equal-
ity is tested, and because it takes up the least
space. (Note that some programming languages
incorrectly implement the modular reduction of
negative numbers by failing to take proper account
of the sign. The Microsoft Windows calculator cor-
rectly reduces negatives, but gives the greatest
non-positive value, namely −10 in our example.)

MODULAR ARITHMETIC OPERATIONS: Addi-
tion, subtraction and multiplication are performed
in exactly the same way as for integer arithmetic.
Strictly speaking, the arithmetic is performed on
the residue classes but, in practice, we just pick in-
tegers from the respective classes and work with
them instead. Thus,

7 × 11 + 3 = 80 = 8 (mod 12).

In the expression on the left, we have selected
the least non-negative residues to work with. The
result, 80, then requires a modular reduction to
obtain a least non-negative residue. Any represen-
tatives could be selected to perform the arithmetic.
The answer would always differ by at most a mul-
tiple of the modulus, and so it would always reduce
to the same value.

Hardware usually performs such reductions as
frequently as possible in order to stop results from
overflowing. Optimising integer arithmetic to per-
form modular arithmetic is the subject of much
research. Modular multiplication is one of the
most important areas of value to those implement-
ing cryptographic functions. Montgomery [13]
and Barrett [1] have created the most widely
used methods for modular multiplication (see also
Montgomery arithmetic). Another cryptographi-
cally important area is modular exponentia-
tion (see exponentiation algorithms) Such oper-
ations make data-dependent use of power. This
makes their use in embedded cryptosystems
(e.g., smart cards) susceptible to attack through
timing variations [6], compromising emana-
tions [15], and differential power analysis [7] (see
also timing attack, Radio Frequency attack, elec-
tromagnetic attack, side channel attacks, side
channel analysis, and smartcard tamper resis-
tance). Secure implementation of modular arith-
metic is therefore at least as important as effi-
ciency in such systems.

Addition, subtraction, and multiplication be-
have in the same way for residues as for integer
arithmetic. The usual identity, commutative, and
distributive laws hold, so that the set of residue
classes form a “ring” in the mathematical sense.
Thus,

� N ≡ 0 (mod N).
� A+ 0 ≡ A (mod N).
� 1×A ≡ A (mod N).
� if A ≡ B (mod N), then B ≡ A (mod N).
� if A ≡ B (mod N) and B ≡ C (mod N), then A ≡

C (mod N).
� if A ≡ B (mod N) and C ≡ D (mod N), then A+

C ≡ B + D (mod N).
� if A ≡ B (mod N) and C ≡ D (mod N), then A×

C ≡ B × D (mod N).
� A+ B ≡ B + A (mod N).
� A× B ≡ B × A (mod N).
� A+ (B + C) ≡ (A+ B) + C (mod N).
� A× (B × C) ≡ (A× B) × C (mod N).
� A× (B+ C) ≡ (A×B) + (A×C) (mod N).
However, division is generally a problem unless
the modulus is a prime. Since

10 = 2 × 5 = 2 × 11 (mod 12),

it is clear that division by 2 (mod 12) can pro-
duce more than one answer; it is not uniquely de-
fined. In fact, division by 2 (mod 12) is not possible
in some cases: 2x (mod 12) always gives an even
residue, so 3 (mod 12) cannot be divided by 2. It
is easy to show that division by A (mod N) is al-
ways well-defined precisely when A and N share
no common factor. Thus division by 7 is possible in
modulo 12, but not division by 2 or 3.

If 1 is divided by 7 (mod 12), the result is the
multiplicative inverse of 7. Since 7×7 = 1 (mod 12),
7 is its own inverse. Following the usual notation
of real numbers, we write 7−1 for this inverse. For
large numbers, the extended Euclidean algorithm
[5] is used to compute multiplicative inverses (see
Inversion in finite fields and rings).

Modular exponentiation (see exponentiation
algorithms) is the main process in most of the
cryptographic applications of this arithmetic. The
notation is identical to that for integers and real
numbers. CD (mod N) is D copies of C all multi-
plied together and reduced modulo N. As men-
tioned, the multiplicative inverse is denoted by an
exponent −1. Then the usual power laws, such as
xA×xB = xA+B (mod N), hold in the expected way.

When a composite modulus is involved, say N,
it is often easier to work modulo its factors. Usu-
ally a set of co-prime factors of N is chosen such
that the product is N. Solutions to the problem
for each of these factors can then be pieced to-
gether into a solution modulo N using the Chinese
Remainder Theorem (CRT) [14]. RSA cryptosys-
tems which store the private key can use CRT to
reduce the workload of decryption by a factor of 4.

MULTIPLICATIVE GROUPS AND EULER’S φ
FUNCTION: The numbers which are prime to
the modulus N have multiplicative inverses, as
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we noted above. This means that they form a
group under multiplication. Consequently, each
number X which is prime to N has an order
mod N which is the smallest positive integer n
such that Xn = 1(mod N). The Euler phi function
φ gives the number of elements in this group,
and it is a multiple of the order of each element.
So Xφ(N) = 1 (mod N) for X prime to N, and, in-
deed, Xkφ(N)+1 = X (mod N) for such X and any k.
This last is essentially what is known as Euler’s
Theorem. As an example, {1, 5, 7, 11} is the set
of residues prime to 12. So these form a multi-
plicative group of order φ(12) = 4 and 14 = 54 =
74 = 114 = 1 (mod 12). A special case of this re-
sult is Fermat’s “little” theorem which states that
XP−1 = 1 (mod P) for a prime P and integer X
which is not divisible by P. These are really the
main properties that are used in reducing the
cost of exponentiation in cryptosystems and in
probabilistic primality testing (see also Miller–
Rabin probabilistic primality test) [11, 16].

When N = PQ is the product of two distinct
primes P and Q, φ(N) = (P−1)(Q−1). RSA en-
cryption on plaintext M is performed with a public
exponent E to give ciphertext C defined by C =
ME (mod N). Illustrating this with N = 35, M = 17
and E = 5, we have C ≡ 175 ≡ (172)2×17 ≡
2892 × 17 ≡ 92 × 17 ≡ 81 × 17 ≡ 11 × 17 ≡ 187 ≡
12 (mod 35). The private decryption exponent D
must have the property that M = CD (mod N), i.e.,
MDE = M (mod N). From the above, we need a D
which satisfies DE = kφ(N)+1 for some k, i.e., D is
a solution to DE ≡ 1 mod (P−1)(Q−1). A solution
is obtained using the Euclidean algorithm [5]. For
the example, D = 5 since φ(35) = 24 and DE ≡
5×5 ≡ 1 (mod 24). So M ≡ 125 ≡ (122)2×12 ≡
1442×12 ≡ 42×12 ≡ 192 ≡ 17 (mod 35), as ex-
pected. RSA (see RSA public key encryption)
chooses moduli which are products of two primes
so that decryption works also for texts which are
not prime to the modulus. A good exercise for the
reader is to prove that this is really true. CRT is
useful in the proof.

PRIME FIELDS: When the modulus is a prime
number P, every residue except 0 is prime to the
modulus. Hence every nonzero number has a mul-
tiplicative inverse. So residues mod P form a field
with P elements. These prime fields are exam-
ples of finite fields [10]. Because every nonzero
has an inverse, the arithmetic of these fields is
very similar to that of the complex numbers and
it is possible to perform similar geometric con-
structions. They already form a very rich source
for cryptography, such as Diffie–Hellman key
agreement [2] and elliptic curve cryptography
[8, 12], and will undoubtedly form the basis

for many more cryptographic primitives in the
future.

S. Contini
Ç.K. Koç

C.D. Walter
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MODULAR ROOT

In the congruence xe ≡ y (mod n) (see modular
arithmetic), x is said to be an eth modular root of
y with respect to modulus n. For the cases that
are of interest to cryptography we shall assume
gcd(x, n) = gcd(y, n) = 1.

Computing modular roots is no more difficult
than finding the order of the multiplicative group
modulo n. In number theoretic terminology, this
value is known as Euler’s totient function, φ(n),
which is defined to be the number of integers in
{1, 2, . . . , n − 1} that are relatively prime to n. If
gcd (e, φ(n)) = 1, then there is either one or zero
solutions, depending upon whether y is in the mul-
tiplicative subgroup generated by x. Assuming it
is, the solution is obtained by raising both sides
of the congruence to the power e−1 (mod φ(n)). If
the gcd condition is not 1, then there may be more
than one solution. For example, consider the spe-
cial case of e = 2 and n an odd integer larger than
1. The congruence can have solutions only if y is
a quadratic residue modulo n. Furthermore, if x
is one solution, then −x is another, implying that
there are at least two distinct solutions.

Computing modular roots is easy when n is
prime since φ(n) = n − 1. The more interesting
case is when n is composite, where it is known as
the RSA problem. Since determining φ(n) is prov-
ably as difficult as factoring n, an important open
question is whether a method exists to compute
modular roots faster than factoring.

Scott Contini

MODULUS

The operand that the mod operation is computed
with respect to. For instance, in the congruence

a ≡ b mod n, the value n is the modulus. In
RSA public-key encryption and the RSA digital
signature scheme, the modulus is the integer that
is the product of two large primes.

See modular arithmetic.

Scott Contini

MONDEX

Mondex is an electronic cash solution now owned
by Mastercard. Developed in the second half of the
90s, today it is available as a Multos (card oper-
ationg system) application. The main feature of-
fered is that a Mondex smart card stores digital
cash in various currencies and may be used to pay
for goods at merchants equipped with a Mondex
retailer terminal, which transfers the payment
from the customer Mondex card to the merchant
Mondex card.

The chip on the Mondex card contains a program
called the Mondex purse application, or purse, that
stores the electronic cash and performs other Mon-
dex operations. The purse contains one or more
pockets, each storing the cash value for one indi-
vidual currency.

In addition, a Mondex wallet, a pocket sized unit
to store higher amounts of digital cash than the
card does, is part of the system. The wallet allows
a user to transfer between cards, and the a Mondex
balance reader, a small device, checks the current
balance on the Mondex Card. A Mondex ATM (Au-
tomated Teller Machine) is used to recharge cards
or transfer money back into the account, etc.

The Mondex card logs all transactions. It stores
a unique customer ID registered at the bank un-
der which the personal information on the cus-
tomer is stored. In particular, all transactions
can be traced. The Mondex solution uses digital
signature schemes for mutual authentication, but
the underlying protocols and techniques are pro-
prietary and not publicly available. On a world-
wide scale, the use is still (at the time of writing)
quite limited.

Peter Landrock

MONTGOMERY
ARITHMETIC

INTRODUCTION: In 1985, P.L. Montgomery in-
troduced an efficient algorithm [6] for computing
u = a · b (mod n) where a, b, and n are k-bit binary
numbers (see modular arithmetic). The algorithm
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is particularly suitable for implementation on
general-purpose computers (signal processors or
microprocessors) which are capable of performing
fast arithmetic modulo a power of 2. The Mont-
gomery reduction algorithm computes the result-
ing k-bit number u without performing a division
by the modulus n. Via an ingenious representa-
tion of the residue class modulo n, this algorithm
replaces division by n with division by a power of
2. The latter operation is easily accomplished on
a computer since the numbers are represented in
binary form. Assuming the modulus n is a k-bit
number, i.e., 2k−1 ≤ n < 2k, let r be 2k. The Mont-
gomery reduction algorithm requires that r and n
be relatively prime, i.e., gcd(r, n) = gcd(2k, n) = 1.
This requirement is satisfied if n is odd. In the fol-
lowing, we summarize the basic idea behind the
Montgomery reduction algorithm.

Given an integer a < n, we define its n-residue
or Montgomery representation with respect to r as

ā = a · r (mod n).

Clearly, the sum or difference of the Montgomery
representations of two numbers is the Mont-
gomery representation of their sum or difference
respectively:

ā + b = a + b (mod n)

and

ā − b = a − b (mod n)

It is straightforward to show that the set

{i · r (mod n) | 0 ≤ i ≤ n − 1}
is a complete residue system, i.e., it contains all
numbers between 0 and n − 1. Thus, there is a one-
to-one correspondence between the numbers in the
range 0 and n−1 and the numbers in the above set.
The Montgomery reduction algorithm exploits this
property by introducing a much faster multiplica-
tion routine which computes the n-residue of the
product of the two integers whose n-residues are
given. Given two n-residues ā and b̄, the Mont-
gomery product is defined as the scaled product

ū = ā · b̄ · r−1 (mod n),

where r−1 is the (multiplicative) inverse of r mod-
ulo n (see modular arithmetic and inversion finite
fields and rings), i.e., it is the number with the
property.

r−1 · r = 1 (mod n).

As the notation implies, the resulting number ū is
indeed the n-residue of the product

u = a · b (mod n)

since

ū = ā · b̄ · r−1 (mod n)
= (a · r ) · (b · r ) · r−1 (mod n)
= (a · b) · r (mod n).

In order to describe the Montgomery reduction al-
gorithm, we need an additional quantity, n′, which
is the integer with the property

r · r−1 − n · n′ = 1.

The integers r−1 and n′ can both be computed by
the extended Euclidean algorithm [2]. The Mont-
gomery product algorithm, which computes

ū = ā · b̄ · r−1 (mod n)

given ā and b̄, is given below:

function MonPro(ā, b̄)

Step 1. t := ā · b̄
Step 2. m := t · n′ (mod r )
Step 3. ū := (t + m · n)/r
Step 4. if ū ≥ n then return ū − n

else return ū

The most important feature of the Montgomery
product algorithm is that the operations involved
are multiplications modulo r and divisions by
r, both of which are intrinsically fast operations
since r is a power 2. The MonPro algorithm can
be used to compute the (normal) product u of a and
b modulo n, provided that n is odd:

function ModMul(a, b, n) {n is an odd number}

Step 1. Compute n′ using the extended Euclidean
algorithm.

Step 2. ā := a · r (mod n)
Step 3. b̄ := b · r (mod n)
Step 4. ū := MonPro(ā, b̄)
Step 5. u := MonPro(ū, 1)
Step 6. return u

A better algorithm can be given by observing the
property

MonPro(ā, b) = (a · r ) · b · r−1 = a · b (mod n),

which modifies the above algorithm to:

function ModMul(a, b, n) {n is an odd number}

Step 1. Compute n′ using the extended Euclidean
algorithm.

Step 2. ā := a · r (mod n)
Step 3. u := MonPro(ā, b)
Step 4. return u
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However, the preprocessing operations, namely
Steps 1 and 2, are rather time-consuming, espe-
cially the first. Since r is a power of 2, the second
step can be done using k repeated shift and sub-
tract operations. Thus, it is not a good idea to use
the Montgomery product computation algorithm
when a single modular multiplication is to be
performed.

MONTGOMERY EXPONENTIATION: The Mont-
gomery product algorithm is more suitable when
several modular multiplications are needed with
respect to the same modulus. Such is the case
when one needs to compute a modular expo-
nentiation, i.e., the computation of Me (mod n).
Algorithms for modular exponentiation (see
exponentiation algorithms) decompose the oper-
ation into a sequence of squarings and multi-
plications using a common modulus n. This is
where the Montgomery product operation Mon-
Pro finds its best use. In the following, we ex-
emplify modular exponentiation using the stan-
dard “square-and-multiply” method, i.e., the left-
to-right binary exponentiation method, with ei be-
ing the bit of index i in the k-bit exponent e:

function ModExp(M, e, n) {n is an odd number}

Step 1. Compute n′ using the extended Euclidean
algorithm.

Step 2. M̄ := M · r (mod n)
Step 3. x̄ := 1 · r (mod n)
Step 4. for i = k − 1 down to 0 do
Step 5. x̄ := MonPro(x̄, x̄)
Step 6. if ei = 1 then x̄ := MonPro(M̄, x̄)
Step 7. x := MonPro(x̄, 1)
Step 8. return x

Thus, we start with the ordinary residue M and
obtain its n-residue M̄ and the n-residue 1̄ of 1
using division-like operations, as described above.
However, once this preprocessing has been com-
pleted, the inner loop of the binary exponentiation
method uses the Montgomery product operation,
which performs only multiplications modulo 2k

and divisions by 2k. When the loop terminates,
we obtain the n-residue x̄ of the quantity x =
Me (mod n). The ordinary residue number x is ob-
tained from the n-residue by executing the Mon-
Pro function with arguments x̄ and 1. This is easily
shown to be correct since

x̄ = x · r (mod n)

immediately implies that

x = x̄ · r−1 (mod n) = x̄ · 1 · r−1 (mod n)
= MonPro(x̄, 1) .

The resulting algorithm is quite fast, as was
demonstrated by many researchers and engineers
who have implemented it; for example, see [1, 5].
However, this algorithm can be refined and made
more efficient, particularly when the numbers in-
volved are multiprecision integers. For example,
Dussé and Kaliski [1] gave improved algorithms,
including a simple and efficient method for com-
puting n′. In fact, any exponentiation algorithm
can be modified in the same way to make use
of MonPro: simply append the illustrated pre-
and post-processing (Steps 1–3 and 7) and replace
the normal modular multiplication operations in
the iterative loop with applications of MonPro
to the corresponding n-residues (Steps 4–6) in the
above.

Here, as an example, we show how to compute
x = 710 (mod 13) using the Montgomery binary ex-
ponentiation algorithm.
� Since n = 13, we take r = 24 = 16 > n.
� Step 1 of the ModExp routine: Computation of

n′:
Using the extended Euclidean algorithm, we de-
termine that 16 · 9 − 13 · 11 = 1, thus, r−1 = 9
and n′ = 11.

� Step 2: Computation of M̄:
Since M = 7, we have M̄ = M · r (mod n) =
7 · 16 (mod 13) = 8.

� Step 3: Computation of x̄ for x = 1:
We have x̄ = x · r (mod n) = 1 · 16 (mod 13) = 3.

� Step 4: The loop of ModExp:

ei Step 5 Step 6

1 MonPro(3, 3) = 3 MonPro(8, 3) = 8
0 MonPro(8, 8) = 4
1 MonPro(4, 4) = 1 MonPro(8, 1) = 7
0 MonPro(7, 7) = 12

Below we show one instance of the loop computa-
tion (Steps 5 and 6). Other instances are computed
similarly:
� Step 5: Computation of MonPro(3, 3) = 3:

t := 3 · 3 = 9
m := 9 · 11 (mod 16) = 3
u := (9 + 3 · 13)/16 = 48/16 = 3

� Step 6: Computation of MonPro(8, 3) = 8:
t := 8 · 3 = 24
m := 24 · 11 (mod 16) = 8
u := (24 + 8 · 13)/16 = 128/16 = 8

� Step 7 of the ModExp routine: x =
MonPro(12, 1) = 4
t := 12 · 1 = 12
m := 12 · 11 (mod 16) = 4
u := (12 + 4 · 13)/16 = 64/16 = 4

Thus, we obtain x = 4 as the result of the operation
710 (mod 13).
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EFFICIENT MONTGOMERY MULTIPLICATION:
The previous algorithm for Montgomery multipli-
cation is not efficient on a general purpose pro-
cessor in its stated form, and so perhaps only has
didactic value. Since we know that Montgomery
multiplication algorithm computes

MonPro(a, b) = abr−1 (mod n)

and r = 2k, we can give a more efficient bit-level
algorithm which computes exactly the same value

MonPro(a, b) = ab2−k (mod n)

as follows:

function MonPro (a, b) {n is odd and a, b, n < 2k}

Step 1. u := 0
Step 2. for i = k − 1 downto 0
Step 3. u := u + aib
Step 4. u := u + u0n
Step 5. u := u/2
Step 6. if u ≥ n then return u − n

else return u

where u0 is the least significant bit of u and ai is
the bit with index i in the binary representation of
a. The oddness of n guarantees that the division
in Step 5 is exact. This algorithm avoids the com-
putation of n′ since it proceeds bit-by-bit: it needs
only the least significant bit of n′, which is always 1
since n′ is odd because n is odd.

The equivalent word-level algorithm only needs
the least significant word n′

0 (w bits) of n′, which
can also be easily computed since

2k · 2−k − n · n′ = 1

implies

−n0 · n′
0 = 1 (mod 2w).

Therefore, we conclude that n′
0 is equal to −n−1

0
(mod2w) and it can be quickly computed by the ex-
tended Euclidean algorithm or table look-up since
it is only w bits (1 word) long. For the words (dig-
its) ai of a with index i and k = sw, the word-level
Montgomery algorithm is as follows:

function MonPro (a, b) {n is odd and a, b, n < 2sw}

Step 1. u := 0
Step 2. for i = s − 1 down to 0
Step 3. u := u + aib
Step 4. u := u + (−n−1

0 ) · u0 · n
Step 5. u := u/2w

Step 6. if u ≥ n then return u − n
else return u

This version of Montgomery multiplication is
the algorithm of choice for systolic array modular
multipliers [7] because, unlike classical modular
multiplication, completion of the carry propaga-
tion required in Step 3 does not prevent the start
of Step 4, which needs u0 from Step 3. Such systolic
arrays are extremely useful for fast SSL/TLS (see
Secure Socket Layer and Transport Layer Secu-
rity) servers, on the other hand, general-purpose
software implementations of Montgomery multi-
plication rely on algorithms [4]. In particular, the
Coarsely Integrated Operand Scanning (CIOS)
algorithm is the preferred one for single-thread
processors.

APPLICATION TO FINITE FIELDS: Since the in-
tegers modulo p form the finite field GF(p), these
algorithms are directly applicable for performing
multiplication in GF(p) by taking n = p. Similar
algorithms are also applicable for multiplication
in GF(2k), which is the finite field of polynomials
with coefficients in GF(2) modulo an irreducible
polynomial of degree k [3].

Montgomery squaring (required for exponentia-
tion) just uses MonPro with the arguments a and
b being the same. However, in fields of character-
istic 2 this is rather inefficient: all the bit products
aia j for i �= j cancel, leaving just the terms a2

i to
deal with. Then it may be appropriate to imple-
ment a modular operation ab2 for use in exponen-
tiation.

SECURE MONTGOMERY MULTIPLICATION: As
a result of the data-dependent conditional subtrac-
tion in the last step of MonPro, embedded crypto-
systems which make use of the above algorithms
can be subject to a timing attack which reveals
the secret key [10]. In the context of modular ex-
ponentiation, the final subtraction of each MonPro
should then be avoided [8]. With this step omitted,
all I/O to/from MonPro simply becomes bounded by
2n instead of n, but an extra loop iteration may be
required on account of the larger arguments [9].

Ç.K. Koç
C.D. Walter
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MOORE’S LAW

The phenomenal rise in computing power over the
past half century—which has driven the increas-
ing need for cryptography and security as covered
in this work—is due to an intense research and
development effort that has produced an essen-
tially exponential increase in the number of tran-
sistors than can fit on a chip, while maintaining a
constant chip cost.

Roughly speaking, the amount of computing
power available for a given cost has increased,
and continues to increase by a factor of 2 every 18
months to 2 years, a pattern called Moore’s Law
after Gordon Moore of Intel, who in 1965 [1] first
articulated this exponential model.

The implications to cryptography are two-fold.
First, the resources available to users are contin-
ually growing, so that users can readily employ
stronger and more complex cryptography. Second,
the resources available to opponents are also grow-
ing. Effectively, the strength of any cryptosystem
decreases by the equivalent of one symmetric-key
bit every 18 months—or 8 bits every 12 years—
posing a challenge to long-term security. This long-
term perspective on advances in (classical) com-

puting is one motivation for the large key sizes
currently being proposed for many cryptosystems,
such as the Advanced Encryption Standard (see
Rijndael/AES), which has a 128-bit symmetric key.

The benefit of Moore’s Law to users of cryptogra-
phy is much greater than the benefit to opponents,
because even a modest increase in computing
power has a much greater impact on the key sizes
that can be used, than on the key sizes that can
be broken. This is a consequence of the fact that
the methods available for using cryptosystems
are generally polynomial time, while the fastest
methods known for breaking cryptosystems are
exponential time. This contrast may well be inher-
ent to classical computing (see also quantum com-
puters). Quantum computing, on the other hand,
poses a more substantial potential threat in the
future, because methods have been discovered for
breaking many public-key cryptosystems in poly-
nomial time on a quantum computer [2]. Quan-
tum computers themselves are still in the research
phase, and it is not clear if and when a sufficiently
large quantum computer could be built. But if
one were built (perhaps sometime in the next 30
years?) the impact on cryptography and security
would be even more dramatic than the one Moore’s
Law has had so far.

Burt Kaliski
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MULTIPARTY
COMPUTATION

Let f denote a given n-ary function, and sup-
pose parties P1, . . . , Pn each hold an input value
x1, . . . , xn, respectively. A secure multiparty
computation for f is a joint protocol between par-
ties P1, . . . , Pn for computing y = f (x1, . . . , xn) se-
curely. That is, even when a certain fraction of the
parties is corrupted, (i) each party obtains the cor-
rect output value y and (ii) no information leaks
on the input values of the honest parties beyond
what is implied logically by the value of y and the
values of the inputs of the corrupted parties.

Conceptually, a secure multiparty computation
for function f can be viewed as an implementation
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of a trusted third party T, which, upon re-
ceipt of the input values x1, . . . , xn from parties
P1, . . . , Pn, respectively, produces the output value
y = f (x1, . . . , xn). Party T is trusted for (i) provid-
ing the correct value for y and (ii) ot revealing any
further information to parties P1, . . . , Pn.

A classical example is Yao’s millionaires prob-
lem (n = 2). Parties P1 and P2 are two million-
aires who want to see who is the richer one: writ-
ing x1, x2 for their respective wealths, they want
to evaluate the function f (x1, x2) = x1 > x2. They
could simply do so by telling each other the values
of x1 and x2 but obviously this way much more in-
formation than the value of x1 > x2 is revealed. A
secure two-party protocol allows them to compute
the value of x1 > x2 without leaking any further
information on x1 and x2. Electronic voting is an-
other example of a secure multiparty computation,
where f (x1, . . . , xn) = x1 + · · · + xn and xi ∈ {0, 1}
represent each party Pi ’s yes–no vote.

The theory of secure multiparty computation
shows that a protocol for evaluating a given func-
tion f securely can be found, as long as f is a
computable function, while imposing certain re-
strictions on the power of the corrupted parties,
who are collectively called the adversary. A first
distinction is whether the adversary is assumed
to be computationally restricted, or not. In the
cryptographic model, the adversary is assumed to
be polynomially restricted (that is, the adversary
is viewed as a probabilistic polynomial-time Tur-
ing machine). In the information-theoretic model
no such restriction is assumed for the adversary.
For the cryptographic model it suffices to assume
authentic channels for each pair of parties: the
messages exchanged over authentic channels can-
not be changed by other (corrupted) parties; using
encryption it is possible to hide the content of the
messages. For the information-theoretic model one
needs to assume a private (or, secure) channel is
available to each pair of parties: the messages ex-
changed over private channels cannot be seen at
all by other (corrupted) parties.

The adversary is called passive (or, honest-but-
curious, or semi-honest) if it only tries to deduce
information on the inputs of the honest parties
by inspecting all the information available to the
corrupted parties; the adversary is called active
(or, malicious) if it is also allowed to let the cor-
rupted parties deviate from the protocol in arbi-
trary ways. A further distinction is whether the
adversary is allowed to choose which parties to cor-
rupt adaptively. A static adversary must decide at
the start of the protocol which parties it chooses to
corrupt. An adaptive (or, dynamic) adversary may
decide during the protocol which parties it chooses

to corrupt; once corrupted, however, a party re-
mains so for the entire duration of the protocol.

A threshold (see threshold scheme) parameter
t, 1 ≤ t ≤ n, is used to indicate the maximum num-
ber of corrupted parties tolerated by a protocol
for secure multiparty computation. As long as the
number of corrupted parties does not exceed t, the
protocol protects the interests of the honest par-
ties. In terms of t, the main results for secure
multiparty computation are as follows, where in
each case the adversary may be adaptive. For the
cryptographic model, any t < n/2 is achievable for
an active adversary; for a passive adversary this
can be improved to t < n. For the information-
theoretic model, any t < n/3 is achievable for an
active adversary; for a passive adversary this can
be improved to t < n/2.

It is important to note that in case of an active
adversary, condition (ii) above saying that each
party obtains the correct output value y, can be
split into two further conditions. Namely, the con-
dition that each party actually receives an output
value and the condition that, if an output value
is received, then the output value is correct. If a
protocol guarantees that each party receives an
output value, the protocol is said to be robust.

The results above show that an honest majority
is required to deal with an active adversary (if ro-
bustness is required). Therefore these results are
not useful for the special case of two-party com-
putation: for two parties, an honest majority com-
prises all of the parties (t = 0, n = 2). For secure
two-party computation the property of robustness
is thus replaced by the property of fairness. A pro-
tocol for two-party computation is said to be fair,
if neither party can gain an advantage over the
other party by quitting the protocol prematurely.
For instance, a two-party protocol in which party
P1 learns the result first, and needs to send it to
party P2 is not fair, as P1 may simply skip sending
the result to P2. Solutions to resolve this problem
typically use a form of gradual release of a secret
value, where the output value is released bit by bit
and quitting by either party gives an advantage of
at most one bit over the other party.

There exists a vast body of literature on secure
multiparty computation. The paper by Yao [11]
(and also [12]) and subsequent papers [1–3, 5, 6,
8, 10] build foundations for general secure multi-
party computation, yielding the results mentioned
above for various settings. (See also verifiable
secret sharing). The strength of oblivious transfer
is stressed by the result of [9]. In a similar direc-
tion, the results of [4,7] show that threshold homo-
morphic cryptosystems provide a basis for efficient
general secure multiparty computation as well.
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A quick way to see why secure multiparty com-
putation is possible at all, runs as follows, follow-
ing [4, 7]. The basic primitive is a (probabilistic)
threshold homomorphic cryptosystems E, where
the private key is shared among parties P1, . . . , Pn.
Such a public key cryptosystem is homomorphic in
the sense that the product of two ciphertexts E(x)
and E(y) results in a ciphertext E(x + y), contain-
ing the sum of the values x and y. It is a thresh-
old cryptosystem in the sense that decryption of
a ciphertext E(x) is done by a joint protocol be-
tween P1, . . . , Pn, resulting in the value of x, and
as long as a majority of the parties is honest, ci-
phertexts will only be decrypted if a majority of
parties agrees to do so.

Suppose function f is to be evaluated at
x1, . . . , xn, where xi is the private input supplied
by party Pi , for i = 1, . . . , n. We may assume that
function f is represented as an arithmetic cir-
cuit consisting of addition gates and multiplication
gates (where additions and multiplications are de-
fined over ZN, the integers modulo N, for a fixed in-
teger N ≥ 2). The protocol for secure computation
of f then proceeds as follows. First, each party en-
crypts its private input value, yielding ciphertexts
E(x1), . . . , E(xn). The circuit is then evaluated gate
by gate, as described below, ultimately producing
E( f (x1, . . . , xn)) as encrypted output, from which
the value f (x1, . . . , xn) is obtained, using thresh-
old decryption.

The gates are evaluated as follows. An addition
gate takes as input two ciphertexts E(x) and E(y)
and produces as output a ciphertext E(x + y), sim-
ply using the homomorphic property of E. A multi-
plication gate also takes as input two ciphertexts
E(x) and E(y), but this time a protocol is required
to produce E(xy) as output value. We describe
the protocol for the passive (semi-honest) case,
omitting the zero-knowledge proofs to stop active
adversaries:
1. Each party Pi , 1 ≤ i ≤ n, picks a random value

di and broadcasts ciphertexts E(di) as well as
E(di y), where E(di y) can be computed easily
from di and E(y).

2. Let d = ∑n
i=1 di . Using the homomorphic prop-

erty of E, the parties compute ciphertext E(x +
d) = E(x)

∏n
i=1 E(di), from which they subse-

quently determine x + d, using threshold de-
cryption. From x + d and E(y) one may then
compute E((x + d)y). Finally, using E(dy) =∏n

i=1 E(di y), one obtains E(xy) = E((x + d)y)/
E(dy), which is the desired output.

Note that all computations on x, y, and di ’s are
done modulo N. Intuitively, the protocol is secure
because the only values ever decrypted—apart
from the output value f (x1, . . . , xn)—are values

x + d, where d is distributed uniformly at random
and chosen jointly by P1, . . . , Pn.

Berry Schoenmakers
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“Multiparty unconditionally secure protocols.” Pro-
ceedings of 20th Symposium on Theory of Comput-
ing (STOC’88). ACM Press, New York, 11–19.
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MULTIPLE ENCRYPTION

Composition of several ciphers is called multi-
ple encryption or cascade cipher. See also product
cipher.

Alex Biryukov

MULTIPRECISION
MULTIPLICATION

The integer multiplication operation lies at the
very heart of many cryptographic algorithms [5].
Naturally, tremendous effort went into develop-
ing efficient multiplication algorithms. The sim-
plest of such algorithms is the classical “gram-
mar school” multiplication method given as
follows:

Multiprecision Multiplication Algorithm
Input: positive integers u = (um−1um−2 . . . u1u0)B

and v = (vn−1vn−2 . . . v1v0)B
Output: The integer product t = u · v

For i = 0 to m + n + 1 do ti ← 0;
c ← 0 ;
For i = 0 to m do

For j = 0 to n do
(cs)B ← ti+ j + ui · v j + c ;
ti+ j ← s ;

End For
ti+n+1 ← c;

End For
Return (t)

The algorithm proceeds in a row-wise manner.
That is, it takes one digit of one operand and mul-
tiplies it with the digits of the other operand, in
turn appropriately shifting and accumulating the
product. The two digit intermediary result (cs)B
holds the value of the digit ti+ j and the carry digit
that will be propagated to the digit ti+ j+1 in the
next iteration of the inner loop. The subscript B
indicates that the digits are represented in radix-
B. As can be easily seen the number of digit
multiplications performed in the overall execution
of the algorithm is m · n. Hence, the time com-
plexity of the classical multiplication algorithm

grows with O(n2), where n denotes the size of the
operands.

The splitting technique introduced by
Karatsuba [3] (see Karatsuba algorithm) re-
duces the number of multiplications in exchange
of extra additions. The algorithm works by
splitting the two operands u and v into halves

u = u1 B + u0 and v = v1 B + v0,

where B = 2n/2 and n denotes the length of the
operands. First the following three multiplications
are computed:

d0 = u0v0

d1 = (u1 + u0)(v1 + v0)
d2 = u1v1.

Note that these multiplications are performed
with operands of half length. In comparison, the
grammar school method would have required the
computation of four multiplications. The product
u · v is formed by appropriately assembling the
three products together as follows

u · v = d0 + (d1 − d0 − d2)B + d2 B2.

In total, three multiplications, two additions, and
two subtractions are needed compared to the
four multiplications and one addition required by
the classical multiplication method. Hence, the
Karatsuba technique is preferable over the clas-
sical method whenever the cost of one multipli-
cation exceeds the cost of three additions (count-
ing additions and subtraction as same). The true
power of the Karatsuba method is realized when
recursively applied to all partial product compu-
tations in a multiprecision multiplication opera-
tion. For the classical Karatsuba algorithm, the
length of the operands must be powers of two. An
approximate analysis presented in [4] shows that
a multiplication operation of two n bit numbers
may be accomplished by O(nlog2 3) bit operations
by the recursive application of the Karatsuba al-
gorithm. More details and a generalization of the
classical Karatsuba method can be found in the
entry Karatsuba algorithm.

The subquadratic complexity of the Karatsuba
algorithm makes it more attractive than the clas-
sical multiplication algorithm. However, in its im-
plementation there are inconveniences one will
encounter. For instance, in the computation of
d1, the operands u1 + u0 and v1 + v0 may both
have an extra bit due to a carry-out in the ad-
dition. Another issue is the memory requirement
for keeping temporary results during the recur-
sion. In practice, a hybrid approach in which first
the Karatsuba algorithm is applied recursively
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for several levels followed by the application of
the classical multiplication algorithm might alle-
viate these problems and still provide an efficient
implementation.

There is a wealth of multiplication algorithms
beyond the grammar school and the Karatsuba
multiplication algorithms. The key is to realize the
close connection between the linear convolution
and multiplication operations. Consider the multi-
plication of two polynomials. When two sequences
are constructed using the polynomial coefficients
and when their linear convolution is computed,
the elements of the resulting sequence give the
coefficients of the product of the two polynomials.
Hence, any linear convolution algorithm may eas-
ily be adapted to compute polynomial multiplica-
tions. Furthermore, evaluating the operand and
the product polynomials at x = B = 2w, where w
is the digit size, yields an algorithm for integer
multiplication.

For instance, the elements of a 3-point convo-
lution of the sequences {u0, u1, u2} and {v0, v1, v2}
are given as

w0 = u0v0

w1 = u1v0 + u0v1

w2 = u2v0 + u1v1 + u0v2

w3 = u2v1 + u1v2

w4 = u2v2.

These expressions are exactly in the form of the
coefficients of the product of the two polynomi-
als U(x) = u0 + u1x + u2x2 and V(x) = v0 + v1x +
v2x2. Evaluating the product polynomial for a par-
ticular radix size B = 2w gives an algorithm for in-
teger multiplication where polynomial coefficients
represent the digits of the two integer operands.
Note that, the coefficients wi may not exactly fit
into a digit. Therefore, a digit carry-over operation
needs to be performed through the entire length
of the product in the final integer conversion step.

A well known convolution algorithm was in-
troduced by Toom and Cook [1]. The Toom–Cook
algorithm works by treating the two operands
as polynomials U(x) andV(x) of maximum de-
gree k − 1. This is done by partitioning the inte-
ger representations into k digits. Both polynomi-
als are evaluated at 2k − 1 points and multiplied
together.

W(xi) = U(xi) · V(xi), i = 0, 1, . . . , 2k − 2 .

This gives the evaluation of the product U(x)V(x)
at 2k − 1 points which are used to form 2k − 1
equations with the coefficients of W(x) as un-
knowns. Solving the linear system of equations
gives the coefficients of the product W(x) = U(x) ·

V(x). Finally, W(x) is evaluated at B = 2w and the
product is obtained in integer form.

EXAMPLE 1 (Toom–Cook multiplication). We
derive a 3-point Toom–Cook multiplication algo-
rithm. Let

U(x) = u0 + u1x + u2x2

and

V(x) = v0 + v1x + v2x2.

We arbitrarily pick a sequence S of 2k − 1 = 5
points. Let S = {0, 1, 2, −1, −2}. We then evaluate
U(x) and V(x) for each element in S and compute
their products as follows:

W(0) = U(0)V(0) = u0v0

W(1) = U(1)V(1) = (u0 + u1 + u2)(v0 + v1 + v2)
W(2) = U(2)V(2) = (u0 + 2u1 + 4u2)

(v0 + 2v1 + 4v2)
W(−1) = U(−1)V(−1) = (u0 − u1 + u2)

(v0 − v1 + v2)
W(−2) = U(−2)V(−2) = (u0 − 2u1 + 4u2)

(v0 − 2v1 + 4v2).

These give us the evaluations of the product poly-
nomial

W(x) = w0 + w1x + w2x2 + w3x3 + w4x4.

Note that when all computations are done sym-
bolically, the evaluations of W(x) are products of
linear expressions of the coefficients of U(x) and
V(x). In the final step we relate these products to
the coefficients of W(x) by forming the following
system of equations:

W(0) = w0

W(1) = w0 + w1 + w2 + w3 + w4

W(2) = w0 + 2w1 + 4w2 + 8w3 + 16w4

W(−1) = w0 − w1 + w2 − w3 + w4

W(−2) = w0 − 2w1 + 4w2 − 8w3 + 16w4.

By solving the equations the coefficients are ob-
tained as follows:

w0 = W(0)
w1 = 2

3 W(1) − 1
12 W(2) − 2

3 W(−1) + 1
12 W(−2)

w2 = − 5
4 W(0) + 2

3 W(1) − 1
24 W(2) + 2

3 W(−1)

− 1
24 W(−2)

w3 = − 1
6 W(1) + 1

12 W(2) + 1
6 W(−1) − 1

12 W(−2)

w4 = 1
4 W(0) − 1

6 W(1) + 1
24 W(2) − 1

6 W(−1)

+ 1
24 W(−2).

With the equations relating the coefficients of the
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product W(x) = U(x)V(x) to the coefficients of the
input operands, the multiplication algorithm is
obtained.

As seen in the example above only in the second
step of Toom–Cook’s algorithm multiplications are
computed. The number of multiplications is fixed
as 2n − 1. In the initial polynomial evaluation step
multiplications with small integers are performed
which are ignored here, since they may be imple-
mented with inexpensive shifts and additions. In
the final step where the coefficients of W(x) are
computed divisions by small integers are required.
In fact as the length of the convolution grows the
fractions grow radically. Considering a recursive
implementation of the Toom–Cook algorithm the
complexity can be shown to be O(nlogk (2k−1)) [4]. By
choosing appropriately large k, the complexity can
be brought close to O(n1+ε) for any ε > 0 value. It
should be noted, however, that this complexity fig-
ure ignores the additions as well multiplications
and divisions with small constant integers. The
number of such operations becomes more serious
as k grows (and ε decreases).

As noted before, the multiplication operation
is equivalent to linear convolution. This im-
mediately suggests a Fourier Transform based
approach for multiplication. One advantage of
this technique over the Toom–Cook method and
other direct convolution methods is in the lower
number of additions and constant multiplica-
tions which were ignored in the complexity fig-
ure. But more importantly, it allows one to utilize
Fast Fourier Transform techniques and achieve
O(n log n) speed.

The Discrete Fourier Transform of a sequence is
defined as follows:

DEFINITION 1 (Discrete Fourier Transform
(DFT)). Let s be a sequence of length d consist-
ing of elements from an algebraic domain. Let g
be a primitive d-th root of unity in that domain,
i.e., gd = 1 and let d be invertible in the domain.
Then the Discrete Fourier Transform of s is de-
fined as the sequence S whose elements are given
as

Sk =
d−1∑
i=0

si gik.

The inverse transform is defined as

sk = 1
d

d−1∑
i=0

Si g−ik.

There are many choices for the domain of the
transformation such as a complex field, a finite

field, or an integer ring. If the domain is a complex
field, floating point operations may be needed and
special attention must be given to handle round-
ing errors. If the domain is chosen as a finite field,
than modular reductions become necessary. The
third choice, an integer ring, gives more flexibil-
ity in choosing the modulus. In practice, special
moduli of form 2k ± 1 may be chosen to eliminate
costly reductions.

After a domain is chosen and a DFT is set up
as defined above, the following outlines an integer
multiplication algorithm:
1. Partition both integer operands into equal

sized blocks treating them as sequence ele-
ments.

2. Compute the DFT of both sequences.
3. Compute the componentwise product of the

DFT of the two sequences.
4. Compute the inverse DFT of the product se-

quence.
5. Treat the sequence elements as the digits of the

integer product.
The asssociated algorithm is given below:

DFT Based Integer Multiplication Algorithm
Input: positive integers u = (um−1um−2 . . . u1u0)B

and v = (vn−1vn−2 . . . v1v0)B
Output: The integer product w = u · v

For k = 0 to d − 1 do
Uk ← ∑d−1

i=0 ui gik ;
Vk ← ∑d−1

i=0 vi gik ;
End For
For k = 0 to d − 1 do

Wk ← Uk · Vk ;
End For
For k = 0 to d − 1 do

wk = 1
d

∑d−1
i=0 Wi g−ik ;

End For
Return (w)

While the overall method is quite simple, an effi-
cient algorithm is obtained only if the parameters
are carefully chosen and a particular Fast Fourier
Transform can be applied for computing the two
forward transforms and the final inverse trans-
form.

In an earlier work Shönhage and Strassen [6]
introduced a DFT-based integer multiplication
method that achieves an exciting asymptotic com-
plexity of O(n log n log log n). The Shönhage and
Strassen method is based on the Fermat number
transform where the domain of the DFT is the in-
teger ring Z2m+1. In this method the DFT is re-
cursively turned into shorter DFT’s of the same
kind. Due to the special pseudo-Mersenne struc-
ture of the modulus 2m + 1, the method requires no
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multiplications for implementing the reductions.
There are many other methods derived from spe-
cial DFT and convolution algorithms. For an ex-
cellent survey on DFT based multiplication algo-
rithms the reader is referred to [2].

Despite the tremendous improvement in the
asymptotic complexity, the majority of DFT based
algorithms have a large computational overhead
associated with the forward and inverse trans-
formations. Therefore they only become effective
when the operands are longer than several thou-
sand bits.

Finally, it is worth recognizing the relationship
between the multiplication and squaring opera-
tions. Although highly redundant, a multiplica-
tion algorithm may be used in a trivial manner to
accomplish a squaring. On the other hand, an inte-
ger multiplication may be achieved via two squar-
ings by using the following simple trick:

u · v = 1
4 [(u + v)2 − (u − v)2].

This identity may be useful when a fast squar-
ing algorithm is available. See also Multiprecision
Squaring.

Berk Sunar
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MULTIPRECISION
SQUARING

The integer squaring operation is a crucial oper-
ation for many cryptographic primitives. Squar-
ing plays a central role in public-key cryptography

where operations such as exponentiation (see
exponentiation methods) require a large num-
ber of integer squarings to be computed. The
squaring operation can be thought of as a spe-
cial case of multiplication, where both operands
are the same. In this case, the multiplication
algorithm has symmetries which are exploited.
Consider a “grammar-school” multiplication per-
formed with 4-digit operands u = (u3u2u1u0)B and
v = (v3v2v1v0)B in radix B = 2w notation. For u = v
and vi = ui the partial product array is as follows:

u3 u2 u1 u0
× u3 u2 u1 u0

u3u0 u2u0 u1u0 u2
0

u3u1 u2u1 u2
1 u0u1

u3u2 u2
2 u1u2 u0u2

u2
3 u2u3 u1u3 u0u3

We observe that the array is symmetric across
the diagonal, and odd numbered columns have a
squared middle term in their diagonal. Hence, in a
column only about half of the multiplication needs
to be computed. The result is multiplied by two,
and if the column is odd numbered, the squared
term is added. In the following we present a mul-
tiprecision squaring algorithm that is based on the
algorithms given in [1,2]

Multiprecision Squaring Algorithm
Input: positive integer u = (um−1um−2 . . . u1u0)B
Output: The integer t = u2

For i = 0 to 2m − 1 do ti → 0 ;
For i = 0 to m − 1 do

(cs)B ← t2i + u2
i ;

t2i ← s;
For j = i + 1 to m − 1 do

(cs)B ← ti+ j + 2ui · uj + c ;
ti+ j ← s ;

End For
ti+m ← s;

End For
(cs)B ← t2m−2 + u2

m−1 ;
t2m−2 ← s ; t2m−1 ← c ;

Return (t)

Note that product sum operation performed in
the inner loop may may not fit into a double digit
(cs)B and may require an extra bit due to the
term 2uiu j. The total number of multiplications
performed in the algorithm is easily seen to be
(m2 + m)/2. The multiplication by the constant
2 in the inner loop of the algorithm may be imple-
mented by simple shift and hence is not counted
as a multiplication. See also Multiprecision Multi-
plication.

Berk Sunar
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MULTISET ATTACK

Multiset attack is a generic class of attacks which
covers several recently designed (typically chosen
plaintext attacks), which appeared in the litera-
ture under three different names: the Square at-
tack [1], the saturation attack [4], the integral
cryptanalysis [3]. The first such attack was dis-
covered by Knudsen during analysis of the cipher
Square [1] and was thus called “Square attack”.
A similar attack was used by Lucks [4] against
the cipher Rijndael/AES and called “saturation”
attack. Later Biryukov and Shamir have shown an
attack of similar type breaking arbitrary 3 round
SPN (see also substitution–permutation (SP)
network) with secret components (the so-called
SASAS scheme, which consists of five layers
of substitutions and affine transforms). Gilbert–
Minier’s “collision” attack [2] on 7-rounds of
Rijndael as well as Knudsen–Wagner’s [3] “inte-
gral” cryptanalysis of 5-rounds of MISTY1 also fall
into the same class.

The main feature behind these attacks is that
unlike a differential attack in which the attacker
studies the behavior of pairs of encryptions, in
a multiset attack the attacker looks at a larger,
carefully chosen set of encryptions, in which parts
of the input text forms a multiset. A multiset is

different from a regular notion of a set, since it al-
lows the same element to appear multiple times.
The element of a multiset is thus a pair (value,
multiplicity), where value is the value of the ele-
ment and multiplicity counts the number of times
this value appears in the multiset. The attacker
then studies the propagation of multisets through
the cipher. The effect of the cipher on a multi-
set is in the changing of values of the elements
but preserving some of the multiset properties
like: multiplicity; or “integral” (i.e., sum of all the
components); or causing a reduced set of values
which would increase the probability of birthday-
like events inside the cipher.

Multiset attacks are currently the best known
attacks for the AES (see Rijndael/AES) due to its
byte-wise structure. This new type of attack is a
promising direction for future research.

Alex Biryukov
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NEEDHAM–SCHROEDER
PROTOCOLS

In 1978, Needham and Schroeder [2] proposed
symmetric and public key based protocols for key
establishment (more specifically, key transport)
(see symmetric cryptosystem, public key crypto-
graphy, or [1]). Their protocols satisfy a number of
properties, including mutual identification of the
participants, key authentication, and the estab-
lishment of a shared key. Of historical importance,
the Needham–Schroeder symmetric key protocol
forms the basis for the Kerberos authentication
protocol [1].

The symmetric key based version (see symmet-
ric cryptosystem) employs a trusted server T (see
Trusted Third Party) that is online, or active dur-
ing the key establishment. In this protocol, user
A wishes to establish a key with user B, and ini-
tiates a protocol with T for this purpose. Both A
and B (as well as any other user that will interact
with T) respectively share symmetric keys KA and
KB with T. At a high level, this protocol involves A
securely interacting with T to establish a shared
key K, followed by A securely sharing K with B.

In more detail, the symmetric key based version
of Needham–Schroeder proceeds as follows:
1. A sends T a message containing its identifier

IA, an identifier for A’s intended communicant
B, IB, and a nonce NA (see Challenge–Response
Identification) whose purpose is explained
below.

2. T returns to A a message symmetrically en-
crypted using KA. This encrypted message con-
tains NA, IB, K (the symmetric key that A will
use to securely communicate with B), and a
message MB specifically encrypted for B, con-
taining the key K and IA.

3. A decrypts the received message from T, en-
sures that NA and IB match those originally
sent to T, and then forwards the message MB
to B.

4. Upon receipt, B decrypts MB and ensures it con-
tains IA. Using K, B selects a nonce NB and en-
crypts and sends the encrypted nonce to A.

5. A decrypts, subtracts 1 from the nonce value,
and returns the result to B, encrypted with K.

6. B ensures that A was able to decrypt and sub-
tract 1 from the nonce before using K for further
secure communications with A.

Steps 1–3 establish K for both A and B. A includes

a nonce NA in step 1 to ensure that an attacker
does not repeat (from an earlier session) the
response received from T in step 2 (see Replay
Attack). An explicitly includes the identifier IB in
step 1 to ensure that an attacker does not cause T
to encrypt K for the attacker, rather than B. Steps
4 and 5 serve to provide mutual key authentica-
tion. A shortcoming of this protocol is that B
is not able to determine the freshness of K. In
particular, an attacker with knowledge of K from
a previous session can replay step 3 to provide B
with the old key, and then impersonate A at steps
4 and 5. Kerberos uses time stamps to avoid this
shortcoming.

The public key based version of Needham–
Schroeder (see public key cryptography) does not
require an actively involved trusted third party
T, although it does require some process to ensure
the authenticity of the shared public keys. Assum-
ing A and B have access to and are able to validate
each others’ public keys, the protocol proceeds as
follows.
1. A selects a random symmetric key KA, encrypts

this value using the public key of B, and sends
the result to B.

2. Upon receipt, B recovers KA, similarly selects a
symmetric key KB, encrypts the concatenation
of both symmetric keys using the public key of
A, and sends the result to A.

3. A recovers both KA and KB, ensures that KA
matches the previously sent value, and returns
KB to B, encrypted using the public key of B.

At the end of this exchange, both A and B have
copies of KA and KB. They can then compute a
shared session key K as a function of both KA and
KB.

It should be noted that the protocols above do
not necessarily correspond with those originally
presented by Needham and Schroeder [2], though
they represent the most commonly accepted de-
scriptions.

Mike Just

References

[1] Menezes, A., P. van Oorschot, and S. Vanstone
(1997). Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL.

[2] Needham, R.M. and M.D. Schroeder (1978). “Using
encryption for authentication in large networks of
computers.” Communications of the ACM, 21, 993–
999.

407



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 13:29

408 NESSIE project

NESSIE PROJECT
INTRODUCTION: NESSIE (New European
Schemes for Signature, Integrity and Encryption)
[19] was a research project within the Informa-
tion Societies Technology (IST) Programme of
the European Commission (IST-1999-12324). The
seven NESSIE participants were: Katholieke
Universiteit Leuven (Belgium), coordinator; Ecole
Normale Supérieure (France); Royal Holloway,
University of London (UK); Siemens Aktienge-
sellschaft (Germany); Technion—Israel Institute
of Technology (Israel); Université Catholique de
Louvain (Belgium); and Universitetet i Bergen
(Norway).

NESSIE was a 40 month project, which started
in January 2000. The goal of the NESSIE project
was to put forward a portfolio of strong crypto-
graphic algorithms that has been obtained after
an open call and been evaluated using a transpar-
ent and open evaluation process. NESSIE has also
developed a software toolbox to support the secu-
rity and performance evaluation.

In February 2000, the NESSIE project has pub-
lished an open call for a broad set of algorithms
providing confidentiality, data integrity, and
authentication. These algorithms include block
ciphers (not restricted to 128-bit block ciphers),
synchronous and self-synchronizing stream
ciphers, hash functions, MAC algorithms, digi-
tal signature schemes, public-key encryption
schemes, and identification schemes. In Septem-
ber 2000, more than 40 algorithms were received
from major players in response to the NESSIE call.
Two-thirds of the submissions came from industry,
and there was some industry involvement in every
five out of six algorithms. During 12 months, a first
security and performance evaluation phase took
place, which was supported by contributions from
more than 50 external researchers. In September
2001, the selection of a subset of 25 algorithms for
the second phase was announced. In the second
phase of the project, the remaining algorithms
were subjected to a thorough security evaluation,
combined with a performance evaluation that
will produce realistic performance estimates of
optimized implementations. The selection of the
portfolio of 17 recommended algorithms was an-
nounced in February 2003. This article discusses
the NESSIE process and its results.

THE NESSIE CALL: In the first year of
the project, an open call for the submission of
cryptographic algorithms, as well as for evalua-
tion methodologies for these algorithms has been
launched. The scope of this call has been defined

together with the project industry board (consist-
ing of more than 25 companies) and was published
in February 2000. The deadline for submissions
was September 29, 2000. In response to this call
NESSIE received 40 submissions, all of which met
the submission requirements.

The NESSIE call includes a request for a broad
set of cryptographic algorithms.While key man-
agement protocols are also very important, it was
felt that they should be excluded from the call,
as the scope of the call is already rather wide.
The scope of the NESSIE call is much wider
than that of the Rijndael/AES call launched by
NIST [20], which was restricted to 128-bit block
ciphers. It is comparable to that of the RACE
Project RIPE (Race Integrity Primitives Evalua-
tion, 1988–1992) [24] (confidentiality algorithms
were excluded from RIPE for political reasons)
and that of the Japanese CRYPTREC project [6]
(which also includes key establishment protocols
and pseudorandom number generation). Another
difference is that both the Rijndael/AES compe-
tition and CRYPTREC intend to produce algo-
rithms for government standards. The results of
NESSIE will not be adopted by any government
or by the European commission and will not be-
come NESSIE Standards. However, the intention
is that relevant standardization bodies [8, 9] will
adopt these results.

The call also specified the main selection crite-
ria which will be used to evaluate the proposals.
These criteria are long-term security, market re-
quirements, efficiency, and flexibility. Submissions
could be targeted toward a specific environment
(such as 8-bit smartcards or high-end 64-bit pro-
cessors), but it is clearly an advantage to offer a
wide flexibility of use. Security is put forward as
the most important criterion, as security of a cryp-
tographic algorithm is essential to achieve confi-
dence and to build consensus.

For the security requirements of symmetric al-
gorithms, two main security levels are specified,
named normal and high. The minimal require-
ments for a symmetric algorithm to attain either
the normal or high security level depend on the
key length, internal memory, or output length of
the algorithm. For block ciphers a third security
level, normal-legacy, is specified, with a block size
of 64 bits compared to 128 bits for the normal and
high security levels. The motivation for this re-
quest is applications such as UMTS/3GPP, which
intend to use 64-bit block ciphers for the next 10–
15 years (to reduce hardware costs). For the asym-
metric algorithms, a varying security levelis ac-
cepted, with a minimum of about 280 Triple-DES
encryptions.
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If selected by NESSIE, the algorithm should
preferably be available royalty-free. If this is not
possible, then access should be nondiscrimina-
tory. The submitter should state the position con-
cerning intellectual property and should update it
when necessary.

The submission requirements were much less
stringent than for the AES competition, particu-
larly in terms of the requirement for software im-
plementations (only “portable C” is mandatory).

THE EVALUATION PROCESS: The NESSIE eval-
uation process was an open process: it consisted of
both internal evaluations by the project partners
and external evaluations by submitters, project in-
dustry board members, and outsiders. All infor-
mation w.r.t. the evaluation has been made pub-
lic. Information was exchanged through a Web
site (with a discussion forum); four openworkshops
were held to stimulate interactions and to dissem-
inate the results.

The evaluation process was divided into two
phases: after one year, the most promising sub-
missions were selected and subjected to a more in-
depth evaluation during the second phase. At the
end of the first phase, minor modifications could
be made to the algorithms provided that they did
not invalidate the previous analysis.

The evaluation consisted of a security evalua-
tion and a performance evaluation. Software have
been developed to support this evaluation process.
An additional criterion, which has only been taken
into account at the very end, was the intellectual
property status of the submission.

Security Evaluation

Each algorithm has been subjected to a thorough
evaluation, according to the state of the art of
cryptanalysis in the specific domain. An algorithm
could not be selected if it failed to meet the se-
curity level required in the call or if it failed to
meet a security claim made by the designer. Every
weakness which has been identified has been veri-
fied independently. Moreover, if available, security
proofs of algorithms have been checked infull de-
tail. This has resulted in an extensive security re-
port of more than 300 pages in [23]. The security
of the algorithm was clearly the most important
aspect of the evaluation.

Performance Evaluation

The performance has been evaluated for a broad
range of platforms, taking into account both soft-
ware and hardware implementations. First of all

a theoretical approach has been established. Each
algorithm was dissected into three parts: setup
(independent of key and data), precomputations
(independent of data, e.g., key schedule), and the
algorithm itself (that must be repeated for every
use). Next a set of test platforms has been defined
on which each candidate may be tested: 32-bit and
64-bit machines, 8-bit smartcards, andField Pro-
grammable Gate Arrays (FPGAs). Then rules have
been established which specify how performance
should be measured on these platforms; this in-
cludes the definition of a custom designed API
for each algorithm. The limited resources of the
project did not allow for the evaluation of dedi-
cated hardware implementations (ASICs).

For 32-bit and 64-bit machines, extensive tests
have been run on 30 platforms (including Intel
Pentium with MS Windows and Linux, Compaq
Alpha, Sun Sparc, Apple PowerPC). Optimized C
code has been developed and compared to Assem-
bly language results provided by the submitters
and by external parties. For smart cards, efforts
have been concentrated on legacy block ciphers
(with 64-bit blocks), digital signature schemes,
and the identification scheme (note that only
one identification scheme has been submitted).
For FPGAs, benchmarking efforts have been fo-
cused on legacy block ciphers and digital signature
schemes.

The project has attempted to evaluate to which
extent implementations could be made more resis-
tant against side channel attacks (such as timing
attacks [14], power attacks [15], and fault analysis
[3, 4]).

Tools

The NESSIE project has developed two types of
tools. The general tools are not specific for the algo-
rithms to be analyzed. Special tools, which are spe-
cific for the analysis of one algorithm, have been
developed when a special tool was required for the
cryptanalysis of an algorithm.

For the evaluation of the symmetric submis-
sions, a comprehensive set of general tools was
available within the project. These tools are in
part based on an improved version of the statis-
tical tools developed by the RIPE (RACE Integrity
Primitives Evaluation) project [24]. As expected,
all the submitted algorithms passed these tests.

In September 2000, the US NIST published a
suite of statistical tests for the evaluation of se-
quences of random or pseudo-random bits; this
document has been revised in December 2000 [21].
A careful comparison has been made between the
RIPE and NIST test suites.
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The NESSIE project has also developed a new
generic tool to analyze block ciphers with differen-
tial [2] and linear cryptanalysis [17]. This tool is
based on a general description language for block
ciphers.

THE NESSIE SUBMISSIONS

Response to the NESSIE Call

The cryptographic community has responded very
enthusiastically to the call. Thirty-nine algo-
rithms have been received (43 when counting vari-
ants) along with one proposal for a testing method-
ology. After an interaction process, which took
about 1 month, all submissions complied with the
requirements of the call. The 26 symmetric algo-
rithms include 17 block ciphers, which is proba-
bly not a surprise given the increased attention
to block cipher design and evaluation as a conse-
quence of the AES competition organized by NIST:
� Six 64-bit block ciphers: CS-Cipher, Hierocrypt-

L1, IDEA, Khazad, MISTY1 and Nimbus;
� Seven 128-bit block ciphers: Anubis, Camel-

lia, Grand Cru, Hierocrypt-3, Noekeon, Q and
SC2000;

� One 160-bit block cipher: SHACAL;
� Three block ciphers with a variable block length:

NUSH (64, 128 and 256 bits), RC6 (at least 128
bits), and SAFER++ (64 and 128 bits).

� Six synchronous stream ciphers: BMGL,
Leviathan, LILI-128, SNOW, SOBER-t16, and
SOBER-t32.

� Two MAC algorithms: Two-Track-MAC and
UMAC; and

� One collision-resistant hash function: Whirl-
pool.

The 13 (or 17 counting variants) asymmetric algo-
rithms are:
� Five asymmetric encryption schemes: ACE En-

crypt, ECIES, EPOC, PSEC, and RSA-OAEP
(both EPOC and PSEC have three variants);

� Seven digital signature algorithms: ACE Sign,
ECDSA, ESIGN, FLASH, QUARTZ, RSA-PSS,
and SFLASH; and

� One identification scheme: GPS.
The submissions came from four continents; the
majority of submissions originated within indus-
try; seven came from academia, and six were
the result of a joint effort between industry and
academia.

Selection for Phase II

On September 24, 2001, the NESSIE project an-
nounced the selection of candidates for the second

phase of the project. The most important reason
for rejection was a security weakness. Another
reason to eliminate an algorithm could be that
a similar algorithm existed with better security
(for comparable performance) or with significantly
better performance (for comparable security).
However, very few algorithms were eliminated be-
cause of performance reasons. It should also be
noted that the selection was more competitive in
the area of block ciphers, where many strong con-
tenders were considered.

Designers of submitted algorithms were allowed
to make small alterations to their algorithms be-
fore entering phase II; the main criterion to accept
these alterations was that they should improve the
algorithm and not substantially invalidate the ex-
isting security analysis. Altered algorithms are in-
dicated with a ∗ in the list below.

The following symmetric algorithms have been
selected for phase II (17 algorithms, but 14 if vari-
ants are only counted once):
� 64-bit block ciphers: IDEA, Khazad∗, MISTY1,

SAFER++64;
� 128-bit block cipher: Camellia, RC-6, SAFER

++128;
� 160-bit block cipher: SHACAL;
� 256-bit block cipher: SHACAL-2 and RC-6;
� Synchronous stream ciphers: BMGL∗, SNOW∗,

SOBER-t16, and SOBER-t32;
� MAC algorithms: Two-Track-MAC and UMAC;

and
� Collision-resistant hash function: Whirlpool∗.
The NESSIE project intended to benchmark the
solutions against well-established standards. The
128-bit block ciphers have been compared to
AES/Rijndael [7, 10]. A 256-bit version of SHA-
CAL has been introduced based on the new mem-
ber of the SHA family SHA-256 [9, 13]. The MAC
algorithms have been compared to HMAC [1, 12]
and EMAC (cf. CBC-MAC and variants) [12, 22].
The hash function Whirlpool has been compared
to the following members of the SHA family: SHA-
256, SHA-384, and SHA-512 [9, 13].
The 11 asymmetric algorithms are:
� Public-key encryption algorithms: ACE-KEM∗

(derived from ACE Encrypt), EPOC-2∗, PSEC-
KEM∗ (derived from PSEC-2), ECIES∗, RSA-
OAEP∗;

� Digital signature algorithms: ECDSA, ESIGN∗,
RSA-PSS, SFLASH∗, QUARTZ∗; and

� Identification scheme: GPS∗.
Many of the asymmetric algorithms have been up-
dated at the beginning of phase II. For the asym-
metric encryption schemes, these changes were
driven in part by developments during the first
phase of the NESSIE project [11, 16, 25]. A second
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reason for these changes was the progress of the
draft standard ISO/IEC 180033-2 within ISO/IEC
JTC1/SC27 [26]. The standard defines a hybrid en-
cryption scheme, consisting of two components: a
KEM (Key Encapsulation Mechanism),where the
asymmetric encryption is used to encrypt a sym-
metric key, and a DEM (Data Encapsulation Mech-
anism), which protects both secrecy and integrity
of the bulk data with symmetric techniques (a
“digital envelope”). This approach is slightly more
complicated for encryption of a short plaintext,
but it offers a more general solution with clear
advantages. Two of the five NESSIE algorithms
(ACE Encrypt and PSEC-2) have been modified to
take into account this development. In addition,
the NESSIE project has decided to evaluate RSA-
KEM and ECIES-KEM, two variants defined in
the working draft of ISO/IEC 18033-2 [26]. At the
same time some other improvements have been in-
troduced; as an example, ACE-KEM can be based
on any abstract group, which was not the case for
the original submission ACE Encrypt.

For the digital signature schemes, three out of
five schemes (ESIGN, QUARTZ, and SFLASH)
have been altered. In this case, there are particu-
lar reasons for each algorithm (correction for the
security proof to apply, improve performance, or
preclude a new attack). GPS has been modified to
fix a small weakness.

The NESSIE Portfolio

Seventeen algorithms have been selected for the fi-
nal NESSIE portfolio; twelve of these are NESSIE
submissions, and the remaining five originate
from well-established standards.
� 64-bit block ciphers: MISTY1;
� 128-bit block cipher: AES and Camellia;
� 256-bit block cipher: SHACAL-2;
� Synchronous stream ciphers: none;
� MAC algorithms: Two-Track-MAC, UMAC,

EMAC, and HMAC;
� Collision-resistant hash function: Whirlpool,

SHA-256, SHA-384, and SHA-512 (these three
are counted as one family of algorithms);

� Public-key encryption algorithms: ACE-KEM,
PSEC-KEM, and RSA-KEM;

� Digital signature algorithms: ECDSA, RSA-
PSS, and SFLASH; and

� Identification scheme: GPS.
A full description of these algorithms as well as a
detailed motivation for their selection and of the
settings for which they are recommended is pro-
vided in [23].

One year after the announcement of the fi-
nal portfolio, two developments can be reported:

an unintended property has been discovered in
Whirlpool, which has been corrected in ISO/IEC
10118-3 [13]. The digital signature algorithm
SFLASHv2, which was not recommended for gen-
eral use but only for low-cost implementations, has
been upgraded by its designers to SFLASHv3 [5]
due to a new weakness identified in SFLASHv2.
SFLASHv2 is no longer recommended by its de-
signers. It is fair to state that if the NESSIE
project would have been aware of this attack,
it would not have recommended SFLASHv2: it
seems that the area of multivariate cryptology is
not completely mature yet, but one can hope that
progress will be made in the coming years.

While it would be ideal for users of the
NESSIE results that all algorithms recommended
by NESSIE would be in the public domain, it is
clear that this is not a realistic requirement. In one
case, problems concerning the intellectual prop-
erty status of a submission have resulted in it
not being recommended (at the request of the sub-
mitter). An unexpected benefit from the NESSIE
process is that several submitters have made it
easier to use their algorithms. Twelve algorithms
are in the public domain. For PSEC-KEM, the
conditions are very favorable (license fees have
to be paid only under exceptional circumstances).
For ACE-ECRYPT, ECDSA, GPS, and SFLASH,
licenses are available on a nondiscriminatory
basis, with some additional conditions (users
should offer reciprocate licenses if applicable). The
reader is referred to [19, 23] for more detailed
information.

CONCLUSION: The NESSIE project has been
able to attract high quality submissions received
from key players in the community; moreover, the
broader cryptographic community has contributed
to the evaluation process. Open competitions (such
as AES, CRYPTREC [6], NESSIE, and RIPE [24])
can bring a clear benefit to the cryptographic re-
search community and to the users and implemen-
tors of cryptographic algorithms. By asking cryp-
tographers to design concrete and fully specified
schemes, they are forced to make choices, to think
about real life optimizations, and to consider all
the practical implications of their research. While
leaving many options and variants in a construc-
tion may be very desirable in a research paper,
it is often confusing for a practitioner. Implemen-
tors and users can clearly benefit from the avail-
ability of a set of well defined algorithms that are
described in a standardized way.

The developments in the last years have also
shown that this approach can result in a bet-
ter understanding of the security of cryptographic
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algorithms. We have also learned that concrete
security proofs are an essential tool to build con-
fidence, particularly for public key cryptography
(where constructions can be reduced to mathemat-
ical problems believed to be hard) and for con-
structions that reduce the security of a scheme
to other cryptographic algorithms. At the same
time, we have learned that it is essential to study
proofs for their correctness and to evaluate the ef-
ficiency of such reductions. Most asymmetric algo-
rithms needed small modifications and corrections
between the first and second phases, which shows
that many subtle issues are involved in the speci-
fication of these algorithms.

For most symmetric cryptographic algorithms,
confidence in existing standards has been
strengthened and a few new algorithms have been
put forward. The submitted stream ciphers were
designed by experienced researchers and offer a
very good performance, but none of them seems
to meet the very stringent security requirements.
While some of these algorithms may be adequate
for many applications, this negative result shows
that in the coming years, further work is neces-
sary to investigate whether we can develop new
stream ciphers that offer a very high security level
(comparable to AES) while being substantially
faster.

Finally, it is important to stress that the
NESSIE portfolio is not a list of NESSIE stan-
dards, and the results of NESSIE will not be
adopted “by default” by any government or by the
European commission. However, one can antici-
pate that these results will be integrated into the
existing cryptographic standards.

B. Preneel
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NIEDERREITER
ENCRYPTION SCHEME

THE CRYPTOSYSTEM: This public-key crypto-
system was introduced by H. Niederreiter in 1986
[2]. Its security is, as for the McEliece public key
cryptosystem, related to difficult algorithmic prob-
lems of algebraic coding theory. For the standard
terminology of coding theory, we refer the reader
to the entry cyclic codes.

It has the same advantages (efficient encryption
and decryption) and drawbacks (public-key size,
transmission rate) as the McEliece system. The
block size however is smaller.

General Idea

Consider an r × n matrix H, with r < n, over a
finite field Fq. Let C denote the linear code of parity
check matrix H.

The cryptogram is a linear combination of any t
columns of H. For a given cryptogram, this linear
combination is unique if and only if the minimum
distance of C is at least 2t + 1. Recovering the lin-
ear combination from the cryptogram is difficult,
unless a t-error correcting procedure is known
for C.

Description

Let F be a family of q-ary linear codes of length
n and dimension k (r = n − k) for which compu-
tationally effective t-error correcting procedure is
known.
Key generation: The legal user picks randomly

and uniformly a code C in the family F . Let H0
be a parity check matrix of C. The public key is
equal to H = SH0 P where S is a random non-
singular binary r × r matrix and P a random
permutation n × n matrix.

Encryption: The cleartext is a word x of Fn
q of

Hamming weight t. The ciphertext is a word of
Fr

q equal to HxT.
Decryption: The cleartext is recovered by finding

the (unique) linear combination of t columns (or
less) of H producing the cyphertext.1

PRACTICE AND SECURITY: We consider from
now on that the family F in which the key was
chosen is, as for the McEliece public key cryptosys-
tem, a family Gm,n,t of binary Goppa codes (see Ap-
pendix in McEliece public key cryptosystem). In
that case both systems are globally equally secure
[1]. Many features of the systems differ however.
In particular
� The public key can be chosen in systematic form

without restriction,
� The block length (cleartext and cyphertext) is

shorter,
� The information rate is (slightly) lower,
� Encryption and decryption costs (per informa-

tion bit) are comparable but encryption is a little
bit faster and decryption a little bit slower.

Implementation Aspects

Encoding constant weight words. There is a one-to-
one correspondence between words of weight t and

1 This is the same problem as correcting t errors occurring in
a codeword of C.
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Table 1. Some parameters for the Niederreiter system with binary Goppa codes

n = 1024 n = 2048 n = 4096 n = 2048
m = 10 m = 11 m = 12 m = 11
t = 50 t = 30 t = 20 t = 70

Ciphertext size (in bits) 500 330 240 770
Message size (in bits) 284.0 222.0 178.8 435.8
Information rate 0.57 0.67 0.74 0.57
Public key size (in kB) 32 69 113 120
Security exponenta 62.1 86.4 86.1 108.4
encryption costb 1 0.51 0.30 1.40
Decryption costb 1 0.61 0.44 1.70

aLogarithm in base two of the binary work factor.
bPer message bit, relatively to the original parameters.

length n with the integers in the interval |1,
(n

t

)|.
Computing this correspondence exactly is rela-
tively expensive (quadratic in the block length n).
However, there exist efficient approximate
solutions with a cost proportional to the block
length n (see [3]).

Encryption. Encryption will consist in adding t
columns of the public key, that is t2m binary oper-
ations.

Decryption. Decryption is roughly like decoding t
errors in a binary Goppa code. The algorithmic
complexity is proportional to t2m3 binary opera-
tions.
Choosing the parameters. For given Goppa
codes parameters, the security of the system
against decoding and structural attack is the
same as for the McEliece public key cryptosystem.
Table 1 presents the main features of the system
for various values of the parameters.

The cost for encoding/decoding words of length
n and weight t is not included in the encryp-
tion/decryption cost. In theory this cost is negli-
gible (with the approximate solution). In practice,
however, it is significant in a software implemen-
tation, particularly for encryption.

Nicolas Sendrier
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NONINTERACTIVE PROOF

A noninteractive proof may be viewed as a vari-
ation of an interactive proof [3], with two differ-
ences. Firstly, the interaction between the prover
and the verifier is limited to the exchange of a
single message, which is sent by the prover to
the verifier. Secondly, both the prover and veri-
fier are given access to a uniformly random bit
string, referred to as the common reference string.
Intuitively, the common reference string provides
a way to challenge the prover (even though the
verifier is not allowed to send any message to the
prover).

A noninteractive zero-knowledge proof, as intro-
duced in [1, 2], is a noninteractive proof satisfying
the zero-knowledge property. In this case, the zero-
knowledge property holds if it is possible to effi-
ciently generate both the common reference string
and a (valid) noninteractive zero-knowledge proof.

Berry Schoenmakers
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NONLINEAR FEEDBACK
SHIFT REGISTER

Feedback shift registers (FSRs) are the basic com-
ponents of many keystream generators. The most
commonly used are linear feedback shift registers
(LFSRs). Here, we will focus on general FSRs that
are also called nonlinear feedback shift registers
in order to distinguish the linear case from the
nonlinear one. Hence, we are interested in finite
state automata of the form:

The feedback bit is computed as st+1 =
f (st , . . . , st−L+1), where f can be any function in
L variables. We will focus here on the binary case,
since it is the most useful for implementation pur-
poses (so f is a Boolean function). During each unit
of time, the internal bit sare shifted and st−L+1 is
being output; the new left bit is st+1.

f (st , . . . , st−L+1)

. . . output
st+1

st −1 st −2st st−L+2 st−L+1

EXAMPLE. Let us consider L = 3 and let the feed-
back function f (st , st−1, st−2) = st · st−1 + st + st−2
(in its algebraic normal form, with binary opera-
tions “·”-AND and “+”-XOR) be given by the fol-
lowing truth table:

st st−1 st−2 f (st , st−1, st−2)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

If we assume that the first three bits of the se-
quence (also the initial state of the NLFSR) are
s0 = 0, s1 = 1, s2 = 0, then the sequence produced
by the NLFSR is 010011010011 . . ..

It is well known that any binary sequence pro-
duced by such a register has a period that can be at
most equal to 2L, and that any periodic sequence

can be produced by such a register (this is due to
the fact that it is an automaton with a finite set
of states—the states being given by the internal
values of the register).

Sequences achieving this period are de Bruijn
sequences and more precise information can be
found on them in their dedicated entry.

These general registers have not been studied as
much as LFSRs, and many open questions remain.
Some basic information can be found in [1], where
it is stated that if we want the output sequence
not to have a preperiod (so it starts to cycle right
from the start), f must be of the form:

f (st , . . . , st−L+1) = g(st , . . . , st−L+2) + st−L+1.

But we almost have no information on the prop-
erties that g must fulfill in order to obtain a good

keystream as output. Some studies have been done
on the construction of some kind of de Bruijn se-
quences, but not for all.

An important point is also to study the linear
complexity of the output sequence. It is easy to
understand that for a fixed length L, a (NL)FSR
can produce sequences with much higher linear
complexity than LFSRs. The linear complexity of
a sequence produced by a (NL)FSR of length L is
upper bounded by 2L (instead of L for a LFSR of the
same length). It is also of importance to see how we
can reconstruct the shortest (NL)FSR generating
a given sequence. The best known algorithm for
doing this is described in [2, 3]; its complexity is
linear in space and memory. Since there is no con-
straint on the degree of f in this algorithm, Jansen
calls maximum order complexity of the sequence
the length of the shortest FSR that generates it.
At the same time the notion of complexity spectrum
of a sequence was introduced, that corresponds to
the sets of the lengths, indexed by k, of the short-
est FSRs that generate the sequence and with
feedback functions of degree at most k. It contains
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the linear complexity (k = 1), the quadratic com-
plexity (k = 2), and so on up to the maximum or-
der complexity. Almost nothing is known about
these quantities: how they are related, etc. A study
about the quadratic case can be found in [4].

Caroline Fontaine
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NONLINEARITY OF
BOOLEAN FUNCTIONS

The Hamming distance between two n-variable
Boolean functions f : Fn

2 �→ F2 and g : Fn
2 �→ F2

equals the size of the set {x ∈ Fn
2 / f (x) �= g(x)}. The

nonlinearity of an n-variable Boolean function f is
the minimum Hamming distance between f and all
affine functions a · x ⊕ a0 = a1 x1 ⊕ · · · ⊕ an xn ⊕
a0 (with a ∈ Fn

2 ; a0 ∈ F2). The nonlinearity is an
affine invariant in the sense that if two functions f
and g are such that there exists an affine automor-
phism A of Fn

2 such that g = f ◦ A, then they have
same nonlinearity. The nonlinearity of crypto-
graphic functions must be high, since the existence
of affine approximations of the Boolean functions
involved in a cryptosystem (a stream cipher or a
block cipher) permits to build attacks on this sys-
tem (see Linear cryptanalysis for block ciphers
and Linear cryptanalysis for stream ciphers). The
nonlinearity criterion can be quantified through
the Walsh transform f̂ (see Boolean functions):

NL( f ) = 2n−1 − 1
2 max

a∈Fn
2

| f̂ (a)|. (1)

Parseval’s relation (see Boolean functions) then
implies

NL( f ) ≤ 2n−1 − 2(n/2)−1. (2)

This bound, valid for every Boolean function, is
called the universal nonlinearity bound.

Asymptotically, almost all Boolean functions
on Fn

2 have nonlinearities greater than 2n−1 −√
n 2(n−1)/2.
Equality occurs in (2) if and only if | f̂ (a)| equals

2n/2 for every vector a. The corresponding func-
tions, with nonlinearity 2n−1 − 2(n/2)−1, are called
bent. They can exist only for even values of n,
because 2n−1 − 2(n/2)−1 must be an integer, and
they do exist for every n even, see [3]. An n-
variable Boolean function f is bent if and only if, for
any nonzero vector a ∈ Fn

2 , the Boolean function
Da f (x) = f (x) ⊕ f (x + a) is balanced. Thus, the n-
variable bent functions are those Boolean func-
tions satisfying the propagation criterion PC(n)
(see Propagation characteristics of Boolean func-
tions). For every even integer n greater than or
equal to 4, the algebraic degree (see Boolean func-
tions) of any bent function on Fn

2 is at most n/2.
For n odd, inequality (2) cannot be tight.

The maximum nonlinearity of n-variable Boolean
functions then lies between 2n−1 − 2(n−1)/2 (which
can always be achieved by functions of algebraic
degree 2) and 2n−1 − 2(n/2)−1. It has been shown
that it equals 2n−1 − 2(n−1)/2 when n = 1, 3, 5, 7
and is greater than 2n−1 − 2(n−1)/2 for every odd
n ≥ 15.

Bent functions being not balanced (i.e., their val-
ues being not uniformly distributed), they are im-
proper for use in cryptosystems. For this reason, it
is necessary to study the maximum nonlinearity
of balanced functions. But this value is unknown
for any n ≥ 8.

The universal nonlinearity bound can be im-
proved when we restrict ourselves to subclasses of
functions. There exists a nontrivial upper bound
on the nonlinearity of resilient functions: their
nonlinearity is upper bounded by 2n−1 − 2m+1

(see Correlation immune and resilient Boolean
functions for more details).

A notion of nonlinearity of mappings from Fn
2 to

Fn
2 also exists: the nonlinearity of such function

F is the minimum nonlinearity of all the nonzero
linear combinations of the coordinate functions of
F. It is upper bounded by 2n−1 − 2(n−1)/2 for every
function F (cf. [1, 3]). This bound is tight for every
odd n; the functions which achieve it are called
almost bent.

Claude Carlet
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NONMALLEABILITY

NONMALLEABILITY BY EXAMPLE: In describing
the security offered by a cryptographic primitive,
one must specify both what it means to break the
primitive and what is the power of the adversary.
Nonmalleability lies in the first category. For con-
creteness, let us focus on the problem of public-key
encryption against a passive eavesdropper.

Goldwasser and Micali [10] laid the theoretical
groundwork for modern cryptography, both giv-
ing a clean definition of secrecy in a complexity-
theoretic framework, and providing a candidate
public-key cryptosystem generator that, under
prevailing computational assumptions, satisfies
that definition. For the case of a passive eavesdrop-
per listening to an encrypted conversation, their
notion, called semantic security, is still the “gold
standard” of security. One simple and intuitive de-
scription of semantic security is

For all relations R, seeing α ∈ E(x) does not
help one to find y such that R(x, y) holds.

(By α ∈ E(x) we mean that α is an element of
the set of legal encryptions of x.) In other words,
the adversary “learns nothing” about the plaintext
from the ciphertext (it is assumed that the adver-
sary is restricted to probabilistic polynomial time).

More than 20 years later, cryptography is now
routinely used as a tool among participants in a
protocol, not just to hide information from out-
side eavesdroppers but also from malicious partic-
ipants in the protocol. In this case, the adversary
is no longer passive, but active—and semantic se-
curity no longer suffices.

To see this, consider the following toy coin-
flipping protocol. There are three players: Alice,
Bob, and a judge. The goal is for Alice and Bob to
produce an unbiased bit with the help of the judge
(who for some reason cannot just flip a coin and an-
nounce the result). The judge chooses a (public key,
private key) pair using a public-key cryptosystem
generator, and publishes E, the encryption algo-
rithm. First Alice, and then Bob, chooses a random
bit, encrypts it using E, and sends the result to the
judge. The judge decrypts and announces the two
bits, and the result is the exclusive-OR of these
bits.

The (erroneous) intuition is that, since Bob does
not know Alice’s bit, any ciphertext he produces
is the encryption of a bit that is independent of
Alice’s bit, and so the exclusive-OR is unbiased.
But suppose Bob could ensure that his bit is the
same as Alice’s; then the outcome will always be 0,
even if Bob has no idea what he is saying. Similarly,
if Bob could ensure that his bit is always the com-
plement of Alice’s, he can force an outcome of 1. It
is a straightforward exercise for Bob to achieve ei-
ther of these goals if the cryptosystem used is the
one proposed in [10], despite the semantic security
of the scheme.

As the above example shows, something
stronger than semantic security is required; we
call this property non-malleability:

For all polynomial time computable relations R,
seeing α ∈ E(x) does not help one to find β ∈
E(y), where β �= α, such that R(x, y) holds.

In other words, seeing the ciphertext does not
help a polynomial time bounded adversary to gen-
erate an encryption of a plaintext value related
to x.

Just as semantic security specifies one kind of
break of a cryptosystem (a break is a violation
of semantic security), nonmalleability, or its op-
posite, malleability, specifies an alternate notion
of what it means to break a cryptosystem.

We now turn to the means of attack available
to the adversary. For public-key cryptography,
three kinds of attack are defined in the litera-
ture: chosen-plaintext (this is the weakest form
of attack that makes sense against a public-key
cryptosystem, since an eavesdropper can encrypt
plaintexts of her choice using the public encryp-
tion key), chosen ciphertext attacks in the pre-
processing mode, and chosen ciphertext attacks
in the postprocessing mode. In the preprocess-
ing mode, the adversary may make polynomially
many queries of a decryption oracle before being
presented with a challenge ciphertext (for which
it tries to find a violation of semantic security or
nonmalleability). In the postprocessing mode, the
adversary carries out a preprocessing attack, is
presented with a challenge ciphertext α, and is
then permitted the postprocessing attack: it may
query the decryption oracle with any polynomial
number of ciphertexts other than the exact string α

before trying to maul (violate the nonmalleability
of) the ciphertext.

Given two types of requirements (semantic se-
curity and nonmalleability) and three types of
attacks (eavesdropping, cca-pre, cca-post), there
are six possible combinations, of which five turn
out to be distinct for public-key cryptosystems.
Interestingly, under the strongest attack, chosen
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ciphertext in the postprocessing mode, nonmal-
leability, and semantic security are equivalent.
This is not so surprising: in the public-key case
any violation of semantic security is clearly a vio-
lation of nonmalleability (having found a y related
to x, in the public-key case it is trivial to obtain
E(y) where y is related to x: just encrypt y using
the public key). For the other direction, if it were
possible to maul an encryption α ∈ E(x) to obtain
an encryption β ∈ E(y), for y related x (and where
β �= α), then by feeding β to the decryption oracle
one would obtain a plaintext y related to x.

The concept of nonmalleability has application
beyond encryption. For instance, in the toy coin-
flipping protocol described above, one role of the
encryption step is to commit to the bits before
opening them and computing their exclusive-OR.
In the toy protocol, the opening of the commitment
is made trivial by the presence of the judge; in a
less centralized protocol the commitment would
be done by secret sharing. But the problem of mal-
leability is the same: secrecy of Alice’s committed
value does not ensure independence from the value
committed to by Bob. If Bob can maul Alice’s com-
mitment messages so as to commit to the same or
opposite value at will, the fact that Alice’s value is
secret is irrelevant.

A natural response is to require Alice and Bob to
prove knowledge of their committed values: intu-
itively, if Bob knows what he is saying (this can be
made precise), then his bit must be independent of
Alice’s bit—otherwise we would have a violation of
semantic security. But again, there is a malleabil-
ity problem: perhaps the proof of knowledge itself
is malleable, even if it is a zero-knowledge proof of
knowledge.

ONE SOLUTION: The approach taken in [8] for
achieving nm-cca-post encryption based on any se-
mantically secure public-key cryptosystem gener-
ator G (as defined in [10]) is as follows.
1. The public key consists of n pairs of public keys,

(E1
0 , E1

1), . . . , (En
0 , En

1 ), drawn according to G, to-
gether with a reference string σ for noninter-
active zero-knowledge proofs (NIZKs).

2. To encrypt a plaintext message m:
� Choose an instance of a digital signature

scheme;
� View the public verification key of the signa-

ture scheme as a sequence of bits selecting
one key (under which to encrypt the plain-
text) from each pair of keys in the public
key—a total of n keys.

� Encrypt the plaintext m under each of the n
selected keys.

� Provide a NIZK of consistency of encryptions
using the reference string σ—that is, provide
a noninteractive zero-knowledge proof that
all ciphertexts are valid encryptions, under
the selected keys, of the same plaintext.

3. The ciphertext consists of the public verification
key for the signature scheme, the n ciphertexts,
and the proof of consistency of encryptions.

The intuition for nonmalleability is straightfor-
ward. Assume the attacker is given a ciphertext
α that it wishes to maul. That is, the attacker is
trying to construct a valid ciphertext β �= α en-
crypting a message m′ that is related to m. If the
attacker uses for β the same instance of the signa-
ture scheme as was used in generating α, then it
will not know the secret signing key corresponding
to the public verification key, and so will be unable
to generate a signature on any content other than
the content already signed in α, preventing it from
generating a different valid ciphertext. If, instead,
the attacker changes the signature scheme, then
there will be at least one pair of encryption keys
so that, without loss of generality, α contains an
encryption Ei

0(m), and the adversary must gen-
erate Ei

1(m′) for some m′ related to m (possibly
m′ = m); intuitively, since the two keys are chosen
completely independently, the attacker has been
given no clue how to generate an encryption of a
related m′ under Ei

1 (even if it could easily do so
under Ei

0 because it has seen Ei
0(m) and encryp-

tions under any individual key may be malleable).

FORMAL DEFINITION: A completely general def-
inition of nonmalleability, suitable to all the set-
tings we have described, is beyond the scope of
this encyclopedia entry. We therefore restrict our
attention to nonmalleability of a public-key cryp-
tosystem under a chosen ciphertext attack in the
postprocessing mode.

We first define precisely the power of the cca-
post adversary, denoted A. Let R be a polynomial-
time computable relation. Let n be the security
parameter for the nonmalleable under cca-post
public-key cryptosystem generator G ′. A receives
the public key E ∈R G ′(n) and can adaptively
choose a sequence of ciphertexts c1, c2, . . .. On each
of them,A receives the corresponding plaintext (or
“invalid” message, if the ciphertext is invalid). It
then produces a distribution M on messages of
length �(n), for some polynomial �, by producing
a description of the polynomial-time machine that
can generate this distribution.

Next m is selected according to M, that is, m ∈R
M, and A receives as a challenge a ciphertext
c ∈R E(m), together with some “side-information”
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about m in the form of h(m). (The function h is
polynomially computable; h(·) is sometimes called
the history variable, and it can be thought of as en-
capsulating prior knowledge that A may have con-
cerning the plaintext.) A then engages in a second
phase of adaptively choosing ciphertexts c′

1, c′
2, . . .

and learning their decryptions. The only restric-
tion is that c �∈ {c′

1, c′
2, . . .}.

At the end of the process, A produces a poly-
nomially bounded length vector of ciphertexts
( f1, f2, . . .) not containing the challenge ciphertext
c, with each fi ∈ E(βi), and a cleartext string σ

which we assume contains a description of M. Let
β = (β1β2 . . .). A is considered to have succeeded
with respect to R if R (m, β, σ ) holds. (We seper-
ate β from σ because the goal of the adversary is
to produce encryptions of the elements in β.) Let
π (A, R) be the probability that A succeeds, where
the probability is over the coin flips of the key gen-
erator, A,M and the encryption of m.

Let A′ be an adversary simulator that does not
have access to the encryptions or to the decryp-
tions but can pick a distribution M′. On output
E, A′produces M′, from which m ∈R M′ is chosen.
A′ receives h(m) and, without the benefit of a cho-
sen ciphertexts attack, produces a vector of cipher-
texts ( f1 f2, . . .), where each fi ∈ E(βi), and a string
σ containing M′. Let β = (β1, β2, . . . ). As above A′

is considered to have succeeded with respect to R
if R(m, β, σ ). Let π ′(A′, R) be the probability that
A′ succeeds where the probability is over the coin-
flips of the key generator, A′ and M′.

Note that A′ has much less power than A: not
only does it not have access to the ciphertext
c ∈ E(m), but it cannot perform any type of chosen
ciphertext attack, even in choosing the distribu-
tion M′. Note also that the fact that M′ is given to
R prevents A′ from choosing trivial distributions.

DEFINITION 1. A public-key cryptosystem genera-
tor is nonmalleable with respect to chosen ci-
phertext attacks in the postprocessing mode if for
all probabilistic polynomial-time adversaries A as
above, there exists a probabilistic polynomial-time
adversary simulator A′ such that for all relations
R(α, β, σ ) computable in probabilistic polynomial
time, |π (A, R) − π ′(A′, R)| is subpolynomial in n.

HISTORY: Nonmalleability was first defined
and explored by Dolev et al. [8], who obtained
non-malleable public-key encryption under all
three forms of attack, as well as nonmalleable
commitment schemes and nonmalleable zero-
knowledge interactive proof systems, all under
general assumptions, and also treated nonmal-
leability of shared-key cryptosystems. Additional

constructions under general assumptions appear
in [5, 11, 12]. The first practical nm-cca-post
cryptosystem is due to Cramer and Shoup [3],
and is based on the Decisional Diffie–Hellman as-
sumption (see [4] for schemes based on other as-
sumptions). Canetti and Goldwasser constructed
a threshold variation of the Cramer–Shoup public
key system.

Barak obtained the first constant-round
nonmalleable commitment schemes and zero-
knowledge proofs [1]. Relaxed versions of non-
malleable commitment, some in a model in which
the sender and receiver have access to a shared
guaranteed-random string or other so-called
public parameters, have also been explored (see,
e.g., [6, 7, 9]).

Cynthia Dwork
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NONREPUDIATION

INTRODUCTION
“A word is not a crystal, transparent and un-
changed; it is the skin of a living thought, and
may vary greatly in color and content according
to the circumstances and the time in which it is
used.”

Oliver Wendell Holmes
Towne v. Eisner (1918).

“Abuse of words has been the great instrument
of sophistry and chicanery, of party, faction, and
division of society.”

John Adams (1819).

In the area of security technology and protocols, it
is entirely possible that no other word has caused
as much disagreement, confusion, and anxiety
as the word nonrepudiation. First coined in the
1980s, the concept of nonrepudiation continues to
perplex and cause arguments well into the 21st
century. As one commentator observed in 2000,
“over 100 messages were exchanged without any-
one really being able to uncontestably [sic] define
what [the] digitalSignature and nonRepudiation
[bits] really signified . . . [and] no one can agree on
what the term ‘nonRepudiation’ actually means,
exemplified by a ∼200-message debate in mid-
1999 which couldn’t reach any useful conclusion”
[1]. Even in more recent times, the meanings of
nonrepudiation and the nonRepudiation bit con-
tinue to confound. During an exchange in early
2002, well over 100 messages regarding nonrepu-
diation were exchanged on the PKIX listserver.
In late 2002, almost 200 more messages were
exchanged after an X.509 meeting during which
over a dozen PKI experts spent almost 2 days dis-
cussing the language for describing the nonRepu-
diation bit.

REPUDIATION, NONREPUDIATION, AND ELEC-
TRONIC COMMERCE: The notion of repudiation
has existed for hundreds of years.1 Generally, to
repudiate means “[t]o cast off; to disavow; to have
nothing to do with; to renounce; to reject, . . . , to
refuse, to acknowledge or to pay; to disclaim.”2

In legal terms, “repudiation of a contract means
refusal to perform a duty or obligation owed
to another party.”3 Traditionally, repudiation
occurs when a party to a contract unequivocally
asserts that he or she will not perform a future
obligation as required by the contract. Known
as “anticipatory repudiation,”4 this will result
in a contract being breached. In the context of
information security and electronic commerce,
one goal is to reduce as much as possible (or, as
some might erroneously assert, eliminate) the
ability of a party to repudiate an electronic trans-
action. Given the perception of the Internet as the
next “Wild Wild West” and the understandable
hesitation to conduct transactions (particularly
ones of significant value) with faceless strangers
hundreds or thousands of miles away, it is no
wonder that the very first papers on public key
technology declared that the use of public key
cryptography would “protect against the threat
of dispute” [2] and that a recipient of a message
would be able to “convince a judge that . . . she has
proof that [the signer] signed the document” [3].

Historically, the term nonrepudiation most
likely evolved from the discussion of repudia-
tion in the New Directions in Cryptography pa-
per by Whit Diffie and Marty Hellman. The au-
thors stated that “[u]nforgeable digital signatures
are needed” to protect against a message being
“later repudiated by either the transmitter or
sender.”

As public key technology progressed in the late
1970s and into the 1980s, nonrepudiation be-
came one of four main features touted by propo-
nents of the technology. Along with confidential-
ity (provided by encryption), authentication, and
data integrity, nonrepudiation via digital signa-
ture schemes was hailed as the enabling technol-
ogy for electronic commerce. Some commentators
declared nonrepudiation to be “the elusive holy
grail” of Internet security [4].

The main problem with the use of the term non-
repudiation was that, from a technical standpoint,

1 The etymology of the word repudiate reveals that repudiare,
the Latin root for repudiate, has origins dating back to the
mid-1500s
2 Webster’s Revised Unabridged Dictionary (1913).
3 Black’s Law Dictionary, Sixth Ed., 1303 (1991).
4 Under US law, anticipatory repudiation in the context of the
sale of goods is covered in §2-610 (Anticipatory Repudiation) of
the Uniform Commercial Code (UCC).
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absolute prevention of repudiation via a single
digital signature was thought to be an achievable
goal. From a legal standpoint, however, repudia-
tion can always occur, for any number of reasons
both legitimate and dishonest (thus relinquishing
non repudiation to, at best, a less than absolute
status). As a result, or perhaps in spite of this,
numerous definitions for the term developed. The
meanings span a continuum ranging from the
complete inability to deny sending or receiving a
message to simply providing evidence of a mes-
sage. As will be seen shortly, the most appropri-
ate definition tends toward the latter end of the
spectrum.

Thus, although digital signatures were often ad-
vertised as “providing nonrepudiation,” a digital
signature by itself on a message or transaction
cannot prevent that message or transaction from
being repudiated. Even with the nonRepudiation
bit being set in a corresponding digital certificate,
the most that a digital signature can provide is
support or evidence for the recipient of the digital
signature to be used at a later time to prove to a
third party that the message or transaction took
place. At a 1999 joint meeting between the Infor-
mation Security Committee (ISC) of the Electronic
Commerce Division of the Section of Science and
Technology Law within the American Bar Associ-
ation (see ABA digital signature guidelines) (con-
sisting of a number of individuals from the le-
gal, technical, and business communities) and the
Internet Engineering Task Force (IETF), the con-
clusion was reached that the setting of the non-
Repudiation bit is a “necessary but not sufficient”
condition for providing a nonrepudiation service.
As discussed elsewhere, however, even the setting
of the nonRepudiation bit is not an absolutely nec-
essary condition for an entity to successfully refute
a repudiation by another party.

APPEARANCE IN STANDARDS: In the late 1980s,
the concept of nonrepudiation began making
its way into technical standards. One of the
first appearances in the technical literature oc-
curred in ISO 7498-2, the “Information Processing
Systems—Open Systems Interconnection—Basic
Reference Model—Part 2 : Security Architecture”
(1989). This standard recognized nonrepudiation
as a service that “may take one or both of two
forms.” The two forms comprised nonrepudiation
with proof of origin, which was said to “protect
against any attempt by the sender to falsely deny
sending the data or its contents,” and nonrepudi-
ation with proof of delivery, which was supposed
to “protect against any subsequent attempt by the
recipient to falsely deny receiving the data or its
contents.”

In 1993, the ITU released the X.509 stan-
dard, which was titled “Information Technology—
Open Systems Interconnection—The Directory:
Authentication framework.” This standard, which
has become the de facto standard for PKI
(see Public Key Infrastructure) certificates, fur-
ther complicated the landscape by defining a non-
Repudiation bit. The complications arose not from
the fact that the bit was provided, but from how its
use was to be interpreted. While some people rec-
ognized that this bit (which would have been as-
serted by the Certification Authority (CA)) could
only be used to show that at the time the certifi-
cate was issued that the certificate was intended
to provide support for the service of nonrepudia-
tion, others felt that if the bit was set in a cer-
tificate used to digitally sign a particular message
or transaction, that message or transaction could
never be repudiated.

In 1996, the ABA Information Security Com-
mittee released the Digital Signature Guidelines
(“DSG”).5 As defined in the DSG, nonrepudiation
provides “strong and substantial evidence of the
identity of the signer of a message and of mes-
sage integrity, sufficient to prevent a party from
successfully denying the origin, submission, or de-
livery of the message and the integrity of its con-
tents.” The DSG went on to note that:

[These] Guidelines define nonrepudiation not
as an automatic result of technical mechanisms,
but as a property which can ultimately only
be determined after recourse to available dis-
pute resolution mechanisms such as a court or
arbitrator . . . Nonrepudiation as defined in this
Guideline 1.20 is intended to express a legal
conclusion something less than a final determi-
nation by a court of last resort, but something
more than a naked rebuttable presumption as
is now provided by simple e-mail.

Thus, the DSG was possibly the first articula-
tion of a rebuttable presumption regarding digital
signatures.

In 1997, ISO published 10181-4, “Information
Technology—Open Systems Interconnection—
Security Frameworks for Open Systems: Nonre-
pudiation framework”, which was the first de-
tailed technical treatment of the nonrepudiation
issue. The standard, titled The Non-repudiation
Framework, provided the first full technical
treatment of the topic of nonrepudiation. The
standard focuses on the notion of nonrepudi-
ation being an evidence generating process.
The process described ISO 10181-4 involved a

5 See http://www.abanet.org/scitech/ec/isc/digital signature.
html (last visited December 10, 2002).
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number of different entities and several distinct
technical processes. One particularly interesting
point about ISO 10181-4 is that it stresses the
time-based nature of a nonrepudiation service.
In particular, it contemplates a process that
produces evidence at one point in time that can
be used by a party to a transaction for a message
at a later point in time. The standard provides an
excellent foundation upon which a definition of
nonrepudiation can be based. The nonrepudiation
framework in ISO 10181-4 is also consistent
with the X.509 standard and is consistent with
the American Bar Association digital signature
guidelines. Another important thing to note is
that the current (as of November 2002) proposed
changes to the X.509 standard reflect the notion
of evidence that is described in ISO 10181-4 and
the digital signature guidelines.

Building on the Digital Signature Guidelines,
the ABA ISC released the PKI Assessment Guide-
lines (“PAG”)6 in 2001. The PAG further elabo-
rated on the ideas of nonrepudiation first proposed
in the DSG. Specifically, the PAG stated that:

the digital signature does not by itself result in
legal “nonrepudiation.” When a subscriber at-
tempts to repudiate a transaction or communi-
cation, there may be factual and legal questions
and disputes that, if not settled, will need to
be resolved in litigation, arbitration, or other
alternative dispute resolution mechanism, in
order to determine whether the attempted re-
pudiation is ultimately successful. The unique
value of PKI is its technological ability to pro-
vide robust factual inferences of nonrepudia-
tion, through cryptography, that will serve to
provide credible evidence sufficiently strong to
persuade a disinterested third party (the ulti-
mate dispute resolution authority), that a sub-
scriber originated a particular transaction or
communication. Once the legal proceedings pro-
duced a final judgment to that effect, then legal
nonrepudiation has occurred.

The PAG, in an attempt to discern between the
absolute ability for a decision to be made based
upon a technical mechanism (e.g., the assertion of
the nonRepudiation bit) and the less than absolute
nature of the overall nonrepudiation service, de-
scribed the notion of “legal nonrepudiation”as part
of the information security lexicon. Although both
the DSG and the PAG recognized the distinction
between an “automatic result of technical mecha-
nisms” and “a property which can ultimately only

6 See http://www.abanet.org/scitech/ec/(2000).isc/pag/pag.html
(last visited December 12, 2002).

be determined after recourse to available dispute
resolution mechanisms,” the introduction of the
term legal nonrepudiation seems to have further
complicated the issue. Some people in the com-
munity view the use of the term “legal nonrepu-
diation” as further breaking down into separate
stages the technical and legal aspects leading to
an actual determination of nonrepudiation. In ac-
tuality, these two stages are inextricably linked.

PERSISTENT PROBLEMS: Despite the valiant at-
tempts in the above partial list of standards and
the numerous other writings that have occurred
on the subject, a number of problems persist re-
garding nonrepudiation. As already mentioned
above, nonrepudiation is not an absolute—a party
can always repudiate a message. The best exam-
ple is if the person is under duress (e.g., if an-
other persons forces the signature to be applied
against the intentions of the signer). Other valid
reasons for repudiation include forgery, uncon-
scionable conduct, fraud, and undue influence [5].
The definition of nonrepudiation in ISO 7498-2
(see preceding section) provides one example of
how this quality of absoluteness may have seeped
into the general understanding of nonrepudiation.
Although the definition in ISO 7498-2 is consis-
tent with the conclusions reached below, the sub-
tlety of the phrase “falsely deny” to capture the
notion that the nonrepudiation service is not ab-
solute seems to have been lost on many readers.
Read in the alternative, this means that the nonre-
pudiation service is not intended to protect against
the true or valid denial of sending or receiving a
message (i.e., for the reasons stated earlier in this
paragraph).

A second related problem involves sufficiency.
Many view a digital signature (particularly one
whose corresponding digital certificate has the
nonRepudiation bit asserted) as always being suf-
ficient to provide nonrepudiation. Although this
might be possible in certain very limited circum-
stances, it will not be true universally. Many other
pieces of evidence may be utilized to further prove
or further deny the validity of a particular mes-
sage. For example, a person may utilize a digital
certificate (without the nonRepudiation being set)
to sign a message constituting an electronic con-
tract. By itself, this might be easily repudiated,
particularly if the applicable policy requires the
nonRepudiation bit to be set for a transaction to
be nonrepudiable. If, however, the signer/sender
includes an email that says, “I know that policy
says that I cannot be bound, but by this email
and the signed paper copy that I am sending forth-
with, I agree to be bound to this transaction,” the
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ability to repudiate would be significantly dimin-
ished. This notion of extrinsic evidence contribut-
ing to the overall service of nonrepudiation must
be well understood in order for software to be prop-
erly written that will be taking certain actions
based on whether the nonRepudiation bit is set
or not.

A third issue involves the notion of risk. Despite
all attempts to reduce a transactional process to
purely technological means, such transactions will
invariably involve some amount of business risk.
No current technology can make a transaction ab-
solutely trusted. The concept of non-repudiation
as an evidence producing technological mecha-
nism, however, provides an additional element in
the overall risk assessment process.

TECHNOLOGY ISSUES: As if the topic weren’t al-
ready complicated enough, additional considera-
tion must be given to the dynamics of the tech-
nology necessary for providing a nonrepudiation
service. Ideally, only a completely trusted soft-
ware process should be able to produce a digi-
tal signature.7 Otherwise, some doubt could be
cast on whether the signer’s intentions were ac-
curately captured or whether the signer was even
aware of the digital signature being applied using
the signer’s private key. Unfortunately, commer-
cial deployments of such systems remain difficult
due to the costs of producing a trusted system.

As discussed in the preceding section, some risk
will always exist that a digital signature could be
applied in a surreptitious manner since perfect
security is currently not possible. Even without
the human element, technical problems exist that
could cast doubt on the validity of a particular dig-
ital signature (e.g., malware or flawed software).
Each of these contributes to the overall eviden-
tiary calculus that make up the nonrepudiation
service.

WHAT’S AHEAD?: At an ISO meeting in Septem-
ber 2002 to work through the next version of
X.509, the participants devoted almost 2 days
to the discussion of the nonrepudiation bit. Rec-
ognizing the interpretational problems that had
developed, the group exchanged ideas and shared
perspectives in an attempt to better define the bit.
Two initial considerations involved either depre-
cating the bit altogether or renaming the bit (both
of which, while solving some problems, would
likely raise other problems). Ultimately, the group
decided to tackle the difficult job of refining the
definition of nonrepudiation.

7 Id., under the section entitled “Trusted Computing Systems.”

After much deliberation and impassioned advo-
cacy, the group agreed on the following language
in Draft Corrigendum 6 to describe the role of the
nonrepudiation bit in an X.509 digital certificate:

nonRepudiation [bit]: for verifying digital sig-
natures which are intended to be used as evi-
dence if a subsequent dispute arises, to prevent
a signer from falsely denying involvement in a
transaction. This bit does not, in itself, provide
this assurance, but can be used together with
other tools, such as an assertion of intent by the
signer, an assertion from a third party notary to
the transaction, a binding contract, policy state-
ments etc, to assist in determining whether a
signer’s denial of involvement is a true or false
claim

The important things to note here are: (a) the
emphasis on the use of the bit as evidence in a de-
termination of the validity of a transaction (consis-
tent with the ISO 10181-4 nonrepudiation frame-
work) and (b) the notion that the NR bit, by itself,
does not provide assurance of nonrepudiation.

In November 2002 the Information Security
Committee within the American Bar Association
responded to the draft set of changes to the X.509
standard related to the nonrepudiation bits. In
their response, the American Bar Association laid
out six points to try to further explain the legal
and technical impact of the nonrepudiation bit on
a nonrepudiation service. The first point that was
made stated that the setting of the nonrepudia-
tion bits could provide at least some quantum of
evidence in a dispute resolution involving a digi-
tally signed message. The committee noted how-
ever that the quantum of evidence that would be
provided as a result of only the nonrepudiation
bit being set (i.e., without any extrinsic evidence)
was not significant. The second point raised by the
committee was that the facts that the nonrepu-
diation bit being set in a certificate is not con-
clusive or dispositive evidence that a signer in-
tends to be bound by a specific digitally signed
communication or transaction. Correspondingly,
the third point was that the fact that the non-
repudiation bit was cleared is also not conclusive
or dispositive evidence that a signer does not in-
tend to be bound. The fourth point flows naturally,
which states that the totality of the circumstances
surrounding a digitally signed communication is
critical to understanding and evaluating the ef-
fect of the non-repudiation bit on the evidence
gathering and evidence generating process of a
nonrepudiation service. A fifth point elaborates
further by stating that a certificate policy or
certification practice statement can help control
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the significance of a nonRepudiation bit within a
particular PKI and more specifically on the evi-
dence generating process of the nonrepudiation
service within that PKI. The final point raised
by the committee was that the notion of techni-
cal nonrepudiation does not necessarily translate
into legal nonrepudiation. As discussed above, the
notion of a distinction between technical nonre-
pudiation and legal nonrepudiation may actually
cause more confusion than clarification since legal
nonrepudiation is somewhat of a misnomer.

CONCLUSION: In conclusion, despite the con-
fusion and problems that the concept of non-
repudiation has caused within the information
security community, the concept of nonrepudia-
tion remains an important and useful concept and
should be maintained as a description of one of the
security services provided by digital signatures. It
must be made clear, however, that the use of a non-
Repudiation bit within a certificate has no bear-
ing on whether a particular signature in a single
transaction can or cannot be repudiated. A host of
other evidentiary issues would need to be consid-
ered by a fact finder in order to fully understand
whether, for that particular transaction, a repu-
diated signature will hold up or not. Therefore,
the overall concept of nonrepudiation does need
further definition and explanation (including de-
cisions from a competent court). The interaction
and knowledge transfer that has been occurring
between the legal, business, and technical commu-
nities in these various areas will allow the over-
all security community to develop a better under-
standing of the nonrepudiation service amongst
all entities. The recent proposed changes to the
X.509 standard evidence this trend toward evolv-
ing the concept of nonrepudiation.

Randy V. Sabett
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NONSECRET ENCRYPTION

Modern cryptology was sparked by the ground-
breaking work of Martin Hellman, a professor at
Stanford University, and two graduate students
who worked with him in 1974 and 1975, Ralph
Merkle and Whitfield Diffie (see Figure 1). In April
1976, they started to publish their work in three
papers [3, 4, 9], which revealed the concept of
public key cryptography to the public. The work
of Diffie and Hellman, which is now referred to
as Diffie–Hellman key agreement, allows two peo-
ple, or more properly their computers, to agree
upon a secret key if they have only exchanged
authenticated public keys of each other in the
first place. Before Public Key Cryptography, it was
unanimously agreed in the cryptography commu-
nity that the only way for two parties to establish
secure communications was to first exchange a se-
cret key of some kind. This seemed to be simple
common sense: if the recipients didn’t have a se-
cret to give them some leverage, how could they
be in a better position to decrypt the message than
an eavesdropper? Practically speaking, this meant
that one of the parties first had to send a trusted
person to the second party with a secret key (which
typically took a fair amount of time), or send the
key through an existing encryption channel that
couldn’t be completely trusted (if it was broken,
all of the keys transmitted over that channel were
also broken).

Fig. 1. Ralph C. Merkle, Martin Hellman, and Whitfield
Diffie (from left to right)
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In order to set up a group of n people to en-
crypt messages to each other, one had to exchange
N = 1/2n(n − 1) secret keys among them, one
between each pair of group members. The discov-
ery of public key cryptography reduced the burden
of key generation and exchange from a number N,
quadratic in n, to simply n because each group
member only needed to publish its own public key
in an authenticated fashion. Based on these public
keys, any two group members could agree dynam-
ically on a new secret key every time they wished
to set up a communication session with each other.
There is no way known for an eavesdropper to pick
up the secret key by listening in. Without public
key cryptography the problem of key management
for a large group of participants in a communica-
tion network was not practical to handle.

After reading the Diffie–Hellman paper, three
researchers at the Massachusetts Institute of
Technology (MIT) named Ronald Rivest, Adi
Shamir, and Leonard Adleman (RSA) began
searching for a practical mathematical function to
implement a complete PKC approach. After work-
ing on more than 40 candidates, they finally dis-
covered an elegant algorithm based on the product
of two prime numbers, which went on to become
one of the dominant solutions used on the Inter-
net. Their algorithm, named RSA after the initials
of its inventors, was not only an elegant imple-
mentation of public key encryption (see RSA pub-
lic key encryption) but also of digital signatures
(see RSA digital signature scheme). Although the
US intelligence tried to stop further publication,
the news was spreading fast within and outside
of the research community: Martin Gardner in-
troduced the concept of public key cryptography
in his widely read column Mathematical Games
in the August 1977 edition of Scientific American.
Then in February 1978, Rivest et al. published a
more detailed paper on their work [10], and the
popular press followed soon after. These works
opened the door to a totally new area of cryptology
and sparked such a huge amount of research in

the following decades that public key cryptogra-
phy is held as the most important development in
cryptology since the invention of polyalphabetic ci-
phers during the Renaissance.

As the British Labour Party strived for more
openness of the British Government Commu-
nications Head Quarters (GCHQ) organization,
the GCHQ revealed in December 1997 that re-
searchers at GCHQ did some work in the early
1970s in the field of “nonsecret encryption,” which
is related to public-key cryptography, but with-
out inclusion of the concept of digital signatures.
Although the claims of GCHQ are not verifiable
since the work was not published, and there are
no evidentiary artifacts available such as origi-
nal copies of the papers (David Kahn does not
mention nonsecret encryption in his voluminous
history of cryptography [7] either), there is still
evidence for their accurateness. In 1979, US
National Security Agency (NSA) chief Bobby
Inman publicly stated that, all the noise about
Diffie–Hellman and RSA aside, the intelligence
establishment had known about public key cryp-
tography for some time [8]. Whitfield Diffie pur-
sued this track and in the early 1980s, he pried
out of an NSA source the names of James Ellis
and Clifford Cocks at GCHQ Communications-
Electronics Security Group (see Figure 2). The
work of the GCHQ researchers is described be-
low according to James Ellis in his paper “The
History of Non-Secret Encryption” [6]. Ellis be-
gan thinking about the shared secret key prob-
lem in the late 1960s when he discovered an old
Bell Labs paper dated October 1944 titled “Fi-
nal Report on Project C43” [1], describing a clever
method of secure telephone conversation between
two parties without any prearrangement. If John
calls Mary, then Mary can add a random amount
of noise to the phone line to drown out John’s
message in case any eavesdroppers are listening.
However, at the same time Mary can also record
the telephone call, then later play it back and
subtract the noise she had added, thereby leaving

Fig. 2. James H. Ellis, Clifford C. Cocks, Malcolm J. Williamson (from left to right)
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John’s original message for only her to hear. While
there were practical disadvantages to this method,
it suggested that the logical possibility existed:
there might be methods of establishing secure
communications without first exchanging a
shared secret key.

Ellis thought about this seemingly paradoxical
idea, and while lying in bed one night developed
an existence proof that the concept was possible
with mathematical encryption, which he recorded
in a secret CESG report titled The Possibility of
Non-Secret Encryption in January 1970 [5]. This
showed logically that there could be an encryp-
tion method that could work without prior pre-
arrangement, and the quest in GCHQ then turned
to finding a practical method to embody the theo-
retical concept.

The first workable mathematical formula for
nonsecret encryption was discovered by Clifford
Cocks, which he recorded in 1973 in a secret CESG
report titled A Note on Non-Secret Encryption [2].
This work describes a special case of RSA public
key encryption where the enciphering exponent e
is set equal to the public modulus n = pq, with-
out any mention of the application to digital sig-
natures. A few months later in 1974, Malcolm
Williamson (see Figure 2) discovered a mathemat-
ical expression based on the commutativity of ex-
ponentiation that he recorded in a secret report
titled Non-Secret Encryption Using A Finite Field
[11], and which describes a key exchange method
similar to that discovered by Diffie, Hellman, and
Merkle.

As Steven Levy writes in his article “The Open
Secret” [8]: “So concerned was the GCHQ with
this possibility that it not only looked at the
schemes internally—finding no inherent flaws—
but also took the unusual step in 1974 of going to
a renowned outsider, Professor R.F. Churchhouse
of the University of Wales, presenting him with the
mathematical foundation of Cocks’s idea, and ask-
ing whether it was secure. Churchhouse concluded
that as long as no one figured out a fast way of
factoring huge primes—something that no math-
ematician had ever come close to—the scheme was
sound.”

Even Williamson believed that the whole ven-
ture was too risky. When he finally wrote up a
revised version of his key scheme, he cited these
reservations as the reason for the two-year de-
lay. “I find myself in an embarrassing position,” he
wrote. “I have come to doubt the whole theory of
nonsecret encryption. The trouble is that I have no
proof that the method . . . is genuinely secure.” He
conceded he could not find anything wrong with
the system, though, “and would be grateful if any-

one else can.” No one did. But by then the GCHQ
had tacitly concluded it wasn’t worth the effort to
implement a public key cryptosystem.

Looking back at the discovery of nonsecret
encryption at the GCHQ after more than 25
years of research in public key cryptography, it
appears as if going public was the only way to
establish public key cryptography as a technology
mature enough to be used in commercial systems,
banking, telecommunications, health care, etc. As
we know today, almost all public key based crypto-
graphic systems rely on unproven complexity the-
oretic assumptions, e.g., the assumption that in-
teger factorization is hard, or that taking discrete
logarithms is hard, or the Strong RSA Assump-
tion, and many more. Some of them have been
investigated by mathematicians for hundreds of
years, yet remain neither proven nor falsified.
There is a chance that someone might come up
some day with a smart algorithm proving that
some of these assumptions are false. At least the
assumptions of integer factorization and discrete
logarithms are generally believed not to be invalid
any time soon, and this belief is based on more
than 25 years of public research, and tremendous
efforts of finding more efficient algorithms, which
is partly stimulated by challenges and significant
rewards for solving them. Nevertheless, all algo-
rithms found so far are of at least subexponential
complexity, impractical to be performed as long
as the keys are chosen of appropriate length. The
case of GCHQ shows that for a new method such
as nonsecret encryption, which was so far out of
the ordinary at its time, and which after 25 years
is still based on a number of unproven complexity
theoretic assumptions, only a moderate level of
confidence can be achieved within the walls of an
intelligence agency. The concept of public key cryp-
tography needed a large open research community
to explore all possible weaknesses and risks it
might have. If public key cryptography had not
been discovered outside of the intelligence com-
munity, it would most likely not be used today, not
even in the military and intelligence communities
because the spies and spooks had hardly gained
hardly enough confidence in the new technique
and would be too paranoid of potential trap doors.

Gerrit Bleumer
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NTRU

THE NTRU CONVOLUTION RING AND THE
NTRU LATTICE: The NTRUENCRYPT cryptosys-
tem, first proposed in 1996, is a public-key cryp-
tosystem based on polynomials in the polynomial
convolution ring R = Z[X]/(XN − 1). Addition of
polynomials in R is simple polynomial addition.
Multiplication is polynomial multiplication fol-
lowed by reduction mod XN − 1 (also known as
taking the convolution product of the coefficient
vectors). The ring is determined by the integer N.
Here, ∗ denotes multiplication in R. The coeffi-
cients of polynomials in this ring will frequently
be reduced modulo some quantity v, where v is an
integer or polynomial of small degree. This reduc-
tion will always be denoted explicitly.

To show how operations in R are related to
lattice operations, we consider the ring homo-
morphism between polynomials in the ring R and
the N × N matrices known as circulant matrices

with integer coefficients. Under this homomor-
phism, a polynomial f (X) = ∑

i fi Xi maps to the
matrix



f0 fN−1 fN−2 · · · f1
f1 f0 fN−1 · · · f2
...

...
...

. . .
...

fN−1 fN−2 fN−3 · · · f0




.

It is easy to verify that this mapping respects ad-
dition and multiplication, i.e., that it is a ring ho-
momorphism as stated.

In NTRU operations, the coefficients of polyno-
mials in R are frequently reduced mod q, q ∈ Z.
The convolution modular lattice defined by a given
polynomial h and integer q is the 2N-dimensional
lattice defined by the row vectors of a 2N × 2N
matrix of the form(

I H
0 q I

)
,

where the submatrices are all N × N, and H is
the circulant matrix defined by h. If h has been
chosen in such a way that it is known that there
is a particularly short vector in this lattice, the
lattice is known as an NTRU lattice. The hard
problems presented to an attacker by the NTRU

systems—recovering the private key from a pub-
lic key, recovering a plaintext from a ciphertext,
and signing a message representative—can all be
considered instances of solving a Closest Vector
Problem (CVP) or a Shortest Vector Problem
(SVP) in an NTRU lattice.

DESCRIPTION OF THE NTRUENCRYPT SYS-
TEM: NTRUENCRYPT [6] is a public-key cryptosys-
tem whose difficulty is based on CVP or SVP in
the NTRU lattice. In addition to the ring dimen-
sion N and the “big modulus” q ∈ ZZ, NTRUEN-
CRYPT uses a “little modulus” p, which has typically
been taken to be the integer 2 or 3 or the polyno-
mial 2 + X (operations mod 2 + X are discussed in
[7]). The quantities p, q, and XN − 1 must be rel-
atively prime (generate the unit ideal) in the ring
Z[X]. Additional parameters include the distribu-
tions D f,Dg,Dm,Dr , which are described below.
� NTRUENCRYPT key generation selects “small”

polynomials f and g. We will make much use
of the concept of small polynomials, which are
defined for our purposes as polynomials of de-
gree N − 1 whose coefficients are small relative
to those of random mod q polynomials. The poly-
nomials f and g are drawn from distributions D f
and Dg, respectively. These must be defined as
part of the parameter set. For example, a pa-
rameter set might define D f and Dg to be the
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sets of binary polynomials with d f and dg ones,
and N − d f and N − dg zeros, respectively. For
a given definition of D f,Dg, key generation pro-
ceeds as follows.
1. Randomly generate “small” polynomials f

and g in D f, Dg respectively.
2. Invert f mod q in R to obtain fq . Also invert

f mod p in R to obtain fp. These calculations
are straightforward using an analog of the
extended Euclidean algorithm. The probabil-
ity that a random polynomial has an inverse
is discussed in [17].

3. Calculate the public key h as h ≡ p · g ·
fq mod q. In other words, h satisfies f · h ≡
p · g (mod q). The private key is the pair ( f, fp).

� The NTRUENCRYPT encryption primitive uses
polynomials m and r which are drawn from dis-
tributions Dm and Dr , respectively. The defini-
tions of Dm and Dr are part of the parameter
set. Polynomials in Dm, Dr are small relative
to random mod q polynomials: for example, a
parameter set might define Dr to be the set of
binary polynomials with dr ones, and Dm to be
the set of all binary polynomials. For a given
definition of Dr ,Dm, encryption proceeds as
follows.
1. Encode the message M as a polynomial inDm.
2. Randomly select a polynomial r in Dr .
3. Calculate the ciphertext e as e ≡ r · h +

m (mod q).
� The NTRUENCRYPT decryption primitive con-

sists of the following operations:
1. Calculate a ≡ f · e (mod q), performing the

mod q reduction into the interval [A, A+ q −
1], where the choice of A is discussed later.

2. Recover m by calculating m ≡ fp · a (mod p).
To see why decryption works, substitute h ≡

p · g · fq and e ≡ r · h + m into the above equations.
This gives

a ≡ p · r · g + f · m mod q.

If this were an equality over Z, rather than sim-
ply (mod q), it is clear that step 2 would recover m.
Recommended NTRUENCRYPT parameter sets N, p,
q, D f, Dg,Dm,Dr give a high probability that the
width of p · r · g + f · m (its largest coefficient mi-
nus its smallest) will be less than q. Therefore, a
range [A, A+ q − 1] can be found such that the
equation above is an equality over Z, and by re-
ducing into this range the decrypter can recover
m. A will depend on the expected value of the av-
erage coefficient of p · r · g + f · m; in other words,
it will depend on the values of f (X = 1), r (X = 1),
g(X = 1), and m (X = 1). The first three of these
values are fixed for a particular parameter set,
and the final value can be obtained from e(X = 1);

therefore, the decrypter can choose an appropriate
value for A and recover m.

OPERATING CHARACTERISTICS OF NTRUEN-
CRYPT: The running time of NTRUENCRYPT in-
creases with the security parameter N at a rate
between �(N ln(N)) and �(N2) (see O-notation).
For comparison purposes, ignoring fast multipli-
cation techniques and precomputation where rel-
evant, RSA encryption (with small exponent) is
�(N2) and RSA decryption is �(N3), while encryp-
tion and decryption for both elliptic curve crypto-
graphy and cryptosystems based on the discrete
logarithm problem are �(N3). While the actual
value of the security parameter N obviously differs
in practice among these various forms of public-
key cryptography, NTRUENCRYPT’s “subquadratic”
running time is nonetheless notable.

NTRUENCRYPT parameter choices can be opti-
mized for speed in various ways [7, 8], includ-
ing: (1) taking f to be of the form 1 + p · F with
F small and thus fp = 1; (2) taking f to have the
form f1 · f2 + f3 with f1, f2, f3 small (and similarly
for r); and (3) taking q to be a power of 2. Dif-
ferent parameter choices lead to slightly different
instances of the underlying hard problem.

SECURITY OF THE NTRUENCRYPT SYSTEM:
NTRU keys and ciphertexts can be attacked by lat-
tice reduction applied to the 2N-dimensional NTRU

lattice defined by h (or, in the formulation given
above, defined by p−1h mod q) [1, 6, 18]. The break-
ing time appears experimentally to depend on the
structure of f and g, or r and m, in that the greater
the norm of these small polynomials (relative to
q), the longer the reduction takes. “Zero-forcing
attacks” [13] use the rotational symmetry of the
problem to let an attacker reduce the problem to
a somewhat lower dimensional lattice. If N is not
prime, say N is divisible by n, then an attacker
can apply reduction methods in a lattice of dimen-
sion 2n [3]. Thus N should always be chosen to be
prime.

Since f, g, r, and m are drawn from a relatively
small space of polynomials, they may be vulnera-
ble to an exhaustive search. Known meet-in-the-
middle (i.e., collision) type methods take roughly
the square root of the time required for an exhaus-
tive search [16]. The key and message spaces must
therefore be chosen to give an adequate level of
combinatorial security.

Raw NTRUENCRYPT ciphertexts are malleable in
many ways and thus leak some information about
m. For example, if a ciphertext e decrypts to m,
then X · e will decrypt to X · m; e + Xi will, with
reasonable probability, decrypt to m + Xi ; the sum
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of the coefficients of the ciphertext, i.e., the value
e(X = 1), reveals the sum of the coefficients of the
message m(1) mod q. Adaptive chosen ciphertext
attacks based on these observations are described
in [9, 12]. Therefore, NTRUENCRYPT should only be
used with a padding scheme such that there is a
known proof of security relative to certain assump-
tions on the difficulty of a certain hard problem
[15].

In addition, NTRUENCRYPT is vulnerable to at-
tacks based on decryption failures [9, 10, 14].
In these attacks, an attacker attempts to create
validly encrypted messages e = r + h · m such that
the width of p · r · g + f · m is greater than q, so
that the decryption primitive described above will
not be able to decrypt them. Decryption failures
leak information and can allow the recovery of the
private key f.

In general, if a security level of k bits is desired,
then the chance that the width of p · r · g + f · m
is greater than q for random r, g, f, m should be
at most 1/2k. The padding scheme should ensure
that r and m are drawn uniformly at random from
some set, and that they cannot be directly selected
by the sender [11]. Since small values of q in-
crease lattice security and reduce bandwidth, q
should be chosen as small as possible, consistent
with ensuring an acceptably low decryption fail-
ure probability.

Recommended parameter sets for 80-bit secu-
rity are as follows [16, 18, 19]. In these sets, the
polynomials F, g, r are binary with dF, dg, dr ones
respectively.

N = 251, p = 2, q = 239, f = 1 + p · F,

dF = dg = dr = 72.

Public keys and ciphertexts for such parameters
can be specified in 2004 bits, while private keys
in 251 bits. A full description of how to implement
NTRUENCRYPT using the recommended encryption
scheme is contained in the EESS#1 standard [2].

NTRUSIGN: NTRUSIGN, a digital signature
scheme based on solving CVP in the NTRU lattice,
was first presented in 2001 and published in
2003 [5]. NTRUSIGN is not computationally zero-
knowledge and information from a transcript
of signatures eventually leaks the private key
[4]. An extension to the algorithm, based on
“perturbing” the message before signing it, is
claimed to reduce the information leakage to such
an extent that a transcript-based attack needs
an impractically large number of signatures to
succeed [5]. NTRUSIGN is fully described, with
parameters, in the EESS#1 standard [2].

DERIVATION OF NTRU: The origin of the
acronym “NTRU” is obscure, with suggested
candidates including “Number Theory Research
Unit” and the more whimsical “Number Theorists
‘R’ Us”.

William Whyte
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NUMBER FIELD

A number field Q(α), also called an algebraic num-
ber field, is an extension field of the rational num-
bers Q, generated from a root α of a polynomial

f (x) = fd xd + fd−1x d−1 + · · · + f1x + f0,

where the coefficients f0, . . . , fd are rational num-
bers and d is the degree. A number field Q(α) is
thus to the rational numbers Q as a finite field Fqd

is to the underlying subfield Fq . In particular, ev-
ery element of a number field Q(α) has the form

ad−1α
d−1 + ad−2α

d−2 + · · · + a1α + a0,

where a0, . . . , ad−1 are rational numbers, and ev-
ery element of Q(α) can be generated from field
operations on elements of Q and α. Since Q is in-
finite, a number field is likewise infinite.

As an example, the number field Q(i) where
i = √−1, also called an imaginary quadratic field,

consists of the values of the form

a + bi

where a, b are rational numbers. Here, i is a root
of the polynomial

x2 + 1 = 0.

An element of a number field Q(α) has a norm,
which is a rational number with certain multi-
plicative properties (e.g., the norm of a product
of two elements is the product of their norms);
the norm is a way of expressing the “size” of an
element.

Number fields are employed in cryptography
primarily in solutions to integer factoring and the
discrete logarithm problem. See the entry Num-
ber Field Sieve in particular for a detailed discus-
sion of how specially constructed number fields are
employed in integer factoring, where one searches
for elements of the number field whose norm is a
smooth number (see smoothness).

Burt Kaliski

NUMBER FIELD SIEVE

The Number Field Sieve, or NFS, is one of a family
of algorithms which attempt to factor an integer
N by finding integers x and y such that x2 ≡ y2

mod N (see modular arithmetic), in which case
gcd (x + y, N) is then a (possibly nontrivial) factor
of N. It is the asymptotically fastest known algo-
rithm for integer factoring when the factors have
no exploitable special characteristics (compare, for
example, the Elliptic Curve Method which is par-
ticularly effective at discovering relatively small
factors). There are two forms of the NFS distin-
guished by whether N itself has an especially sim-
ple form (the Special NFS or SNFS) or is a gen-
eral integer (the General NFS or GNFS). With
optimal choice of parameters, the NFS factors a
composite integer N in heuristic time LN[1/3, c]
(see L-notation) where c = ( 32

9 )1/3 ≈ 1.526 for the
SNFS and c = ( 64

9 )1/3 ≈ 1.923 for the GNFS.
Coppersmith’s variant of the GNFS reduces c to
(1/3)(92 + 26

√
13)1/3 ≈ 1.902 but his version is not

competitive until N is much larger than values
which can be factored at present.

A version of the NFS may also be used to solve
discrete logarithm problems; we do not describe
that application here.

HISTORY OF THE NFS: The idea of representing
N as the difference of two squares x2 − y2 with
factorization (x − y)(x + y) goes back to Fermat in
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1643. Some 50 years later Legendre observed that
a pair (x, y) such that

x2 ≡ y2 mod N, 0 < x �= y < N, x + y �= N (1)

suffices to factor N. Kraı̈tchik in the 1920s pro-
posed looking for values of a such that a ≡ x2 mod
N (i.e., a is a quadratic residue modulo N) and to
piece together solutions of this congruence to ob-
tain solutions of (1).

In 1970, Morrison and Brillhart introduced two
key ideas: generating small quadratic residues (in
their CFRAC algorithm by evaluating the contin-
ued fraction expansion of

√
N) and requiring that

they be smooth which is defined as factoring en-
tirely into a limited number of primes contained
within a factor base. The value a and its prime
factorization are called a relation. CFRAC starts
by generating a large number of relations and
then uses linear algebra to piece together a so-
lution to (1). CFRAC was the first algorithm with
heuristic subexponential running time. It should
be noted that in this approach the problem of fac-
toring a large integer N has been replaced in part
by the problem of factoring a large number of much
smaller integers. A major limitation of CFRAC is
that it uses trial division to identify and factor
small quadratic residues and division is a slow op-
eration on most computers.

In 1982, Pomerance found a way (the Quadratic
Sieve) of using sieves to speed the finding of
smooth quadratic residues. The speed of the
Quadratic Sieve is limited by the size of the
quadratic residues, which are approximately

√
N.

If the size of these numbers could be reduced the
sieve would run faster. The NFS exploits this ob-
servation.

In 1988, Pollard suggested a factoring method
that was very well suited to numbers that are close
to a high power of an integer. His algorithm was a
form of the SNFS. Before long this method had
been extended to the GNFS so that it could be
used to factor general composites. Reference [5]
describes the initial development of the NFS. By
1990 the SNFS had been developed to the point
where Lenstra et al. used it to factor 2512 + 1, a
number with 155 digits [6]. By December 2002 the
SNFS record stood at 233 digits [11]. The GNFS
first set a factoring record in 1996 when it was ap-
plied to a 130-digit RSA Factoring Challenge inte-
ger [3] and again in 1999 when it factored a 155-
digit challenge [1]. A 174-digit challenge was fac-
tored in December 2003 [4].

STRUCTURE OF THE ALGORITHM: All versions
of the NFS consist of four distinct phases: polyno-

mial selection, sieving, linear algebra, and extrac-
tion of square roots in an algebraic number field.
At least two polynomials are chosen—more than
two may be used but in the following we restrict
our description to two for simplicity. With the aid
of a sieve and two factor bases, one per polynomial,
we find a large number of pairs of integers which
generate smooth values (see smoothness) of both
polynomials simultaneously. These pairs are also
called relations. A polynomial value is the norm
of an element in the number field generated by a
root of the polynomial (incidentally, the origin of
the name Number Field Sieve). As in other algo-
rithms which use factor bases, linear algebra tech-
niques are used to select and combine relations
which form pairs of squares in the number fields.
The square roots in the number fields are taken
and, via homomorphisms, are converted into ra-
tional integers x and y such that x2 ≡ y2 mod N.

POLYNOMIAL SELECTION: We need to find two
polynomials over Z,

f1(x) = c1,d1 xd1 + c1,d1−1xd1−1 + · · · + c1,0,

f2(x) = c2,d2 xd2 + c2,d2−1xd2−1 + · · · + c2,0,

with f1 �= ± f2, both irreducible over Z, and having
content = gcd(cidi , . . . , ci,0) equal to 1 (see greatest
common divisor), together with an integer m that
is a common root modulo N of f1 and f2. The value
of d1 + d2 is normally in the range 4–8 when fac-
toring N with 100–250 digits or so. A fairly simple
approach to finding fi and m that has been used
successfully, and is the basis of many later and
more sophisticated methods, is first to choose an
integer m near to N1/(d1+1) and then determine f1
from the radix—m expansion of N. Many trial val-
ues of m are selected and the corresponding poly-
nomials ranked by absolute size of coefficients and,
perhaps, other criteria. Very frequently f2 is cho-
sen to be the linear polynomial x − m once f1 and
its root m have been chosen. The coefficients ci, j
are generally chosen to be as small as possible, as
this speeds up the overall algorithm. The only dif-
ference between the SNFS and the GNFS is that
the special form of N usually dictates the polyno-
mials used in the SNFS and that the coefficients
are of size o(1)—i.e., bounded by a (possibly large)
constant—whereas in the GNFS the coefficients
grow as O(N1/(d+1)). For example, the factoriza-
tion of N = 2512 + 1 used the polynomials x5 + 8
and x – m which have a common root m = 2103 mod
N. The GNFS factors N with no special form and
searching for polynomials with small coefficients
and a known root is generally a time-consuming
task. Other properties of the polynomials, e.g., the
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behavior of their roots modulo small primes, are
also important and the development of methods
for finding good polynomials is currently an active
area of research [9].

Each polynomial fi defines an algebraic num-
ber field. Let αi be a complex root of fi , that is
f (αi) = 0. We already know that fi(m) ≡ 0 mod N
so there is a natural homomorphism φi : αi �→ m.
This homomorphism is exploited in the square root
phase of the NFS. For integers a and b, the norms
N(a − bαi) equal fi(a/b)bdi .

SIEVING: With each polynomial we associate a
factor base consisting of all prime numbers p up
to a factor base bound for which the polynomial
has at least one root modulo p. The factor base
bounds may be the same for each polynomial, but
need not be. We also set a large prime bound for
each polynomal; again this value may be the same
or different for each polynomial and it is typically
about 100 times the factor base bound. The siever
looks for coprime integer pairs (a, b) for which each
norm N(a − bαi) factors into primes contained in
the respective factor base while allowing a small
number of large primes which are between the fac-
tor base bound and the large prime bound. Allow-
ing two large primes for each polynomial is very
common.

The simplest form of sieving, line sieving, pro-
ceeds as in the following sketch. First a value is
fixed for b. Then a block of memory, representing
each value of a in a fixed range, is initialized to
zero. The roots of fi modulo a prime p in the ith
factor base fall into one or more sets; the members
of each set are equispaced within the range of a
under consideration (they are p apart), so locat-
ing any one permits all the others in the set to
be found very rapidly. One member of each set of
roots is located for the first polynomial and then
all the sieve locations corresponding to the roots
of f1 mod p are incremented by an approximation
to log p. This process is then repeated for all the
other primes in the factor base associated with f1.
Upon completion of this process, those memory lo-
cations which hold values close to log N(a − bα1)
indicate norms which are very likely to factor into
primes from the first factor base together with at
most a few large primes. These “promising” loca-
tions are noted. Next, the memory is reinitialized
to zero and the same sieving procedure carried out
with f2 and the second factor base. Those locations
which appear to be promising in both sieves simul-
taneously indicate the values of (a, b) which may
give the norms we are looking for. These norms are

investigated further, by trial division perhaps, and
if both norms are smooth a relation (a, b) is out-
put, together with the prime factorization of the
norms. In this respect, the NFS differs from the
QS in that two values are required to be smooth
(see smoothness) simultaneously. This entire pro-
cedure is then repeated, perhaps with a different
range of a values with the same b, or with a differ-
ent value for b. Note that the sieving procedure is
very easily distributed over many machines work-
ing concurrently: each machine sieves over dis-
tinct values of b and ranges of a values.

An alternative sieving technique, lattice siev-
ing [10], sieves over a subset of (a, b) pairs for
which one of the norms is chosen to be divisible
by a particular large prime, the so-called special-
q. That norm, when divided by the special-q, will
be smaller and so more likely to be smooth. Only a
small subset of the possible norms will be divisible
by any one special-q but the sieve may be repeated
many times, each with a different special-q. The
relative performance of the line and lattice siev-
ing algorithms depends somewhat on implemen-
tation details, with the lattice siever tending to be
the more efficient.

LINEAR ALGEBRA: The output from the siever is
a very large collection of relations each of which
contains the prime factorization of a pair of norms
of polynomials, together with the corresponding
values of a and b. The linear algebra stage at-
tempts to find sets of relations such that in their
product each prime in each factorization appears
an even number of times. Consider a matrix in
which each column represents a relation and each
row is a prime from the factor bases; elements of
the matrix are set to 1 if that prime occurs an odd
number of times in that relation and 0 otherwise.
Finding the required sets of relations corresponds
to finding linear dependencies mod 2 in the matrix.

It would be possible to use standard techniques
from linear algebra such as Gaussian elimination
or Lanczos [9] or Wiedemann algorithms directly
on this matrix, but it would be very large and very
expensive to process. For example, when factor-
ing a 150-digit integer with the GNFS, the siever
may produce a matrix with around 80 million rows
and columns, albeit an extremely sparse one. Ac-
cordingly, a filtering and merging process is al-
most universally used to reduce the matrix size be-
fore proceeding with the matrix stage proper. First
all singletons (relations in which a prime appears
only once in the entire collection) are removed be-
cause they cannot possibly form part of a useful
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linear combination. Subsequent merging phases
seek for sets of two or more relations which share a
common large prime and create new sets in which
the large prime occurs twice in each set. The new
sets may then be treated as relations which no
longer contain the large prime (because the linear
algebra is performed over F2) and so the matrix
size has been reduced, though at a probable in-
crease in its density.

SQUARE ROOT: The output of the linear algebra
stage is a set of linear dependencies, modulo 2,
within the exponent vectors of the prime factor-
ization of a number of norms of two polynomials.
That is, we have a set S of relations (a, b) such
that the products

∏
(a,b)∈S(a − bαi) are squares of

algebraic integers, say γ 2
1 and γ 2

2 , in the number
fields Q(αi), where αi is a root of fi for i = 1, 2.
By applying the homomorphisms φ1 : α1 �→ m and
φ2 : α2 �→ m we find a congruence of two squares
modulo N, namely

(φ1(γ1))2 ≡ (φ1(γ 2
1 ))

≡
∏

(a,b)∈S

(a − bm)

≡ (φ2(γ 2
2 )) ≡ (φ2(γ2))2.

For a nonlinear polynomial, this means that we
need to extract a square root of the product of a
large number of terms in the respective number
field. Couveignes [2] first developed an algorithm
to perform this root extraction, but Montgomery’s
[7] subsequent and faster algorithm has now re-
placed it in general use. Their methods are rather
complex and details are beyond the scope of this
encyclopedia entry.

Paul Leyland
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NUMBER THEORY

Number theory is the study of natural num-
bers. It includes topics such as prime numbers,
integer factoring, diophantine equations (for ex-
ample, finding integer solutions to equations of
the form x2 + y2 = z2), continued fractions (exam-
ple:

√
2 = 1 + 1

2+ 1
2+···

), properties of algebraic num-

bers (for example, numbers like 3 + 4 · i where
i2 = −1), and a broad range of other mathemat-
ical problems.

Despite having evolved over at least 3000 years,
number theory has had relatively few applications
prior to the age of the digital computer. It was stud-
ied mainly for the reason of mathematical curios-
ity, without a lot of thought about how it could be
applied to real world problems. In fact, a leading
number theorist of the first half of the 20th cen-
tury, G.H. Hardy, was quite proud that he spent
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his whole life working on mathematics that had
no practical value.

Nowadays, things are very different. Our ev-
eryday lives involve many activities that rely on
cryptography based upon number theory. A few
examples include e-commerce (specifically, trans-
actions that require sending credit card informa-
tion over the Internet), mobile phones, cable and
satellite television, online banking, and stock trad-
ing through hand-held devices. Had the applica-
tion of number theory never been discovered, it is
quite likely that at least some of these examples
would not be possible today, while others would
be a lot more complex and more vulnerable to
fraud.

What got all of this started can be traced back to
a research publication in the mid 1970s. The paper,
entitled “New Directions in Cryptography” [19] by
Stanford University researchers Whit Diffie and
Martin Hellman, is perhaps the most important
paper in the subject’s history. One of the problems
that they solved was the key exchange problem,
which asks how two people (say, Alice and Bob)
in separate locations can agree upon a secret en-
cryption key, while any eavesdroppers would not
be able to figure it out. This was an essential piece
of the puzzle that was missing in order for cryptog-
raphy to be used as it is today. For instance, when
one sends credit card information over the Inter-
net to some Web site one has never visited before,
it can only be encrypted after the client browser
and the server agree upon a secret encryption key.

Diffie and Hellman’s solution was based upon
modular arithmetic—one of the most basic topics
in number theory. The idea was that the two people
first agree upon a very large prime, p, and a mul-
tiplicative generator, g, modulo that prime, which
were not kept secret—any eavesdropper would
know these values but it would not help him in
figuring out the secret key that they will compute.
Alice and Bob would then choose secret integer
values a and b, respectively, which they would not
tell to anybody else—not even each other. Alice
would compute ga mod p while Bob computes gb

mod p, and then they exchange these values. When
Alice receives gb mod p, she raises it to the power
a modulo p, and likewise Bob raises Alice’s value
to the power b modulo p. The result is that they
both computed ga·b mod p, which can be used as
the secret key. Yet, any eavesdropper would not be
able to compute the same values without knowing
a or b, or so we think!

Note that the eavesdropper has all values ex-
cept a and b. When he sees ga mod p, can he fig-
ure out a? This is known as the discrete logarithm
problem, and is the basis for the security of the key

exchange method, which is known as the Diffie–
Hellman key agreement, or DH for short. At the
time Diffie and Hellman presented their protocol,
there were no methods for solving discrete loga-
rithms efficiently. Since then, many new number
theoretic algorithms have been developed to at-
tack DH, but none of them is fast enough to break
it. The protocol is still considered very secure to-
day, and is widely used.

A second important idea that Diffie and
Hellman introduced in their research paper was
the concept of public-key cryptography. In tradi-
tional cryptography, there was always one secret
key that was used to both encrypt and decrypt.
Diffie and Hellman demonstrated that it should
be possible to design methods of encryption where
two keys are used: a public key that is used for
encryption, and a private key that is used for de-
cryption. The public key would be made public, so
that anybody who wants to send you an encrypted
message can do so by using it. The private key
would be kept only to yourself, so that you alone
can decrypt the scrambled messages. For this to
work, it must be the case that nobody can figure
out somebody’s private key from his or her public
key, except for the person who created the key pair
in the first place!

Diffie and Hellman then showed that public key
cryptography can be used for more than just en-
cryption. In particular, they introduced the con-
cept of a digital signature scheme. Suppose Alice
wanted to sign her name on a digital document.
She would do so by “encrypting” it with her pri-
vate key. Bob, or anybody else could verify that
she signed it by “decrypting” it with her public key.
This proves that Alice signed the document: only
Alice was able to compute the function with her
private key since only she knows her private key.
Yet anybody can verify that she signed it because
anybody and everybody can look up her public key.
Digital signatures are reversing the roles of the
public and private keys in order to demonstrate to
the world that somebody wanted his or her name
at the bottom of some electronic document. This
was a monumental concept, from which the sci-
ence of cryptography began taking on more of a
role than just encryption!

Diffie and Hellman had not yet discovered a
public key encryption method by the time of
their publication. But soon after, three researchers
from M.I.T. came up with one whose security was
based upon the difficulty of factoring integers.
The method is known as the RSA cryptosystem
(see entries RSA public-key encryption and RSA
digital signature scheme), which comes from the
names of the inventors: Ron Rivest, Adi Shamir,
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and Len Adleman. RSA is based upon the idea
that anybody can find really large prime numbers
easily and multiply them together, but there is no
fast way known to recover those primes back when
given only the product. To the beginner, this is not
obvious: factoring and primality testing may seem
to have about the same complexity. However, we
shall see that there are tricks from number theory
that allow us to determine primality much faster
than factoring.

The RSA algorithm works similar to DH:
they both involve modular exponentiation (see
exponentiation algorithms). However, in RSA the
modulus for the exponentiation is a composite
number that is a product of two large primes, and
each person has his or her own separate modulus.
The public and private key pairs are derived
from the modulus using knowledge of the secret
prime divisors. Only the person who created the
modulus can figure out public and private key
pairs that work with it, since only that person
knows the prime divisors.

Along with the publication of the RSA cryp-
tosystem, the authors presented a challenge. They
encrypted a secret message using a 129-digit mod-
ulus that was the product of a 64-digit and a
65-digit prime, and offered $100 to anybody who
could decrypt the message. At that time, they es-
timated that the amount of time to factor the
number, known as RSA-129, would take more
than 40 quadrillion years using the best factor-
ing algorithm known. They even stated that “with
such a huge modulus the message will never be
recovered.” They also started the company RSA
Data Security, which would sell the new, patented
encryption technology and offer cash prizes for
factoring numbers of increasing sizes, starting
at 100-digits (see RSA Factoring Challenge). The
number RSA-129 was eventually factored [3] by
a new factoring method, but the RSA cryptosys-
tem still remains secure for large enough moduli,
and is ubiquitous in electronic communications
today.

It is hard to emphasize enough how much of
an impact the DH and RSA cryptosystems influ-
enced research in number theory, especially the
computational aspect. Prior to these cryptosys-
tems, the study of factorization and primality test-
ing was done by a small group of individuals who
shared their results among each other, but did not
always publish their work [12]. Their field of inter-
est soon became a gold mine, and unfortunately for
them, some of their research was reinvented. On
the other hand, the reinventions were occasion-
ally accompanied by new, advanced mathemati-
cal analyses that revealed useful and surprising

results. For those interested in some of the fas-
cinating computational number theory research
prior to public key cryptography, one nice source
is [13].

In the remainder of this article we talk more
specifically about problems in number theory that
are of interest to cryptography, with an empha-
sis on why they are important and how the two
fields have shaped each other. The reader should
be aware that this article is only scratching the
surface: to write a comprehensive essay on num-
ber theory in cryptography is enough to fill an
encyclopedia.

MODULAR ARITHMETIC: it is difficult to do much
number theory or cryptography at all without
modular arithmetic. Two numbers a and b are said
to be congruent modulo n if their difference a − b
is divisible by n. This is written a ≡ b mod n. The
congruence relation, ≡, behaves in many ways like
the very familiar equality relation, =.

Both the DH and RSA cryptosystems involve
heavy use of modular arithmetic, and there are
many other cryptographic primitives that do as
well. When the modulus n is prime, arithmetic
with the set of integers modulo n is a special case
of a more general set of algebraic objects known
as finite fields. Finite fields are used everywhere
in cryptography, and are one of the most impor-
tant concepts an apprentice in the subject must
master.

The literature in cryptography abounds with re-
search on fast modular and finite field arithmetic.
Like with automobiles, some people can never
have enough speed. For example, consider an e-
commerce server which must handle numerous
purchases per second. It is critical that the cryp-
tography does not heavily delay the transactions,
or else people will just start shopping elsewhere.
A good beginning survey on fast modular arith-
metic is given in [21]. Included in the survey is an
explanation of Montgomery’s very clever method
of computing the mod operation without actually
doing division (see Montgomery arithmetic). See
also the entry exponentiation algorithms.

There is one modular arithmetic tool that de-
serves special mention: the Chinese Remainder
Theorem or CRT. CRT is a method for quickly
transforming a solution of a congruence modulo
a composite integer to a solution modulo its prime
divisors, and vice versa. It is so named because
the 4th century AD Chinese mathematician Sun
Tsu Suan-Ching seems to be the first to consider
problems of this nature. CRT is often included in
RSA implementations to speed up decryption and
digital signature operations.
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PRIME NUMBERS: There are two important facts
that we glossed over when we talked about DH and
RSA:
1. For security reasons, we need to be sure

that there are enough large prime numbers. It
should not be possible that somebody is able to
make a list of all primes up to a certain size and
then use it to factor somebody’s RSA modulus,
and hence break RSA.

2. It is essential that we are able to quickly deter-
mine whether very large numbers are prime. It
is not obvious how to do this.
One of the most basic and most elegant the-

orems in number theory is that there are in-
finitely many prime numbers, which was proved
in Euclid’s Elements (approximately 300 BC). But
that in itself does not tell us how many there are of
some size. Originally conjectured by Legendre but
first proved by de la Vallée Poussin and indepen-
dently by Hadamard, the Prime Number Theorem
answers the latter question. The theorem states
that asymptotically, the number of primes up to
some integer x is on the order of x/ log x. Using this
theorem, we can estimate the number of 100-digit
primes to be on the order of 4 × 1097. This is far
larger than the conjectured number of atoms in the
universe (on the order of 1078), so it is certainly not
possible to make a list of all such primes to break
RSA.

Addressing the second point, suppose n is a
number that we want to test for primality. How
do we do it? The first method that we learn is
to trial divide by all numbers up to

√
n, and if

none other than 1 divides n, then n is prime. This
takes O(n0.5) steps. To the untrained eye, this may
seem fast. But in fact, it is not. This is actually
exponential time in the size of the number which
is log n. An equivalent way of writing the running
time is O(e0.5 · log n) (remark: in number theory lit-
erature, it is customary to use “log” to mean “nat-
ural log”), which makes its inefficiency more clear.
In contrast, a polynomial time algorithm is of the
form O(logc n) for some constant integer c. So, for
cryptographic applications, we must have better
methods.

The most important concept in modern primal-
ity testing applied to cryptography goes back to
a 17th century French lawyer named Pierre de
Fermat, who spent much of his free time play-
ing with mathematics. Known as Fermat’s Little
Theorem, he claimed every odd prime number, p,
has the property that a p−1 mod p ≡ 1 for all inte-
gers a not divisible by p. On the other hand, it
is quite rare to find composite integers that have
this property. Those that do are called pseudo-
primes, or more specifically, base-a pseudoprimes.

Fermat’s Little Theorem gives an efficient method
to determine whether an odd number n is prime
or not, with some chance of error (see Fermat
primality test): simply choose an integer a that is
not divisible by n, compute an−1 mod n, and call
it prime if the result is 1 or composite otherwise.
The test never lies when it declares a number to
be composite, but sometimes, though very rarely,
lies when it says “prime.”

Since there is some chance of error, it is tempt-
ing to reduce or eliminate it by repeating the
test with other bases. Unfortunately, this strategy
has limits due to a disruptive class of numbers
that are pseudoprimes to nearly every base. They
are called Carmichael numbers. The smallest is
561.

Carmichael numbers present a bit of an obstacle
to Fermat’s primality testing method. For crypto-
graphic applications, we need to be sure to an ex-
ceedingly high degree of confidence that the num-
ber we think is prime really is. Otherwise, the
cryptography may not be as secure as we think.
For instance, the RSA algorithm will still work
if we accidently choose Carmichael numbers in-
stead of primes for our modulus, but the mod-
ulus becomes much easier to factor, hence mak-
ing it insecure. This brings up several problems,
such as:
� Can we detect with very high probability

whether our number really is prime and not a
Carmichael number?

� How much time does it take to be confident
enough that our number is really prime?

� How many Carmichael numbers are there? Is
there a simple formula that estimates how
many Carmichael numbers there are between
1 and x?
The first two questions have been answered

based upon a modified version of Fermat’s test
which is stronger (more accurate) and very slightly
faster. The modified version is due to a few dif-
ferent people who independently arrived at more
or less the same test (Artjuhov, Selfridge, and
Miller/Rabin; see [16] for details). Today it is often
called the Miller–Rabin probabilistic primality
test or sometimes the strong pseudoprime test.
In Rabin’s publication, he showed that for any
odd composite number larger than 9, at most one
fourth of the bases will falsely fool the test into be-
lieving that the number is prime. This implies that
if a large odd number passes the test for 50 random
bases, then the probability is no more than 2−100

that it is composite, which is sufficiently small for
cryptographic applications. But, note that this is
a worst case analysis: if the number was chosen
at random, then with high probability it is not a
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pseudoprime to any base in the first place, so fewer
tests should suffice. The average case analysis was
done in [18].

We conclude with a few brief remarks about
research in primality testing. In [2], it is shown
that there are infinitely many Carmichael num-
bers, which was a longstanding open conjecture.
They also show that an asymptotic formula for
the number of Carmichael numbers up to x is at
least x2/7, but a tight bound on the asymptotics is
still not known. Bach has shown that the strong
pseudoprime test can be turned into a primality
proving algorithm1 under the assumption of the
widely believed extended Riemann hypothesis [4].
However, this is mainly of theoretical interest,
since such a proof would take much longer to com-
plete than the tests we do today, which are good
enough for cryptographic purposes. A new primal-
ity test which generalizes many previous primal-
ity tests was developed by Grantham [20]. Known
as the quadratic Frobenius test, it achieves a bet-
ter worst case analysis per unit of time than the
Miller–Rabin test. See [17] for the average case
analysis and [27] for an improved variant of the
test for numbers congruent to 1 mod 4. Recently,
[1] gave the first deterministic polynomial-time
primality proving algorithm under no assump-
tions. So far it is impractical, but future research
may some day change this.

See the entry primality test for a more complete
discussion of these issues.

DISCRETE LOGARITHMS AND INTEGER FAC-
TORIZATION: Before talking about discrete loga-
rithms and factoring, it is best to first ask whether
the security of DH and RSA really rely on the hard-
ness of solving these problems. It is certainly true
that if one can compute discrete logarithms or if
one can factor, then one can break DH or RSA. But
what about the other way around? It is unknown
whether that is the case. This is a very impor-
tant research area, since quite often an attacker
will find another way around breaking a system
rather than the “hard problem” that the designer
thinks it depends upon. In fact, RSA really relies
on the difficulty of computing roots modulo a com-
posite number, which is not known to be as difficult
as factoring, except when the exponent is even.
Even exponents are not used for RSA, but they
are used in a variant of RSA known as the Rabin
cryptosystem [30]. Consequently, the Rabin vari-
ant has been proved to be as difficult to break as

1 The difference between a primality test and a primality prov-
ing algorithm is that a proof is never wrong, while a test has a
small chance of error.

factoring the modulus, whereas RSA itself has not.
Further, the research of [10] argues that breaking
RSA may not be as difficult as factoring. These
examples motivate the important topic of prov-
able security (see “reductions” in computational
complexity), which means proving that breaking
some system is equivalent to solving some prob-
lem that we hope and think is very difficult to do.

Despite the lack of provability, the best meth-
ods known for breaking RSA or DH when im-
plemented properly2 are factoring and solving
discrete logarithms respectively (see the entries
Diffie–Hellman problem and RSA problem for
further discussion). So let’s now discuss algo-
rithms for solving the mathematical problems,
starting with factoring. Factoring algorithms are
categorized either as general purpose or special
purpose. General purpose algorithms have run-
ning times that depend upon only the length of
the number that is being factored, while special
purpose algorithms depend upon properties of the
number. Most often, “properties of the number”
has some relation to the size of the prime divi-
sors, but not always. Special purpose algorithms
are very useful for many reasons, but it is the
general purpose ones that seem to have the most
potential for attacking public key cryptosystems
such as RSA.

Suppose n is an integer that we want to factor.
Rather surprisingly, many of the best factoring al-
gorithms have running times described by the for-
mula (see L-notation)

Ln[t, γ ] = e(γ+o(1)) · (log n)t · (log log n)1−t
(1)

for some constant numbers γ > 0 and t ∈ [0, 1].
Let’s take a closer look at this formula.

First, if the reader does not feel comfortable with
the o(1), he or she can ignore it for the purpose of
this discussion. Plugging in the values t = 1 and
γ = 0.5 gives e(0.5+o(1)) · log n. By ignoring the o(1)
and simplifying, this comes to be n0.5 which is ex-
ponential time. The reader should recognize this
as the worst case run time of trial division (the first
algorithm everybody learns for factoring). Setting
t = 0 and keeping γ = 0.5 gives e(0.5+o(1)) · log log n

which (again ignoring the o(1)) simplifies to
(log n)0.5. This is polynomial time. In fact, for any
constant value of γ , the running time is polyno-
mial when t is 0. The significance of these observa-
tions is that the t value is more important in terms
of the asymptotic running time: smaller values re-
sult in better algorithms, at least in theory.

2 Proper implementation is a subject in its own right. It is not
trivial to do everything right, and the slightest mistake could
entirely defeat the security.
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Pomerance’s quadratic sieve3 from the early
1980s is a general purpose factoring algo-
rithm that achieves t = 0.5 and γ = 1. Silverman
demonstrated the practical value of the algorithm
by distributing it on many workstations [36] in or-
der to factor hundreds of numbers forthe book [13].
A. Lenstra, and the numerous people he worked
with, took it further. Not only did they develop
important practical improvements, but they also
distributed their code on the Internet so volun-
teers could help them factor large numbers [24].
This is a trend that many people would follow
for many different research areas. Their work
on the quadratic sieve peaked when they factored
the RSA-129 challenge number [3], and decoded
the secret message.

There is a special purpose factoring algorithm
that has running time that is asymptotically
at least as good as the quadratic sieve4. It is
H. Lenstra’s Elliptic Curve Method for factoring
(ECM) [25]. In spite of what theory suggests, the
quadratic sieve tends to perform much better in
practice when attempting to factor the difficult
numbers. On the other hand, ECM is very fast
at finding small prime factors and uses much
less memory than the quadratic sieve, which are
major benefits.

The overall best general purpose factorization
algorithm is the Number Field Sieve (NFS), which
has t = 1

3 and γ = (64/9)1/3. The original idea of
NFS came from Pollard in the early 1990s, but
the ideas were further developed and refined by
many people (for details, see integer factoring,
Number Field Sieve, and [22]). The number field
sieve has been used to factor numbers of 512-
bits (155-digits) and more. Such factorizations are
very significant, since originally 512-bits was the
industrywide defacto standard. Thanks to math-
ematical analysis and real factorization results,
it was clear well in advance that 512-bits was
not enough. The number field sieve has many
fine details and uses advanced mathematics in
the area of algebraic number theory. One should
not attempt to learn it until he or she first
has a solid understanding of the the quadratic
sieve.

Many of the best general purpose factoring al-
gorithms have been translated into similar algo-

3 The quadratic sieve evolved from Schroeppel’s linear sieve,
and Kraitchik had independently invented a similar al-
gorithm many years earlier. See integer factoring and the
quadratic sieve for details on each person’s contribution.
4 If the number is a product of two primes that are equal in
size, then it is asymptotically the same as the quadratic sieve
in run time. Otherwise, it is better.

rithms for solving discrete logarithms (for details,
see discrete logarithm problem). The discrete log-
arithm methods of Coppersmith et al. [15] for a
prime p attain the same asymptotic running time
as the quadratic sieve applied to a composite n.
There also exists a number field sieve algorithm
for discrete logarithms [33, 34]. The general strat-
egy that these algorithms use when applied to dis-
crete logarithms is labeled index calculus.

As the running time formulas of these algo-
rithms might suggest, their analyses are not ex-
actly trivial. But, underlying the Ln[t, γ ] formula
is one common concept. In order to factor a par-
ticular integer or to solve a particular discrete
logarithm, just about all of the most powerful
algorithms use or depend upon factorizations of
smaller, randomly distributed integers (or in some
cases small polynomials). The integers that are
sought are those that factor into small primes,
which are known as smooth numbers. (See the en-
try smoothness for details.) Let ψ(x, y) be the num-
ber of integers up to x that factor into primes up to
y. These values are called y-smooth. If y is not too
small, then ψ(x, y) is asymptotically x · u−u(1+o(1))

where u = log x/ log y [16]. Analysis of this func-
tion was first done by Dickman in the 1930s, but
the research of [14] filled in the gaps to make it
applicable to the analysis of the algorithms men-
tioned in this section. Smoothness has additional
applications in areas of cryptography other than
factoring and discrete logarithms.

ELLIPTIC CURVES: We mentioned that the Diffie
Hellman protocol involves arithmetic modulo a
prime p, which is a special case of finite field arith-
metic. Finite fields have two operations: multipli-
cation and addition. DH makes use of only the
multiplication operation, so it is not using all of
the properties of what makes it a finite field. The
properties that it does use are classified under a
simpler algebraic object, known as an algebraic
group. Algebraic groups are usually taught in an
undergraduate level modern algebra or abstract
algebra class.

It turns out that any algebraic group could po-
tentially be used to create a variant of the Diffie
Hellman protocol, as well as some other public key
schemes (such as ElGamal public key encryption
or the Digital Signature Algorithm (see Digital
Signature Standard)). The high-level structure of
the protocol remains the same, but the modular
arithmetic is replaced with arithmetic from the
new group. One simple example is if the normal
Diffie Hellman protocol uses addition instead of
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multiplication as the primary operation. The pro-
tocol still works, and in fact is much faster. There
is only one problem: it is easy to break!

There are many examples of groups, but one
that has become particularly valuable to cryptog-
raphy today is the group of points on an elliptic
curve. The mathematics of elliptic curves is too in-
volved to explain here, so we just highlight the
benefits. Unlike RSA or regular DH, there has
been almost no progress in attacking the under-
lying mathematical problem that is the basis of
elliptic curve cryptography, except in a few spe-
cial cases that are not a threat to elliptic curves
in general. Because of this, people are able to use
much smaller key sizes for elliptic curves than
they would for other public key cryptosystems.
This is extremely important in constrained envi-
ronments such as smart cards, where memory can
be very limited—especially nonvolatile memory.
There are also some speed advantages to using
elliptic curves in certain applications, though RSA
is faster in others.

Elliptic curves are a hot topic of modern mathe-
matics research and the application to cryptogra-
phy has proliferated new research. Sample topics
include analysis of the security, fast algorithms for
counting points on an elliptic curve, and fast ellip-
tic curve arithmetic (one nice example that uses
“complex multiplication” is given in [37]). More-
over, the rich algebraic structure of elliptic curves
is providing new tools which are turning out to
be of high cryptographic value [5, 8] (see identity
based cryptosystems).

GENERAL CRYPTANALYSIS: Cryptography has
numerous pitfalls [35]. It is very easy to make
subtle errors that can lead to very large secu-
rity breaches. In order to reduce this risk, cryp-
tographic standards such as PKCS [32] are care-
fully written to specify exactly how everything
should be implemented. Regardless, people quite
frequently do things their own way without having
much of an understanding of how cryptosystems
get broken. Common errors range from the simple,
such as not checking for special cases (for example,
a surprisingly large number of amateur public key
cryptosystems can be broken if the attacker sends
in an integer like 0 or 1) to the rather complex,
such as being susceptible to attacks like [6] or [11].
As a rule, if one does not have a very good under-
standing of how to break cryptosystems, then one
should not be making them.

In general, knowledge of cryptanalytic tech-
niques will prove to be invaluable to not only

researchers, but to system architects and security
engineers as well. Such techniques tend to use nu-
merous tools from many areas of number theory.
The more an information security specialist learns
about number theory, the more valuable his or her
knowledge will be. Further reading about design
and cryptanalysis of number theoretic ciphers can
be found in [38].

MISCELLANEOUS: This article has focused
mainly on public key cryptography. Number the-
ory is also an important tool in many other areas
of cryptography, including pseudorandom number
generators, zero-knowledge based protocols, and
threshold cryptography (see [9] for a nice exam-
ple of shared RSA key generation that has direct
application to threshold cryptography).

Scott Contini
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NYBERG–RUEPPEL
SIGNATURE SCHEME

Nyberg–Rueppel proposed a signature scheme [1]
which is of the message recovery type (see digital
signature scheme) and based on the discrete
logarithm problem. The following gives a typical
interpretation of the Nyberg–Rueppel signature
scheme.
Key generation: a prime number p, a prime fac-

tor q of p− 1, an element g of order q in the
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group of integers modulo p, a secret key x(0 <

x < q). The public key consists of p, q, g, and
y = gx mod p (see also modular arithmetic).

Signing: for message m, compute r = m · gk mod
p, ŕ = r mod q, s = − k − r ′ · x mod q, and
output (r, s). Verification: verify s < q, compute
r ′ = r mod q, and check that gs · yr ′ · r = m.
However, it is advised to apply some redun-

dant function R to a message m and use R(m)
instead of m. The reason is as follows: if a valid
signature (r, s) for m is given, then (r, s + t mod q)
is a valid signature for m · gt mod q. Therefore
by using R(m) instead of m, one can neglect the

possibility of R(m) · gt being in the image space
of R.

Kazue Sako
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O
OAEP: OPTIMAL
ASYMMETRIC
ENCRYPTION PADDING

It has been noticed that the plain RSA public key
encryption cannot be used directly for practical
purpose, paddings are required, in order to rule
out basic attacks.

THE RSA–PKCS #1 V1.5 ENCRYPTION: A
widely deployed padding for RSA-based encryp-
tion is defined in the PKCS #1 v1.5 standard: for
any modulus 28(k−1) ≤ n < 28k, in order to encrypt
a message m, one defines the k-byte long string
M = 02 ‖ r ‖ 0 ‖ m, where r is a string of randomly
chosen non-zero bytes (at least 8). This block is
thereafter encrypted with the RSA permutation,
C = Me mod n (see modular arithmetic). When de-
crypting a ciphertext C, the decryptor applies RSA
inversion by computing M = Cd mod n and then
checks that the result M matches the expected’
format. If so, the decryptor outputs the last part
as the plaintext. Otherwise, the ciphertext is re-
jected. Intuitively, this padding seems sufficient
to rule out all the well-known weaknesses of the
plain RSA system, but without any formal proof or
guarantee. Surprisingly, in 1998, Bleichenbacher
[3] showed that a simple active attack can com-
pletely break RSA–PKCS #1. This attack applies
to real systems such as a Web server using SSL
v3.0.

THE OPTIMAL ASYMMETRIC ENCRYPTION
PADDING: For some time, people have tried to pro-
vide security proofs for cryptographic protocols in
the “reductionist” sense [4]. To do so, one presents
an algorithm that uses an effective adversary as a
sub-program to break some underlying hardness
assumption (such as the RSA assumption, or the
intractability of the integer factorization).

The Random Oracle Model

A few years ago, a new line of research started with
the goal of combining provable security with effi-
ciency, still in the “reductionist” sense. To achieve
this goal, Bellare and Rogaway [1] formalized
a heuristic suggested by Fiat and Shamir [7].
This heuristic consisted in making an idealized
assumption about some objects, such as hash

functions, according to which they were assumed
to behave like truly random functions. This as-
sumption is known as the random oracle model.
We stress that security proofs in this model are
not strong proofs. However, one can also consider
random-oracle-based proofs under the assumption
that the adversary is generic, whatever may be
the actual implementation of the hash function.
In other words, we may assume that the adver-
sary does/cannot use any specific weakness of the
hash functions used in practice.

Description of OAEP

At the time Bleichenbacher published his at-
tack on RSA–PKCS #1 v1.5, the only efficient
and “provably secure” encryption scheme based
on RSA was the Optimal Asymmetric Encryp-
tion Padding (OAEP) proposed by Bellare and
Rogaway [2]. OAEP can be used with any trap-
door one-way permutation f (see trapdoor one-way
function and substitutions and permutations). To
encrypt a message m using the encryption scheme
f -OAEP, first apply the OAEP procedure described
in Figure 1. Here r is a random string and G, H
are hash functions. The resulting values [s ‖ t] are
then encrypted using f, namely C = f (s, t).

OAEP and Provable Security

Bellare and Rogaway proved that OAEP padding
used with any trapdoor one-way permutation f
provides a semantically secure encryption scheme.
By adding some redundancy (the constant value
0k1 at the end of the message, as shown in
Figure 1), they furthermore proved it to be weakly

m 0k
1 r

G

H

s t

Fig. 1. OAEP padding
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plaintext-aware. Plaintext-awareness is a prop-
erty of encryption schemes in the random oracle
model which informally means that in order
to build a valid ciphertext, one needs to know
the corresponding plaintext. The weak part in
the original definition was that the awareness of
the plaintext of any valid ciphertext built by the
adversary hold, while the adversary had not re-
ceived any valid ciphertext from any source. For
such a scheme, a decryption oracle access on such
a ciphertext does not provide any information to
the adversary, and thus until he has received
the challenge ciphertext: a valid ciphertext. Un-
fortunately, the adaptive chosen ciphertext attack
model gives the adversary a full-time access to a
decryption oracle, even after receiving the chal-
lenge ciphertext. Therefore, semantic security to-
gether with weak plaintext-awareness only im-
plies the semantic security against non-adaptive
chosen-ciphertext attacks (a.k.a. lunchtime at-
tacks [11]—IND–CCA1).

However, even if the semantic security against
adaptive chosen-ciphertext attacks (IND–CCA2)
had never been proven, it was widely admit-
ted until Shoup’s counter-example [15]: he indeed
showed that if there exists a trapdoor one-way per-
mutation g for which it is easy to compute g(x ⊕ a)
from g(x) and a, then OAEP cannot be IND–CCA2
secure for an arbitrary trapdoor one-way permu-
tation f.

Fixing the OAEP Proof of Security

However, from a carefull analysis of this counter-
example, one can see that for the attack to work,
the adversary has to be able to partially invert
the permutation f. Therefore, let us define the

H

s t

m r

r

R

G

R(m, r)

m R(m, r)

G

m r

r

R

m R(m, r)

s r

OAEP+ padding SAEP+ padding

Fig. 2. OAEP+ and SAEP+ paddings

partial-domain one-wayness of a permutation f to
be the intractability of deducing s from C = f (s, t).
Fujisaki et al. [8] formally proved this fact: If f
is partial-domain one-way, then f -OAEP is IND-
CCA2 secure. We note that partial-domain one-
wayness is a stronger property than one-wayness:
a function might be one-way but still not partial-
domain one-way.

Fortunately, the homomorphic properties of
RSA makes that the RSA permutation is partial-
domain one-way if and only if RSA is one-way.
Altogether, this proves the widely believed IND–
CCA2 security of RSA–OAEP assuming that RSA
is a trapdoor one-way permutation, and thus un-
der the widely admitted RSA assumption.

OAEP ALTERNATIVES: Shoup also proposed a
formal security proof of RSA–OAEP, but in the
particular case where the encryption exponent e
is equal to 3 only. However, many people believe
that the RSA trapdoor one-way permutation with
exponent 3 may be weaker than with greater expo-
nents. Therefore, he also proposed a slightly modi-
fied version of OAEP, called OAEP+ (see Figure 2),
which can be proved secure under the one-wayness
of the permutation. It uses the variable redun-
dancy R(m, r) instead of the constant 0k1 . It is thus
a bit more intricate than the original OAEP. Boneh
[5] also proposed a new padding scheme, SAEP+,
to be used with the Rabin primitive [12] or RSA.
It is simpler than OAEP+, hence the name Sim-
plified Asymmetric Encryption Padding: whereas
OAEP+ is a two-round Feistel network, SAEP+ is
a single-round. But as OAEP+, it is provably se-
cure, whatever the exponent is.

David Pointcheval
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OBLIVIOUS TRANSFER

Oblivious transfer (OT) is a two-party protocol be-
tween a sender and a receiver, by which the sender
transfers some information to the receiver, the
sender remaining oblivious, however, to what in-
formation the receiver actually obtains. The most
basic form of oblivious transfer, as introduced by
Rabin [4], is a protocol achieving the following
functionality. The sender uses one bit b as its pri-
vate input to the protocol; the receiver does not
provide any private input to the protocol. At the
completion of the protocol, the receiver either gets
the bit b or an undefined value ⊥. Both cases oc-
cur with probability 50%, and the receiver knows
whether it gets b or ⊥. However, the sender does
not know whether bit b was transferred success-
fully or not.

Despite its somewhat strange functionality, OT
turns out to be sufficiently powerful to construct
a secure multiparty computation for any com-
putable function, as follows from the complete-
ness result proved by Kilian [3]. In many cases,
a slightly more advanced form of oblivious trans-
fer is used, known as “chosen one-out-of-two” OT,
denoted by

(2
1

)
-OT. In a

(2
1

)
-OT, the sender uses two

private input bits b0, b1 and the receiver uses one
private input bit s. At the completion of the proto-
col, the receiver gets the bit xs , whereas the sender
does not get any information on the value of s, i.e.,
the sender does not know which bit was selected
by the receiver. These two basic types of oblivi-
ous transfer are equivalent in the sense that ei-
ther type can be constructed from the other one,
using a polynomial time transformation (see [2]:
Rabin’s OT can be achieved using a single

(2
1

)
-OT;

for the other direction, however, one requires O(k)
instances of Rabin’s OT to construct a single

(2
1

)
-

OT, where k is a security parameter).
Many oblivious protocols have been proposed

over the years. As a simple example, consider
the following

(2
1

)
-OT protocol, proposed by [1].

Let g denotes a generator of a cyclic group G of
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order p, where p is a large prime. Let h denotes
a random element of G, h �= 1, such that the
discrete logarithm of h with respect to g is not
known to any party.

The protocol runs as follows. The receiver picks
a random value xs ∈ Zp, and sets ys = gxs and
y1−s = h/gxs , where s denotes the receiver’s pri-
vate input bit. The receiver sends y0 to the sender.
Upon receipt of y0, the sender sets y1 = h/y0. The
sender then computes two ElGamal public key
encryptions: E0 contains message gb0 encrypted
under public key y0, and E1 contains message gb1

encrypted under public key y1, where b0, b1 denote
the private input bits of the sender. The sender
sends the ordered pair (E0, E1) to the receiver. Fi-
nally, the receiver decrypts Es , using the private
key xs , to obtain bs .

Since the receiver cannot know both logg y0 and
logg y1 (as this implies knowledge of logg h), the
receiver cannot decrypt the other bit b1−s . On the
other hand, the value of y0 is clearly independent
of s, hence the sender does not learn which bit the
receiver chooses.

Berry Schoenmakers
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ONE-TIME PASSWORD

A one-time password is a password that is used
only once, in an authentication session, and then
thrown away and never used again. Because of
the single use of this password, it is impervious
to eavesdropping (i.e., it is safe from passive ad-
versaries who listen to an authentication session
and then later use the overheard information to
attempt impersonation). In practice, the user and

the system typically share a list of one-time pass-
words and then cross an entry off the list after it
is used (a new list must be generated and shared
once all entries have been crossed off ).

Variations on the basic one-time password
concept include mechanisms for generating a
sequence of passwords from a single shared pass-
word (e.g., using a one-way function) and mecha-
nisms for generating a new password as a function
of the current time. Such variations seek to elimi-
nate the need for list maintenance at both the user
and the server.

Carlisle Adams
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ONE-WAY FUNCTION

Informally, a one-way function is a function for
which computation in one direction is straightfor-
ward, while computation in the reverse direction
is far more difficult. This is typically described
in a more formal, though still not rigorous, way
[3–5] as a function f with domain X and range
(codomain) Y where f (x) is ‘easy’ to compute for all
x ∈ X; but for ‘virtually all’ elements y ∈ Y, it is
‘computationally infeasible’ to find an x such that
f(x) = y. The function f is a one-way permutation
when f is a bijective one-way function and X = Y
(see also substitutions and permutations).

The seminal paper of Diffie and Hellman [1]
was the first to set down the potential of one-way
functions in the development of public-key crypto-
graphy. The interesting, and important, feature of
the one-way function is the asymmetry in compu-
tational effort required to perform a function eval-
uation and its reverse. Diffie and Hellman pro-
vided a familiar example of such asymmetry in
the difficulty of undoing the action of a sophisti-
cated compiler that translates an easily under-
stood program written in a high-level language
into almost unintelligible machine code. A more
mathematical example was provided by the con-
trast between exponentiation and taking discrete
logarithms in some finite field. If we consider the
integers modulo a large prime number p together
with some (primitive) base element g, then given
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a it is straightforward to compute ga mod p (see
modular arithmetic). However given gb mod p, it
is computationally difficult to recover b (for most
b). This problem, with the additional stipulation
that p− 1 have a large prime factor [7], provides
the security of Diffie–Hellman key agreement as
well as many other cryptographic mechanisms
that have been developed since 1976. See the
discrete logarithm problem.

It is notable that although Diffie and Hellman
introduced and explored the role of one-way func-
tions in the development of public-key cryptogra-
phy, the earlier use of one-way functions for secure
password validation is attributed to Needham and
Schroeder [6]. The concept of a one-way function is
also to be found when considering the properties
of a cryptographic hash function.

Since their introduction, considerable research
has been conducted into providing a more rigor-
ous foundation to the intuitive description given
by Diffie and Hellman. Providing a suitable frame-
work within which to analyze and formalize the
concept of a one-way function is not straight-
forward and builds on an interchange between
fields as diverse as computational complexity
[2], information theory [8], and number theory
[1]. Nevertheless, the fundamental practical at-
tributes of one-way functions and their companion
trapdoor one-way functions have been vitally im-
portant in the development of cryptography and
public-key cryptography, in particular.

Matt Robshaw
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O-NOTATION

O-notation is a convenient way of expressing the
relationship between positive-valued functions as
their inputs grow. The notation T(x) = O(U(x))
means, informally, that the function T(x) is at
most the same “order” as U(x). More precisely, this
means that there exists a constant c > 0 such that
for all sufficiently large x,

T(x) ≤ cU(x).

The value of T(x) for small x is not necessarily con-
strained; the notation only indicates the asymp-
totic behavior.

This notation is often employed as a short-
hand for algorithm running times, as it conceals
implementation-specific details and focuses in-
stead on the rate of growth. For instance, a typical
algorithm for modular multiplication takes O(x2)
time, where x is the length of the operands (or
more typically in cryptography, the key size or se-
curity parameter). The actual time will be some
implementation-specific constant times x2, and
may also involve a linear or constant “overhead”.
The notation O(x2) focuses on the highest-order ef-
fects and is helpful in assessing the growth of the
running time as the size of the operands increase.

Four related notations have also been defined:
� “big-�” notation: T(x) = �(U(x)) means that

T(x) ≥ cU(x) for some constant c > 0, for suffi-
ciently large x;

� “�” notation: T(x) = �(U(x)) means that T(x) =
O(U(x)) and T(x) = �(U(x));

� “little-o” notation: T(x) = o(U(x)) means that for
every constant c, T(x) < cU(x) for all sufficiently
large x;

� “little-ω” notation: T(x) = ω(U(x)) means that
for every constant c, T(x) > cU(x) for all suffi-
ciently large x.

The notations are analogous to the usual arith-
metic comparison operators >, ≥, =, ≤, and <:

Notation Operator
ω >

� ≥
� =
O ≤
o <
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For instance, if T(x) = O(U(x)) and U(x) =
O(V(x)), then T(x) = O(V(x)); if T(x) = o(U(x))
then U(x) = ω(T(x)), and so on.

The notations O(1) and o(1) deserve special ex-
planation. O(1) denotes a function of x that is
bounded by a constant as x → ∞, since one has
that

T(x) ≤ c × 1 = c

for some constant c and all sufficiently large x.
Likewise, o(1) denotes a function of x that tends
toward 0 as x → ∞.

The various notations can also be employed
within more complex mathematical expressions.
For instance, in the expression

T(x) = e(γ+o(1))(log x)t (log log x)1−t
, for x → ∞,

the first term in the exponent tends toward γ as
x → ∞.

Technically, notation such as O(U(x)) denotes
the set of all functions which asymptotically grow
more slowly than U(x). Thus, formally one might
write T(x) ∈ O(U(x)) to denote membership in this
set. Also, in mathematics, one is sometimes con-
cerned with the relationship between functions
as the input approaches some finite value, rather
than as it tends toward infinity. However, in cryp-
tography, the notation T(x) = O(U(x)) is standard,
and the limit x → ∞ is assumed.

Burt Kaliski

OPTIMAL EXTENSION
FIELDS (OEFs)

Optimal extension fields (OEFs) are a family of
finite fields with special properties. They were de-
signed in a way that leads to efficient field arith-
metic if implemented in software. OEFs were in-
troduced first in [3] and independently in [7]. They
are defined as follows:

DEFINITION 1. An Optimal Extension Field is a fi-
nite field GF(pm) such that:
1. p is a prime number of the form 2n ± c, log2 c ≤


 1
2 n� (such primes are also referred to as pseudo-

Mersenne prime),
2. An irreducible binomial P(x) = xm − ω exists

over GF(p).

An example of an OEF is the field GF (p6)
with the prime p = 232 − 387 and the irreducible

polynomial x6 − 2. Note that the cardinality of this
OEF is roughly (232 − 387)6 ≈ 2192.

The main motivation for OEFs is that the field
parameters can be chosen such that they are
a good match for the processor on which the
field arithmetic is to be implemented. In partic-
ular, it is often an advantage to choose an OEF
GF(pm) such that the prime p can be represented
within one register of the target processor. For in-
stance, in the OEF example given above, GF((232 −
387)6), the prime 232 − 387 fits nicely in the reg-
isters of a 32-bit CPU. In this situation, field
arithmetic can be implemented rather efficiently.
The following theorem from [5] describes the
cases when an irreducible binomial over GF(p)
exists:

THEOREM 1. Let m ≥ 2 be an integer and ω ∈
GF (p)∗. Then the binomial xm − ω is irreducible
in GF (p)[x] if and only if the following two con-
ditions are satisfied: (i) each prime factor of m di-
vides the order e of ω over GF(p), but not (p− 1)/e;
(ii) p ≡ 1 mod 4 if m ≡ 0 mod 4.

An important corollary is given in [4]:

COROLLARY 1. Let ω be a primitive element for
GF (p) and let m be a divisor of p− 1. Then xm − ω

is an irreducible polynomial.

A brief outline of the arithmetic algorithms
of OEFs follows, where we distinguish between
arithmetic in the subfield GF(p) and arithmetic in
the extension field GF(pm). Extension field arith-
metic requires subfield calculations as a “subrou-
tine”.
Subfield addition and subtraction. If p can

be represented in one register, all elements of
GF(p) = {0, 1, . . . , p− 1} can be represented as
simple one-word integers. Addition is straight-
forward and very efficient: One performs a reg-
ular integer addition and, if the sum is larger
than p, the modulus p is subtracted from the
sum (see modular arithmetic). Subtraction can
be done analogously.

Subfield multiplication. Due to the fact that p
is a pseudo-Mersenne prime, subfield multipli-
cation is also efficient. In fact, the overall per-
formance of OEFs greatly relies on the fact that
subfield multiplication is fast. In a typical im-
plementation, in a first step the two operands
a, b ∈ GF(p) are multiplied yielding the integer
product d = a × b. This is done with one in-
teger multiplication. Note that in the general
case, d has about twice the bit length of p if we
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assume that a and b both have about the same
bit lengths as the modulus p. Due to the spe-
cial form of p, the following algorithm allows an
efficient reduction d mod p without performing
an explicit integer division. We present a form
of such a modular reduction algorithm, adapted
from [6]. The operator � is taken to mean
“right shift”.

ALGORITHM 1. Fast Subfield Modular Reduction

Require: p = 2n − c, log2 c ≤ ⌊ 1
2 n

⌋
, d < p2 is

the integer to reduce
Ensure: r ≡ d mod p

q0 ← d � n
r0 ← d − q02n

r ← r0
i ← 0
while qi > 0 do

qi+1 ← qic � n
ri+1 ← qic − (qi+1 � n)
i ← i + 1
r ← r + ri

end while
while r ≥ p do

r ← r − p
end while

This reduction algorithm requires two integer
multiplications andsome shifts and additions. If
we ignore the latter operations, the main costs
for one OEF subfield multiplication are 1 + 2 =
3 integer multiplications.

An important special case is OEFs where the
prime has the form p = 2n ± 1. In this case, the
modulo reduction itself can be performed with
one addition or subtraction, and the main costs
for an entire subfield multiplication are one in-
teger multiplication. The reduction method for
primes 2n − 1 is described in the entry Mersenne
prime. OEFs with primes 2n ± 1 are sometimes
referred to as Type I OEFs [3].

Extension field addition and subtraction. Ad-
dition of two field elements is simply an addition
of the corresponding coefficients of the two el-
ements. The coefficient additions follow GF(p)
arithmetic rules. Subtraction is done analo-
gously.

Extension field multiplication. It is usually ad-
vantageous to represent elements of OEFs in a
standard (or polynomial) basis. Field multipli-
cation can be performed in two stages. First, we
perform an ordinary polynomial multiplication
of two field elements A(x) and B(x), resulting
in an intermediate product C′(x) of degree less

than or equal to 2m − 2:

C′(x) = A(x) × B(x)
= c′

2m−2x2m−2 + · · · + c′
1x + c′

0,

c′
i ∈ GF (p). (1)

The schoolbook method to calculate the co-
efficients c′

i, i = 0, 1, . . . , 2m − 2, requires m2

multiplications and (m − 1)2 additions in the
subfield GF(p). Optionally, the Karatsuba algo-
rithm can be applied here to reduce the number
of coefficient multiplications. For instance, for
fields GF(p6), the polynomial multiplication can
be performed with 18 subfield multiplications
(as opposed to 36 with the schoolbook method)
when applying the Karatsuba algorithm recur-
sively [2].

In the second stage of the OEF multiplica-
tion, the intermediate result C′(x) has to be re-
duced modulo the irreducible polynomial P(x) =
xm − ω. We note that the following congru-
ences hold: xm ≡ ω mod P(x), xm+1 ≡ ωx mod
P(x), . . . , x2m−2 ≡ ωxm−2 mod P(x). Hence, the
terms c′

mxm, . . . , c′
2m−2 x2m−2 can each be reduced

with one multiplication by ω and one addition in
the subfield. Thus, the entire modulo reduction
requires at most m − 1 multiplications by ω and
m − 1 additions, where both of these operations
are performed in GF(p).

Extension field inversion. The two most use-
ful methods for inversion are the Euclidean al-
gorithm and reduction of the extension field
inversion to subfield inversion via the Itoh–
Tsujii algorithm. See Inversion in Finite Fields
and Rings for a detailed description of those two
inversion methods.

Extension field exponentiation. One can use
either one of the standard exponentiation tech-
niques, such as the sliding window method. A
particularly fast method for OEFs is the one de-
scribed in [1] which is based on the fact that the
Frobenius automorphism can be computed effi-
ciently in OEFs.
A generalization of OEFs, that is fields GF(pm),

p > 2, with p not necessarily a pseudo-Mersenne
prime and the field polynomial not necessarily a
binomial, is discussed in [1]. Tables with OEFs and
more details about the arithmetic of OEFs are de-
scribed in [2].

OEFs are applicable as underlying algebraic
structure for cryptosystems that rely on fi-
nite fields. In particular, they appear useful for
elliptic curve cryptosystems and schemes using
the discrete logarithm in finite fields. At the time
of writing, it remains an open question whether
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elliptic curve cryptosystems and discrete loga-
rithm schemes which use OEFs (rather than
prime fields or fields GF(2m)) have cryptographic
weaknesses.

Christof Paar
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ORDER

The order of a group G = (S, ◦) is the number of
elements in the set S, and likewise the order of
a ring or field (S, +, ×) is the number of elements
in S.

In a group, the order of an element g ∈ S is the
least positive integer k such that gk = 1 (where
the group law is written multiplicatively and 1 de-
notes the identity element).

In a ring or field, the order of an element typi-
cally refers to multiplicative order, that is, the or-
der of the element under the multiplication oper-
ation in the multiplicative group.

The order of each element in a group divides the
order of the group.

Burt Kaliski

OVERSPENDER
DETECTION

In electronic payment schemes and electronic
cash that use prepaid electronic coins, there is a
natural fraud scenario where a customer tries to
use an already spent electronic coin a second or
third time. An important security requirement in
such schemes is thus overspender detection, i.e.,
an effective way of determining the culprit who
has spent an electronic coin twice. A related and
equally important security requirement is to de-
tect coins that are overspent or even better to pre-
vent coins from being overspent (see overspending
prevention).

If electronic coins bear the identities of cus-
tomers who have withdrawn them, then over-
spender detection is easy to accomplish and ap-
pears an almost trivial security requirement. If
electronic coins can be spent anonymously (see
anonymity) though, then each coin alone carries
too little information to identify the spender. It is
possible, however, to design systems where two or
more transactions of spending the same coin re-
veal enough information to the verifier (bank) to
recover the identity of the overspender.

Gerrit Bleumer

OVERSPENDING
PREVENTION

In electronic payment schemes and electronic
cash that use prepaid electronic coins, there is a
natural fraud scenario where a customer tries to
use an already spent electronic coin a second or
third time. An important security requirement in
such schemes is thus to detect coins that are over-
spent or even better to prevent coins from being
overspent. A related and equally important secu-
rity requirement is to detect culprits who have
overspent one or more of their electronic coins (see
overspender detection).

If electronic coins bear the identities of cus-
tomers who have withdrawn them, overspending
detection and prevention are easy to accomplish
and appear an almost trivial security require-
ment. The verifiers of coins only need to check
in a database whether the electronic coin at hand
has been spent before, and if so, who the respec-
tive double spender is. If electronic coins can be
spent anonymously (see anonymity) though, then
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each coin alone carries too little information to
identify the spender. Double spending of anony-
mous coins can therefore only be prevented by
using hardware security devices that cannot be
manipulated by their holders (under reasonable
assumptions). It is possible, however, to design
anonymous electronic coin schemes where two or

more spending transactions of the same coin re-
veal enough information to the verifier (bank) to
detect whether a coin has been spent before, to re-
ject the second attempt to pay with such a coin,
and to recover the identity of the overspender.

Gerrit Bleumer
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PAILLIER ENCRYPTION
AND SIGNATURE SCHEMES

In the spirit of earlier encryption schemes sug-
gested by Goldwasser–Micali, Benaloh, Naccache–
Stern, and Okamoto–Uchiyama, Paillier proposed
in 1999 a public-key cryptosystem [4] (see public-
key cryptograhy) based on the properties of nth
powers modulo n2 where n is an RSA modulus (see
modular arithmetic and RSA public key encryp-
tion). The original observation is that the func-
tion E(x, y) = gx yn mod n2 is a one-way trapdoor
permutation (see trapdoor one-way function) over
the group Zn × Z

∗
n � Z

∗
n2 where the trapdoor infor-

mation is the factorization of n. The group Z
∗
n2 is of

order nφ where φ = φ(n) is Euler’s totient function
of n and the base g ∈ Z

∗
n2 is an element of order

α · n for some divisor α of φ (for instance n + 1 for
which α = 1). Noting L(u) = (u − 1)/n when u =
1 mod n, x is recovered from w = E(x, y) as x =
L(wφ mod n2)/L(gφ mod n2) mod n and y is then
(wg−x)1/n mod n. When the factorization φ of n is
unknown, however, recovering x from E(x, y) and
even deciding if x = 0 are believed to be hard prob-
lems (see computational complexity). This is re-
ferred to as the [Decisional] Composite Residuos-
ity assumption ([D]CR for short).

Given the public key (g, n), the Paillier en-
cryption of m ∈ [0, n − 1] is c = E(m, r ) where r
is chosen at random in [0, n − 1]. Encryption is
therefore probabilistic (see probabilistic public-
key encryption) and features homomorphic prop-
erties as multiplying E(m1, r1) by E(m2, r2)
modulo n2 provides an encryption of m1 + m2 mod
n. This property makes this factoring-based
cryptosystem particularly attractive for many
cryptographic applications. Paillier encryption
is semantically secure (resp. one-way) against
chosen-plaintext attacks under the DCR (resp.
CR) assumption and was shown to hide O(log n)
plaintext bits under a slightly stronger assump-
tion [1]. The cryptosystem was extended in sev-
eral directions. Damgård–Jurik suggested an ex-
tension modulo ns for s ≥ 2. Variations of different
flavors and distributed versions [2,5] of the scheme
were introduced (see threshold cryptography).
Galbraith showed an embodiment of the scheme
on elliptic curves over rings [3].

To sign m ∈ 0, n2 − 1 under the private key
φ, one inverts E to get s1 and s2 such that

E(s1, s2) = m and the signature is (s1, s2). The
verification consists in checking if E(s1, s2) = m.
In virtue of the homomorphic property of E , this
provides a blind signature) scheme. As for RSA,
a hash function or a padding can be applied be-
fore signing to ensure strong security against
existential forgery.

Pascal Paillier
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PASSWORD

A password is a secret that is presented to a
verifier to prove a claim, typically during user
authentication. A verifier can determine that the
claimant knows the secret by comparing the pass-
word with a value he has on store. This can be
the secret itself, a unique value computed from
the secret using, e.g., a one-way function, or a
known document encrypted using the password as
a key. Passwords are a simple and convenient au-
thentication mechanism but can only provide lim-
ited security. More secure authentication based on

453
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cryptographic protocols and hardware is possible,
but these options are typically less convenient for
users and more expensive to operate.

As a secret, passwords must be protected. Stor-
ing or transmitting a password in plain text is
a risk, as is writing it down on a sticky note
and attaching it to a screen. While these obser-
vations are obvious, they are often disregarded
in practice. Passwords are also vulnerable to in-
terception during the actual authentication pro-
cess if the connection between the terminal and
the verifier software is not secure, or if the ter-
minal itself can be manipulated, e.g., to record
keystrokes. To prevent attacks on the login pro-
cess that intercept passwords on the path between
the terminal and the verifier, the Orange Book
security criteria (cf. Security Evaluation Criteria)
describe a Trusted Path, with which systems can
provide secure communication so that users can
directly communicate with the secure parts of the
system.

A characteristic of passwords is that they are
directly entered by users, e.g., at a terminal lo-
gin, or when accessing protected Web sites. Conse-
quently, passwords can only be composed of char-
acters that can be typed on a keyboard. Typical
password mechanisms usually only consider the
first n characters of a password, so the number
of possible passwords is 95n (with 95 printable
characters). For a standard UNIX system, which
considers a maximum of eight characters, this
amounts to 6.6 × 1015 different values for pass-
words that are at least eight characters long. A
Windows 2000 (TM) password, e.g., can be up
to 127 characters long, which gives maximum of
1.4 × 10251 different combinations. While it is typ-
ically not feasible for a casual attacker to try
all possible combinations of passwords, such an
exhaustive key search is still a possible threat
when considering more dedicated and resource-
ful attackers. With current processing and storage
technology, it is possible to precompute and store
all possible password values for a sufficiently lim-
ited search space.

However, the actual search space for typical
passwords is considerably smaller than the theo-
retical limit because passwords need to be remem-
bered by human users. Because arbitrary combi-
nations of characters with no apparent meaning
are hard to remember, requiring the use of such
passwords would lead to users writing down their
passwords, which induces the obvious risk of
exposure. Users therefore typically choose shorter
passwords using some form of mnemonics or sim-
ply familiar terms. This means that the entropy
(cf. information theory) of passwords is low, so
passwords are vulnerable to guessing.

A particular kind of password guessing attacks
are dictionary attacks. A dictionary attack is car-
ried out by trying candidate passwords from a
large dictionary with popular words and terms,
such as movie actors, characters from cartoons
or literature, animal names, computer science,
astrological terms, etc. Because attacks like these
are simple and have proven to be very effective
[1, 2], passwords are sometimes encrypted based
on an additional bit string, a salt, which requires
attackers using precomputed dictionaries with en-
crypted passwords to include 2n variations of each
encrypted password, n being the number of bits
used for the salt.

If an attacker can install and run programs on
the target host system, password security may
also be attacked using a Trojan Horse login pro-
gram. This program would masquerade as a reg-
ular system login screen on a computer terminal
and capture and store the passwords entered by
unsuspecting users. The program may then print a
rejection message to the terminal before terminat-
ing and starting the regular login program. The ex-
istence of the Trojan Horse is unnoticed by users,
who believe they simply mistyped their password
during the first login attempt. This attack will not
work on systems that provide a Trusted Path be-
cause communications via such a path are by defi-
nition initiated exclusively by the user, i.e., a login
prompt would only appear as a system reaction
to a user action, e.g., a keyboard interrupt, as in
Windows NT (TM).

“A good password is one that is easily remem-
bered, yet difficult to guess [3].” Because of the
importance of choosing “good” passwords for main-
taining password security, users should be edu-
cated and given guidelines for choosing passwords.
The most important ones are summarized as rules
of thumb below:
1. Choose long passwords to enlarge the search

space for an attacker.
2. Do not choose words that are likely to appear

in a dictionary, not even with variations.
3. Do not base passwords on any public infor-

mation about yourself (birthdate, hobby, chil-
dren’s names), because it may help attackers in
guessing.

4. Use the initial letters of the words in a sen-
tence that you can remember, e.g., turn a sen-
tence like “my daughter prefers muffins over
cheese cake most of the time” into a password
“mdpmoccmott”. Words created in this manner
are unlikely to be found in any dictionary.

5. Insert punctuation characters and digits freely,
and capitalize some characters, e.g., turn
“mdpmoccmott” into “mD4pMo,cCmott” to fur-
ther enlarge the search space.
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Three main lines of defense against attacks on
password security can be identified:
1. Reactive—carry out internal dictionary attacks

to check for weak passwords. If a weak pass-
word is found the respective account should
be blocked until the user chooses a new pass-
word.

2. Proactive—educate users about the importance
of choosing good passwords. Prevent them from
choosing weak passwords, i.e., reject passwords
that are too short, that are found within a dictio-
nary, or are otherwise considered easy to guess.
Proactive password checks can be integrated
into the system programs that modify a pass-
word so that any new password is checked to be
reasonably secure before it is accepted.

3. Secretive—protect password files so that not
even the encrypted passwords can be obtained,
which could otherwise be targets of off-line dic-
tionary attacks. For this reason it is standard
practice in modern systems to “shadow” out
passwords from the password file, i.e., maintain
a separate file that can only be read by system
administrators.
In summary, passwords are a compromise be-

tween convenience, user acceptance, and cost on
the one hand and security on the other. In highly
sensitive environments, alternative authentica-
tion mechanisms should be considered, e.g.,
mechanisms based on biometric identification, on
external devices (cf. Hardware Security Modules)
that, e.g., generate one-time passwords, or on com-
binations of these mechanisms.

Gerald Brose
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PAYMENT CARD

A payment card is a magnetic stripe or chip card
used in a payment scheme, such as debit and credit
schemes, as well as electronic cash schemes like

Mondex or Proton. Electronic cash schemes re-
quire a chip card, and debit and credit schemes
are migrating toward chip card technology.

Peter Landrock

PEM, PRIVACY
ENHANCED MAIL

PEM provides a number of security mechanisms
for protecting electronic mail transferred over In-
ternet by defining a number of protocol exten-
sions and processing procedures for mail mes-
sages following RFC 822 (Request For Comment).
The security mechanisms include encryption of
mails such that only the intended recipient(s)
can read the contents of the mail. Other security
mechanisms supported by PEM provide message
authentication and integrity as well as digital
signatures. Using the latter, nonrepudiation of
origin may be achieved.

The security mechanisms provided can be based
on symmetric cryptography (see key) or public
key cryptography. In the latter case X.509 certi-
ficates are used to provide the public keys of the
sender and recipient as needed (when mails are
signed the public key of the originator is required,
and when mails are encrypted the public key of
the recipient is required).

PEM is defined in detail in RFC 1421 through
1424. RFC 1421 [2] defines the extensions to RFC
822 mail messages and RFC 1423 [4] specifies the
cryptographic algorithms (including formats, pa-
rameters, and modes of use) to be used within
PEM. RFC 1422 [3] and RfC1424 [5] deal with the
key management issues—in particular the use of
X.509 certificates.

Torben Pedersen
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PENETRATION TESTING

Penetration testing is part of a security assess-
ment (e.g., Audit) or certification process (e.g.,
Common Criteria) with as objective to locate and
eliminate security vulnerabilities that could be ex-
ploited to gain access to the security target (sys-
tem, device or module) by a potential attacker.
In this context, the objective of an attacker is
to gain access to the security target by breaking
or circumventing its security measures. In other
words, an attacker needs only to find one vulner-
ability to successfully penetrate the security tar-
get, while the penetrations testers’ objective task
is to identify all vulnerabilities. Penetration test
constraints as well as constraints for an attacker
are time, money, amount of effort and resources.
Given these constraints (e.g., resources and time),
exploiting a vulnerability and successfully pene-
trating a security target might be practically in-
feasible even though it is theoretically possible.
Hence, finding a security vulnerability does not
imply that it always can be exploited easily. There-
fore, the penetration tester’s objective and task is
much broader and labor intensive than that of an
attacker.

When a successful penetration in the security
target is possible, then this provides evidence that
the current security measures are inadequate and
need to be strengthened. In addition, when the
penetration went unnoticed by the security target,
it shows that the intrusion detection mechanisms
do not provide an adequate level of security assur-
ance. On the other hand, when a penetration test
is not successful, it does not provide evidence that
the security target is secure. In the latter case, the
penetration test provides evidence that under the
given test conditions, the security target did not
show obvious exploitable security flaws.

A penetration test assumes the presence of a
security boundary, as the test is aimed at pene-
trating it. The security boundary separates the
internal components of the security target from
the external components (e.g., outside world),
and this separation is enforced by various se-
curity measures. In general, a security target
is composed of hardware, software and human
components. Depending on the human component,

security assumptions are made and a penetra-
tion test might also include human vulnerabilities
(e.g., social engineering).

In general, a penetration test assesses the state
of the security target at a given point in time, in
contrast to penetration tests based on monitor-
ing techniques (e.g., intrusion detection). Hence,
any change in the internal and external environ-
ments might lead to new vulnerabilities which
would require the execution of a new penetration
test. Therefore, in practice certain types of pene-
tration tests based on monitoring techniques an-
alyze security target events on a regular interval
or even in real-time, and can search for anomalies
that might indicate exploitable vulnerabilities. It
should be noted that these penetration tests pro-
files need to be updated on a regular basis.

A penetration test can be passive (observing)
and active (interact). The passive penetration test
infers with the existence of vulnerability of the se-
curity target in a non-intrusive manner. The pas-
sive penetration test probes the target boundary
and scans for security weaknesses in the target en-
vironment, without aiming at gaining access and
without adversely affecting its normal operation.
Active penetration testing, on the other hand, in-
cludes tests that are more intrusive by nature.
The active penetration test (see also physical at-
tacks) exploits security flaws inherently present in
the technology of the target environment, design
faults or flaws in the object’s parameter configu-
ration.

There are two extreme kinds of penetration tests
Zero-Knowledge Penetration Test (ZKPT) and Full-
Knowledge Penetration Test (FKPT). A ZKPT is
based on a black box approach, which assumes
zero knowledge or assumptions about the security
target. The objective of a ZKPT is to identify how
much information about the security target can
be gained (i.e., is leaked), how the security tar-
get can be modeled, and what vulnerabilities can
be identified that could be exploited by potential
attackers. A FKPT is based on Kerckhoff’s prin-
ciple [1] (see Maxims), and assumes full knowl-
edge of the internal and external components ex-
cept from the critical security parameters. Based
on this knowledge, the security target is tested
for security vulnerabilities that could be exploited
by potential attackers. In contrast to the FKPT,
ZKPT has the advantage that the tester is not
tempted to be biased by the security target de-
sign specifications and documentation, and will
also explore areas beyond its design. Therefore,
ZKPT is often the first phase of a penetration
testing followed by an FKPT. Between ZKPT
and FKPT several hybrid forms exist, which are
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optimized based on the security target and the
testing constraints.

Tom Caddy
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PERFECT FORWARD
SECRECY

Perfect forward secrecy (PFS for short) refers to
the property of key-exchange protocols in which
the exposure of long-term keying material, used
in the protocol to negotiate session keys, does
not compromise the secrecy of session keys es-
tablished before the exposure. The most common
way to achieve PFS in a key-exchange protocol is
by using the Diffie–Hellman key agreement with
ephemeral exponents to establish the value of a
session key, while confining the use of the long-
term keys (such as private signature keys) to
the purpose of authenticating the exchange (see
authentication). In this case, once a session key is
no longer used and is erased from memory then
there is no way for the attacker to find this key
except by cryptanalyzing the Diffie–Hellman ex-
change (or other applications that used the session
key). In particular, finding the long-term authen-
tication key is of no use in learning the session-
key value. One essential element for achieving PFS

with the Diffie–Hellman exchange is the use of
ephemeral exponents which are erased from mem-
ory as soon as the exchange is complete. (This
should include the erasure of any other informa-
tion from which the value of these exponents can
be derived such as the state of a pseudo-random
generator used to compute these exponents.)

The PFS property of authenticated Diffie–
Hellman exchanges can be highlighted by con-
trasting it with other forms of key exchange, such
as key-transport protocols, where session keys are
transmitted between the peers in the exchange en-
crypted under long-term public keys (see public
key cryptography). In this case, the exposure of
the long term secret decryption key will compro-
mise the secrecy of all session keys (including
those erased from memory) that were exchanged
under the corresponding public encryption key.
This is a major security threat which, in particu-
lar, makes the long-term key extremely attractive
for attack.

The property of perfect forward secrecy is es-
pecially relevant to scenarios in which the ex-
changed session keys require secrecy protection
beyond their lifetime, such as in the case of ses-
sion keys used for data encryption. In contrast,
applications that use the shared keys only for the
sake of authentication may not need PFS in their
key-exchange protocol (in most cases, finding an
expired shared authentication key is of no value
for the attacker).

In principle, any public key encryption scheme
can be used to build a key exchange with PFS by us-
ing the encryption scheme with ephemeral public
and private keys. From a practical point of view
this requires that the key generation for the en-
cryption scheme be fast enough. For most appli-
cations this disqualifies, for example, the use of
ephemeral RSA public key encryption for achiev-
ing PFS, since the latter requires the generation of
two long prime numbers for each exchange, a rel-
atively costly operation. Currently, most systems
that provide PFS are based on the Diffie–Hellman
key agreement. These protocols can be found in
practice (e.g., in the IKE key-exchange protocol [4]
for the IPsec standard) and they have been widely
studied in many research papers. Some of the well-
known key-exchange protocols that provide PFS

are STS [2], ISO-9798 [5], EKE [1], SKEME [6],
MQVC [8], and SIGMA [7]. The term “perfect for-
ward secrecy” was first introduced in [3].

Hugo Krawczyk

References

[1] Bellovin, S.M. and M. Merritt (1992). “Encrypted
key exchange: Password-based protocols secure
against dictionary attacks.” Proceedings of the IEEE
Computer Society Symposium on Research in Secu-
rity and Privacy, May, 72–84.

[2] Diffie, W., P.C. van Oorschot, and M. Wiener (1992).
“Authentication and authenticated key exchanges.”
Designs, Codes and Cryptography, 2, 107–125.

[3] Günther, C.G. (1990). “An identity-based key-
exchange protocol.” Advances in Cryptology—
Eurocrypt’89, Lecture Notes in Computer Science,
vol. 434, eds. J.-J. Quisqueter and J. Vandewalle.
Springer-Verlag, Berlin, 29–37.

[4] Harkins, D., and D. Carrel (ed.) (1998). “The Inter-
net Key Exchange (IKE).” RFC 2409, November.

[5] ISO/IEC IS 9798-3 (1993). “Entity authentication
mechanisms—Part 3: Entity authentication using
asymmetric techniques.”

[6] Krawczyk, H. (1996). “SKEME: A versatile secure
key exchange mechanism for internet.” Proceedings
of the 1996 Internet Society Symposium on Network
and Distributed System Security, February, 114–
127.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 18:26

458 Personal identification number (PIN)

[7] Krawczyk, H. (2003). “SIGMA: The ‘SIGn-and-MAc’
approach to authenticated Diffie–Hellman and its
use in the IKE protocols.” Advances in Cryptology—
CRYPTO 2003, Lecture Notes in Computer Science,
vol. 2729, ed. D. Boneh. Springer-Verlag, Berlin,
399–424.

[8] Law, L., A. Menezes, M. Qu, J. Solinas, and S.
Vanstone (2003). “An efficient protocol for authen-
ticated key agreement.” Designs, Codes and Cryp-
tography, 28, 211–223.

PERSONAL
IDENTIFICATION
NUMBER (PIN)

A Personal Identification Number (PIN) is a rel-
atively short (typically 4–8 digits) numeric string
that is used as a password to authenticate a user
to a device such as a smart card, an Automated
Teller Machine (ATM), or a mobile phone. Stan-
dards addressing the management and security of
PINs include ANSI X9.8 and ISO 9564.

Carlisle Adams
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PHYSICAL ATTACKS

The term “physical attacks” has two quite differ-
ent meanings in the field of IT security. The first
one describes mechanisms to physically penetrat-
ing a rather large perimeter, e.g., overcoming an
access control system for a server room. The re-
lated techniques, for instance picking locks and
bridging fences, are outside the scope of the Ency-
clopedia. Technologies used for perimeter security
involve, for instance, intrusion detection sensors
and alarm systems.

In the context of cryptographic implementa-
tions, “physical attack” is understood as a term
which encompasses all attacks based on physical
means against cryptographic devices. Physical at-
tacks are of relevance if an adversary gains physi-
cal access to the cryptographic device or its near-by
environment, e.g., a smart card.

There are two different objectives which have
to be regarded in order to counter physical at-
tacks. The first one aims to prevent the disclo-
sure and/or modification of the internal data (e.g.,
cryptographic keys and application data). For

its realization, tamper resistant and tamper
response measures are implemented. Another—
weaker—approach focuses on the question of
whether or not a cryptographic module has been
tampered with. For this, tamper detection charac-
teristics are needed. Note that tamper evidence
neither prevent the breaking into the crypto-
graphic boundary nor the disclosure of internal
data of the cryptographic module.

The term “cryptographic boundary” [2] defines
the physical bounds of the cryptographic device
that encloses all relevant security components
(hardware and software). There are typically ex-
ternal interfaces to the cryptographic boundary,
for instance, lines for data communication and
power supply. These lines are generally untrusted
as they are controlled externally.

In [1], five attack scenarios which indicate the
main areas of physical attacks are defined: pen-
etration, monitoring, manipulation, modification,
and substitution.
Penetration: Penetration is an active, inva-

sive attack against the cryptographic module.
This includes a breaking into the cryptographic
boundary of the module. The aim is to intercept
data at the internal communication lines or to
read out the memory in order to determine the
secret keys stored inside the security module.

Monitoring: Monitoring is a passive, noninva-
sive attack that leaves the cryptographic bound-
ary intact. This class of attacks makes use
of the inherent leakage of the cryptographic
module, e.g., by measuring the electromagnetic
emanation. TEMPEST investigations and side
channel analysis are prominent passive attacks
based on monitoring.

Manipulation: Manipulation is a noninvasive at-
tack that leaves the cryptographic boundary in-
tact. The attacks aim to obtain a service in an
unintended manner [1], mainly at the logical
interface. Manipulating attacks may also in-
clude changed environmental conditions. For in-
stance, the cryptographic module might be oper-
ated under extreme operating conditions which
includes the power supply and the environmen-
tal temperature. Noninvasive Fault Attacks be-
long to this category.

Modification: Modification is an active, invasive
attack that includes breaking into the crypto-
graphic boundary of the module. Unlike pen-
etration attacks, the aim is to modify internal
connections or the internal memories used.

Substitution: Substitution includes the removal
of the cryptographic module which is then sub-
stituted by an emulating device with a modified
implementation of security functions. The cryp-
tographic boundary is not of primary interest in
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this attack. Note that the removed module can
be used for a comprehensive analysis of the in-
ternal construction.
Examples for security requirements include

smart card IC protection profiles used by Common
Criteria evaluations [3,4] and the FIPS 140 secu-
rity requirements [2]. The latter provides informa-
tion about the implementation of secure computer
systems for the use in unprotected areas.

Kerstin Lemke
Christof Paar
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PKCS

PKCS, the Public-Key Cryptography Standards,
are specifications produced by RSA Laboratories
in cooperation with interested developers world-
wide in order to promote PKI solutions. The PKCS
series are referenced in many formal and de
facto standards, including ANSI X9, PKIX, SET,
S/MIME, and SSL.

The PKCS series is under constant develop-
ment. Currently, the list comprises:
PKCS #1: RSA Cryptography Standard

(includes former #2 and 4)
PKCS #3: Diffie–Hellman Key Agreement

Standard
PKCS #5: Password-Based Cryptography

Standard
PKCS #6: Extended-Certificate Syntax

Standard
PKCS #7: Cryptographic Message Syntax

Standard
PKCS #8: Private-Key Information Syntax

Standard
PKCS #9: Selected Attribute Types
PKCS #10: Certification Request Syntax

Standard
PKCS #11: Cryptographic Token Interface

Standard

PKCS #12: Personal Information Exchange
Syntax Standard

PKCS #13: Elliptic Curve Cryptography
Standard

PKCS #15: Cryptographic Token Information
Format Standard

In addition, there are guidelines for contributions
to the PKCS series.

Peter Landrock

PKIX—PUBLIC KEY
INFRASTRUCTURE (X.509)

PKIX is a working group under IETF, Internet
Engineering Task Force, established in 1995 [1].
The charter of the PKIX working group defines the
scope and goals of the working group: to develop
Internet standards needed to support an X.509-
based PKI. This includes profiling ITU PKI stan-
dards and developing new standards related to the
use of X.509 certificates on Internet. Most results
of the working group are published as Request For
Comments (RFC).

X.509 version 3 certificates and version 2 of cer-
tificate revocation lists as defined by ITU permit
a number of standard extensions as well as pri-
vately defined extensions. RFC2459 and RFC3280
profile such certificates and certificate revocation
lists by recommending usage of standard exten-
sions and also defines a few new extensions. Other
standards profile the use of attribute certificates
and qualified certificates, while a schema to sup-
port PKIX in LDAP is defined in RFC2559.

An informational standard (RFC2527) describes
a framework for the definition of certificate poli-
cies and certificate practice statements.

A number of protocols related to the use of X.509
certificates on Internet have been defined. Cen-
tral to the management of certificates is RFC2511,
which defines a format for certificate requests.
Most notably these requests include the possibil-
ity to prove possession of the private key corre-
sponding to the public key to be certified and they
provide means for authenticating the requester.
These certificate requests are used in RFC2510
and RFC2797, which define management proto-
cols for a number of PKI services including issu-
ing, updating and revoking certificates. The proto-
cols in RFC2510 have a number of options and the
standard gives a profile for conforming implemen-
tations. RFC2797 gives alternative management
protocols based on certificate management syntax
(and hence much the same security syntax as in
S/MIME).
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The Online Certificate Status Protocol (OCSP)
defined in RFC2560 provides a mechanism for get-
ting timely information about the status of a cer-
tificate. This may not be possible using regularly
published certificate revocation lists, as a newly
revoked certificate may not be listed in the revo-
cation list held by the relying party. In OCSP a
request for the status of a number of certificates
is answered with a signed message containing the
status of these certificates.

RFC3161 defines a protocol for requesting and
getting a secure timestamp. Such timestamps may
be used as part of a non-repudiation mechanism by
timestamping a signed message, but they can also
be used in many other applications—including
some that are not related to the use of X.509 certifi-
cates. A request for a timestamp does not identify
the requester and a timestamp on a particular
message is obtained without revealing the con-
tents of the message—only the hash value of the
message (see Collision-Resistant Hash Function)
is revealed to the time stamping authority. Basi-
cally, the timestamp is a signed structure contain-
ing the hash value of the message and the time.
The timestamp also contains policy information
indicating the applicability of the timestamp. If
necessary more information can be placed in time-
stamps using the extension mechanism also used
in X.509 certificates.

Torben Pedersen
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[1] http://www.ietf.org/

PLAYFAIR CIPHER

This is digraphic, bipartite substitution (see sub-
stitutions and permutations) V25 × V25 → V25 ×
V25, using a 5 × 5 Polybios square and a ‘crossing
step’ (αβ)(γ δ) �→ (αδ)(γβ). In the example below,
the key Palmerstone has been used to make the
Polybios square (see mixed, alphabet).

1 2 3 4 5
1 P A L M E
2 R S T O N
3 B C D F G
4 H I K Q U
5 V W X Y Z

ag �→ (12)(35) �→ (15)(32)

�→ EC

If a bigram is found in the same row (or the same
column), the ‘crossing step’ degenerates: it takes
the cyclically right neighbor: am �→ LE; ae �→ LP;
aa �→ LL (or the neighbor cyclically below: dl �→ KT;

dx �→ KL). Modified rules are common, especially
the one concerning the doubles: perhaps one letter
of the pair will be omitted or replaced with a null;
in cases like ‘less seven’ this will lead to encrypt
‘le s& s& se ve n&’, where & is a null.

A modified Playfair uses two Polybios squares,
one for the first and one for the second character
of the bigrams, e.g.,

A Y K I H Y X U H A
L B M N P T R K B I
Q R C O G P M C G S
Z X V D S F D L Q V
F W U T E E N O W Z

bu �→ KY

In case a bigram is found in the same row or
column, rules similar to the ones above are to be
applied.

Friedrich L. Bauer
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PMAC

PMAC is a MAC algorithm designed by Black and
Rogaway [1] in 2002. A MAC algorithm is a crypto-
graphic algorithm that computes a complex func-
tion of a data string and a secret key; the resulting
MAC value is typically appended to the string to
protect its authenticity. PMAC is a deterministic
MAC algorithm based on a block cipher. In con-
trast to CBC-MAC, PMAC is fully parallelizable,
which means that up to t processors can be used
in parallel, where t is the number of n-bit blocks
of the message. For serial computations, PMAC is
about 8% slower than CBC-MAC. The computa-
tion of PMAC does not require the knowledge in
advance of the message length.

In the following, the block length and key length
of the block cipher will be denoted with n and k,
respectively. The encryption with the block cipher
E using the key K will be denoted with EK(·). An
n-bit string consisting of zeroes will be denoted
with 0n. The length of a string x in bits is de-
noted with |x|. If i ≥ 1 is an integer, ntz(i) is the
number of trailing 0-bits in the binary represen-
tation of i. For a string x with |x| < n, padn(x)
is the string of length n obtained by appending
to the right a ‘1’ bit followed by n − |x| − 1 ‘0’
bits. Considered the finite field GF(2n) defined us-
ing the irreducible polynomial pn(x); here pn(x)
is the lexicographically first polynomial, chosen
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among the irreducible polynomials of degree n
that have a minimum number of non-zero coeffi-
cients. For n = 128, pn(x) = x128 + x7 + x2 + x + 1.
Denote the string consisting of the rightmost n co-
efficients (corresponding to xn−1 through the con-
stant term) of pn(x) with p̃n; for example p̃128 =
012010000111. The operation multx (s) on an n-
bit string considers s as an element in the fi-
nite field GF(2n) and multiplies it by the element
corresponding to the monomial x in GF(2n). It
can be computed as follows, where sn−1 denotes
the leftmost bit of s, and � denotes a left shift
operation.

multx(s) =
{

s � 1 if sn−1 = 0
(s � 1) ⊕ p̃n if sn−1 = 1.

Similarly, the operation invx(s) multiplies the
string s by the element corresponding to the mono-
mial x−1 in GF(2n). It can be computed as follows,
where 	 denotes a right shift operation:

invx(s) =
{

s 	 1 if sn−1 = 0
(s 	 1) ⊕ p̃n if sn−1 = 1.

The first step of a PMAC computation precom-
putes some key-dependent constants. Define µ ←
�log2 tmax� where tmax is the maximum number
of n-bit blocks in the message. For a key K, one
computes L ← EK(0n) and sets L(0) ← L. Next one
defines L(i) ← multx(L(i − 1)) for 1 ≤ i ≤ µ and
L(−1) ← invx(L).

PMAC can now be defined as follows. Set t ←
�|x|/n�; in the special case that t equals 0 set t ← 1.
Split the input x (of maximum length n2n bits) into
t n-bit blocks x1, x2, . . . , xt , where the last block
may be shorter than n bits. Set � ← 0n and � ←
0n. Now compute for 1 ≤ i ≤ t − 1:

� ← � ⊕ L (ntz(i))
Hi ← EK(xi ⊕ �)
� ← � ⊕ Hi .

As a final step, set � ← � ⊕ padn(xt ). Finally

Ht =
{

EK(�) if |xt | < n
EK(� ⊕ L (−1)) if |xt | = n.

The PMAC value consists of the leftmost m bits of
Ht .

The designers of PMAC have proved that PMAC
is a secure MAC algorithm if the underlying block
cipher is a pseudo-random permutation; the se-
curity bounds are meaningful if the total num-
ber of input blocks is significantly smaller than
2n/2. The best attack known on PMAC is a forgery
attack based on internal collisions [2]. In early
2004, PMAC has not yet been included in any
standards.

B. Preneel
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POLICY
Policy describes how environments dictate the be-
havior of applications and services. Security poli-
cies specify how relevant conditions mandate how,
when, and/or to whom access to controlled re-
sources is given. For example, the access rights
defined by a UNIX file-system state a policy: read,
write, and execute bits define the kinds of opera-
tions a user is permitted perform on the files or
directories. The policy is evaluated by determin-
ing whether the user has sufficient permissions
to perform the operation at the point at which ac-
cess is attempted. The policy is enforced by the file-
system by allowing or preventing the operation.

Security policy has historically been divided into
two broad classes: provisioning policy and au-
thorization (or access control) policy. Provisioning
policies define how software is configured to meet
the requirements of the local environment. As is
illustrated by the UNIX file-system policy, autho-
rization policies map entities and resources onto
allowable action. The following considers these
broad classes in serial.

One can view any kind of software configura-
tion as provisioning policy. That is, any aspect of
software behavior configured at run-time is policy.
This is relevant to the current discussion where
configuration affects how security is provided. For
example, one of the central goals of the ssh re-
mote access utility [1] is to provide confidentiality
over the session. The ssh policy states which cryp-
tographic algorithm (e.g., Triple DES, Blowfish)
should be used to encrypt session traffic (e.g., as
specified by host-local configuration file). The pol-
icy (i.e., encryption algorithm) dictates how the
goal (i.e., confidentiality) is achieved. In general,
the degree to which a user or administrator can
influence security is largely dictated by the scope
of the system’s provisioning policies.

General-purpose policy management services
support the creation, storage, and enforcement of
policy. Note that while these services can be used
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Policy
RepositoryPolicy Editor

Policy Target Policy Consumer

Fig. 1. IETF Policy Framework Working Group archi-
tecture—architecture supporting the creation, distribu-
tion and enforcement of network management policies

to manage authorization policy, they have histor-
ically been targeted to provisioning policy. The
IETF Policy Framework Working Group (PWG)
has developed a widely adopted reference archi-
tecture and lexicon for policy management [2].
This framework defines a collection of components
and operations used to manage the network (com-
monly referred to as policy-based networking). De-
picted in Figure 1, the architecture defines four
logical policy components; policy editors, policy
repositories, policy consumers, and policy targets.

A policy editor provides interfaces for specify-
ing and validating policy specifications. The policy
editor is responsible for detecting (and potentially
resolving) inconsistencies in the specification. For
example, an ssh policy that mandates both DES
(see Data Encryption Standard) and Triple DES
be used for confidentiality is erroneous (only one
algorithm should be specified). Such a policy would
be flagged as errored, and where available, cor-
rected using a resolution algorithm. The policy edi-
tor delivers validated policies to policy repositories
as dictated by the environment. A policy repository
stores the policies to be used by an administrative
domains. The policy repository does not act on or
interpret policy.

A policy consumer translates policy into action.
The consumer acquires and evaluates the policy
relevant to the current environment. The result-
ing action is communicated to the set of policy tar-
gets. Targets enforce policy by performing the ac-
tions that implement the defined semantics. For
example, again consider the ssh policy. A con-
sumer would interpret policy to determine which
algorithm is to be used for confidentiality. ssh
would then act as a policy target by configuring
the ssh client and subsequently using it to encrypt
the traffic (and thus enforce confidentiality).

Authorization policy describes to whom and un-
der what circumstances access to resources is
granted. These policies are further defined by an
authentication policy and an access control policy.
The authentication policy states how the identity
of the requesting entity must be established. For
example, an authentication policy for a UNIX sys-
tem is the password: the user must provide the
appropriate password at the login prompt to be al-
lowed access to the system. How authentication
is performed is largely defined by environment
needs, and outside the scope of this section.

An access control policy maps an identity es-
tablished during authentication and other infor-
mation to a set of rights. Rights, often called per-
missions, defines the types of operations that can
be granted, e.g., read, write, and execute on a
UNIX file system. The structure and meaning of
these policies are defined by their access control
model. (There are many models, we choose to fo-
cus on one.)

One popular model is the role based access con-
trol model. In this model, the policy defines collec-
tions of permissions called roles [3]. Users assume
roles as they perform different tasks within the
system. Hence, the set of rights is strictly defined
by the set of rights allowed to the roles they have
assumed.

The following example illustrates the use of role-
based access control policy. Consider a simplified
sealed bid online auction application. Three enti-
ties participate in this application: an auctioneer,
a bidder, and a seller. The bidder bids for goods
sold by the seller. Once all bids are placed, the
auctioneer clears the auction by opening the bids
and declaring the highest bidder the winner. Once
a winner is declared, interested parties can view
the result. The access control policy for the on-
line auction defines four permissions (described
above), bid, sell, clear, and view, and three roles,
seller, buyer, and auctioneer. Table 1 describes a
policy that assigns the permissions to roles.

The auction policy is enforced at run-time by
evaluating the permissions associated with the
roles that they have assumed. In any role-based

Table 1. Example role-based policy for online auction
application

Permissions

Role Sell Bid Clear View

Seller Yes No No Yes
Buyer No Yes No Yes
Auctioneer No No Yes Yes
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system, a user assumes roles through a explicit or
implicit software process. The example online auc-
tion maps user accounts to roles. For example, the
sally account is mapped to the seller role. When
a user logs into the application as sally, she auto-
matically (implicitly) assumes the seller role. From
that point on, she is free to perform any action al-
lowed by that role. Other accounts are similarly
mapped to the buyer and auctioneer roles, and gov-
erned by the associated policy.

One might ask why we do not just assign a user
the union of all rights assigned to each role they
may assume. Firstly, there may be legitimate rea-
sons that a user be explicitly prohibited from si-
multaneously assuming more than one role. For
example, in the above example, it may be impor-
tant that a user be prevented from assuming both
auctioneer and bidder roles. If a user were to as-
sume both roles, it could “cheat” by viewing all bids
before placing its own.

The second reason role-based models are useful
is convenience. Roles provide a powerful abstrac-
tion for dealing with the potentially many rights
that must be managed. In separating the access
control from the user, one simplifies the process
of evaluating. Moreover, this eliminates the need
to alter access control policy each time a entities
position changes.

Many access control models have been defined,
studied, and ultimately used in real environments.
Each model defines a unique way of viewing the
relations between protected artifacts, actions, and
the entities that manipulate them. Because appli-
cations and environments view these concepts in
vastly different ways, it is unlikely that any one
model will be universally applicable. Hence, like
the use policy itself, the selection of a model is a
function of taste and system requirements.

Trust Management (TM) systems blur the lines
between authorization and provisioning policy.
TM policies, frequently called credentials, define
statements of trust. More specifically, they state
that an entity is trusted to access a particu-
lar resource under a specified set of conditions.
An entity supplies the appropriate set of creden-
tials when accessing a protected resource.1 If the
supplied credentials are authentic and consistent
with a local policy, the entity is permitted access.

Note that the TM policy alters the traditional
policy flow: each entity accessing the resource sup-
plies those policies that are needed to perform
an action. This eliminates the need for the policy

1 Policies can define access to actions, rather than resource.
However, the evaluation of such policies relating to action is
identical to resource-oriented policy.

KeyNote–Version: "2"
Authorizer: "DSA : 4401ff92"     # the Alice CA
Licensees: "DSA : abc991"       # Bob DSA key
Conditions: ((app_domain == "ssh") && (crypt == "3DES"));
Signature: "DSA–SHA1 : 8912aa"

Fig. 2. KeyNote credential—specifies a policy stating
that Alice allows Bob to connect via SSH if 3DES en-
cryption is used

consumer to discover and acquire policy. It is in-
cumbent upon the user to supply the set of creden-
tials that allow access. Hence, TM systems enable
policy in creating widely distributed systems.

Provisioning policy is specified in TM systems
through the access criteria. Hence, TM systems
do not specify provisioning directly, but mandate
how the environment provisioning must be provi-
sioned to allow access. This model of policy again
departs from traditional uses: the policy infras-
tructure passively assesses whether the environ-
ment is correctly provisioned, rather than actively
provisioning it.

The KeyNote system [4] provides a standard-
ized language for expressing trust management
policies. KeyNote credentials have three crypto-
graphic components: an authorizer, a licensee, and
a signature. The authorizer identifies the author-
ity issuing the policy. KeyNote authorities are
cryptographic keys. The signature creates a cryp-
tographically strong (and verifiable) link between
the policy and the authorizer. The licensee is to the
entity to which the policy refers, e.g., the entity to
be allowed access.

KeyNote credentials express a says relation: an
authority says some entity some aspect has some
rights under a set of conditions. To illustrate, the
KeyNote credential defined in Figure 2 expresses
a policy governing ssh access. In this credential,
the authorizer authority states that an licensee
entity has the right to access the host only if Triple
DES is used to implement confidentiality. Note
again that both the authorizer and licensee are not
really entities, but keys. Hence, any entity that
has access to the private key of the licensee, can
use this credential to gain access to the host.
Moreover, any entity with access to the private
key of the authorizer can create and sign such
credentials.

On first viewing, the credential in Figure 2 may
appear to be ambiguous. The credential does spec-
ify which hosts are to be governed. This ambiguity
is the source of much of the power of trust man-
agement. This credential is only accepted by those
systems which have a local policy that (directly or
indirectly) states that the authorizer has domin-
ion over ssh access.
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Note that the local policy need not specifically
identify the authority in the above credential. The
local policy can simply state the authorities it
trusts to make policy decisions. Further creden-
tials (typically supplied by the user) that express
the delegation by the trusted authorities over ssh
access are used to construct a delegation chain.
Hence, access is granted where a chain of cre-
dentials beginning at the local policy and termi-
nating at the access granting credential can be
found.

Computing environments are becoming more
fluid. Increasing requirements for software sys-
tems to be more open, and at the same time,
more secure place unique demands on the sup-
porting infrastructure. New environments and
changing threats mandate that the kinds of se-
curity provided be reexamined and reconfigured
constantly. Consequently, systems need to be
more flexible and adaptive. Policy is increasingly
used as the means by which correct behavior is
defined.

Policy is not a panacea. While significant strides
have been made in the construction, distribution
and use of policy, many areas require further ex-
ploration. For example, we know little about the
security implications of enforcing several policies
(i.e., composing policies) within the same domain.
Future policy systems need to find techniques that
identify and mitigate interactions between poli-
cies. A more systemic area of investigation is scale:
how do we deploy policy systems that are feasible
in networks the size of the Internet. It is the an-
swers to these questions, rather than the specifics
of policy construction, that will determine the de-
gree to which policy systems will be adopted in the
future.

Patrick McDaniel
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POLYBIOS SQUARE
ENCRYPTION

This is a monographic, bipartite substitution
(see substitutions and permutations) V25 −→ W2

5 ,
known in antiquity (Polybios) for the Greek alpha-
bet. In a modern form, a standard alphabet Z25
(left) or a mixed alphabet V25 (right) is inscribed
into a 5 × 5 checkerboard (Polybios square), like

1 2 3 4 5
1 a b c d e
2 f g h i k
3 l m n o p
4 q r s t u
5 v w x y z

or

1 2 3 4 5
1 p a l m e
2 r s t o n
3 b c d f g
4 h i k q u
5 v w x y z

An encryption example is given by: heaven �→
23151151121533 resp. heaven �→ 411512511525

Friedrich L. Bauer
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POLYNOMIAL TIME

A polynomial-time algorithm is one whose running
time grows as a polynomial function of the size of
its input. Let x denote the length of the input to the
algorithm (typically in bits, but other measures
are sometimes used). Let T(x) denote the running
time of the algorithm on inputs of length x. Then
the algorithm is polynomial-time if the running
time satisfies

T(x) ≤ cd xd + cd−1xd−1 + · · · + c1x + c0

for all sufficiently large x, where the degree d ≥ 0
and the coefficients cd , . . . , c0 are constants. It is
easy to see that the running time will also satisfy
the simpler bound

T(x) ≤ c′
d xd

for a (possibly) larger constant c′
d , and (possi-

bly) larger x. In O-notation, this would be written
T(x) = O(xd ).

The term “polynomial” comes from the fact that
the bound has same general form as a polynomial
in x. The definition of polynomial-time is more gen-
eral, however; in particular, it does not require
that d be an integer.

The definition just given is somewhat informal;
for instance, it assumes that the algorithm takes
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the same time for all inputs of a given size. If the
time varies among inputs of a given size, then T(x)
should be an upper bound on the running time for
that size. Moreover, if the algorithm involves ran-
domization, then T(x) should be an upper bound
on the expected running time of the algorithm
(given random choices of the algorithm) for inputs
of size x.

As noted above, x refers to the length of the in-
put. However, sometimes it is convenient just to
let x be the input itself, as for example when ex-
pressing the time it takes to find a prime of length x
bits, where x itself is the input to the prime-finding
algorithm. (Alternatively, as is standard in com-
plexity theory, one could redefine the input to the
prime-finding algorithm as a string of x ones.)

The distinction between polynomial-time algo-
rithms and those with higher complexity such as
subexponential time and exponential time is a
major concern in computational complexity theory,
but in practical cryptography, the primary issue
is how fast an algorithm runs for practical-size
inputs. For instance, while a polynomial-time
algorithm will be faster for all sufficiently large
inputs than one that is not polynomial-time, but
the crossover-point may be well beyond practical
sizes. Likewise, the existence of a polynomial-time
algorithm to solve some supposedly hard prob-
lem (e.g., integer factoring) would not necessarily
compromise security, if the polynomial-time algor-
ithm turned out to have a very large degree d.
The search for polynomial-time algorithms is
nevertheless an important one in cryptography,
as it generally provides for scalability in a system
design, since key sizes can be increased with only
a moderate effect on running time. Likewise, the
lack of polynomial-time algorithms for hard prob-
lems provides assurance that a moderate increase
in key sizes can have a significant effect on secu-
rity, which helps to stay ahead of improvements
in computing power (see Moore’s Law).

A polynomial-time algorithm technically be-
longs to the higher complexity classes, since each
complexity class only expresses an upper bound
on the running time, not a lower bound. However,
in typical discussions on cryptography (see, e.g.,
L-notation), the term “subexponential time” ex-
cludes algorithms that are polynomial time, and
likewise “exponential time” excludes subexponen-
tial time and polynomial time.

In addition to running time, the “polynomial”
metric is sometimes applied to other measures of
complexity in cryptography, such as the memory
requirements of an algorithm or the ratio of diffi-
culty between two problems. In general, a poly-
nomial function, in this context, is one that is

bounded asymptotically by a constant power of
its input. In these cases, one may also consider
degrees d < 1 (which would does not make sense
for an algorithm, since it takes O(x) time just to
read the input). A function that is O(

√
x), or that is

O(1)—a constant—is technically polynomial in x.
If d < 1 then the function of x is sometimes called
a small polynomial. If the function grows more
slowly than xd for every degree d > 0, then the
function is called subpolynomial. An example of a
subpolynomial function is O(log x).

Burt Kaliski

PORTA ENCRYPTION

This particular encryption method works on an
alphabet of N = 2 · ν letters. A Porta encryption
step (Giambattista della Porta, 1563) is a simple
substitution (see substitutions and permutations)
consisting of ν swaps (cycles of length 2). Typically,
there are ν such swaps, each one designated by two
key letters in a polyphonic way. A Porta encryp-
tion is self-reciprocal. For an example of a PORTA
encryption see the section “autokey” in the entry
key.

A Porta table for Z20 (G.B.della Porta and M. Ar-
genti, 1589) is given by:

A B (a m) (b n) (c o) (d p) (e q) (f r) (g s) (h t) (i u) (l x)
C D (a x) (b m) (c n) (d o) (e p) (f q) (g r) (h s) (i t) (l u)
E F (a u) (b x) (c m) (d n) (e o) (f p) (g q) (h r) (i s) (l t)
G H (a t) (b u) (c x) (d m) (e n) (f o) (g p) (h q) (i r) (l s)
I L (a s) (b t) (c u) (d x) (e m) (f n) (g o) (h p) (i q) (l r)
M N (a r) (b s) (c t) (d u) (e x) (f m) (g n) (h o) (i p) (l q)
O P (a q) (b r) (c s) (d t) (e u) (f x) (g m) (h n) (i o) (l p)
Q R (a p) (b q) (c r) (d s) (e t) (f u) (g x) (h m) (i n) (l o)
S T (a o) (b p) (c q) (d r) (e s) (f t) (g u) (h x) (i m) (l n)
U X (a n) (b o) (c p) (d q) (e r) (f s) (g t) (h u) (i x) (l m)

Friedrich L. Bauer
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PREIMAGE RESISTANCE

Preimage resistance is the property of a hash
function that it is hard to invert, that is, given an
element in the range of a hash function, it should
be computationally infeasible to find an input that
maps to that element. This property corresponds
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to one-wayness, which is typically used for func-
tions with input and output domain of similar
size (see one-way function). A minimal require-
ment for a hash function to be preimage resis-
tant is that the length of its result should be at
least 80 bits (in 2004). Preimage resistance needs
to be distinguished from two other properties of
hash functions: second preimage resistance and
collision resistance. A hash function is said to be a
one-way hash function (OWHF) if it is both preim-
age resistant and second preimage resistant. A
natural question is to investigate how these con-
cepts are related; it turns out that the answer
is rather subtle and requires a formalization [8].
A simplification is that under certain conditions,
preimage resistance is implied by the two other
properties.

An informal definition is not fully satisfactory,
as one can always apply the function to a small
set of inputs and store the result; for this set of
hash results, it is easy to find a preimage. In or-
der to write a formal definition, one needs to spec-
ify according to which distribution the element in
the range is selected (e.g., one could choose an
element uniformly in the domain and apply the
hash function, or one could choose an element uni-
formly in the range), and one needs to express
the probability of finding a preimage for this el-
ement. Moreover, one often introduces a class of
functions indexed by a public parameter, which
is called a key. One could then distinguish be-
tween three cases: the probability can be taken
over the random choice of elements in the range,
over the random choice of the parameter, or over
both simultaneously. As most practical hash func-
tions have a fixed specification, the first approach
is more relevant to applications.

The definition of a one-way function was given
in 1976 by Diffie and Hellman [2]. Preimage re-
sistance of hash functions has been studied in
[1, 3–7, 9, 10]. For a complete formalization and
a discussion of the relation between the variants
and between hash functions properties, the reader
is referred to Rogaway and Shrimpton [8].

B. Preneel
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PRETTY GOOD PRIVACY
(PGP)

Pretty Good Privacy (PGP) is the most widely
used software package for email and file pro-
tection. It was primarily developed by Philip R.
Zimmermann in the early 1990s and allows to
encrypt and digitally sign email messages, indi-
vidual files or protect complete file systems. Over a
decade, PGP advanced from a niche market prod-
uct of the cryptography community to a main-
stream application with easy-to-use user inter-
face. Today, it is available on all major operating
systems and integrates as a plug-in to email
systems, such as Lotus Notes, Microsoft Outlook,
Novell GroupWise and the Eudora mail system.
PGP brings its own key management applica-
tions and key server, but also interoperates with
X.509-compliant public key infrastructures (PKI)
and LDAP-based directory services. The current
FIPS 140-1 compliant products support Smart-
Cards and PKCS#11-compliant cryptographic
devices. Beside the commercial PGP, which is
available in a variety of product editions with
customized features, a culture of compliant, free
software packages has evolved. Partly they stem
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Fig. 1. Phil Zimmermann

from the original PGP source code, published as
non-commercial, international versions. Others,
like GNU Privacy Guard (GnuPG), have been
founded on the OpenPGP standard [14] and were
developed independently.

The creator of PGP, Philip Zimmermann, de-
scribes himself as a privacy and civil rights ac-
tivist. He intended to create a public-key encryp-
tion software that would support every PC user
to privately exchange electronic mail. The actual
development of PGP was motivated by the in-
creasing power and efficiency with which U.S.
law-enforcement and other governmental agen-
cies could analyze huge amounts of electronic com-
munication, and the emerging U.S. Senate Bill
266, 1991, which would have forced manufactur-
ers to add back doors to secure communication
products, permitting governmental authorities ac-
cess to all conveyed information in decoded form.
Senate Bill 266 was later discarded after vigor-
ous protests of libertarian and industry groups
[11,12].

HISTORY: The first version of PGP for Microsoft
DOS was released in June 1991 as an Inter-
net give-away through a friend of Zimmermann.
It spread rapidly world-wide [6], but faced sev-
eral problems: Firstly, the novel symmetric cipher
algorithm Bass-O-Matic turned out to be fun-
damentally flawed. Moreover, the patented RSA
algorithm was implemented without a valid U.S.
licence. Earlier, in 1991, Zimmermann had tried
to obtain a free licence from RSA Data Security,
Inc., but without success, probably because PGP
resembled too closely their own product ‘Mailsafe’.
He decided not to buy a commercial license in or-
der to keep a door open to later distribute PGP as
shareware. After all, because the software utilized
strong cryptography, PGP fell under the U.S. ju-
risdiction of the International Traffic in Arms

Regulations (ITAR) and Arms Export Control Act
(AECA). Therefore, it was illegal to export it from
the U.S. to other countries, for instance, through
the Internet or Bulletin Board Systems (BBS).

The U.S. Customs Bureau interviewed
Zimmermann and others involved in the dis-
tribution, caused by complaint from RSA Data
Security; documents relating to PGP were sub-
poenaed from Zimmermann. In addition, a grand
jury started gathering evidence, whether to
indict Zimmermann on unlawful arms-export.
The case raised a controversial public debate on
privacy and government-controlled cryptography
politics. Zimmermann became a symbol of the
civil rights and privacy movement, while facing
an up to 5 years imprisonment sentence and huge
legal expenses. The investigations lasted from
1993 to 1996. Eventually, the prosecution was
declined, at least partially impelled by the public
opposition [3,4].

Version 2.0 released in September 1992, re-
placed Bass-O-Matic by the Swiss International
Data Encryption Algorithm (IDEA) as its prin-
cipal block cipher, which was licence free for
non-commercial products. This PGP version was
developed by an informal team of interna-
tional programmers including Phil Zimmermann,
Branko Lankester (Netherlands) and Peter
Gutmann (New Zealand) and published its results
outside the United States.

Zimmermann sold the exclusive rights for com-
mercial versions to ViaCrypt, which released
ViaCrypt PGP 2.4 shortly after the purchase in
November 1993 [6]. ViaCrypt resolved the RSA
and IDEA patent infringements. Several major
and minor ViaCrypt versions leaded up to PGP 4.5.

In spring 1994, the Massachusetts Institute of
Technology (MIT) issued PGP version 2.6 as free-
ware. This was possible because the MIT nego-
tiated an agreement with RSA Data Security to
incorporate the RSAREF toolkit, the freely re-
distributable reference source code of the RSA al-
gorithm (see RSA public key encryption). As part
of the deal, the software contained a signature
format incompatibility toward earlier versions,
which infringed upon RSA patents. Therefore,
users were forced to upgrade to 2.6 or be locked
out.

In June 1997, PGP 5.0 was published. The
source code was completely re-written for the first
time since v1.0. New features included a graph-
ical user interface for Microsoft Windows vari-
ants and the Apple Macintosh. The collection of
cryptographic algorithms was extended by the
block ciphers CAST and triple DES (for session
keys), the Secure Hash Algorithm (SHA family)
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and RIPEMD-160 as additional hash func-
tions and, maybe most importantly, by introduc-
ing Diffie–Hellmann Digital Signature Standard
(DH/DSS) keys, whose patents had recently
expired. One new feature was introduced as
Corporate Message Recovery (CMR) or Additional
Decryption Key (ADK); it permitted an additional,
implicit encryption of message session keys under
a corporate escrow key, firmly bound to the users
certificate. Numerous critics publicly disapproved
the feature as a means of antagonistic surveil-
lance, arguing that the available group addressing
feature would solve a company’s legitimate inter-
est in message recovery already. Furthermore, a
serious implementation flaw was revealed (see be-
low), which demonstrated vulnerabilities against
subsequent certificate modifications that would
attach functioning ADKs, but remain undetected
by the software [13].

1997 ViaCrypt merged with Zimmermanns com-
pany Phils Pretty Good Software (PPGS) into PGP
Inc. In December of the same year, Network Asso-
ciates, Inc. (formerly McAfee Associates) acquired
the PGP Inc.

Beginning with v5.0i, an official international
PGP branch was established outside the US by
Ståle Schumacher Ytteborg from Norway. Al-
though cryptographic software in electronic form
was still strictly export regulated under US laws,
no such restrictions applied to printed material.
Therefore, the full PGP source code was printed
in an OCR font to a 600-page hard cover by MIT
Press and shipped from the US to Europe per-
fectly legal. Until the US export controls loosened
in 1999, all major versions up to v6.5.1i were con-
veyed in printed form, then scanned electronically
to recover the original source code and republished
internationally [10].

The product releases from v5.0 up to v7.1 added
various utilities and functionality such as disk en-
cryption, a graphical key administration tool and
key server, a firewall and a virtual private net-
work (VPN) solution and several adaptations to
third-party communication software. Up through
v6.5.8, NAI disclosed the program source code for
public peer review. PGP Corp. continued this prac-
tice beginning with v8.0.

After Zimmermann left NAI in February 2001,
NAI declared the PGP business segment for sale
in July 2001. In order to rescue the PGP product
suite, the PGP Corporation was founded with Zim-
mermann and the cryptographer Bruce Schneier
as members of the technical advisory board. It
took over most of the product units and copyrights
relating to PGP about a year later in June 2002
and announces the shipping of PGP v8.0 for au-
tumn of that year.

OTHER PRODUCTS/PLATFORMS: An indepen-
dent implementation based on the OpenPGP stan-
dard [14], GNU Privacy Guard or GnuPG, was
released in version 1.0 in September 1999 by
Werner Koch (Germany). Created as a free UNIX
command-line utility under the GNU Public Li-
cense (GPL) in the first place, the software and a
large set of auxiliary projects were ported to all
major operating systems. GnuPG is functionally
complete and OpenPGP-compatible, but avoids
patent-protected algorithms, particularly IDEA,
in its core distribution [5]. GnuPG was funded in
part by the German Federal Ministry of Economics
and Technology (BMWi) in an effort to improve
and spread secure email exchange. The interna-
tional PGP [10] and OpenPGP Alliance [9] web
sites provide information on further PGP-enabled
products.

STANDARDS: Zimmermann compiled an initial
specification describing data structures and meth-
ods employed in his implementations. Later the
PGP2 format was derived and became an Internet
Engineering Task Force (IETF) “work in progress”
Internet draft, RFC1991, in August 1996 [7].
Since 1998, the specification is further developed
as OpenPGP Message Format by the OpenPGP
Working Group of the IETF [14]. RFC2440 gives
a complete specification of formats and algorith-
mic methods for secure, electronic communication
and file storage. The document intends to provide
a framework for interoperable OpenPGP applica-
tion and defines, in addition to the description of
cryptographic techniques, a variety of packet types
for message and key items.

WEB OF TRUST: PGP established a decentral-
ized trust model, where each party acts as a user
and as a certification authority (CA); all users can
be introducers to the Web Of Trust, generate their
key pairs, distribute their own public keys, and
certify those of other users. As opposed to a cen-
tralized, hierarchical, X.509-compliant public key
infrastructure (PKI), no standardized or company-
specific security policies are applied and no ad-
ditional information is certified except the mere
public key binding to the user’s name and email
address. PGP users maintain their personal trust
relationships locally and rate them by discrete
trust values, which mirror the keys validity in
the program interaction or user interface. A gen-
eral framework for trust management structures
is presented by Blaze [2].

SECURITY ISSUES: In August 2000, the im-
plementation of the aforementioned CMR/ADK
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feature turned out to be flawed. Subpackets of type
CMR/ADK are intended to be contained inside an
area of the public key packet that is validated with
the key pairs self-signature; when located outside,
such subpackets need to be ignored for message
encryption (and their existence reported as warn-
ing to the user). Ralf Senderek inspected several
PGP versions up to 6.5.1i and found this condition
not satisfied for keys stored under the v4 packet
format that was newly introduced with PGP v5.0
[13]. He placed unprotected recovery key informa-
tion into both RSA and DH/DSS public key pack-
ets and showed that the respective program ver-
sions still encrypted messages under both keys.
PGP commercial and freeware versions 6.5.8 and
later had this bug fixed; later PGP versions offer
an option to generate legacy RSA keys, i.e., com-
pliant to the immune v3 format. GnuPG does not
support an ADK/CMR feature.

In March 2001, two Czech cryptologists, Klima
and Rosa, discovered a weakness in the OpenPGP
private keyring specification that may lead to
the disclosure of signature keys [8]. Both com-
mon packet formats, v3 for RSA and v4 for RSA
and DH/DSS keys, are attacked through similar
steps, although the respective algorithm param-
eters are encrypted under a strong, passphrase-
derived, symmetric cipher. The stored parameters
of the key packets are suitably modified, allow-
ing to recalculate the original private keys, if a
message, signed under the tampered key, can be
obtained by an attacker. For instance, v3 key pack-
ets (only the RSA algorithm is supported) hold
the private key parameters enciphered, but their
length fields and a 16-bit checksum are stored in
the clear. v4 key packets encrypt the length fields
and checksum, too. Nevertheless, Klima and Rosa
give a prospect of about a half to successfully ex-
ploit the CFB mode properties on the last plain-
text block of a 1024-bit RSA key packet using the
Rijndael/AES block cipher. Regarding DH/DSS v4
key packets, the attack takes advantage of the
fact that the public key data fields are not pro-
tected, but are nevertheless used during signa-
ture generation. Replacing the subgroup genera-
tor and a 1024-bit prime parameter with smaller
fabricated values reduces the discrete logarithm
computation to a feasible problem. In a practi-
cal scenario, an attacker needs to gain full ac-
cess to the victim’s private keyring file twice. A
first time, so that the keyring can be tampered,
and a second time after the victims signature key
was recovered, to restore the original keyring to
cover up the attack. PGP subjects RSA keys to a
built-in integrity check during the signing process,
so that altered key parameters are detected, but
other products should undergo a comprehensive

audit. However, DH/DSS keys of PGP 5.0–7.04 are
affected, later versions are fixed, as well as GnuPG
beginning with v1.0.7. The Klima/Rosa vulnera-
bility is not highly critical, because the attacker
needs to have physical access to the victims com-
puter. Assuming the keyring files cannot be ob-
tained through a network link, which certainly is
good practice, it might be more efficient, for exam-
ple, to replace PGP executables on the target com-
puter, once its location was penetrated, in order to
recover the users passphrase directly by monitor-
ing key strokes. On the other side, the format spec-
ification does not define a proper, inherent keyring
protection.

An implementation flaw in PGP versions 5.0–
7.04 allows the execution of malicious code after
opening an ASCII armoured file under Microsoft
Windows operating systems. Chris Anley (United
States) from the security company @stake showed
that PGP creates a temporary file of arbitrary
names and arbitrary contents on the target ma-
chine during the process of parsing the ASCII ar-
mour [1]. Assuming the file name was chosen to
be an appropriate dynamic link library (DLL) and
contains executable code with valid library entry
functions, then, due to the Windows DLL loading
strategy, the manipulated code might be executed
by a subsequent application started. The vulnera-
bility occurs because temporary files are generated
in directories such as the current directory, which
are also included in the DLL loaders search path
and because PGP does not properly remove the
temporary file if the parsing fails. NAI supplied
patches for PGP 7.03 and 7.04; later releases are
not affected anymore.

Clemens Heinrich
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PRIMALITY PROVING
ALGORITHM

A primality test algorithm which, contrary to a
probabilistic primality test, always outputs a cor-
rect result. See prime number for further discus-
sion and examples of such algorithms.

Anton Stiglic

PRIMALITY TEST

A primality test is a criterion that can be used to
test whether an integer is prime. The term is also
used to designate an algorithm that tests whether
a given integer is prime based on some criteria. See
also prime number, primality proving algorithm,
and probabilistic primality test.

Anton Stiglic

PRIME GENERATION

Different methods can be used to generate
primes. The most common use is a primality test.
Typically, a random candidate is chosen and
tested for primality, if the candidate is found to be
composite, another candidate is chosen at random.
The process is repeated until a prime is found.

One can also test a sequence of integers derived
from one randomly chosen candidate. For exam-
ple, chose a random odd integer n and apply a siev-
ing procedure (see sieving) to the sequence n, n +
2, n + 4, . . . , n + 2k, for some k. (With high proba-
bility, a prime will be found within O(ln n) steps.)
Then test the sequence incrementaly until the first
prime if found. Probable primes are generated in
this way by using a probabilistic primality test,
while a so-called primality proving algorithm can
be used to generate integers that are guaran-
teed to be prime. Some primality proving algo-
rithms generate a certificate of primality, which
can be used to independently verify the primal-
ity of an integer. Another method consists in di-
rectly constructing integers that are guaranteed
to be prime. These prime generation algorithms
are typically recursive; Maurer’s method is an ex-
ample. Primes with certain properties, such as
safe primes and strong primes, can also be gen-
erated using specialized techniques. For a more
detailed discussion on prime generation, and ref-
erences, see prime number.

Anton Stiglic

PRIME NUMBER

A prime number is an integer, greater than 1,
whose only divisors (positive integer factors) are
1 and itself. For example, the prime divisors of 10
are 2 and 5. The first 7 primes are 2, 3, 5, 7, 11,
13, and 17. A whole number greater than 1 that is
not prime is called a composite.

Prime numbers play a central role in number
theory (also known as higher arithmetic), as can
be observed by the fundamental theorem of arith-
metic, which can be stated as follows: Any positive
integer (other than 1) can be written as the prod-
uct of prime numbers in a unique way (disregard-
ing the order of the factors). Thus, prime numbers
can be viewed as the multiplicative building blocks
from which all whole numbers are constructed.
This is a significant theorem with an analogy to
chemistry, saying that just as any natural com-
pound can be broken into basic elements from the
periodic table, in a unique way, so can any integer
be broken into a product of primes. It is interest-
ing to note that if 1 were considered to be prime,
the uniqueness property of the fundamental the-
orem of arithmetic would not hold. For example,
if 1 were a prime, 6 could be written as 2 × 3,
or 1 × 2 × 3. Thus, rather than considering 1 as
a prime and losing the uniqueness property, 1 is
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considered to be neither a prime nor a composite,
instead it is called a unit.

Prime numbers play a major role in cryptog-
raphy, especially in public key cryptography. For
instance, in their landmark 1976 paper “New
Directions in Cryptography”, Diffie and Hellman
present a secure key agreement protocol that can
be carried out over public communication chan-
nels (see Diffie–Hellman key agreement). Their
protocol gave birth to the notion of public-key cryp-
tography. The operations in the protocol they de-
scribe are based on arithmetic modulo a large
prime number (more precisely, the arithmetic
was done in a Galois Field of a large prime or-
der, see modular arithmetic and finite field). Since
then, many other cryptographic systems that
were proposed were based on the use of large
prime numbers and mathematical results sur-
rounding these. For example, large prime num-
bers are used in public-key encryption schemes,
key agreement, digital signature schemes, and
pseudo-random number generators.

One basic question that can be asked about
prime integers is—how may of them exist? The
answer is that there are infinitely many of them!
The earliest proof of the infinitude of primes is due
to the Greek mathematician Euclid (300 B.C.) and
can be found in his work, the Elements. A modified
version of Euclid’s proof is: Suppose that there is
a finite set of prime integers, say {p1, p2, . . . , pk}
for some fixed value k. Now, consider N = (p1 ·
p2 · · · pk) + 1 (the product can be computed since
there are only a finite number of terms). N is not
equal to 1 and is greater than any prime in our hy-
pothetical set of finite primes, thus N is a compos-
ite and should be divisible by a prime. However, for
any prime pi in our finite set or primes, pi does not
divide N since pi divides p1 · p2 · · · pn so it cannot
divide p1 · p2 · · · pi + 1 (this is due to a basic theo-
rem in number theory that states that if an integer
greater than 1 divides an integer x, it cannot pos-
sibly divide x + 1 as well). Thus, we have a contra-
diction! Since the only unfounded assumption we
made is about the finite size of the set of primes, we
conclude that this assumption is erroneous, and
that the number of primes must be infinite.

Not only do we know that there is an infin-
ity of primes, we also know that in any suffi-
ciently large interval there are a good number of
them and we can approximate the quantity. This is
important, since even though we proved that there
is an infinity of primes, we might wonder what is
the chance of a large, randomly chosen number
being prime?

Let π (x) denote the number of primes smaller
or equal to x. It can be shown that for any

x ≥ 114,

x
ln(x)

< π (x) <
5
4

· x
ln(x)

·

This result is, in fact, a refinement of the so-called
Prime Number Theorem, which states that π (x)
is asymptotic to x/ln(x). These results allow us to
conclude, among other things, that the chance of
a random integer x being prime is about 1/ln(x).

Since prime numbers are used in many different
algorithms and protocols, the following questions
may also be asked: How does one generate a prime
integer? And, given an integer, how does one verify
whether or not it is prime?

Two techniques exist that answer these ques-
tions for small numbers, the Sieve of Eratosthenes
and Trial Division. The sieve of Eratosthenes al-
lows one to generate all the primes less than or
equal to a given positive integer n. The technique
consists of initially listing all the numbers from 2
up to n in order. For example, to generate all the
primes up to 20 we would start with the sequence

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20.

Starting from 2 (the first prime in the sequence),
delete all the multiples of 2 with the exception of
2 itself. In our example, this gives

2, 3, 5, 7, 9, 11, 13, 15, 17, 19.

Next, starting from 3 (the next prime in the se-
quence), delete all the multiples of 3 (except 3 it-
self). Our example gives

2, 3, 5, 7, 11, 13, 17, 19.

In general, if the sequence at the tth state is such
that p is the tth prime, then the next step is to keep
p and delete all the other multiples of p. In our
example, the last sequence we came up with is the
final sequence, containing all the primes up to 20.
This technique is only efficient for small numbers.

Trial division, on the other hand, is a technique
that allows us to test the primality of an integer.
It is perhaps the simplest primality test one can
think of. Given an odd integer n (the only even
prime is 2), try to divide it by all odd integers less
than n. The number is prime if no divisors are
found. It suffices to try dividing it by all odd inte-
gers up to

√
n, since if n is composite, at least one

prime factor of n must be less than or equal to the
square root of n. This primality test is very ineffi-
cient, however, since to determine if an integer n
is prime, one needs to execute about

√
n divisions.

This is exponential in the size of n and thus not
considered to be efficient for large numbers, since
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the number of steps is not bounded by a polyno-
mial in the size of n (see polynomial time).

For large integers (such as the ones used
in public-key cryptography), we need techniques
that are much more efficient for generating and
testing primes. A method used in practice to
generate large prime numbers is based on the use
of an efficient primality test, and can be described
as follows. To generate a large prime, execute the
following steps:
1. Generate as a candidate an odd random integer

n of appropriate size.
2. Test n for primality.
3. If n is determined to be a composite, start again

at step 1.
Results regarding the density of prime numbers

assure us that we will find a prime number in a
reasonable amount of time. As we stated before,
the chance of a random integer x being prime is
about 1/ln(x), and this chance becomes at least
2/ln(x) if we only test odd integers, since we know
that all of the even integers greater than 2 are
composite. Thus, if the candidates that are cho-
sen are 2048-bit odd integers, then one can expect
to test at most about ln(22048)/2 of them, or about
710 odd integers. Instead of choosing a new ran-
dom candidate in each iteration of the loop, we
could start from a random odd integer candidate n
and test the sequence n, n + 2, n + 4, . . . until we
find a prime. This procedure is called an incre-
mental search. With high probability, a prime will
be found within O(ln n) steps (see O-notation), al-
though there are currently no proofs guaranteeing
that a prime will be found quickly for all start-
ing points. Using specific search sequences may
allow us to increase the chance that a candidate
is prime. For example, to speed up the process,
one can take the proposed sequence and apply a
sieving procedure to remove composites with small
prime factors, then test the integers in the re-
sulting sequence. A sieving procedure allows us to
eliminate most composites in the sequence rapidly,
see sieving. The efficiency of generating large ran-
dom prime numbers in this way is based on the
efficiency of the primality test that is used. A lot of
work has been done in primality testing through-
out the years. The subject is a very important
one, as demonstrated by the following quote, well
known among mathematicians, from article 329 of
Disquisitiones Arithmeticae (1801) by C.F. Gauss:

The problem of distinguishing prime numbers
from composite numbers, and of resolving the
latter into their prime factors is known to be
one of the most important and useful in arith-
metic. It has engaged the industry and wisdom

of ancient and modern geometers to such an ex-
tent that it would be superfluous to discuss the
problem at length . . . Further, the dignity of the
science itself seems to require that every possi-
ble means be explored for the solution of a prob-
lem so elegant and so celebrated.

There are two types of primality tests: true and
probabilistic. Given a candidate integer, a true pri-
mality test will prove whether the candidate is
prime without any probability of error, while a
probabilistic primality test can declare that the
candidate is probably prime with a certain proba-
bility of error. The former can be used to generate
so-called provable primes, the latter can be used to
generate probable primes. Algorithms implement-
ing true primality tests that prove the primality of
an integer are also called primality proving algo-
rithms. Most probabilistic primality tests are cor-
rect when they declare a candidate to be compos-
ite, but may mistakenly declare a composite to be
prime. Typically, when using a probabilistic pri-
mality test, step 2 of the prime number genera-
tion algorithm, described earlier, is executed mul-
tiple times in order to decrease the probability of it
falsely declaring a composite to be prime. In what
follows, we discuss various probabilistic and true
primality testing algorithms.

In the 17th century, Fermat came up with a
theorem referred to as Fermat’s Little Theorem.
The contrapositive of this theorem says that given
an integer n, if there exists an integer a, 1 ≤ a ≤
n − 1 such that an−1 �≡ 1 mod n, then n is guaran-
teed to be a composite (see modular arithmetic for
a discussion of this type of arithmetic). This is
the basis of the Fermat primality test. To gener-
ate a random prime using Fermat’s test with the
method we described earlier, do the following:
1. Generate a random integer n of appropriate

size.
2. Generate a random integer a, 1 ≤ a ≤ n − 1

and verify whether or not an−1 ≡ 1 mod n.
3. If the above equality is true, declare that the

number is probably prime, else start again at
step 1.
If the chosen candidate is a composite, there is

a good chance that the integer a, in step 2, will
render the equivalence false, thus proving from
Fermat’s Little Theorem that n is composite. In
step 2, an integer a for which the equivalence is
satisfied for a composite n is called a Fermat liar
(to primality) for n, while such an n is called a
pseudoprime to the base a (see pseudoprime). For
a given candidate, step 2 can be executed mul-
tiple times, with different values of a, while the
equivalence remains true, in order to increase the
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confidence that n is prime. However, the test is not
a guarantee of primality, since there exist integers
n for which all integers a are Fermat liars. Such n
are called Carmichael numbers.

In 1976, Miller [24] described a true primal-
ity test that determines in polynomial time, as-
suming the Extended Riemann Hypothesis (ERH),
whether a given number is prime. ERH is widely
believed to be true, but mathematicians have been
trying (and failing!) to prove it for over 100 years.

A year later, Solovay and Strassen discovered a
randomized algorithm for testing primality based
on a criterion due to Euler ( [4,31]). The algorithm
has a probability of error that can be made arbi-
trarily small for all inputs. In other words, when
the algorithm declares an integer to be prime,
there is a small probability that in fact the integer
is a composite. This probability of error can be
made to be as small as 2−100, or even smaller, while
the algorithm still remains efficient. A random
value a for which a composite n passes the Euler
criteria is called an Euler liar (to primality) for n,
while such an n is called an Euler pseudoprime to
the base a. The test resembles Fermat’s test, but
it doesn’t have the drawback of having composites
for which every base is a liar, which is one reason
why the probability of error can be made arbitrar-
ily small for any input. Furthermore, the result
is unconditional, meaning that it is not based on
any unproven hypothesis (such as ERH).

Rabin [27, 28] later modified Miller’s algorithm
to present it as an unconditional, but randomized
polynomial-time algorithm, a form that is compa-
rable to the Solovay and Strassen algorithm, with
a probability of error that can be made arbitrarily
small as well.

This last algorithm (with some optimizations
from Knuth [20]) is commonly referred to as the
Miller–Rabin probabilistic primality test, or the
strong pseudoprime test. A random value a for
which a composite n passes the primality criteria
of the Miller–Rabin test is called a strong liar (to
primality) for n, while such an n is called a strong
pseudoprime to the base a. The Miller–Rabin pri-
mality test is more efficient then the Solovay–
Strassen test and is always correct at least as of-
ten (the set of strong liars is a strict subset of the
set of Euler liars, which in turn is a strict subset
of Fermat liars). The Miller–Rabin test is the most
commonly used test for generating primes in prac-
tice. One iteration of the Miller–Rabin test will
err in declaring a composite integer to be a prime
with probability less than 1

4 , while t iterations
will err with probability less than ( 1

4 )t . That is
to say that prob[Yt | X] ≤ ( 1

4 )t , where X stands for
n is composite and Yt stands for RepeatRabin(n,t)

returned “prime”, RepeatRabin(n, t) being the al-
gorithm that executes t iterations of Miller–
Rabin’s test and outputs “composite” as soon as
any iteration declares n to be prime, else returns
“prime” if each iteration passed. The algorithm
is always correct when it declares an integer to
be composite. A more interesting result stating
that prob[X | Yt ] ≤ ( 1

4 )t can also be proven using
elementary probability theory and the fact that
prob[Y1 | X] is actually much smaller than 1

4 [9]. In
fact, the error probabilities given are worst case
estimates. Damgård et al. [16] gave numerical up-
per bounds for these probabilities which are much
smaller when choosing candidates independently
from a uniform distribution. So, for example, when
looking for a 1000-bit prime, to get a probability of
error that is less than 2−100, one can simply choose
independently, and from a uniform distribution,
1000-bit numbers and subject each candidate to
up to three independent iterations of the Miller–
Rabin test, until one is found that passes three
consecutive tests. There are also low upper bounds
for the probability of error when using an incre-
mental search with Miller–Rabin, these are given
by Brandt and Damgård [12].

Other probabilistic algorithms exist that are ef-
ficient and have a small probability of error on
each round when declaring an integer to be a
prime, there are also mixes of tests that seem to
be very good.

For example, one can use two iterations of the
Miller–Rabin test followed by a single iteration of
the Lucas probable prime test to generate 1000-
bit primes with probability of error smaller than
2−100 [3, 10, 13]. The advantage of this last test is
that while composite integers that fool multiple
rounds of Miller–Rabin are well known, there is
yet no known composite integer that passes even
a single Miller–Rabin test to the base 2 followed
by a single Lucas probable prime test [26].

The Frobenius–Grantham test [19], on the other
hand, is slightly more complicated to implement
than the other probabilistic tests mentioned. Fur-
thermore, each iteration takes about three times
as long as one iteration of the Miller–Rabin test,
although the worst case probability of error on
each iteration is considerably smaller than that
of Miller–Rabin. To achieve an error probability
that is less than 2−100 for 768-bit candidates or
greater, one need only run two iterations of the
Frobenius–Grantham test.

Several primality proving algorithms also ex-
ist. In 1983, Adleman et al. [2] presented a deter-
ministic primality proving algorithm, whose run-
ning time is bounded, for sufficiently large n, by k ·
(ln n)c·(ln ln ln n), for some constants k and c, making
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it almost polynomial in the size of the input.
Cohen and Lenstra [14, 15] simplified the algo-
rithm both theoretically and algorithmically. Fur-
ther improvements were made by Bosma and van
der Hulst [11]. See also [23] for a generalization of
the theory used in these tests. The version of this
algorithm used in practice is randomized. The al-
gorithm is referred to by different names, such as
the Adleman–Pomerance–Rumely or the Cohen–
Lenstra–Bosma algorithm, the Jacobi Sum Test,
and the Cyclotomy Method. Although efficient in
practice (the primality of numbers that are sev-
eral hundred decimal digits long can be proved in
just a few minutes on fast workstations), the algo-
rithm is not easy to program and the possibility of
undetected bugs is very likely.

Later, Goldwasser and Kilian [17] proposed a
randomized primality proving algorithm, based
on elliptic curves, running in expected polynomial-
time on almost all inputs. This algorithm is ineffi-
cient in practice. Adleman and Huang [1] extended
these results and designed a primality proving al-
gorithm whose expected running time is polyno-
mial for all inputs. This established, without the
use of any unproven assumptions, that the prob-
lem of determining whether or not an integer n is
prime can be solved, without any probability of er-
ror, by a randomized algorithm that runs in time
polynomial in the size of the input of the problem.
Atkin [5–7] developed a similar algorithm known
as Elliptic Curves for Primality Proving (ECPP),
which is efficient in practice. The interesting fea-
ture of these algorithms is that they produce a
certificate of primality, which is a small set of
numbers associated with an integer that can be
used to prove more efficiently that the integer is
prime. So even though the algorithm is also dif-
ficult to implement, the results (more specifically
the primality certificate) can be verified by an in-
dependent implementation, allowing bugs in the
code to be detected. ECPP has been used to prove
the primality of numbers having more than 1000
decimal digits.

Finally, in 2002, Agrawal et al. [8] discovered
a primality testing algorithm that runs in poly-
nomial time in the size of the candidate, for all
candidates, without any randomization, no prob-
ability of error and not based on any unproven
assumptions (such as ERH). This demonstrates
that the problem of determining whether or not a
given integer is prime is in the complexity class P
(see computational complexity). Even though the
algorithm is in P, it is far from being as efficient
as the probabilistic tests previously mentioned
(e.g., Miller–Rabin). In practice, the probabilistic
algorithms are preferred for generating prime

numbers because of their efficiency and since the
likelihood of an error can be made acceptably
small, thus conferring no practical advantage to
primality proving algorithms for the generation
of primes. For instance, the probability that the
Miller–Rabin test erroneously declares a compos-
ite integer to be prime can efficiently be made
smaller than the probability that a computer run-
ning a primality proving algorithm would have an
undetectable hardware error, leading to an erro-
neous result.

Other primality proving algorithms exist that
are efficient in practice for candidates n having
special forms, such as Mersenne numbers, or for ex-
ample when the factorization of n − 1 is known. A
Mersenne number is an integer of the form 2m − 1,
for m ≥ 2. A Mersenne number that is a prime is
called a Mersenne prime. The Lucas–Lehmer pri-
mality test for Mersenne numbers has been used
to prove the primality of integers of over 4 mil-
lion digits. (Notably, 213466917 − 1 was proved to be
prime using this algorithm.)

The following table summarizes the algorithms
that have been discussed. We use the following no-
tation: Rand stands for a randomized algorithm,
while Det stands for a deterministic algorithm.
PT is for polynomial-time. Prob stands for a prob-
abilistic primality test, while PProv designates
a primality proving algorithm and PProvCert a
PProv that also produces a certificate of primal-
ity. Note that a deterministic polynomial-time pri-
mality testing algorithm implicitly provides a triv-
ial certificate of primality consisting simply of the
number determined to be prime.

Other techniques do not generate prime num-
bers by applying a primality test to randomly cho-
sen candidates, rather they construct, in a special
way, integers that are guaranteed to be primes.
Examples of constructive prime generation al-
gorithms are Shawe–Taylor’s algorithm [30] and
Maurer’s method [21, 22], which are both recur-
sive randomized algorithms that return guaran-
teed primes. The former will reach roughly 10% of
all primes of a specified size, while the latter gener-
ates primes that are almost uniformly distributed
over the set of all primes of a specified size.

Various standards describe algorithms for gen-
erating prime numbers. For example, the sole pur-
pose of the ANSI standard X9.80—2001 [3] is to
describe primality tests and prime number gener-
ation techniques for public-key cryptography. The
standard is intended to be the normative refer-
ence in this topic for other ANSI X9 standards.
Three probabilistic methods for testing integers
for primality are described (Miller–Rabin, Lucas
and Frobenius–Grantham), four deterministic
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Algorithm name Type Based on Year Reference

Solovay–Strassen Prob. Rand, PT Euler criteria 1977 [4,31]

Miller–Rabin (strong
pseudoprime test)

Prob. Rand, PT Fermat’s Little Theorem and
the fact that ±1 are the only
square roots of 1 modulo an
odd prime

1976–1980 [20,24,27,28]

Adleman–Pomerance–
Rumely (Cohen–Lenstra–
Bosma, Jacobi Sum Test,
Cyclotomic Method)

PProv. Det,
almost PT

Set of congruences which are
analogues of Fermat’s
theorem in certain
cyclotomic rings

1983 [2,11,14,15]

Goldwasser–Kilian PProvCert.
Expected PT

Elliptic curves 1986–1992 [1,17]

Elliptic Curve Primality
(ECPP, Atkin,
Atkin–Morain)

PProvCert.
Expected PT

Elliptic curves 1986–1993 [5–7]

Frobenius–Grantham Prob. Rand, PT Quadratic polynomials and
Frobenius automorphism

1998 [19]

Agrawal–Kayal–Saxena PProvCert. Det,
PT

Variation on Fermat’s Little
Theorem

2002 [8]

methods (including ECPP and trial division, for
sufficiently small primes), along with methods for
generating prime numbers that use these pri-
mality tests, as well as a description of a siev-
ing procedure. The standard also describes two
methods for direct construction of prime num-
bers (Maurer’s algorithm and the Shawe–Taylor
algorithm). There are also descriptions of meth-
ods for generating primes with additional prop-
erties, such as safe primes and strong primes.
NIST’s FIPS 186-2 [25] describes the Miller–
Rabin primality test and an algorithm for gen-
erating primes with certain properties for the
Digital Signature Standard. The algorithm uses
the Miller–Rabin test or any other primality test
where the probability of a non-prime number pass-
ing the test can efficiently be made to be at most
2−80. The algorithm generates two sufficiently
large primes, q and p, in such a way that q divides
p− 1. Furthermore, the algorithm provides a seed
that can be used to demonstrate, under reasonable
assumptions, that the primes were not intention-
ally constructed to be “weak” in a way that the
entity who constructed them could subsequently
exploit their structure to recover other entities’
cryptographic private keys.

Anton Stiglic
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[16] Damgård, I., P., Landrock, and C. Pomerance
(1993). “Average case error estimates for the strong
probable prime test.” Mathematics of Computation,
61 (203), 177–194.

[17] Goldwasser, S. and J. Kilian (1986). “Almost all
primes can be quickly certified.” Proceedings of the
18th Annual ACM Symposium on Theory of Com-
puting, 316–329.

[18] Gordon, J. (1985). “Strong primes are easy to find.”
Advances in Cryptology—EUROCRYPT’84, Lec-
ture Notes in Computer Science, vol. 209, eds. T.
Beth, N. Cot and I. Ingemarsson. Springer-Verlag,
Berlin, 216–223.

[19] Grantham, J. (1998). “A probable prime test with
high confidence.” Journal of Number Theory, 72,
32–47.

[20] Knuth, D. (1981). The Art of Computer Programm-
ing—Seminumerical Algorithms, vol. 2 (2nd. ed.).
Addison-Wesley, Reading, MA.

[21] Maurer, U.M. (1995). “Fast generation of prime
numbers and secure public-key cryptographic pa-
rameters.” Journal of Cryptology, 8 (3), 123–155.

[22] Maurer, U.M. Fast generation of secure RSA-
moduli with almost maximal diversity. Advances
in Cryptology—EUROCRYPT’89, Lecture Notes in
Computer Science, vol. 434, eds. J.-J. Quisquater
and J. Vandewalle. Springer-Verlag, Berlin, 636–
647.

[23] Mihăilescu, P. (1997). “Cyclotomy of Rings and Pri-
mality Testing.” PhD Thesis, Swiss Federal Insti-
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PRIMITIVE ELEMENT

A primitive element of a finite field is a root of
the field polynomial that is also a generator of the
multiplicative group of the field.

Let f (x) be the field polynomial of degree n for an
extension field Fqd constructed over a subfield Fq ,
and let α be a root of f (x). If α is also a generator
of F∗

qd , i.e., if the set of elements

α, α2, α3, . . .

traverses all elements in F∗
qd , then α is a primitive

element and f(x) is called a primitive polynomial.
Not all field polynomials are primitive, but it is

often convenient for implementation to use a prim-
itive polynomial. Every finite field Fqd has φ(qd −
1) primitive elements, and φ(qd − 1)/d primitive
polynomials, where φ is Euler’s totient function.

Burt Kaliski

PRIVACY

A “name”, or identity, is a set of information that
distinguishes an entity from every other within
a given environment. In some environments, the
“name” may just be a given name; in other en-
vironments, it will be a given name and a fam-
ily name; in still others, it may include additional
data such as a street address, or may be some other
form entirely (e.g., an employee number). In all
cases, however, the identity depends upon the en-
vironment: the size and characteristics of the en-
vironment determine the amount of information
required for uniqueness.

Regardless of the information tied together to
form the identity, however, this “name”, or “nym”,
will be one of three possible types: an anonym (“no
name”); a pseudonym (“false name”); or a veronym
(“true name”). These three categories of nyms are
defined by the amount of linkage that is possi-
ble across transactions. Anonyms are meaningless
or null names for one-time use, and so no link-
age can be made (1) to the actual entity involved
in any given transaction and (2) between trans-
actions. Pseudonyms are either meaningless or
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apparently meaningful names for multiple uses
that bear no relation to the true name. Thus, no
linkage can be made to the actual entity involved
in any given transaction, but it is clear that the
same (unknown) entity is involved in different
transactions. Veronyms are, or very readily dis-
close, the name of the physical entity in the real
world, and so linkage can be made both to the
entity involved and across different transactions.
Note that linkage to a real-world entity (such as a
machine, device, software process, or human per-
son) is central to the notion of privacy, but may
or may not be relevant to any given application—
for many applications, anonyms, pseudonyms, and
veronyms are all valid identities for the entities
with which they deal.

PRIVACY CONCEPTS: Privacy may be defined as
an entity’s ability to control how, when, and to
what extent personal information about it is com-
municated to others (see Brands [2], p. 20). In or-
der to understand privacy, then it is important to
understand what “personal information” is and to
understand the ways that personal information
can be controlled.

Personal Information

Personal information can include intrinsic physi-
cal data such as name, birth date, and gender, but
can also include location data (such as home ad-
dress and telephone number), financial data (such
as salary, bank account balance, or credit card
number), user-created data (such as confidential
correspondence or a list of personal preferences),
and data assigned by other entities (such as a bank
account number or a social security number). De-
spite this wide range of types of personal infor-
mation, it is sometimes useful to distinguish the
subset of personal information that reveals the
identity of the entity (“identifying information”)
from all the other types because identifying infor-
mation can be sensitive on its own, whereas other
types of personal information (e.g., salary) are typ-
ically sensitive only when revealed in conjunction
with identifying information.

Communication of identifying information to
unintended parties may be referred to as “expo-
sure”: the identity of the entity is exposed to oth-
ers. Communication of other types of personal in-
formation to unintended parties may be referred
to as “disclosure”: this information has been dis-
closed to others. Both exposure and disclosure may
be direct or indirect. Direct exposure/disclosure
is the determination of user identity or other

personal information by an observer or by another
participant in the exchange from the explicit con-
tents of a single transaction or message. Indirect
exposure/disclosure is the determination of user
identity or other personal information by inference
or from the correlation of the contents of several
transactions or messages.

A primary goal of any privacy infrastructure,
then, is to provide confidentiality of identifying
information and other personal information when
desired. That is, the infrastructure must enable an
entity to limit the release of this information both
directly and indirectly in accordance with the en-
tity’s wishes.

Techniques for Control

There are a number of ways in which confidential-
ity of identifying information may be enabled by
a privacy infrastructure. For example, anonymous
Web or e-mail services may be provided to entities,
or protocols accepting anonymous authentication
(proof of ownership of certain attributes without
the need to reveal identifying data) may be sup-
ported. For environments in which multiple trans-
actions will take place over time or across many
servers, the use of pseudonymous identifiers may
be supported—either one at a time per entity, or
an unlimited number at a time per entity, depend-
ing upon the requirements of the environment (see
the Trusted Computing Platform Alliance archi-
tecture [5] for an example of multiple pseudonym
support in a computing environment).

There are two primary techniques for provid-
ing confidentiality of non-identifying personal in-
formation: encryption and access control. Personal
information may be encrypted so that it may only
be seen by intended recipients while it is in tran-
sit (e.g., as it travels over a Secure Sockets Layer,
SSL, channel) or while it is in storage. In stor-
age, it may be encrypted at the application layer
for specific entities (“Alice”, “Bob”, “Charlene”) or
for particular roles (“Faculty”, “Senior Managers”,
“Hospital Staff”). Encrypting personal informa-
tion ensures that—at least until it is decrypted—
no unintended recipients will be able to read the
data.

Access control limits who may do what with
a given resource (see authorization architecture).
When the resource is personal information, access
control allows an entity to explicitly specify which
other entities may (or may not) read this infor-
mation. The effect is similar to encryption (only
a restricted set of entities may see the data), but
the data itself may not be rendered unintelligible;
rather, a Policy Enforcement Point (PEP) enforces
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decisions rendered in accordance with access poli-
cies created by the subject/owner of the personal
information. Any entity not meeting the condi-
tions stipulated by the access policy will be pre-
vented by the PEP from looking at the protected
data.

More generally, an entity may wish to control
other aspects of its personal data than simply who
can read it. In particular, the entity may want
to control such things as collection, use, access,
dissemination, and retention of its personal in-
formation. Access policies and reliable decision
and enforcement engines are again the technique
for this control. In some environments, however,
there are two components of the access policy that
must be taken into account. If personal data will
be stored on a server or site remote from the
entity, then the owner or administrator of that
site may create a policy stating what its prac-
tices are with respect to privacy (e.g., “We col-
lect and use your name and address information
for the purpose of shipping goods to you; we re-
tain this data for a maximum of six months; and
we do not sell or in any other way communicate
this data to any other party for any reason”). This
server policy is one component of the complete
access policy. The other component is the policy
created by the entity itself, specifying use, reten-
tion, and so on, of its data. When access to this
data is requested by any entity, both components
of the access policy must be consulted and followed
by the decision engine. Any conflicts between the
two components (e.g., the server says it will retain
personal data for 6 months, but the owner/subject
of the data specifies a retention period of no longer
than 3 months) must be resolved in an acceptable
fashion (e.g., the owner/subject policy takes prece-
dence over the site’s policy).

Another critical aspect in controlling the com-
munication of personal information to other enti-
ties is known as “individual access”. This means
that the owner/subject of personal data is given
read/write access to at least a subset of this data
in order to ensure correctness and completeness of
the information. This includes access to data cre-
ated by the entity itself (e.g., address and credit
card information), access to data created about the
user (e.g., medical examination results), and ac-
cess to audit information regarding data use and
dissemination.

PRIVACY PRINCIPLES: A number of organiza-
tions, regulatory bodies, and government agen-
cies have taken a keen interest in privacy issues
in recent times. This has resulted in a relatively
large collection of privacy guidelines and privacy
principles that have been developed in Europe,

North America, and around the world. Examples
of such guidelines and principles include Bill C-6,
the CSA Model Code, the EU Directive on Data
Protection, the Health Insurance Portability and
Accountability Act (HIPAA), the Gramm–Leach–
Bliley Act (GLBA), the OECD Privacy Principles,
and the Fair Information Practice Principles.

Although not identical, many of these initia-
tives do have significant overlap in the issues that
they cover. These include topics such as the fol-
lowing: accountability, identifying purposes, user
consent, limiting collection of data, limiting use/
disclosure/retention of data, accuracy, safeguards,
openness, individual access, and compliance. No-
tions such as user notice and user choice also fig-
ure prominently in much of this work.

It may be noted, however, that virtually all of
these initiatives are focused on privacy principles
that are of interest to the corporate or server en-
tity that holds personal information on behalf of
users. There is very little comparable work that
is focused on principles that are of specific inter-
est to the users themselves. Although these views
will coincide in many ways, the change in per-
spective can lead to subtle differences or changes
in emphasis. User-focused privacy principles deal
with the issues that are most important to the
owner/subject of personal data and will include the
four areas discussed in the previous section: confi-
dentiality of identifying information; confidential-
ity of other personal information; access to per-
sonal data for the purpose of ensuring correctness;
and control over the use, retention, dissemination,
and so on, of personal information.

PRIVACY TECHNOLOGIES: A number of tech-
nologies have been developed over the years to
enable and preserve the privacy of entities par-
ticipating in transactions on electronic networks
such as the Internet. Collectively, these have come
to be known as Privacy Enhancing Technologies
(PETs). This section provides examples of some
PETs that are intended to address different por-
tions of the privacy spectrum.

Onion routing (see also MIX networks) and
subsequent technologies built on that framework
such as Crowds, addresses the requirement
for anonymity—confidentiality of identifying
information—in Web browsing and in messaging
(primarily e-mail) environments. The basic idea is
that the message from the originator is bounced
around a relatively large set of participants in
a fairly random fashion before being sent to the
eventual destination. The destination, as well as
the other participants, may know the immediately
preceding hop, but do not know whether there
were any hops prior to that one. Thus, the identity
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of the originator (including machine identity,
IP address, and so on) is kept hidden from all
observers. Some technologies allow the possibility
of pseudonymous identifiers for participants so
that transactions may be linked over time to a
single (unknown) entity for continuity, context
building, personalization, or similar purposes.

Encryption is commonly used as a technology to
provide confidentiality of data, including personal
data. As noted above, encrypting data for specific
individuals or roles can ensure that unintended
parties are not able to read the data while it is
in transit or in storage. Symmetric encryption al-
gorithms (see symmetric cryptosystem) are used
to scramble the data, with key management/key
establishment supported by out-of-band means or
by technologies such as Kerberos, Public Key In-
frastructure (PKI), or Secure Sockets Layer. En-
crypting personal data for a role can be an attrac-
tive option when the individuals that need to see
that data may vary over time, but it does require
a supporting infrastructure in which, at any given
time, one entity can reliably determine whether or
not another entity is a valid member of that role.
A PKI that uses attribute certificates, Security
Assertion Markup Language (SAML) assertions,
or similar technology for its attribute manage-
ment (see authorization architecture) is one way
to build this supporting infrastructure [1].

Access control is an important technology for re-
stricting the dissemination of personal informa-
tion. Rules and policies can be established re-
garding who can do what with this data, and
trusted components can make and enforce access
decisions on the basis of these policies. Technolo-
gies such as SAML and eXtensible Access Con-
trol Markup Language (XACML) provide the data
structures, protocols, and policy syntax to allow
a relatively comprehensive access control infras-
tructure to be built in the service of privacy. Other
technologies such as CORBA and DCE can also
provide much of the required functionality in this
area.

Finally, technologies that address the control (by
both server and entity) of personal information
include Platform for Privacy Preferences Project
(P3P) and A P3P Preference Exchange Language
(APPEL). P3P [3] is a mechanism for Web sites to
advertise their privacy policies and practices in a
machine-readable way so that a user browsing to a
site may automatically be warned if the site’s pol-
icy does not match his/her own preferences. P3P
policies can include statements about the types of
personal data that an owner/subject can access,
the ways in which the owner/subject can resolve
disputes about the site’s privacy practices, the
purpose(s) for which personal data will be used by

the site, other recipients with whom personal data
may be shared, and the period for which personal
data will be retained by the site.

APPEL [4] is a technology to give users some
control over the use of their personal informa-
tion. With P3P, a user can browse to a site, down-
load its privacy policy, compare this policy with
his/her own preferences, and make an informed
decision as to whether to continue dealing with
this site (e.g., submit personal information or
make a purchase). APPEL allows the possibility
of some negotiation with the site: after download-
ing the site’s P3P policy and examining it, the
owner/subject can respond with his/her own list
of preferences (a narrowed-down set of values of
various elements in the policy). The site can then
choose to treat this user’s personal data in accor-
dance with this more restricted P3P policy, or can
reject this modified policy. Depending upon the
site’s response, the user can again decide whether
to continue dealing with this site. APPEL gives
users a bit more control over how their data is used
than P3P alone, which simply informs the user of
a site’s current practices.

Carlisle Adams
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PRIVILEGE MANAGEMENT

Privilege management is a subset of general
“authorization data” management (see autho-
rization architecture) in which the data being
managed are privileges granted or bestowed
upon entities in an environment. A privilege may
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be defined as follows [1]: “a right or immunity
granted as a peculiar benefit, advantage, or favor”.

Carlisle Adams
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PROBABILISTIC
PRIMALITY TEST

A probabilistic primality test is a primality test
that has a probability of error. Such tests typically
pick a random number called a witness and verify
some criteria involving the witness and the can-
didate being tested. Most probabilistic primality
tests used in practice will not err when declaring
an integer to be composite, but have a probability
of error when declaring an integer to be prime:
they either declare a candidate to be definitely
composite or probably prime. A candidate that
passes such a test—whether prime or composite—
is called a probable prime for that test. A compos-
ite number that erroneously passes such a test is
called a pseudoprime.

See prime number for further discussion and ex-
amples of such tests.

Anton Stiglic

PROBABILISTIC
PUBLIC-KEY ENCRYPTION

Probabilistic public-key encryption is a public-key
encryption scheme (see public key cryptography)
where the ciphertext of the same message under
the same public key differs on every run of a prob-
abilistic Turing machine. That is, a random coin
toss of the Turing machine is used in the encryp-
tion algorithm. The notion was proposed in con-
trast to the RSA public-key encryption scheme,
which is deterministic in the sense that the ci-
phertext is always fixed given a public key and
a plaintext.

The early date examples of probabilistic public
key encryption schemes are the Goldwasser Micali
encryption scheme and the ElGamal public-key
encryption scheme, and many others followed. It
is known that an encryption scheme that satisfies
provable security such as semantic security must
be probabilistic. Since the original RSA encryption

scheme was not probabilistic, several padding
techniques such as OAEP are considered so that
the padded RSA scheme becomes probabilistic
and satisfies security properties, such as semantic
security.

Kazue Sako
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PRODUCT CIPHER,
SUPERENCRYPTION

Product ciphers are ciphers that are built as a com-
position of several different functions. In a special
case when all the functions are the same, the ci-
pher is called iterative cipher and the functions are
called rounds. The intuition behind such construc-
tions is inspired by the analogy with mixing trans-
formations studied in the theory of Dynamical
Systems, which was first noted by Shannon [3].
The IBM team followed this approach in the de-
sign of Lucifer and the Data Encryption Standard
(DES). Rounds of iterative ciphers are typically
keyed with different subkeys or at least in-
volve different round constants to break self-
similarity, which otherwise would be vulnerable
to slide attacks. Note that the individual round
transformation might be cryptographically weak.
The strength of the whole construction relies on
the number of iterations. The choice of the proper
number of rounds is a difficult task, which is per-
formed via cryptanalysis of the cipher. Most of the
modern block-ciphers have an iterative structure
for the reasons of compact hardware, software im-
plementation and in order to facilitate the anal-
ysis. The typical number of rounds in modern ci-
phers ranges between 8 and 32. By their structure,
iterative block ciphers may be divided into two
large classes: Feistel ciphers and substitution–
permutation networks (SPN).

If one takes the composition of several ciphers
one gets what is called multiple encryption or cas-
cade cipher or superencryption (this term is of-
ten used in communications when some informa-
tion which was encrypted off-line is transmited
via an encrypted communication link). Multiple
encryption is often used to enhance security of a
single encryption function, though at the expense
of speed. Note that multiple encryption does not
necessarily improve security; consider for example
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simple substitution ciphers, where the product of
substitutions is another substitution. One may
prove that multiple encryption is at least as secure
as the first component [1, 2] if the keys are cho-
sen independently. A typical example of multiple
encryption is Triple-DES.

Alex Biryukov
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PROOF OF KNOWLEDGE
VS. PROOF OF
MEMBERSHIP

A basic interactive proof for a statement of the
form x ∈ L, where L is some formal language is
often called a proof of membership. For instance,
if LH is the language of graphs containing a Hamil-
tonian cycle, a proof for the statement x ∈ LH
shows that x is a Hamiltonian graph. However,
the proof does not necessarily show that the prover
actually knows a Hamiltonian cycle for the graph.

A proof of knowledge is similar to an inter-
active proof, except that the soundness condition
is strengthened in the following way. Referring
to the example statement x ∈ LH, the verifier ac-
cepts the proof only if the prover actually knows a
Hamiltonian cycle for x, where “knowing” is char-
acterized as follows. Generally speaking, if one is
given access to a successful prover for the state-
ment x ∈ LH, then one should be able to extract
a Hamiltonian cycle for x. Such an efficient al-
gorithm for extracting a Hamiltonian cycle (in
this example) from a prover is in general called
a knowledge extractor.

The formal notion of a proof of knowledge
developed from the results in [1–5]. Many zero-
knowledge proofs of membership are in fact zero-
knowledge proofs of knowledge. The Fiat–Shamir
identification protocol is an early example of a
zero-knowledge proof of knowledge. The Schnorr
identification protocol is another well-known ex-
ample.

Berry Schoenmakers
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PROPAGATION
CHARACTERISTICS OF
BOOLEAN FUNCTIONS

Let n and l be positive integers such that l ≤ n.
Let f be a Boolean function on Fn

2 and let a ∈ Fn
2 .

We denote by Da f the derivative of f with re-
spect to a, that is: Da f (x) = f (x) ⊕ f (a + x). This
notion is related to the differential attack (see
Differential cryptanalysis for block ciphers).

The function f satisfies the propagation criterion
PC(l) of degree l if, for all a ∈ E of weight at most
l, the function Da f is balanced (that is, takes the
values 0 and 1 equally often) [3]. In other words,
f satisfies PC(l) if the autocorrelation coefficient∑

x∈Fn
2
(−1) f (x)⊕ f (x+a) is null for every a ∈ Fn

2 such
that 1 ≤ wH(a) ≤ l. The strict avalanche criterion
SAC corresponds to PC(1).

The functions satisfying PC(n) are the bent func-
tions (see Nonlinearity of Boolean functions).

If n is even, then PC(n − 2) implies PC(n). Since
bent functions are never balanced, there exist bal-
anced n-variable PC(l) functions for n even only if
l ≤ n − 3. For odd n ≥ 3, the functions satisfying
PC(n − 1) are those functions of the form g(x1 ⊕
xn, . . . , xn−1 ⊕ xn) ⊕ 
(x), where g is bent and 
 is
affine.

The only known upper bound on the algebraic
degree (see Boolean functions) of a PC(l) func-
tion is n − 1. A lower bound on the nonlinearity
(see Boolean functions) of PC(l) functions exists: it
is lower bounded by 2n−1 − 2n− 1

2 l−1. Equality can
occur only if l = n − 1 (n odd) and l = n (n even).
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Constructions of PC(l) functions have been given
in [2], for instance.

It is needed, for some cryptographic applica-
tions, to have Boolean functions that still satisfy
PC(l) when we keep constant a certain number
k of their coordinates (whatever are these coordi-
nates and whatever are the constant values cho-
sen for them). We say that such functions satisfy
the propagation criterion PC(l) of order k. This
notion, introduced in [3], is a generalization of the
strict avalanche criterion of order k, SAC(k), in-
troduced in [1]. SAC(k) functions, that is, PC(1) of
order k functions, have algebraic degrees at most
n − k − 1 (see [3]). A construction of PC(l) of or-
der k functions based on Maiorana-McFarland’s
method is given in [2].

There exists another notion, similar to PC(l) of
order k, but stronger [3]: a Boolean function satis-
fies EPC(l) of order k if every derivative Da f cor-
responding to a direction a �= 0 of weight at most
l is k-resilient.

Claude Carlet
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PROTOCOL

In the context of cryptography, “protocol” is a
shorthand for “cryptographic protocol”. A cryp-
tographic protocol is a distributed algorithm de-
scribing precisely the interactions of two or more
entities to achieve certain security objectives. The
entities interact with each other by exchanging
messages over private and/or public communica-
tion channels.

Important classes of protocols are: key ex-
change protocols or key establishment protocols,
challenge–response protocols, identification veri-
fication protocols, and zero-knowledge protocols.
A more practical example is the Secure Soc-
ket Layer (SSL) protocol for establishing a secure
communication link between two entities, a client
and a server.

Cryptographic protocols are often used as build-
ing blocks for constructing cryptographic schemes
(or systems). In general, a cryptographic scheme
may be composed of several cryptographic algo-
rithms and/or cryptographic protocols.

Berry Schoenmakers
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PROTON

Proton is a proprietary e-cash smart card solution
developed by Banksys in Belgium, which is CEPS
and EMV compliant. The security is based on
symmetric cryptography, which basically means
that the security relies on the protection of one key
which has been used to encrypt data on the cards.

The card may be uploaded at an ATM or sim-
ilar device. The cardholder keys in his PIN (see
Personal Identification Number) and selects the
account from which the amount should be debited.

The ATM or load device then links with the
smart card chip and loads the amount onto the
chip. The card can be used at stores, payphones,
vending machines, pay-per-view TV set-top box,
and Internet low-value payments, and the solu-
tion has been employed in a number of countries.

Transactions are fully accountable, with cen-
trally available audit trail, but only small amounts
are allowed, and payments are provided without
the use of PIN-codes for cost limitation and user
friendliness.

Peter Landrock

PSEUDO-MERSENNE
PRIME

A prime of the form

p = 2m − k,
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where k is an integer for which

0 < |k| < 2�m/2�.

If k = 1, then p is a Mersenne prime (and m must
necessarily be a prime). If k = −1, then p is called a
Fermat prime (and m must necessarily be a power
of two).

Pseudo-Mersenne primes are useful in public-
key cryptography because they admit fast modu-
lar reduction (see modular arithmetic) similar to
Mer- senne primes. If n is a positive integer less
than p2, then n can be written

n = u · 22m + a · 2m + b,

where u = 0 or 1 and a and b are nonnegative inte-
gers less than 2m. (It is only rarely true that u = 1,
and never true if k > 0.) Then

n ≡ u · k2 + a · k + b (mod p).

Repeating this substitution a few times will yield
n modulo p. This method of modular reduction
requires a small number of additions and sub-
tractions rather than the usual integer division
step.

This method works best when m is a multiple
of the word size of the machine being used and k
is expressible in one machine word. Thus the first
recorded use of pseudo-Mersenne primes in elliptic
curve cryptography [1] specifies that |k| < 232.

More recently, pseudo-Mersenne primes have
been used in the construction of optimal
extension fields. These are fields of the form Fp[α]
where p is a pseudo-Mersenne prime of single
word size (e.g., 232 − 5) and α is a root of an irre-
ducible binomial equation xn − b over Fp. Optimal
extension fields are efficient fields for elliptic
curve cryptography because the algebraic oper-
ations can be carried out using single-precision
arithmetic modulo a pseudo-Mersenne prime
(see [2]).

Jerome Solinas
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PSEUDO-NOISE SEQUENCE
(PN-SEQUENCE)

Sequences which obey the three randomness pos-
tulates of Golomb are usually called pseudo-
noise sequences (PN-sequences). The primary ex-
amples of such sequences are the maximum-
length linear sequences, i.e., the m-sequences (see
also Golomb’s randomness postulates).

Tor Helleseth

PSEUDONYMS

In the paper based world, a pseudonym is a fic-
ticious name for an individual. Examples are
pen names, aliases, legalized names, or working
names. In the realm of electronic communication,
a pseudonym (or sometimes just ‘nym’) can be any
identifier that an individual or object uses in a par-
ticular context. The purpose of using pseudonym
is to identify an individual or object in the re-
spective context while not identifying it in other
(unintended) contexts. In effect, one keeps trans-
actions in different contexts separate such that
observers who have access to both contexts can-
not link the transactions of the same individual
or those related to the same object (see anonymity
and unlinkability).

In oppressive political environments, people
use pseudonyms to make public political state-
ments and to hide the identities of their corre-
spondents. In more tolerant environments people
use pseudonyms to avoid embarrassment, harass-
ment, or even loss of their jobs. Examples are
discussing alcoholism, depression, sexual prefer-
ences, etc. Several servers for managing e-mail
pseudonyms are available on the internet [4].
Pseudonyms are a dual use technology with many
very beneficial uses and a lot of serious misuses.
See Froomkin [3].

The following types of pseudonyms can be dis-
tinguished:
Person pseudonym: A pseudonym that is used

over an individual’s life-time or remaining life-
time. Examples are author names, working
names, social security numbers, driver’s licence
numbers, photo ID (to a certain extent), finger-
print, genetic print, etc.

Member (role) pseudonym: A pseudonym as-
sociated to an individual for as long as the in-
dividual acts as a member, employee, volun-
teer, or under a contract. Examples are bank
account numbers, credit card numbers, e-mail



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 18:26

484 Pseudoprime

addresses, PGP public keys (see Pretty Good
Privacy), customer numbers, cell phone num-
bers, member IDs for affiliations in universities,
colleges, or other educational programs, mem-
bership in sports clubs, etc.

Relationship pseudonym: A pseudonym used
by one person A in all communications with an-
other person B. If B is a bank and an insurance
and A is a customer of B and holds an insur-
ance police with B then A might want to use
the same relationship pseudonym with A. For
example, because B can be expected to find out
anyway that the account holder and the insur-
ance police holder are the same person.

Session pseudonym: Usually a more technical
kind of pseudonym because it is used only for
the duration of a communication session. For ex-
ample, a session ID in a TCP/IP protocol stack
that is kept for the duration of one session.

Transaction pseudonym: A technical kind of
pseudonym that is used only for a single transac-
tion. For example, electronic coins can be with-
drawn for one transaction pseudonym and be
spent for another transaction pseudonym.
According to Pfitzmann and Köhntopp [5], these

types of pseudonyms can be related in order of the
increasing anonymity and unlinkability they can
achieve (see Figure 1). Pseudonyms are a helpful—
but usually not sufficient—aid to achieve privacy
including anonymity and unlinkability. They were
introduced as a technical concept in cryptography
by David Chaum [1,2]. Privacy is about protecting
identities of indivduals against third party inter-
ests. An individual acts anonymously if it leaves
no information that traces back to the individual’s
identity, i.e., the registered name, address, photo
ID, e-mail address, etc. One way to act anony-
mously is to use a pseudonym that is chosen in-
dependently of the individual’s identity, prefer-
ably a randomly chosen number. More privacy
can be achieved by using different pseudonyms
in different contexts, thereby achieving unlinka-
bility between transactions in different contexts.
For example, a patient could use a medical ID and

person pseudonym

member pseudonym relationship pseudonym

session pseudonym

transaction pseudonym

direction of
increasing

unlinkability
and anonymity

Fig. 1. Types of pseudonyms

a health insurance ID that have no commonali-
ties, like an encoded birth date. Then if a treating
physician and an employee of the health insurance
collaborate without both having “more identifying
material” about the patient, they could hardly fig-
ure out that they are actually talking about the
same patient. As Rao and Rohatgi [6] have em-
phasized, however, the use of pseudonyms alone is
hardly ever enough to achieve effective anonymity
or unlinkability, because in real life transactions
carry a lot of context information that can be an-
alyzed and linked to the context information of
other transactions.

In cryptography, pseudonyms have impor-
tant applications in untraceable electronic cash,
unlinkable credentials, electronic voting schemes,
secure auction systems, and blind signatures.

Gerrit Bleumer
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“Anonymity, unobservability, and pseudonymity—
a proposal for terminology.” Designing Privacy En-
hancing Technologies, Lecture in Computer Sci-
ence, vol. 2009, ed. H. Frederrath. Springer-Verlag,
Berlin, 1–9.

[6] Rao, Josyula R., Pankaj Rohatgi (2000). “Can
pseudonyms really guarantee privacy?” 9th Usenix
Symposium, August.

PSEUDOPRIME

A pseudoprime (without any other qualification)
is a composite that passes the Fermat primal-
ity test. More precisely, n is a pseudoprime
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to the base a (noted as a-PSP) if n is composite
and an−1 ≡ mod n (see modular arithmetic). Sim-
ilarly, a strong pseudoprime (SPSP) is a composite
that passes the Miller–Rabin probabilistic prim-
ality test (also known as the strong primality test).
Other qualifications for the term pseudoprime ex-
ist for composites that are declared to be prime by
other probabilistic primality tests. The term prob-
able prime is related but is not restricted to com-
posite numbers.

Anton Stiglic

PSEUDORANDOM
FUNCTION

A pseudorandom function is a deterministic func-
tion of a key and an input that is indistinguishable
from a truly random function of the input. More
precisely, let s be a security parameter, let K be a
key of length s bits, and let f (K, x) be a function
on keys K and inputs x. Then f is a pseuodorandom
function if:
� f can be computed in polynomial time in s; and
� if K is random, then f cannot be distin-

guished from a random function in polynomial
time.
In this context, “distinguishability” refers to the

ability of an algorithm to tell whether a function
is not truly random. Let g be a truly random func-
tion of x with the same output length as f. Suppose
a polynomial-time algorithm A is given access to a
“oracle” which, on input x, either consistently re-
turns f (K, x), or consistently returns g(x). After
some (polynomial) number of accesses to the ora-
cle, the algorithm outputs a guess, b, as to whether
the oracle is f or g. Let ε be A’s advantage, i.e., the
difference in probabilities

ε = ∣∣Pr[b = “ f ” | oracle is f ]
− Pr[b = “ f ” | oracle is g]

∣∣ .
If the inverse 1/ε grows faster than any polyno-
mial in s for all polynomial-time algorithms A,
then the function f is said to be indistinguishable
from a random function.

Pseudorandomness is a stronger requirement
than being a one-way function, since a one-way
function only needs to be hard to invert; a pseu-
dorandom function also needs to be hard to guess
when the key is unknown.

Pseudorandom functions have many applica-
tions in cryptography, as they provide a way to
turn an input into a value that is effectively

random. This is helpful for computing MAC algo-
rithms, deriving keys from other keys, and more
generally for replacing random number genera-
tors in an application with a deterministic func-
tion, when a secret key is available. Goldreich,
Goldwasser and Micali [1] showed how to con-
struct a pseudorandom function from a pseudo-
random number generator; in practice, a pseudo-
random function is often constructed from a hash
function, as, for example, in the popular Secure
Sockets Layer (SSL) protocol.

Burt Kaliski
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PSEUDO-RANDOM
NUMBER GENERATOR

Many cryptographic primitives require random
numbers, to be used as keys, challenges, unique
identifiers, etc. However, generating random val-
ues on a computer is in fact a very difficult task.
One possible method for such generation is to use
a pseudo-random numbers generator.

A pseudo-random number generator (PRNG) is
a function that, once initialized with some ran-
dom value (called the seed), outputs a sequence
that appears random, in the sense that an ob-
server who does not know the value of the seed
cannot distinguish the output from that of a (true)
random bit generator.

It is important to note that a PRNG is a deter-
ministic process: put back in the same state, it will
reproduce the same sequence, as will two PRNGs
initialized with the same seed. This property
makes PRNGs suitable for use as stream ciphers.

Pseudo-random generators aimed for crypto-
graphic applications must not be confused with
those used for most other purposes (simulations,
probabilistic algorithms, . . . ). Whereas the latter
must basically have good properties in terms of
the statistical distribution of their output, the for-
mer must also resist against active adversaries
disposing of an extended description of the gener-
ator’s structure, observing a large quantity of out-
put, and using advanced cryptanalysis methods
in order to predict future output. Good statistical
distribution is a necessary, but not sufficient con-
dition for this. Classical PRNGs do not resist such
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attacks, and specific (namely cryptographically se-
cure) PRNGs must be used for security purposes.

An important notion related to random numbers
generation is that of entropy (see information the-
ory), that basically measures the amount of infor-
mation carried by a sequence (or, in other words,
the amount of a priori uncertainty about a se-
quence). Since the sequence generated by a PRNG
is entirely determined by its seed, the entropy can-
not be greater than that of the seed, no matter how
long the generated sequence is. This distinguishes
PRNGs from a (true) random bit generator. How-
ever, provided that the seed is long enough to
make exhaustive search beyond the reach of to-
day’s computing power, this limitation does not
rule out the use of PRNGs in some cryptographic
applications.

PRNG STRUCTURE: A PRNG is typically com-
posed of a seed repository, an output function pro-
ducing some random-looking bits from the seed,
and a feedback function that iteratively trans-
forms the seed.

It can be shown that a PRNG is necessarily pe-
riodic: the sequence it produces will repeat itself
after a (possibly extremely long) period. Care must
be taken that the generator is not used to produce
more data than a full cycle.

PRNG EXAMPLES: This section reviews some
well-known PRNGs constructs, although the list
is in no way deemed to be exhaustive.

Linear Feedback Shift Registers

A very simple and efficient (but insecure) con-
struct is given by linear feedback shift registers
(LFSRs). A LFSR is composed of a register, which
is an array of memory cells, each capable of storing
one binary value, and a feedback function, which
consists in the XOR operator applied to selected
cells of the register (Figure 1). For each new unit
of time, the following operations are performed:
1. The content of the last memory cell is output.
2. The register is processed through the feedback

function. In other words, selected memory cells
are XORed together to produce one bit of feed-
back.

feedback function

output

Fig. 1. Linear feedback shift register

3. Each element of the register advances one posi-
tion, the last element being discarded, and the
first one receiving the result of the feedback
function.
LFSRs can be implemented very efficiently in

hardware, can produce sequences with large peri-
ods and good statistical distribution, and are the-
oretically well understood. However, they are not
cryptographically secure: efficient techniques are
known to reconstruct the content of the register,
and hence the full LFSR’s output, based on the
observation of a short output sequence.

Nevertheless, LFSRs can be used as building
blocks to construct a secure PRNG. Common com-
bination techniques consist in:
– using a nonlinear function to combine the out-

put of several LFSRs;
– using the output of one (or a combination of)

LFSR(s) to clock one (or a combination of) other
LFSR(s).
However, great care has to be taken in the design

of such a combination, which must be carefully
analyzed against known cryptanalytic techniques.
Many designs prove much less secure than they
first appear, as is for example witnessed by the
Geffe generator [2], that succumbs to correlation
attacks [5].

Blum–Blum–Shub Generator

The Blum–Blum–Shub PRNG is a strong genera-
tor, in the sense that it has been proved secure
under the assumption that integer factorization
is intractable [8]. However, its slowness limits its
usefulness to very specific cases.

The generator works by repeatedly squar-
ing a (secretly-initialized) value modulo n (see
modular arithmetic), and outputting its least sig-
nificant bit (Algorithm 1). A modular squaring op-
eration is thus required for each output bit. More
efficient versions, outputting more than one bit per
squaring, have also been proved secure [5].

ALGORITHM 1. Blum–Blum–Shub pseudo-
random generator

Generate two large secret primes p and q, such
that p ≡ 3 mod 4 and q ≡ 3 mod 4.

Compute n = pq
Generate a random integer s such that

gcd(s,n) = 1
x0 ← s2 mod n
for i ← 1 to l do

xi ← x2
i−1 mod n

Output the least significant bit of xi
end for
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Other Constructions

Another frequently used structure for PRNGs
consists in processing a register through a
one-way function, using (all or part off) the result
as output. The register is then updated, either us-
ing a counter method (e.g., increase register by
one), or by copying part of the one-way function’s
output into it.

This is for example the case of the ANSI X9.17
generator (based on the Data Encryption Stan-
dard, or of the FIPS 186 generator (based on the
Data Encryption Standard or the hash function
SHA). A detailed description of these algorithms
can be found in [5].

STATISTICAL TESTS: Although it does not consti-
tute a sufficient condition for a PRNG to be crypto-
graphically secure, passing statistical tests is cer-
tainly necessary, since any statistical defect can be
used by an attacker to gain information about the
PRNG’s future output. Statistical tests thus pro-
vide a first indication on the quality of a generator,
although it has to be completed by a careful anal-
ysis of the generator’s structure and its resistance
to cryptanalysis.

Several test suites have been proposed. Among
the most well-known, we can cite:
� Golomb’s randomness postulates were one of

the first attempts to establish necessary con-
ditions for randomness. Nowadays, they are of
mere historical interest.

� Knuth [3] proposes a set of simple randomness
tests to apply to a sequence.

� FIPS 140-1 [6] is a standard test series defined
by the U.S. National Institute of Standards and
Technology (NIST), inspired by Knuth’s basic
tests. This standard was superseded by FIPS
140-2.

� FIPS 140-2 [7] (see FIPS 140) defines a more
comprehensive battery of tests, including Mau-
rer’s Universal Statistical test.

� Maurer’s Universal Statistical test [4] is a
test capable of detecting a large class of defects.
In addition, this test provides an estimate of the
entropy of the source. A better estimate can be
obtained using a modified version of the test [1].

PRNG INITIALIZATION: Since the output is en-
tirely determined by the value of the seed, it
is very important for the seed to be initialized
to some truly random, unpredictable value (see
random bit generator). A PRNG can be viewed as
a tool expanding a small random value into a much
longer sequence.

This random initialization can be performed
only once (e.g. during on-factory personaliza-
tion phase). Other applications require occasional
PRNG re-seeding.

Generating this truly random seed is usually
outside the scope of PRNG definitions that rarely
address the issue. However, its importance must
not be underestimated.

François Koeune
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PUBLIC KEY
CRYPTOGRAPHY

Public key cryptography is a method to encrypt
messages using a nonsecret key. The term pub-
lic key cryptography also includes various others
cryptographic methods using a nonsecret key, such
as authentication, digital signature schemes, and
key agreement. Here we describe public key en-
cryption schemes.
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Conventional cryptography, also known as
symmetric cryptosystem, uses a secret key to en-
crypt messages; the same key is required to de-
crypt these messages. In a public key encryption
scheme however, knowledge of the key used to en-
crypt messages (which we call encryption key in
the sequel) does not allow one to derive the key
to decrypt the messages. Therefore an encryption
key can be made public without endangering the
security of the decryption key. A pair of encryption
key and decryption key is generated for each re-
ceiver, and all the encryption keys are published.
When sending a secret message to a receiver, the
sender picks the public encryption key of the re-
ceiver and encrypts the message with it. The en-
crypted message can be recovered by using the cor-
responding secret decryption key, which only the
intended receiver has.

Public key cryptography solves the key
agreement problem and key management prob-
lem of conventional, symmetric, key cryptosys-
tems, where it is the concern of a sender to agree
with the receiver on a secret encryption key.
Moreover, they both have to store these keys
secretly while the number of the keys grows
linearly in the number of possible receivers. The
disadvantage of public key cryptography is in its
processing speed. Therefore it is often used to
for key agreement purposes only. A secret key
that is used to encrypt a message via symmetric
key cryptography is encrypted using public key
cryptography and is attached to the encrypted
message. The receiver first decrypts the secret key
using his own decryption key and then decrypts
the message using the recovered secret key.

The design of a public key cryptosystem can be
based on a trapdoor one-way function. Some ex-
amples of public key encryption schemes are: RSA
public key encryption, ElGamal public key encry-
ption, Rabin cryptosystem, Goldwasser–Micali
encryption scheme, Blum–Goldwasser public-key
encryption scheme, and Paillier encryption and
signature schemes.

A public key encryption scheme is comprised
of three algorithms: a key generation algorithm,
an encryption algorithm and a decryption algo-
rithm. The security of a public key encryption
scheme is evaluated through security measures
called semantic security. If an encryption scheme
is semantically secure, then an adversary, who is
given an encryption of either one of the two plain-
texts, cannot guess which one is encrypted with a
probability more than 1/2.

In practice, it is important that the published
public key is indeed the key of the intended re-
ceiver, i.e., that the key is certified (see certificate).

Otherwise, a sender could be encrypting the classi-
fied message using the wrong key, and the message
could be obtained by the adversary. In order to cer-
tify keys, the notion of a public key infrastructure
has been developed.

Kazue Sako

PUBLIC KEY
INFRASTRUCTURE

This term, or PKI, is used as a label for any se-
curity architecture where end-users have digital
signature capability and possibly encryption as
well based on public key cryptography. It is a gen-
eral misconception that such solutions always re-
quire the use of certificates. Certificates are only
required if end-users have to communicate with
more than a few entities, e.g., with each other. Ex-
amples of PKI solutions without certificates are
electronic banking solutions where customers may
generate signatures but only communicate with
the bank. But is possible to build complex PKIs as
well without certificates, where instead an online
service can provide the status of a public key at
any point in time (so-called instant certificates).
In more conventional solutions, the infrastructure
is based on some general standard, such as X.509
or EMV, where each user has a certificate on each
of his public key(s). If certificates are required, it
is often necessary to provide means for verifying
whether a certificate—which on the face of it ap-
pears to be valid—has not been revoked for some
reason. This is handled by means of revocation
lists or on-line inquiry protocols regarding the sta-
tus of a certificate (such as OCSP, the On-line Cer-
tificate Status Protocol).

Peter Landrock

PUBLIC KEY PROXY
ENCRYPTION

In a public key proxy encryption scheme as intro-
duced by Blaze and Strauss [1, 2] there are a col-
lection of recipients who generate their public key
pairs of public encryption keys and private decryp-
tion keys (see public key cryptography) and one
or more proxy principals who are provided with
proxy keys. A proxy key πA→B with respect to recip-
ients A and B allows a proxy principal to convert
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ciphertext that can be decrypted by A into cipher-
text that can be decrypted by B giving the same
plain text. The conversion of ciphertexts works
such that the proxy principal learns no informa-
tion about the underlying plaintext, which implies
that the proxy principal does not learn enough in-
formation about the deciphering keys of A and B.

Note that proxy encryption is different from
passing the decryption key of A and the encryption
key of B to the proxy principal, such that the proxy
principal first decrypts an incoming message us-
ing the decryption key of A and then re-encrypts
the plain text to B. In this case, the proxy prin-
cipal would learn all plain texts underlying the
cipher texts being transformed. In addition, proxy
encryption is usually a faster operation than first
decrypting and afterwards re-encrypting again.

Compared to a conventional public key encryp-
tion scheme, the confidentiality requirement of a
public key proxy encryption scheme holds not only
against eavesdroppers and unintended recipients,
but also against distrusted proxy principals. The
main security requirement on public key proxy en-
cryption schemes is:
Confidentiality: An attacker who has access to

public encryption keys, proxy keys, and cipher
texts, cannot figure information about the corre-
sponding plain texts, which implies that he can-
not recover information about the corresponding
decryption keys.
Historically, the term proxy cryptosystem was in-

troduced by Mambo and Okamoto [4], but their
trust model is the same as that of conventional
public key encryption. They only consider senders
and recipients, but not separate proxy principals
that are distrusted by the recipients A, B, . . ..

Public key proxy encryption schemes have been
developed by Blaze and Strauss [1, 2] into a sep-
arate class of cryptographic schemes. They have
categorized public key proxy encryption schemes
as follows.
Trust model between recipients: Clearly, if Al-

ice empowers a proxy to divert her cipher texts
to another recipient Bob, then she trusts Bob.
But Bob does not need to trust Alice. More pre-
cisely a public key proxy encryption scheme is
called symmetric if Alice can figure Bob’s private
decryption key if she learns the proxy key πA→B.
Otherwise, it is called asymmetric.

Input to proxy key computation: An asymmet-
ric public key proxy encryption scheme is called
active if it is feasible to compute a proxy key
πA→B only if Bob provides his private decryp-
tion key as an input. If it is feasible to com-
pute a proxy key πA→B without the input of
Bob’s private decryption key (but only his pub-

lic encryption key), then the scheme is called
passive.

Anonymity of proxy keys: Public key proxy en-
cryption schemes can be categorized according
to how much information they reveal about the
public encryption keys of the two recipients who
introduced the proxy key. A public key proxy en-
cryption scheme is called transparent if a proxy
key πA→B reveals the public keys of Alice and
Bob. A scheme is called translucent if an at-
tacker who guesses the public encryption keys of
Alice and Bob can verify his guess by using the
proxy key πA→B. A scheme is opaque, if a proxy
key πA→B reveals no information about the pub-
lic encryption keys of Alice and Bob.
To illustrate the concept of proxy encryption, we

consider a simple proxy encryption scheme pro-
posed by Blaze and Strauss, which is based on a
variant of the ElGamal encryption scheme. Con-
sider p a large safe prime, q a large prime factor of
p− 1, and g be an element of the group ZZ ∗

p such
that g is of order q, i.e., q is the smallest positive in-
teger such that gq = 1 (mod p) (see modular arith-
metic). Alice and Bob be two recipients with re-
spective public key pairs (xi, yi) (i ∈ {A, B}), where
the decryption keys xi are chosen independently
and uniformly at random from ZZ ∗

q and the encryp-
tion keys are computed such that yi = gxi (mod p).
Alice can encrypt a message m for Bob by comput-
ing the ciphertext c = (c1, c2) = (mgk, yk

B) consist-
ing of two components, and Bob can decrypt the
ciphertext by computing m′ = c1/ca−1

2 (mod p).
In order to install a proxy between them, Alice

and Bob compute the proxy key πA→B = xB/xA
(mod q). If neither Alice nor Bob trusts the other
one, they could use a two party computation pro-
tocol (see multiparty computation) whose output
is given to the proxy. This way, neither Alice nor
Bob learns the private decryption key of the other
party and the proxy learns none of the private de-
cryption keys.

If cA = (mgk, yk
A) is an encrypted message m to

Alice, then the proxy can transform it into an en-
crypted message m to Bob as follows:

cB = (
cA1, cπA→B

A2

) = (mgk, gxAkxB/xA) = (mgk, yk
B).

This scheme is shown by Blaze and Strauss [1]
to achieve confidentiality in the above sense un-
der the computational Diffie–Hellman assump-
tion and the discrete logarithm problem. It is
symmetric because Alice can easily figure Bob’s
private decryption key if she learns the proxy
key πA→B = xB/xA (mod q) because she knows her
own private decryption key xA. It is active because
computing the proxy key requires Bob’s private
decryption key xB as input.
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No asymmetric public key proxy encryption
scheme has been proposed to date.

Blaze and Strauss [1] propose proxy encryption
as a useful mechanism in restricted computing en-
vironments such as smart cards. Girard proposes
to use proxy encryption in the personalization pro-
cess of smart cards [3]. Dually related to the notion
of public key proxy encryption is that of public key
proxy signatures.

Gerrit Bleumer
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PUBLIC KEY PROXY
SIGNATURES

In a public key proxy signature scheme as intro-
duced by Blaze and Strauss [1, 2] there are a col-
lection of signers who generate their public key
pairs of public verification keys and private sign-
ing keys (see public key cryptography) and one or
more proxy principals who are provided with proxy
keys. A proxy key πA→B with respect to signers A
and B allows a proxy principal to convert a dig-
ital signature valid with respect to A’s verifying
key into a signature for the same message that is
valid with respect to B’s verifying key. The con-
version of signatures works such that the proxy
principal learns no information about the signing
keys of either A or B.

Compared to a conventional public key signa-
ture scheme, the unforgeability requirement of a
public key proxy signature scheme holds not only
for general active attackers without access to the
signers private key, but also for distrusted proxy

principals. The main security requirement on
public key proxy signature schemes is:
Unforgeability: An attacker who has access to

public verifying keys, proxy Keys, and pairs of
messages with valid signatures (or can adap-
tively choose the messages for which he gets
valid signatures) cannot produce signatures for
any new messages, which implies that he can-
not gather information about the corresponding
private signing keys.
Historically, the term proxy signatures was in-

troduced by Mambo and Okamoto [3], but their
trust model is the same as that of conventional
digital signatures. They only consider signers and
verifiers, but not separate proxy principals that
are distrusted by the signers A, B, . . . .

Proxy signature schemes have been developed
by Blaze and Strauss [1, 2] into a separate class
of cryptographic schemes. They have categorized
proxy signature schemes as follows.
Trust model between recipients: Clearly, if

Bob empowers a proxy to transform Alice’s sig-
natures into Bob’s own signatures, then he
clearly trusts Alice. But Alice does not need
to trust Bob. More precisely a proxy signature
scheme is called symmetric if Bob can figure out
Alice’s private signing key if he learns the proxy
key πA→B. Otherwise, it is called asymmetric.

Input to proxy key computation: An asymmet-
ric proxy signature scheme is called active if it
is feasible to compute a proxy key πA→B only
if Alice provides her private signing key as an
input. If it is feasible to compute a proxy key
πA→B without the input of Alice’s private signing
key (but only her public verifying key), then the
scheme is called passive.

Anonymity of proxy keys: Proxy signature
schemes can be categorized according to how
much information they reveal about the public
verifying keys of the two recipients who intro-
duced the proxy key. A proxy signature scheme
is called transparent if a proxy key πA→B reveals
the public verifying keys of Alice and Bob. A
scheme is called translucent if an attacker who
guesses the public verifying keys of Alice and
Bob can verify his guess by using the proxy key
πA→B. A scheme is opaque, if a proxy key πA→B
reveals no information about the public verify-
ing keys of Alice and Bob.
To illustrate the concept of proxy signatures,

we consider a simple proxy signature scheme,
which is based on a variant of the ElGamal signa-
ture scheme. Consider p a large safe prime num-
ber, q a large prime factor of p− 1, and g be an
element of the group ZZ ∗

p such that g is of or-
der q, i.e., q is the smallest positive integer such
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that gq = 1 (mod p). Let Alice and Bob be two
signers with respective public key pairs (xi, yi)
(i ∈ {A, B}), where the private signing keys xi are
chosen independently and uniformly at random
from ZZ ∗

q and the public verification keys are com-
puted such that yi = gxi (mod p). h(m) denotes a
collision resistant hash function that takes any
binary string m ∈ {0, 1}+ as input and returns
a value in ZZq . Alice can sign a message m by
choosing some k ∈R ZZq and computing the sig-
nature σ = (r, s) = (gk, xAr + kh(m)) consisting of
two components, and anyone with access to Alice’s
verifying key yA can verify that σ is a valid signa-
ture for m by checking that gs = yr

Arh(m) (mod p).
In order to install a proxy between them, Alice

and Bob compute the proxy key πA→B = xB − xA
(mod q). If neither Alice nor Bob trusts the other
one, they could use a two party computation pro-
tocol whose output is given to the proxy. This way,
neither Alice nor Bob learns the private signing
key of the other party and the proxy learns none
of the private signing keys.

If σA = (gk, xAr + kh(m)) is a signature by Alice
for message m, then the proxy can transform
it into a signature σB by Bob for message m as
follows:

σB = (σA1, σA2 + πA→Br )
= (gk, xAr + kh(m) + (xB − xA)r )
= (gk, xBr + kh(m)).

This scheme is symmetric because Bob can eas-
ily figure Alice’s private signing key xA if he learns
the proxy key πA→B = xB − xA (mod q) because he
knows his own private signing key xB. It is active
because computing the proxy key requires Alice’s
private signing key xA as input.

No asymmetric proxy signature scheme has
been proposed to date.

Dually related to the notion of proxy signatures
is that of public key proxy encryption.

Gerrit Bleumer
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QUADRATIC RESIDUE

Let n be an odd, positive integer and let x be an
integer that is relatively prime to n (see modular
arithmetic). The integer x is a quadratic residue
modulo n if the equation

x ≡ y2 (mod) n

has an integer solution y. In other words, the in-
teger x is a square modulo n. The integer x is a
quadratic non-residue otherwise.

If n is an odd prime number, then exactly half of
all integers x relatively prime to n are quadratic
residues. If n is the product of two distinct odd
primes p and q, then the fraction is one-quarter.

See also Jacobi symbol, Legendre symbol, and
Quadratic Residuosity Problem.

Burt Kaliski

QUADRATIC RESIDUOSITY
PROBLEM

Let n be the product of two distinct odd prime num-
bers p, q, and let x be an integer such that the
Jacobi symbol (x/n) = +1. The Quadratic Residu-
osity Problem (QRP) is to determine, given x and
n, whether x is a quadratic residue modulo n (see
modular arithmetic). (All quadratic residues have
Jacobi symbol +1, but not necessarily the reverse.)
This problem is easy to solve given the factors p
and q, but is believed to be difficult given only x
and n. However, it is not known whether the prob-
lem is equivalent to factoring the modulus n.

The QRP is the basis for several cryptosys-
tems, including the Goldwasser–Micali encryption
scheme and Cocks’ identity-based encryption
scheme [1] (see identity-based cryptosystems).

Burt Kaliski
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QUADRATIC SIEVE

INTRODUCTION: The Quadratic Sieve (QS) and
its variants are the first of the modern integer
factoring algorithms to be able to routinely factor
abitrary integers in the 60+ digit range on just
a single PC. They are the successor to the ear-
lier Continued Fraction Method of Morrison and
Brillhart [4] (see integer factoring) and the pre-
decessor to the Number Field Sieve [2]. All three
of these algorithms share features in common.
They are based upon the observation that if A2 ≡
B2 mod N and A �≡ ±B mod N (see modular arith-
metic), then GCD (A+ B, N) and GCD (A− B, N)
are proper factors of N. The Quadratic Sieve will
factor an arbitrary integer N, in heuristic time
LN[1/2, 1] = exp((1 + o(1)) (log N)1/2 (log log N)1/2)
(see L-notation). The entries integer factoring and
Number Field Sieve discuss the history of these
algorithms and we do not repeat that discussion
here. For those interested in implementing QS,
reference [7] gives all of the necessary details. The
version of QS that is detailed here is known as
the Multiple Polynomial Quadratic Sieve (MPQS).
Other variants are known.

KEY IDEAS: The Quadratic Sieve, like other
sieving algorithms (and the Elliptic Curve
Method for factoring), is based on the idea of
smooth numbers (see also smoothness). A number
x is said to be y—smooth if all of its prime factors
are less than y. QS generates many relations of
the form

S2 = r mod N,

where the pair (S, r ) is generated from a quadratic
polynomial in such a way that r is small com-
pared to N. The algorithm then attempts to factor
r using a fixed set of primes called a factor base.
The largest prime in the factor base is then the
smoothness bound. Most such values will not fac-
tor. However, a sieve can be used to attempt to
factor many such rs simultaneously. It is the speed
of sieving on modern computers that makes QS
and NFS very effective methods. The sieve works
by observing that if a prime p divides the value of
a polynomial Q (x), then it divides Q (x + kp) for
all k.

Once a sufficient number of smooth relations
have been found, a subset is then extracted such
that the product of the rs in the subset is a perfect
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square. From that, A2 ≡ B2 mod N is easily com-
puted.

The subset is found by solving a system of equa-
tions mod 2. This is referred to as the linear alge-
bra phase of the algorithm.

GENERATION OF RELATIONS: The algorithm
starts by computing a factor base FB = {pi |( N

pi
)=1,

p prime, i = 1, . . . , F} for some appropriate value
of F and p0 = −1 for the sign. ( N

pi
) is the Legendre

symbol and indicates that pi must be a quadratic
residue of N.

The following is then repeated until enough
smooth relations have been collected:
� Construct a quadratic polynomial Q(x) =

Ax2 + Bx + C and solve Q(x) ≡ 0 mod pi for all
i. There will be two roots r1i and r2i for each
prime.

� Initialize a sieve array to zero over the interval
[−M, M] for an appropriate value of M.

� For all pi ∈ FB add the value �log(pi)� to
the locations r1, r1 ± pi, r1 ± 2pi, . . . and r2, r2 ±
pi, r2 ± 2pi, . . .

� The value of Q(x) will be approximately M
√

N
over [−M, M] so compare each sieve location
with T = log(M) + log(N)/2. Fully factored val-
ues will have their corresponding sieve value
close to T. For these, construct the exact fac-
torization by division. It is also possible (and
usually quicker) to find the factorization by re-
sieving. See the section on optimization for how
to do this. We then have

S2 ≡ Q(x) ≡
F∏

i=0

pαi
i mod N.

The value of S is easily computed from the value
of x because of the special way the coefficients
of Q are computed. Let

−→v = {α1, α2, . . . , αF} mod 2.

Collect a total of at least F + 1 factored relations.
One then finds a set whose product is a square by
finding a linear dependency over GF(2) from the
matrix formed by letting each −→v be a row in the
matrix.

COMPUTATION OF POLYNOMIAL COEFFI-
CIENTS: The coefficients for each polynomial are
derived from a prime number D = 3 mod 4 with
( D

N) = 1. Each prime D yields a different polyno-
mial. This makes parallel implementation of this
algorithm easy. Simply give different sets of Ds to
different machines and let each one run indepen-
dently.

To compute the coefficients, we start by letting
A = D2 with D ≈ (N/2)1/4/

√
M. The value of D is

chosen this way to minimize the maximum value
of Q(x) over the interval [−M, M]. The computa-
tion of B, C and S depends on A and is detailed
in [7].

OPTIMIZATION AND PARAMETER SELECTION:
It is often useful, rather than to factor just N
to factor kN for some small value of k. This can
have the effect of allowing more small quadratic
residues in the factor base. In this case, replace N
with kN in all of the computations outlined above.
It may also be necessary in order for the algorithm
to work. Since N = B2 − 4AC and the right-hand
side is 0 or 1 mod 4, if N ≡ 3 mod 4, then we must
multiply N by k so that kN ≡ 1 mod 4. However,
this requirement may be avoided by taking 2B,
rather than just B as the middle coefficient for Q.
The Knuth–Schroeppel function may be used to
evaluate the effectiveness of different values of k.
See [7] for details.

Rather than demand that r be fully factored over
the factor base, it is very useful to allow a small
number of somewhat larger primes to appear in
the factorization of r. This is known as the large
prime variation. Let

r =
F∏

i=0

pαi
i P1 P2 . . . ,

where the Pi are allowed to be somewhat larger
primes than those in the factor base. The Birth-
day Paradox now becomes useful here. The set of
fully factored rs will now be quite large and we
can expect many of the large primes Pi to appear
more than once. When it does, we may multiply
the corresponding relations together and obtain
P2

i on the right-hand side of each relation. For N
up to about 85 digits, using one large prime is quite
effective. For N greater than about 85 digits, two
primes are effective. Limited experience suggests
that for N above 120 digits, three primes may be
effective. Once the factor base primes are removed,
P1 and P2 may then be split via Pollard’s rho (see
integer factoring) or SQUFOF algorithms (see [6]
for a definition of SQUFOF). Both are effective.

The smallest primes pi take the longest time to
sieve and their logarithms contribute the least to
the accumulated sum at each sieve location. It is
worthwhile to replace the smallest primes (up to
about 30) with small powers of those primes. This
has the effect of greatly speeding sieve time while
losing only a tiny fraction of factored relations.
This is known as the small prime variation.

It is also worthwhile to partition the sieve inter-
val [−M, M] into pieces that will fit in cache while
sieving. This too can greatly improve the speed
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of sieving, and it cuts down on memory require-
ments.

The cost of changing polynomials is dominated
by the cost of computing (2A)−1 mod pi for each pi .
A method for greatly reducing this cost is known
as the self-initializing Quadratic Sieve (SIQS). De-
tails may be found in [5].

A fair bit of time is taken by the reconstruction
of the actual factorization of r. The sieving pro-
cess merely identifies which r are smooth. It does
not produce the factorization. This is readily ac-
complished by trial division of r by the factor base
primes. However, as N, and hence the size of F in-
creases, trial division starts taking a larger and
larger percentage of the run time. This may be al-
leviated by finding the factorizations by resieving.
Now, however, instead of accumulating log pi , one
simply stores the pi that hit the identified smooth
locations. It is now a simple matter to produce the
actual factorization.

Suggested values for the parameters M and F as
well as additional coding and computational con-
siderations may be found in [7].

Robert D. Silverman
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QUANTUM
CRYPTOGRAPHY

QUANTUM CRYPTOGRAPHY [A]: Quantum
Cryptography was born in the early 1970s when

Stephen Wiesner wrote “Conjugate Coding,” which
unfortunately took more than 10 years to see the
light of print [50]. In the mean time, Charles H.
Bennett (who knew of Wiesner’s idea) and Gilles
Brassard picked up the subject and brought it to
fruition in a series of papers that culminated with
the demonstration of an experimental prototype
that established the technological feasibility of
the concept [5]. Quantum cryptographic systems
take advantage of Heisenberg’s uncertainty rela-
tions, according to which measuring a quantum
system, in general, disturbs it and yields incom-
plete information about its state before the mea-
surement. Eavesdropping on a quantum commu-
nication channel therefore causes an unavoidable
disturbance, alerting the legitimate users. This
yields a cryptographic system for the distribution
of a secret random key between two parties ini-
tially sharing no secret information (however they
must be able to authenticate messages) that is se-
cure against an eavesdropper having at her dis-
posal unlimited computing power. Once this se-
cret key is established, it can be used together
with classical cryptographic techniques such as
the Vernam cipher (one-time pad) to allow the par-
ties to communicate meaningful information in
absolute secrecy.

Quantum cryptography is best known for key
distribution [7]. A short summary of this so-
called BB84 protocol is provided in the Section
“Qnantum Key Distribution.” A remarkable surge
of interest in the international scientific and
industrial communities has propelled quantum
cryptography into mainstream computer science
and physics. Furthermore, quantum cryptogra-
phy is becoming increasingly practical at a fast
pace. The first quantum key distribution proto-
type, built in 1989, worked over a distance of 32 cm
[5], [11]. Since then, many additional experimen-
tal demonstrations have been set up, covering dis-
tances of tens of kilometers. Consult [46] or [42]
for popular accounts of the state of the art in ex-
perimental quantum cryptography.

The Various Uses of Quantum Physics
for Cryptography

In addition to key distribution, quantum tech-
niques may also assist in the achievement of more
subtle cryptographic goals, important in the post-
cold war world, such as protecting private informa-
tion while it is being used to reach public decisions.
Such techniques, pioneered by Crépeau [10], [15],
allow two people to compute an agreed-upon func-
tion f (x, y) on private inputs x and y when one
person knows x, the other knows y, and neither is
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willing to disclose anything about his private input
to the other, except for what follows logically from
one’s private input and the function’s output. The
classic example of such discreet decision making
is the “dating problem,” in which two people seek
a way of making a date if and only if each likes
the other, without disclosing any further informa-
tion. For example, if Alice likes Bob but Bob does
not like Alice, the date should be called off without
Bob finding out that Alice likes him. On the other
hand, it is logically unavoidable for Alice to learn
that Bob does not like her, because if he did the
date would be on.

Indeed, two applications of quantum physics to
cryptography were discovered well before quan-
tum key distribution: quantum bank notes that
are impossible to counterfeit and quantum mul-
tiplexing that allows one party to send two mes-
sages to another party in a way that the receiver
can obtain either message at his choice, but read-
ing one destroys the other irreversibly [50]. (The
notion of multiplexing was reinvented 10 years
later by Michael Rabin in the context of classical
cryptography under the name of oblivious transfer
[43], [28].) Unfortunately, even its author, Stephen
Wiesner, knew from the start that the quantum
multiplexing protocol could be defeated with arbi-
trary measurements performed by the receiver of
the strings. Thus, a more elaborate quantum obliv-
ious transfer protocol was designed subsequently
[10] under the assumption of the existence of a bit
commitment scheme [19], a result unlikely to be
possible classically as argued by Impagliazzo and
Rudich [34]. Another quantum cryptographic task
that has been studied extensively is indeed bit
commitment [15]. Unfortunately it turned out that
early claims of security of certain quantum proto-
cols for this task were after all insecure as showed
by Mayers [39] and independently by Lo and Chau
[37]. This no-go theorem was later extended to
any Quantum Bit Commitment scheme consistent
with quantum physics [40], [38].

On a closely related topic, various Quantum
Coin Tossing protocols have been also introduced
[7] as well as a lower bound of 1/

√
2 on the bias

of such a protocol in a very general quantum me-
chanical framework [1].

Quantum Key Distribution

The purpose of quantum key distribution is to en-
able two honest parties, Alice and Bob, to agree on
a random cryptographic key in a situation where
eavesdropping is possible. By transmitting one of
four possible nonorthogonal quantum states, Alice

may send to Bob a random bit-stream that she
knows exactly and of which Bob will randomly se-
lect a constant fraction. These four possible states
may be the 0◦, 45◦, 90◦, and 135◦ polarizations of a
photon. According to quantum mechanics, orthog-
onally polarized photons ((0◦, 90◦) or (45◦, 135◦))
are perfectly distinguishable whereas nonorthog-
onal photons ((0◦, 45◦), (45◦, 90◦), etc.) are not.
When Alice sends Bob a random state from these
four, he may choose to measure whether it is
(0◦, 90◦) or (45◦, 135◦). If he makes the correct mea-
surement then he detects perfectly the original
state. If he makes the wrong measurement then
he detects a random state among the two he was
trying to distinguish. When Alice later tells him
which was the correct measurement, he keeps the
correctly measured states and discards the others.
Thus, in a perfect world, Bob would receive 50% of
Alice’s photons in their exact original state and
discard the other 50% of the photons. If we assign
binary value 0 to 0◦ and 45◦ and value 1 to 90◦ and
135◦, then their agreed bit-stream is obtained by
the correctly measured 50% of the photons.

However, the world is not perfect. Therefore, a
fraction of the correctly measured photons will
be detected incorrectly. Also, if an eavesdropper
(Eve) tries to measure Alice’s photons before they
reach Bob, errors will be induced by the fact that
she is measuring information about the photons’
polarizations. Moreover, these two situations are
indistinguishable from each other: natural noise
or induced noise looks the same. (Indeed, part
of the “natural” noise is produced by “nature”
eavesdropping on Alice and Bob!) The beauty of
quantum cryptography is that an estimate on the
noise level leads to an estimate of the informa-
tion obtained by Eve. Consequently, a three-phase
classical protocol allows Alice and Bob to extract
an agreed upon, smaller secret cryptographic key
from their noisy, partly eavesdropped bit-stream.
These three phases are called “error estimation,”
“information reconciliation,” and “privacy amplifi-
cation.”

Error Estimation. Error estimation is performed
by having one of Alice or Bob pick at random
a certain number t of bits previously transmit-
ted according to the correct measurement and
announce them to the other party. The latter
compares these bits with his/her own copy and an-
nounces the number of errors e. For large enough
samples, the ratio e/t should be a reasonable esti-
mate of the fraction of errors left in the undisclosed
bits.
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Information Reconciliation. Although interactive
error correction such as [16] was first encouraged
in [5], Crépeau pointed out that traditional error-
correcting codes may be used here as well [10]. In
both cases, this process will disclose some extra in-
formation about the remaining (corrected) bits to
any potential eavesdropper. This extra informa-
tion must be taken into account in the last privacy
amplification phase.

Privacy Amplification. Assume an eavesdropper is
left with only � bits of Rényi (collision) entropy
about the bit-stream W of size n resulting from
the information reconciliation phase. If Alice and
Bob can estimate � from error estimation and er-
ror correction, they may produce a new smaller
bit-stream K of size nearly � from W. Let H be a
uniformly selected hash function from a Strongly
Universal Set [49] mapping n bits to � − s bits.
Then we obtain a tight bound on the uncertainty
H(H(W) | H, E) ≤ 2−s (see information theory for
definitions) where E is the eavesdropping informa-
tion (including error correction). This means that
if one of Alice or Bob picks a random hash func-
tion h and announces it publicly to the other, they
are able to use it to replace their longer string W
by K = h(W) that is almost perfectly secret to the
eavesdropper [9] with nearly probability 1.

Eavesdropping. The key distribution protocol de-
scribed above has been proven secure regardless of
the eavesdropper’s strategy and computing power.
The first proof of this theorem is due to Mayers
[41]. However, the very technical nature of that
proof encouraged many alternate proofs to be de-
veloped such as those of Biham, et al. [14], Shor
and Preskill [45], Gottesman and Lo [31], etc. A
more powerful security proof in the universal com-
posability framework was recently demonstrated
by Ben-Or, et al. [13].

Alternative Quantum Key Distribution
Protocols and Implementations

The original quantum key distribution protocol
uses four different polarization states of single
photons as carrier of quantum information [7], but
other approaches have been put forward. Early
variations were to use only two nonorthogonal
states rather than four [4], and to use phase mod-
ulation rather than polarization [26], [48]. A more
fundamental variation, due to Ekert [25], was to
make use of Einstein–Podolsky–Rosen entangled
pairs [24], which allows the key to remain pro-

tected by quantum mechanics even in storage,
rather than merely in transit. More interestingly,
Ekert’s scheme can benefit from powerful quan-
tum techniques that were discovered only years
later, such as entanglement distillation [12], [23].
Prototypes of entanglement-based quantum cryp-
tography, working over kilometers of fiber, came
soon after the theoretical invention [26] as well as
much more recently [27].

The past decade has seen an explosion in experi-
mental demonstrations of quantum cryptography,
with distances ever increasing, sometimes at the
expense of giving up the Holy Grail of uncondi-
tional security. We can mention only a few exam-
ples here. A plug-and-play device built in Switzer-
land was tested successfully using 67 km of optical
fiber laid out between Geneva and Lausanne [47].
More recent experiments achieve even further dis-
tances such as 150 km of optical fiber [35]. The
notion of quantum repeaters has been discussed
in order to achieve even greater distances [18].
Free-space prototypes have shown the possibility
of line-of-sight quantum cryptography over dis-
tances of tens of kilometers [33], [36], making it
legitimate to dream of a quantum-cryptographic
satellite-based global network [44]. A thorough
survey of quantum cryptography, with an empha-
sis on technological issues, can be found in [29]. A
living roadmap of the work ahead can be obtained
in [6].

Finally, we point out that quantum key distribu-
tion is now available as a commercial product. In-
formation about quantum-cryptographic products
can be found at the Web sites of the Swiss com-
pany id Quantique (www.idquantique.com) and
the American corporation MagiQ Technologies
(magiqtech.com).

Cryptography on Quantum Data

The last component of quantum cryptography is
the cryptography on quantum data where cryp-
tographic tools are developed for information
imbedded in quantum systems. A first example
is known as the one-time quantum pad where the
sender Alice and receiver Bob share a priori a pair
of maximally entangled particles and use them to
teleport [8] an arbitrary qubit (quantum bit), for
example, from Alice to Bob. The only public trans-
mission of this scheme is a pair of classical random
bits from the sender to receiver, allowing him to
reconstruct the original state she wanted to com-
municate.

A second example is the Quantum Vernam
Cipher [2] where a classical key of four possible
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values is used by Alice who applies one of four
unitary (Pauli) operators to an arbitrary system
of a single qubit that may then be transmitted
to Bob. Bob decrypts the state by applying the
inverse unitary operator. The quantum descrip-
tion of the state transmitted is the same regard-
less of the original state to be transferred as
long as the key is uniformly distributed and a
secret to an eavesdropper. An interesting differ-
ence between the quantum and classical scenar-
ios is that two key bits are required to encrypt
a general qubit in the quantum setting [2], but
this may be reduced to nearly one key bit to en-
crypt a qubit almost perfectly if we tolerate arbi-
trarily small errors, as long as it is not entangled
with Eve [32]. It was also demonstrated recently
how the secret key used for Quantum Vernam Ci-
pher may be re-used [22] when the plaintexts are
classical.

Quantum error-correcting codes have led to
the notion of Quantum Message Authentication
[3] that allows Alice to send Bob a message in
such a way that any tampering of the transmit-
ted message will either result in detection of the
tampering or actual correction of the tampering
back to the original message. Surprisingly, quan-
tum authentication requires quantum encryption,
whereas classically these two tasks are fairly in-
dependent of each other. A very interesting notion
of Uncloneable Encryption, linking Quantum En-
cryption and Quantum Authentication, was later
introduced by Gottesman [30].

We conclude with a short list of recent
quantum cryptographic applications: Quantum
Secret Sharing [17] where the secret to be
shared is a quantum state, Verifiable Quantum
Secret Sharing [20] offers the extra guarantee
that if enough honest people are involved the se-
cret may be uniquely reconstructed, Multi-Party
Quantum Computation [20] allows multiparty
evaluation of a quantum circuit in which each
party secretly provides some of the input quantum
states, and Quantum Zero-Knowledge [21] that
generalizes the classical notion although “rewind-
ing” a quantum computer is impossible.

Gilles Brassard
Claude Crépeau
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[3] Barnum, H., C. Crépeau, D. Gottesman, A. Smith,
and A. Tapp (2002). “Authentication of quantum
messages.” In FOCS’02: Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Sci-
ence, 449–458.

[4] Bennett, C.H. (1992). “Quantum cryptography us-
ing any two nonorthogonal states.” Phys. Rev. Lett.,
68, 3121–3124.

[5] Bennett, C.H., F. Bessette, G. Brassard, L. Sal-
vail, and J. Smolin (1992). “Experimental quantum
cryptography.” J. Cryptol., 5 (1), 3–28.

[6] Bennett, C.H., D. Bethune, G. Brassard, N.
Donnangelo, A.K. Ekert, C. Elliott, J. Franson, C.
Fuchs, M. Goodman, R. Hughes (Chair), P. Kwiat,
A. Migdall, S.-W. Nam, J. Nordholt, J. Preskill, and
J. Rarity (2004). “A quantum information science
and technology roadmap, Part 2: Quantum cryp-
tography, Version 1.0.” Advanced Research and
Development Activity (ARDA), July 2004. Available
at http://qist.lanl.gov/qcrypt map.shtml.

[7] Bennett, C.H., and G. Brassard (1984). “Quan-
tum cryptography: Public key distribution and
coin tossing.” In Proceedings of IEEE International
Conference on Computers, Systems and Signal Pro-
cessing, Bangalore, India, 175–179.

[8] Bennett, C.H., G. Brassard, C. Crépeau, R. Jozsa,
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RABIN CRYPTOSYSTEM

The smaller the public exponent in the RSA public
key encryption or RSA digital signature schemes,
the more efficient the encryption process is.
Michael O. Rabin thus suggested to use e = 2 into
an encryption scheme [12]. But things are not as
simple as for RSA.

MODULAR SQUARING: Thanks to the Euler’s the-
orem, one can easily extract modular eth roots,
until e is co-prime to ϕ(n) (see Euler’s Totient
function) and the latter value is known: d = e−l

mod ϕ(n) helps to get it. Unfortunately, e = 2 is
not co-prime to ϕ(n), moreover squaring is not
a bijection in the group Z

∗
n, for n = pq (see also

modular arithmetic), and even in Z
∗
p for a prime

number p: if x is a square root of y in Z
∗
p, then −x is

also a square root of y. More formally, the function
f : x �→ x2 mod p from Z

∗
p into Z

∗
p is a morphism,

whose kernel is {−1, +1}. As a consequence, the
cardinality of the image of f is exactly (p− 1)/2: an
element in Z

∗
p is either a square with two square

roots, or a non-square without any square root (see
also quadratic residue).

Once again, the Chinese Remainder Theorem
helps to know more about squares in Z

∗
n for a com-

posite n = pq. Indeed, y is a square in Z
∗
n if and

only if it is a square in both Z
∗
p and Z

∗
q : there

are only ϕ(n)/4 squares which admit four distinct
square roots: x, −x, z and −z. Since they are dis-
tinct, x + z �= 0 mod n and x − z �= 0 mod n. How-
ever, x2 = z2 = y mod n. Then,

x2 − z2 = (x − z)(x + z) = 0 mod n.

As a consequence, gcd(x − z, n) ∈ {p, q}: the ability
to compute modular square roots helps to factor
the modulus.

In this other direction, Euler’s theorem does not
help any more, since 2 is not co-prime to ϕ(n)
(whatever n is, either a prime or a composite in-
teger). But first, for prime moduli, methods are
known to compute square roots. Particularly, for
Blum primes p, which satisfy p = 3 mod 4 (see
also Blum integer), if y is a square in Z

∗
p, then

the square roots are ±y(p+1)/4 mod p. Then, for
computing square roots in Z

∗
n, one can simply use

the Chinese Remainder Theorem: from y ∈ Z
∗
n,

one uses the isomorphism from Z
∗
n onto Z

∗
p × Z

∗
q .

One then computes the square roots in Z
∗
p and

Z
∗
q . The inverse isomorphism on the four possi-

ble pairs leads to the four possible square roots

of y. Therefore, the square root problem in Z
∗
n,

with n = pq, is equivalent to the factorization of
n, which is a stronger formal result than for RSA.

THE RABIN PRIMITIVE: Granted the equiva-
lence between the modular square root problem
and the factorization of the modulus, it is natu-
ral to try to use it for cryptographic applications:
Rabin suggested a public-key cryptosystem [12].
� Key generation: randomly choose two large

Blum primes p and q, and compute n = pq. The
public key is thus the modulus n, while the pri-
vate consists of its factorization (p, q).

� Encryption: in order to encrypt a message m ∈
Z

∗
n, one computes c = m2 mod n.

� Decryption: given the ciphertext c, granted the
factorization of n, one can extract the square
roots.

Unfortunately, a problem arises here because of
the non-injectivity of the square function: four
plaintexts are possible. Redundancy in the plain-
text is thus required to help the recipient to make
a choice. Furthermore, the algebraic structure al-
lows several kinds of attacks, as RSA suffers,
and thus paddings are required to solve the two
problems. The SAEP+ padding which contains
redundancy can be applied to the Rabin primi-
tive. It would then lead to an efficient encryption
scheme, provably IND–CCA2 secure under the in-
tractabilty of integer factoring, in the random or-
acle model.

David Pointcheval
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RABIN DIGITAL
SIGNATURE SCHEME

In [5] Rabin described a trapdoor one-way func-
tion that can be used for digital signatures and

for public-key encryption (see public key crypto-
graphy). Here we focus on Rabin’s digital signa-
ture system.

Rabin’s trapdoor function makes use of modu-
lar arithmetic and is defined as follows: (i) let N =
pq be a product of two distinct equal size prime
numbers, (ii) define the function F : Z

∗
N → Z

∗
N as

F(x) = x2 ∈ Z
∗
N. Since N is a product of two distinct

primes, the function F is a 4-to-1 map on Z
∗
N (every

element in the image of F has exactly four pre-
images). Rabin shows that inverting this function
is as hard as factoring the modulus N. However,
given the factorization of N it is easy to find all four
pre-images for a given element in the image of F.
Hence, the factorization of N serves as a trapdoor
for this function.

In the random oracle model there are several
generic methods for building a secure signature
scheme from a 4-to-1 trapdoor function. Here we
describe Rabin signatures using the Full Domain
Hash method [2].
Key Generation. Given a security parameter τ ∈
Z as input do the following:
1. Generate two random τ -bit primes p, q where

p = q = 3 mod 4. Set N = pq.
2. Pick an element w ∈ Z

∗
N such that the Jacobi

symbol of w over N is equal to −1. In other
words, w is a quadratic residue modulo exactly
one of p or q.

3. Let H be a hash function H : {0, 1}∗ → ZN.
4. Output the public key (N, w, H) and the private

key (N, p, q, w, H).
Signing. To sign a message m ∈ {0, 1}∗ using the
private key (N, p, q, w, H) do:
1. Compute x = H(m) ∈ ZN. If x is not in Z

∗
N output

‘fail’ and abort. This is extremely unlikely to
happen.

2. One can show that exactly one of ±x, ±xw ∈ Z
∗
N

must be a quadratic residue. Let y ∈ {±x, ±xw}
be that value. To find y, find the unique element
in {±x, ±xw} for which the Legendre symbol is
equal to 1 over both p and q.

3. Let s ∈ Z
∗
N be the square root of y in Z

∗
N. Output

s as the signature on m.
Verifying. To verify a message/signature pair
(m, s) ∈ {0, 1}∗ × ZN using the public key (N, p, q,
w, H) do:
1. Compute x = H(m) ∈ ZN.
2. Check if s2 ∈ {±x, ±xw}. If so, accept the signa-

ture. Otherwise, reject.
Note that signature verification is fast requir-

ing a single modular squaring. When the hash
function H : {0, 1}∗ → ZN is modeled as a random
oracle, one can show that the signature scheme
is existentially unforgeable under a chosen mes-
sage attack assuming that factoring random Blum
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integers is intractable [2, 4]. To do so, one shows
that a forging algorithm can be used to factor the
modulus N in the public key.

We note that Rabin signatures can be short-
ened by a factor of 2 using a cute trick due to
Bleichenbacher [1]. The basic idea is to output
only half the bits of s (the most significant ones).
Let ŝ be the resulting signature. Its length is
τ -bits as opposed to 2τ -bits. During verification,
the least significant bits of the signature can be
recovered using Coppermith’s algorithm [3]. In-
deed, given x, ŝ ∈ Z, Coppersmith’s algorithm can
test whether there exists a 0 ≤ � < 2τ such that
(ŝ · 2τ + �)2 = x mod N. If � exists the algorithm
will find it, thus recovering the missing bits of the
signature. For a more efficient method see [1].

Dan Boneh
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RADIO FREQUENCY
ATTACKS

SUMMARY: Conquest without fight is the basic
idea of Sun Tzu in The art of war written already
2500 years ago. Force an enemy to retreat imme-
diately, strike with high precision without leaving
of the origin of the blow, shut down an adversary’s
communications networks, disrupt its power sup-
plies, yet still leaving buildings intact are the prop-
erties conferred to an attack that uses electromag-

netic waves at the right frequencies. Most types of
matter are transparent to microwaves, and waves
coming from an electromagnetic blast are diffi-
cult to stop in an appropriate manner. A mastered
generation of microwaves may not only disrupt or
damage electronic equipment, but may also cre-
ate faults and even completely destroy it. Solar
storms constitute a good illustration of the kind
of disruption that an electronic equipment might
be submitted to when exposed to electromagnetic
disruptions (satellite communications, . . .).

Today’s computers and other electronics devices
are sensitive to computer attacks such as worms,
viruses or logical bombs (see Trojan horses, com-
puter viruses and worms). Electromagnetic radia-
tion leakage is well known and remains the sub-
ject of studies for some devices [1, 7, 12, 15]. The
electronic components that make up common de-
vices may, however, be disrupted by intense elec-
tromagnetic variations in their near surround-
ings. The sensitiveness of the equipment has thus
to be taken into account. Electromagnetic waves
that are able to destroy electronics (Compton ef-
fect) can be obtained by different means. They
may be used for specific purposes by determined
will (e-bomb Mk-84, Argus Project on the 27th of
August 1958), but they may also have acciden-
tal results (Blackout of Hawaii and disturbances
in radio-navigations in 1958). The imagination of
scenarists and the movie world made that the gen-
eral public became aware, not only of the exis-
tence but also of the power, of ElectroMagnetic
Pulse (EMP), through recent Hollywood films like
Golden Eye (1995), Broken Arrow (1996), Matrix
(1999) or Ocean’s Eleven (2001). This type of at-
tack is, however, not yet very common and seems
to be part of advanced research projects [5]. This
may be due to the particular constraints they in-
volve like mastering impulse modes, high currents
and high temperature supraconductivity. Anyway,
the technology will however become more avail-
able and the number of incidents will increase.
Has a new Pandora’s box been opened [8]?

INTRODUCTION AND DEFINITIONS: A suffi-
ciently intense and correctly directed electromag-
netic field may disrupt the functioning of an
electric circuit to different degrees. The circuit
may become completely useless. According to
Carlo Kopp [10], electromagnetic weapons can
nowadays be realized by nations with limited pow-
ers, close to those at the disposal of the big na-
tions at the beginning of World War II. More than
20 countries have development programs for some
kind of radiofrequency weapons. These weapons
do not leave any trace behind, damage buildings,
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may strike without anybody noticing it a priori and
may be created by ill-intentioned people without
yielding any big benefit, but generating enough
power to cause delicate situations. The idea of us-
ing fields for destruction purposes is rather old and
today it has become possible for an amateur to con-
struct an e-bomb in his garage. The Internet also
contributes to the dissemination of technical data
related to this technology [6, 7], and details the
materials and open literature or reference mate-
rial to a high number of persons.

There are two types of RF attacks, namely
high and low power attacks. The high power
attacks are the most devastating ones, requir-
ing mastering techniques like explosively pumped
flux generator (Field Compress Generator), ho-
mopolar generators, plastic explosives, high per-
formance detonation and magnetohydrodynamics
(MHD). This is why they are almost inaccessi-
ble to non-governmental entities, but almost ex-
clusively reserved to government funded, special-
ized research units (or to government supported
terrorists). Moreover, their final bulk and form
factor are rather imposing and close to the size
of more conventional bombs. Attacks using low
power weapons, on the contrary, are considerably
easier, less expensive (really very low cost) and
are accessible to many people, provided that they
dispose of the required level of expertise. An ex-
perimented technician or an engineer can design,
fabricate and experiment such a device. Very old
antennas and military amplifiers can, for instance,
be bought from military surplus and can easily be
modified to serve these purposes. It is not even
necessary to look for components that have this
high potential, capable of yielding this kind of
power.

Ultra-wideband and narrowband weapons are
the basis of radiofrequency attacks. Ultra-
wideband devices emit over a large frequency
range, nanoseconds long burst of low energy
(about 10 J/pulse) are radiated hundred of times
within a second. Their destructive power is di-
rectly linked to the strength of the source and
to the distance from the target. On the opposite,
narrowband weapons emit a very reduced spec-
trum or a unique sinus wave (one frequency) at
very high power which can reach thousand kilo-
joules per pulse, and this hundreds of times a
second.

Electromagnetic waves, like acoustic waves,
may however interact with human and other liv-
ing beings. Radiotherapy treatment of cancers
is a proof thereof, without even mentioning food
cooking in a microwave oven. In the same way

as audio waves with frequencies of a few Hertz,
microwaves may have a disturbing effect on the
human organism (VMADS and crowd control). But
this is not the subject of this article. It is impor-
tant not to confuse instruments allowing conduct-
ing an RF attack with jamming devices that are
used to temporarily disrupt the electromagnetic
spectrum within some frequency span and in a
given region. This is not the subject of this article
either.

Principles and Description

VLSI stands for Very Large Scale Integration,
and the integration density of modern chips is
ever growing (system on chip, . . . ). Modern VLSI
chips are extremely sensitive to voltage surges,
and could be burned out by even small current
leakages resulting from an EMP. The higher the
circuit’s density, the more vulnerable it is of course.
It is also important to notice that, as the power
voltage of chips and computers is going down and
down, their susceptibility is increasing.

ElectroMagnetic Pulse

Arthur Compton discovered the Compton effect
in 1923. When a beam of X-rays of well-defined
frequency is scattered through an angle by send-
ing the radiation through a metallic foil, the fre-
quency of the scattered radiation is different from
the original one. So if a nuclear blast occurs at
high altitudes, the gamma rays following the det-
onation are the source of HEMP. When the rays
encounter the upper regions of the atmosphere,
the molecules interact with the rays depending
on the atmospheric density and burst conditions.
So the energy of the gamma rays is transferred
to the electron of an air molecule. The EMP effect
may, in fact, decompose into three periods: early
time (0–1 µs), intermediate time (1 µs to a tenth
of a second) and the last but not the least late time
which involves magnetohydrodynamic properties.
At the first order, gamma radiations cause bursts
of electrons from the photoelectric Compton effect.
Contrary to high altitude detonation, a surface
burst EMP (SBEMP) can be produced by a nu-
clear burst close to the earth’s surface. In such a
case, particular attention must be given to surge
protection to dissipate the high currents. Ground
connection can enable in certain cases to reduce
or send back the currents that are created by the
EMP. An Air-burst EMP is the third possibility
between low and high altitudes (0.5–30 km). The
effects are a melt of both previous cases.
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System generated EMP (SGEMP) and Internal
EMP (IEMP) are of course obtained from the di-
rect interaction of nuclear gamma rays and X-rays
from a system. The first case is very important out-
side the atmosphere, typically for satellites. The
emission of electrons from internal EMP can cre-
ate current generation and electromagnetic fields
within cavities create the second one.

Coupling

Energy distribution lines or telecommunication
wires are omnipresent, both at the level of build-
ings as within electrical circuits. This is why they
are privileged targets for radio frequency attacks.
As the emitted wave rapidly attenuates, it is more
interesting to create a surge in a wire and let it
propagate, rather than to increase indefinitely the
emission power (which implies very complex prob-
lems). But therefore one should be able to opti-
mize the coupling between the radiated wave and
the circuit that will receive it. Water supply cir-
cuits or metal pieces in a building, without electri-
cal function, may also help to make EMP induced
currents to transit (dangerous in case of cross
talk).

It is sometimes necessary to call upon theoreti-
cal physics and electronics to compute the equiva-
lent circuit to determine the EMP induced voltage.
Electronic structures are often approximated and
it is not always possible to consider that the ra-
diation is a plane wave. So after the experiment,
the empirical data should be compared with the
experimental data coming from complex analyt-
ical computations. Transient effects also have to
be taken into account and therefore typical cou-
pling models and shielded cables coupling mod-
els are used. These models consider the transfer
impedance and the conductivity, when they can be
calculated.

Transmission line theory is nevertheless the
most commonly used method to determine the ef-
fects of an EMP on aerial and buried conductors.
The length of the conductor has then to be com-
pared with the length of the radiated wave, which
is one of the principal characteristics together
with the characteristic impedance and the charge
impedance. Computers allow then finding an an-
alytical solution.

All electronic circuits contain resistors, capaci-
tors or inductances, which provide them with one
or several resonance frequencies. In this way, the
electromagnetic pulse can make the circuit res-
onating at several dominant frequencies. Accord-
ing to the electrical resonance, the oscillation can

be long live, but this highly depends on the shield-
ing and grounding characteristics.

It is also important to notice the cross talk ef-
fects. A cable that conveys current can, depending
on its distance to other surrounding cables (water
pipe, twisted pair, . . . ), create by radiation a cur-
rent in another cable that was initially not affected
by the problem.

Damage

The equipment’s susceptibility is an important pa-
rameter to know if it can be avoided, affected, dis-
rupted or destroyed by a radio frequency attack.
Because of Ohm’s law, high impedance and low
voltage signals are most susceptible to interfere.
The obtained currents are sometimes even suffi-
cient to fuse the silicon on the chip. We can, how-
ever, distinguish several entering points for a de-
vice under test. The first one is called the front
door and concerns elements for which the nature
or structure favors the effects of the waves. Com-
puter or other electronic devices have attached an-
tennas that constitute a nice front door for an elec-
tromagnetic pulse to penetrate into a device [13].
The back door, on the contrary, may be composed
of an unshielded wire.

Damages may thus be of different natures, go-
ing from disruptions to lasting destruction, includ-
ing thermal related failure, metallization burn
out and the avalanche effects in active compo-
nents [9, 19]. Passive components are destroyed by
voltage breakdown or induced thermal overstress.
This is true for resistors (overheating) and capac-
itors (dielectric breakdown) [18].

Even for cases where the result would not be
directly exploitable, the real problem in the use
of an RF attack by non-expert persons would be
the Denial of Services (DOS). Without necessary
reaching the needed destruction level, it could be
possible to damage an unprotected and important
structure. The replacement or the repairing time
may then be prohibitive with respect to the func-
tion of the machine.

Energy

Maxwell’s law explains that the effect of an elec-
tromagnetic wave follows an inverse square law
with increasing distance, so the strength of the
wave dissipates quickly as it moves away from the
initial point of the blast. It is thus necessary to
get substantial energies (GigaWatts) in very short
times to create electromagnetic disturbances such
as the ones described in this article. The sources of
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the energies put at stake may be twofold: nuclear
or electrical energy but even sometimes converted
mechanical energy. Obviously, the results are bet-
ter when using nuclear energy.

Ultrawideband bombs create en electromag-
netic pulse like a nuclear detonation, but a conven-
tional or chemical explosive replaces the nuclear
part. The microwave source relies on an extremely
fast switching device. But narrow band bombs are
based on magnetron or vircator (Virtual Cathode
Oscillator).

Non-nuclear Techniques

Forty years ago, Andréı̈ Sakharov (Nobel Peace
Price 1975) has elaborated, together with
Altshuler, Voitenko and Bichenkov, and at the
same time as Clarence Marx, the first explosively
pumped flux generator (FCG) [14]. He obtained
an intense field by discharging a capacitor inside
a solenoid and managed to crush the field lines
with a peripheral explosive. Then, also by using
the energy of an explosive, he constructed the
MK-2. The locking up of the explosive within a
copper tube containing an inductance, made it to
deform the tube by short-circuiting the spirals of
the solenoid one after another. As the speed is
very high, the sudden decrease of the inductance
and the conservation of the flux occasion a brutal
increase of the intensity. The very big FCG have
already reached some tens of GigaWatts, and
as for magnetrons they can be cascaded, the
output of the first one supplying the entry of the
second.

The microwave source used is an extremely
fast switching device. Narrowband e-bombs use
a virtual cathode oscillator tube or a variant of
a magnetron. The idea behind the Vircator is
accelerating a high current electron beam against
a mesh anode. Many electrons will pass through

A

B

C
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the anode, forming a bubble of space charge behind
the mesh anode. Under the proper conditions, this
space charge region will oscillate at very high fre-
quencies. If the space charge region is placed into a
resonant cavity which is appropriately tuned, very
high peak powers may be obtained.

NUCLEAR TECHNIQUES AND TED: Schami-
loglu’s team and the U.S. Air Force’s Shiva Star
is a pulsed-power system used to simulate the
effects of nuclear weapons. TED are very sim-
ple devices at low cost. TED does not generate a
pure sine wave, it operates completely differently
than narrow band devices. Instead of generating a
burst of smooth sinus it generates a single spike of
energy.

Protection and Countermeasures

The first countermeasure consists in performing a
real measure of the susceptibility of the involved
equipment. Constructing an analytical model of
the disruptions that can be generated on a device is
very difficult; this is the reason why tests are car-
ried out. The Federal Communication Commission
(FCC) establishes the testing method for emission
certification of commercial products. A lot of FCC
measures are indeed carried out nowadays and
in the best cases without adding all possible op-
tions to the equipment. For commercial purposes,
the great majority of present machines are con-
structed in such a way as to respect the electro-
magnetic compatibility standards. Each year, the
aircraft direction notices, however, cases where
portable computers or electronic gadgets manage
to disrupt the aircraft’s electronics. The same ap-
plies to machines that are used in hospitals and
their interaction with portable telephones. So, the
required level of protection is to be evaluated be-
fore starting to devise and apply a whole series of
countermeasures.

Computers are very sensitive to RF attacks,
because these can be propagated through their
power cable, network interface, the wire mouse,
the keyboard, Input/Output slots and cables,
and all kinds of apertures (peripherals, buttons,
ventilation, . . . ). Telecommunications Electronics
Material Protected from Emanating Spurious
Transmissions (TEMPEST) are better protected
than ordinary computers, because the reduction of
their radiation level also reduces their sensitive-
ness. Machines abiding by the military “Milspec”
norms, or “ruggedised” machines, already exist,
but their power and cost discourages possible



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 7, 2005 14:15

Radio frequency attacks 507

buyers. Solutions exist nonetheless, but they often
involve high costs. The use of optical fibers would,
for instance, highly reduce the sensitiveness of
machines. Nowadays nothing forbids the use of a
keyboard or a mouse that uses optical communi-
cation from one side to the other, like micro-spies
already do by modulating the light signal of an
optical fiber. The construction of a comprehensive
shield and the use of ferrite beads, together with a
non-electrical coupling of the connectors would al-
ready reduce the risks. Another advantage would
be the reduction of mass loops, which often disrupt
the connection of peripherals. A commercial com-
puter, armored against RF attacks, does not need
the same level of protection as a military machine,
but it requires to continue working in the presence
of disruptions on, for example, the power supply
lines.

PC switch-mode supplies are particularly sensi-
tive to electromagnetic disruptions, because they
all contain components that are ideally sensitive
to an attack. It is, however, possible to lower
their fragility by modifying slightly the structures
of their power supplies. A perfect power supply
would recreate its energy in a Faraday cage. One
should therefore use a dynamo that is mechani-
cally coupled to a motor, situated outside the room.

Network components are also hardly protected
and cables, scattered around entire buildings, al-
low conveying the induced signal. Commutation
electronics that are used in network devices are,
of course, very sensitive to RF attacks. The use
of optical fibers, which convey light but do not of-
fer electrical conduction, would allow reducing the
risks. Optical fibers are immune against any kind
of electromagnetic attack.

These attacks disrupt or damage logic devices,
but there are some components that they are not
in power to act upon. Vacuum tubes were used dur-
ing the conquest of space for their weak sensitive-
ness to solar radiation disruptions. These tubes do
not use silicon as a basic component, so the Comp-
ton effect does not create any noticeable disrup-
tion on their functioning. It should be noticed that
some fight aircraft have still some of their sensi-
tive parts equipped with tubes in order to avoid
electromagnetic disruptions. These tubes suffer,
however, from some other drawbacks, such as their
mechanical resistance.

Perfect protection against RF attacks consists
in a complete isolation of the sources of dis-
ruption. Therefore, one should use a Faraday
cage. The Faraday cage allows protecting sensitive
equipment by using a metallic and ferromagnetic
box that closes hermetically. External disruptions

cannot enter the cage. A good compromise to per-
form an opening is to make a hole with sufficiently
small diameter into the Faraday cage and adding
a tube with a length of eight times the diameter
of the hole. Otherwise, the classical RF traps or
the ferrites grommets should be used. If the in-
side of the cage is to be ventilated, the air arrival
should be extremely well controlled in order to
prevent undesirable radiations from entering. In
the same way, the communication with the out-
side should be performed through optical fibers.
The envelope of Faraday cages is in general con-
nected to the ground, except for those that are sit-
uated at some height because of the ground effect
that they would engender. The risks involved in
the cold war have made these techniques to be al-
ready mastered since a long time.

The price of a Faraday cage is very high and it is
not always easy to put them in place. So the pro-
tection level has sometimes to be degraded, con-
tenting oneself with electrostatic shielding. Mini-
mal protection consists in rounding the cables with
a flexible metal sheath. Simply connecting these
loops to the ground is not enough. The electromag-
netic compatibility has to be taken into account
(but this is not the subject here).

Targets and Properties

Potential targets of RF attacks are manifold.
Financial systems, telecommunications, medical
centers, critical infrastructures as airport radars,
transportation means (aircrafts, electronic igni-
tion cars) are all aimed at.

Properties

Radio-frequency weapons have, compared to their
drawbacks (Hugh power consumption), numerous
properties. First of all, these weapons are tunable
(which is nice when a target seems to be invul-
nerable to particular frequencies) and some are
even reusable. But they can be triggered off and
fired from miles away at any time and in every
circumstance. Contrary to weapons that need bal-
listic computations, an RF attack is gravity inde-
pendent and hardly detectable. These are low cost
weapons and the materials needed could easily
be acquired in a large city, without conventional
counter-terrorist agencies being able to trace them
easily. But above all, these weapons allow multi-
ple target acquisition and do not concentrate on
a single target, they are instantaneous and non-
lethal to humans, which makes them very adapted
to denial of service attacks.
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Further Reading

We will present here our work based on the per-
turbation of a smart card or a crypto processor us-
ing intense electromagnetic fields, our aim being
to create a fault in order to apply cryptanalytic
methods [4] such as Differential Fault Analysis
[3]. Our method also permits destroying a chip,
but there are very few advantages in doing so. At-
tackers generally want to create transient faults
in a cryptosystem, and permanent faults are quite
rare (security sensor destruction . . . ).

Traditional electromagnetic analysis is based
on a sensing coil located in the near field of the
chip. Measurement is thus passive. In some cir-
cumstances, this gives similar information to that
obtained by measuring the chip’s power consump-
tion (i.e., in power analysis). It has, however, been
shown that electromagnetic analysis gives strictly
more information, as the coil can pick up the mag-
netic fields generated by local signals that are not
present outside the chip. This was highly signif-
icant in itself; it also turned out to be important
for later analysis and protection work. An alter-
nating current in a coil near a conducting surface
creates an electromagnetic field. Here we send a
high current in a coil very close to the chip, so it is
an active measurement. An active measurement
can interfere with the local or total activity of the
processor. Depackaging the chip is not necessary to
apply this attack, but the ability to see the surface
of the chip improves the precision. The applica-
tion of the traditional techniques of depackaging
with concentrated nitric acid and acetone is still
an easy way to open many chips [Anderson].

We developed a variant of this technique using
their electromagnetic probing tools. By placing a
small coil next to a target component in a smart-
card chip and passing a current pulse through the
coil, they found that they could induce a suffi-
ciently large eddy current in the chip to cause a
targeted malfunction.

Our sensor is composed of a touch point coming
from a microscope and a wire. The wire is wound
on the test probe. The current injected in the coil
creates an electromagnetic field. The test probe
concentrates the lines of the field. So the field ob-
tained at the end of the needle is relatively intense.
The current injected into the coil can be obtained
by using a simple camera flash gun. The intense
magnetic field allows moving charges, so we cre-
ate a movement of charges through the grid oxide
of the transistors. Charges are then stocked in the
grid oxide by a tunnel effect with high energy.

At present silicon manufacturers shrink tran-
sistors to increase their density on a chip. But if

the reduction in the thickness of the grid oxide
is too high, the transistor will cease functioning.
Thus we imagine that our attack will be easier to
use in the future although its precision will be re-
duced. In order to quantify the number of charges
brought to or withdrawn from the grid oxide, we
decided to heat the components. The increase in
the electronic shocks resulting from the increase
in temperature could make the quantity of loads
present in the grid oxide evolve. For a static RAM,
commercially available from a big silicon manufac-
turer, 95.81% of the remaining faults were main-
tained after 100 hours at 420◦ K. It seems not
trivial to stop this attack, and designers should
continue to use hardware and software counter-
measures.

Conclusion

Electromagnetic attacks find their theoretical
foundations in the basic physics introduced by
Faraday and in the work of Compton, Einstein,
Oppenheimer, Sakharov, Marx, and many others
that have contributed to finalizing these weapons.
The world’s principal armies already have these
devices at their disposal and others are trying to
obtain them. The security of existing systems is
not always conceived in a way to resist this type
of attacks. By highly reducing the order of magni-
tude, it is also possible to use the basic principles
of these attacks for inserting faults or disrupting
the functioning of a cryptographic machine. Other
attacks such as, for instance, glitch insertion on
power supplies, clock disruption (metastability) or
optical attacks [17] are however also possible.

Intense electromagnetic fields can easily be cre-
ated and may allow disrupting the good function-
ing of electronic components. The required compo-
nents are common used and can be easily obtained.
It is possible to disrupt a cryptographic component
by acting close to the device or to disrupt an entire
building at a distance of some hundred meters,
which of course depends on the level of energy.
Using fields leaves behind few traces, and finding
back their source is a very difficult task. Unfortu-
nately, many devices offer a non-zero coupling and
are thus a very easy victim for electromagnetic dis-
ruptions. The damage can then be very important
and may require the replacement of the electron-
ics. Countermeasures exist, but are not often used.

The security domain has to take into account
the possibilities of pirating by RF disruptions. The
attacks can spread from a simple deny of service
to the destruction of a machine, passing by dis-
ruptions that are more difficult to detect. The in-
teraction with the cryptographic world is without
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any doubt to be situated in the very local use of
intense fields, used to influence the functioning of
cryptoprocessors or ciphering machines.

Jean-Jacques Quisquater
Samyde David
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RANDOM BIT GENERATOR

DEFINITION: A random bit generator is a system
whose output consists of fully unpredictable (i.e.,
statistically independent and unbiased) bits. In
security applications, the unpredictability of the
output implies that the generator must be also not
observable and not manipulable by any attacker.

A random bit generator basically differs with
respect to a pseudorandom number generator, be-
cause the complete knowledge of the generator
structure and of whatever previously generated
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sequence does not result in any knowledge of any
other bit. This means that the entropy of a se-
quence of n output bits should be ideally equal to
n. On the contrary, the entropy of a sequence of n
output bits of a pseudorandom generator cannot
be greater than its seed, whatever n is.

Since pseudorandom generators are suitable in
those applications where just a flat statistic is
needed, random generators are suitable in appli-
cations where unpredictability is also needed.

DESCRIPTION: A true random bit generator has
necessarily to be based on some kind of non-
deterministic phenomena that could implement
the source of the system randomness. The ran-
dom sources commonly used can present several
statistic defects, due to physic limitations, imple-
mentation issues, or to extern attacks aimed to
manipulation. For this reason, usually, the scheme
of a random bit generator consists of a raw random
stream source and of a post-processor as shown in
Figure 1.

The post-processor compresses the sequence
produced by the source, so that it distills the en-
tropy (see information theory) in the outgoing se-
quence. The amount of required compression de-
pends both on the effective entropy of the source
and on the efficiency of the post-processing al-
gorithm. Of course, since the post-processor can-
not oppose every malfunction or attack attempt,
the random bit generator should be provided with
alarm sensors capable of revealing those anoma-
lies for which the post-processing cannot compen-
sate.

It is worthwhile to note that even if the post-
processing uses cryptographic functions similar to
those used by pseudorandom generators, it works
in an opposite way. In fact, a pseudorandom gen-
erator expands its input (i.e., its seed); the post-
processing, on the contrary, compresses it.

RAW RANDOM BIT SOURCES: In the applica-
tions, the random source can be constructed of
dedicated hardware devices; otherwise; the ran-
dom source can use software procedures to extract
random processes from the platform on which the
generator is implemented.

Generators of the first type are commonly called
hardware-based (HW); generators of the second
type are software-based (SW).

SW-Based Generators

Generally, SW-based generators are implemented
on computer systems and the values typically ex-
ploited as raw stream sources are obtained from:
� event timings:

◦ mouse movements and clicks;
◦ keystrokes;
◦ disk and network accesses;

� data depending on the history of the system
and/or on a large amount of events:
◦ system clock;
◦ I/O buffers;
◦ load or network statistics.

It is easy to understand that these types of sources
are far from ideal. Entropy is mostly low and dif-
ficult to evaluate as well as the actual robust-
ness with respect to observation and manipula-
tion. SW-based generators should use more than
one source, in order to be protected from the pos-
sibility that one or more sources could be com-
promised. Missing statistic evaluation, the post-
processing should be planned assuming that the
source entropy is very low; it should therefore ex-
ecute a drastic compression and use a robust hash
algorithm.

HW-Based Generators

HW-based generators present the advantage of
having a clearer model of the source and of its
possible interaction with the outside. Generally,
HW-based generators can be implemented using
the common integrated technologies, and can be
inserted in tamper resistant protections, in order
to be protected from observation and manipula-
tion. Normally, the nature of these sources (faster,
higher in quality and more protected) lowers the
need of prost-processing permitting to obtain a
much higher throughput than the one obtainable
from SW-based generators.

Typically the raw random stream source is
a system that generates sequence X by sam-
pling and quantizing an analog non-deterministic
value S (Figure 2). We can consider two possible
quantization modes which represent two very
common cases:
� a sign mode x(i) = sign(s(i));
� a mod 2 mode x(i) = 	s(i)
 mod 2.

The quantization mod 2 (see modular arith-
metic) presents the advantage of limiting or
making negligible the effects of deterministic
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Fig. 2. Raw random bit source

components of S. Let

S = a · R+ m + D

where R represents a normalized random process,
a is an amplitude factor, m is an offset and D rep-
resents a possible deterministic process. We can
observe that, no matter what is the amplitude of
D and m, their effect becomes negligible when the
amplitude of a · R is big enough.

As an example, Figures 3 and 4 represent the
case in which R has a normalized Gaussian distri-
bution, a = 0.5 and (m + d(i))/a = 0.6. The x axis
is divided into 0 and 1 zones to show how the R
distribution is partitioned between 0 and 1 value
samples. The mod 2 quantization mode results in 0
and 1 bands as shown in Fig. 4. Of course, in actual
implementations, these bands can be asymmetric
and this issue must be taken into account as pos-
sible cause of offset on the sequence x(i).

Randomness Sources in
HW-Based Generators

Random sources commonly used by HW-based
generators use phenomena such as:
� electronic noises (thermal, shot, avalanche);
� phase noises; and
� flip-flop metastabilities.
All these types of sources can be implemented by
means of standard electronic devices.

Electronic Noise Sources. Among electronic noises,
both the thermal noise in a resistor and the junc-
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tion shot noise offer the advantage of being white
noises with a Gaussian distribution whose inten-
sity depends on physical values easy to keep under
control. In fact, in the case of thermal noise, the
power density of the noise depends merely on the
resistor value and the absolute temperature, while
in the case of the shot noise, the power density of
the noise depends only on the current that flows
through the junction. These phenomena make pos-
sible the realization of sources endowed of a simply
analytic statistical model, instead of based on an
empiric model depending on several technological
and implementation factors. The deriving advan-
tages are the following:
� the possibility to evaluate a priori source en-

tropy and defects, and consequently the possi-
bility to design a suitable post-processing;

� availability of a statistical model useful for ver-
ifying that the source works correctly.
In Figure 5 we see the general scheme of a raw

random bit source based on direct amplification
technique. The noise’s source consists of the re-
sistor; the clocked comparator performs the sam-
pling and the quantization of the amplified noise
and the low pass feedback loop compensates the
offsets due to the amplifier and the comparator.

This kind of source can have a very high
throughput. The only limitation is the bandwidth
of the noise amplifier, given that as the sampling
frequency increases, so does the correlation among
samples. In fact, the sampling frequency can reach
the amplifier high pass cut off frequency since in
any case the post-processing must be designed to
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+

−

+

−
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be able to remove the stronger correlation that can
result from an attack.

On the other hand, this design requires an
accurate implementation. In fact the high-gain
amplification needed for the thermal noise in-
volves a critical offset compensation and a high
sensitivity to internal or external interfering sig-
nals. Since the sign mode quantisation is used,
both an excess in the offset m or in an interfer-
ing signal D can block or force the source (see
Figure 3).

Phase Noise Sources. Generally, sources based on
phase noise have a simple and robust implemen-
tation. In Figure 6 a basic and typical scheme is
depicted: a slow oscillator A samples a fast oscil-
lator B. The D type flip-flop performs the mod 2
sampling of the phase difference between the two
oscillators. Width and symmetry of the quantiza-
tion bands depend respectively on the frequency
and duty cycle of the oscillator B.

In fact this scheme has an intrinsic periodic be-
havior due to the phase shifting that always occurs
if f B/ fA is not an integer. This effect is negligible
if the phase noise is large with respect to half the
period of the sampled oscillator (i.e., if in Figure 4,
noise distribution overflows the width of quanti-
sation bands).

More generally, since the mod 2 quantization
is used, this device is robust with respect to any
phase process that could be superimposed on the
phase noise.

Basically the obtainable throughput depends on
the f B value and on the intrinsic noise of the oscil-
lators. In fact, once f B is maximized (i.e., quanti-
zation bands are made as narrow as possible), the
sampling period 1/ f A must be long enough in or-
der to accumulate a sufficient phase noise between
two subsequent samples. Hence, noisier oscillators
allow a higher sampling frequency.

A more efficient phase noise exploitation can be
obtained by means of a phase control that allows
sampling the output of oscillator B on its edges.
In this way, even a little amount of phase noise is
sufficient to get a random output. Basically this
solution implies a phase control that plays the
same role than the offset compensation in Figure 5
scheme.

Generally, the statistical model of phases noises
is not known a priori, being determined by several
technological and implementation factors. Any-
how, in some solutions, an electronic noise source
can be used to cause phases noises in an oscillator.
In that way, it is possible to obtain a source whose
phases noise characterization is known a priori
since it is directly derived from an electronic
noise.

Flip-Flop Metastability Sources. Actually, the
random sources based on flip-flop metastability
also exploit electronic and phase noises. Flip-
flop metastability occurs when input signals are
very close to the threshold and/or when data and
clock signals switch very close in time to one
another. In this condition, a small variation in
levels or in phases results in a different output
value.

The main implementation issue is the control
of level or phase that is needed to give rise to
metastability. Basically these are the same offset
and phase control functions that are involved in
the implementation of sources based on electronic
and phase noises.

POST-PROCESSING: In practice, every kind of
raw random stream source can present defects as
offset, auto-correlation or cross-correlation with
other phenomena. Auto-correlation can occur be-
cause of the limitation in frequency bandwidth
that is intrinsic in any physical randomness
source. Other defects can be done to implemen-
tation issues as:
� electrical or timing offsets (e.g., amplifier offset

in Figure 5 design, unbalanced duty cycle of the
sampled oscillator in Figure 6 design);

� intrinsic design behaviors (e.g., in Figure 5 de-
sign, the offset compensation suppresses long
sequences of equal symbols; in Figure 6 de-
sign, a lack of phase noise results in a periodic
behavior);

� interference with internal or external signals
(e.g., power supply fluctuation, clock signals,
switching signals coupled via the silicon sub-
strate or via power supply, etc.).
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However, the most important problems can be
caused by manipulation attempts. For instance,
an attacker trying to inject a signal D, wanting to
force the exit x(i).

The design of random sources which are in-
trinsically very stable and robust with respect to
these problems, results inevitably in a complex de-
sign and in drastic penalties on the performance.
Moreover, it seems quite impossible, especially in
consumer applications, to design a source that
could resist a well-equipped attacker. A more ef-
fective approach seems to be the use of reason-
ably good random sources together with a suit-
able post-processing. According to the quality and
robustness of the source, the post-processing can
be based on simple scrambling and mixing tech-
niques, or even on an actual hash algorithm.

Note the fact that an effective post-processing
unavoidably hides the defects of the source, even
when they are so massive to completely compro-
mise the entropy of the generator. Practically, the
more the entropy of the source tends to zero, the
more the post-processor tends to act as if it were
a pseudorandom generator.

This behavior makes it impossible to check the
malfunction of the source through statistical tests
applied to the output of the generator. On the con-
trary, most of the possible source anomalies can
be revealed by means of statistical tests applied
directly at the source, that is before that the be-
havior of the source is masked by post-processing
and quantization. Obviously, the source must have
a statistical characterization and a behavior that
allow distinguishing normal defects and variances
with respect to faults malfunction and attacks.

Depending on the kind of source, testing can
even be very simple. As an example, in the device
of Figure 5, defects such as decreasing of the noise
frequency bandwidth and/or of the amplification
as well as increasing of the offset, all can be re-
vealed by the decrease in the number of transition
of x(i).

A simple test performed on the amplitude of S
(i.e., before sampling and quantization) can also
reveal the attempt to force S by means of the su-
perimposition of a known signal D. In fact this will
inevitably result in an increase of the S amplitude.
It must be noticed that the attacker can use a sig-
nal D such that the statistic of x(i) is not changed.
This means that, after quantization, since the am-
plitude information is removed, no statistical test
can reveal this kind of attack.

Due to their simplicity, tests on the source can be
executed even continually during generator opera-
tion. This allows to perform real time check of mal-

functions or even to dynamically tune the amount
of post-processing compression depending on the
estimated source quality.

Marco Bucci
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218.

[2] Bendat, J.S. (1958). Principles and Applications of
Random Noise Theory. Wiley, New York.

[3] Davis, D., R. Ihaka, and Philip Fenstermacher
(1994). “Cryptographic randomness from air tur-
bulence in disk drives.” Advances in Cryptology—
CRYPTO’94, Lecture Notes in Computer Sci-
ence, vol. 839, ed. Y. Desmedt. Springer-Verlag,
Heidelberg, Germany, 114–120.

[4] Dichtl, M. and N. Janssen (2000). “A high quality
physical random number generator.” Proceedings
of Sophia Antipolis Forum Microelectronics (SAME
2000), 48–53.

[5] FIPS 140-1. (1994). “Security requirements for
cryptographic modules.” Nat’l Institute of Stan-
dards and Technology, GPO, Washington, DC.

[6] Gude, M. (1985). “Concepts for a high performance
random number generator based on physical ran-
dom phenomena.” Frequenz, 39 (7–8), 187–190.

[7] Holman, W.T., J.A. Connelly, and A.B. Down-
latabadi (1997). “An integrated analog/digital ran-
dom noise source.” IEEE Transactions on Circuits
and Systems I, 44 (6), 521–528.

[8] Jun, B. and P. Kocher (1999). “The intel random
number generator.” Cryptography Research Inc.,
white paper prepared for Inter Corp., http://www
.cryptography.com/resources/whitepapers/Inte-
lRNG.pdf

[9] Knuth, D.E. (1981). The Art of Computer Program-
ming (2nd ed.). Addison-Wesley, Reading, MA.

[10] Maddocks, R.S., S. Matthews, E.W. Walker, and
C.H. Vincent (1972). “A compact and accurate gen-
erator for truly random binary digits.” Journal of
Physics, E5 (8), 542–544.

[11] Memezes, A.J., P.C. Oorschot, and S.A. Vanstone
(2001). Handbook of Applied Cryptology. CRC
Press, Boca Raton, FL.

[12] Murry, H.F. (1970). “A general approach for gen-
erating natural random variables.” IEEE Transac-
tions on Computers, C-19, 1210–1213.

[13] Papoulis, A. (1965). Probability, Random Variables
and Stochastic Processes. McGraw-Hill, New York.

[14] Petrie, C.A. (1997). “An integrated random bit gen-
erator for applications in cryptography.” PhD The-
sis, Georgia Institute of Technology.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 7, 2005 14:15

514 Random oracle model

[15] Petrie C.S. and J.A. Connelly (1996). “Modeling and
simulation of oscillator-based random number gen-
erators.” Proceedings of IEEE Int’l Symposium on
Circuits and Systems, ISCAS’96, vol. 4, 324–327.

[16] Petrie, C.S. and J.A. Connelly (2000). “A noise-
based IC random number gnerator for aplications
in cyptography.” IEEE Transactions on Circuits
and Systems I, 47 (5), 615–621.

[17] Schneier, B. (1996). Applied Cryptography (2nd
ed.). John Wiley & Sons, New York.

[18] Trichina, E., M. Bucci, D. De Seta, and R. Luzzi
(2001). “Supplementary cryptographic hardware
for smart cards.” IEEE Micro, 21 (6), 26–35.

[19] Vincent, C.H. “The generation of truly random bi-
nary numbers.” Journal of Physics, E3 (8), 594–
598.

[20] Vincent, C.H. (1971). “Precautions for the accuracy
in the generation of truly random binary numbers.”
Journal of Physics, E4 (11), 825–828.

RANDOM ORACLE MODEL

The random oracle model was introduced by Bel-
lare and Rogaway [2]. The idea is a simple one:
namely provide all parties of a protocol—good and
bad alike—with access to a (public) function h and
then prove the protocol to be correct assuming that
h maps each input to a truly random output, i.e. it
behaves like a truly random oracle. Later, in prac-
tice, one sets h to some specific function derived
in some way from a standard cryptographic hash
function like SHA-1 [5], MD5 [6], RIPEMD-160 [4],
or others. It is clear though that any specific func-
tion will not be random because it is deterministic,
i.e., it returns the same value when given the same
input. (Also see Bellare’s overview of the random
oracle model in [1].)

The random oracle model buys efficiency and, as
Rogaway claims, security guarantees, which, al-
though not at the same level as those provided by
the standard “provable security approach,” are ar-
guably superior to those provided by a totally ad
hoc protocol design.

The overly skeptical might say that a security
proof in the random oracle model gains nothing
because the function h that one actually uses in
the final protocol is not random. Here is another
way to look at it. In practice, attacks on schemes
involving a from SHA-1 derived h and number
theory will often themselves treat h as random.
Bellare and Rogaway call such attacks generic. In
other words, cryptanalysis of these “mixed” proto-
cols is usually done by assuming h to be random.
But then proofs in the random oracle model apply,
and indeed show that such generic attacks will fail

unless the underlying number-theoretic problems
are easy to solve. In other words, the analysis at
least provably excludes a certain common class of
attacks, namely generic ones.

It is important to choose carefully the instanti-
ating function h. The intuition stated by Bellare
and Rogaway in [2] is that the resulting protocol
is secure as long as the protocol and the hash func-
tion are sufficiently “independent,” which means
the protocol does not itself refer to the hash func-
tion in some way. This is a fuzzy guideline that
needs more work in the future.

An important step in better understanding the
random oracle model was taken by Canetti et al.
[3]. They show there exist protocols secure in the
random oracle model but insecure under any in-
stantiations in which we substitute a function
from a small family of efficiently computable func-
tions. Their examples however are somewhat con-
trived, and this kind of situation does not arise
with any of the “real” cryptographic mechanisms
in the literature.

In comparison with a totally ad hoc design, a
proof in the random oracle model has the benefit of
judging the protocol under a strong, formal notion
of security, even if this assumes some underlying
primitive to be very strong. This is better than not
formally modeling the security of the protocol at
all. This explains why the random oracle model is
viewed as a “bridge” between theory and practice
[2].

Gerrit Bleumer
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RC4

RC2 and RC4 are ciphers developed by R. Rivest
for RSA Data Security, Inc. These are propri-
etary, and their details have not been officially-
published. RC2 is a variable-key-size block cipher,
and RC4 avariable-key-size stream cipher (the
key size may vary between 1 up to 2048 bits). RC4
is used a lot today; you can find it, for example,
in secure socket layer/SSL, in Wi-Fi security pro-
tocols, etc.

Nevertheless, some reverse engineering has
been done, and an algorithm was accessible on the
Internet in 1994, that gave the same output as
RC4. Several studies and attacks have been pub-
lished since 1997. A good starting point on the sub-
ject, with a description of RC4, and a good state of
the art is [5]. The published attacks are [1–4, 6–8].
But in practice, RC4 remains secure, if well used
(see [9] for an example of bad usage in Wi-Fi envi-
ronment).

Caroline Fontaine

References

[1] Fluhrer, S.R. and D.A. McGrew (2000). “Statistical
analysis of the alleged RC4 key stream generator.”
FSE’00, Lecture Notes in Computer Science, vol.
1978, ed. B. Schneier. Springer-Verlag, Berlin,
19-ff.

[2] Fluhrer, S., I. Mantin and A. Shamir (2001).
“Weaknesses in the key Scheduling algorithm of
RC4.” SAC’01, Lecture Notes in Computer Science,
vol. 2259, eds. S. Vaudenay and A.M. Youssef.
Springer-Verlag, Berlin, 1-ff.

[3] Golic, J. (1997). “Linear statistical weakness of
alleged RC4 key stream generator.” Advances
in Cryptology—EUROCRYPT’97, Lecture Notes
in Computer Science, vol. 1233, ed. W. Fumy.
Springer-Verlag, Berlin, 226–238.

[4] Knudsen, L.R., W. Meier, B. Preneel, V. Rijmen,
and S. Verdoolaege (1998). “Analysis methods
for (alleged) RC4.” Advances in Cryptology—
ASIACRYPT’98, Lecture Notes in Computer
Science, vol. 1514, eds. K. Ohta and D. Pei.
Springer-Verlag, Berlin, 327-ff.

[5] Mantin, I. (2001). “Analysis of the Stream Cipher
RC4.” Master’s Thesis, Weizmann Institute of
Science.

[6] Mantin, I. and A. Shamir (2001). “A practical
attack on broadcast RC4.” FSE’01, Lecture Notes
in Computer Science, vol. 2355, ed. M. Matsui.
Springer-Verlag, Berlin, 152-ff.

[7] Mironov, I. (2002). “(Not so) random shuffles of
RC4.” Advances in Cryptology—CRYPTO 2002,
Lecture Notes in Computer Science, vol. 2442, ed.
M. Yung. Springer-Verlag, Berlin, 304-ff.

[8] Mister, S. and S.E. Tavares (1998). “Cryptanalysis
of RC4-like ciphers.” SAC’98, Lecture Notes in
Computer Science, vol. 1556, eds. S. Tavares and
H. Meijer. Springer-Verlag, Berlin, 131-ff.

[9] Stubblefield, Loannidis, and Rubin (2001). “Using
the Fluhrer, Mantin, and Shamir attack to break
WEP.” AT&T Labs Technical Report.

RC5

RC5 is an iterative secret-key block cipher de-
signed by Rivest [5] in 1995. It has variable pa-
rameters such as the key size, the block size, and
the number of rounds. A particular (parameter-
ized) RC5 encryption algorithm is designated as
RC5-w/r/b, where w is the word size (one block
is made of two words), r is the number of rounds
(r = 2h), and b is the number of bytes for the secret
key. The “nominal” choice for the algorithm, RC5-
32/12/16, has a 64-bit block size, 12 rounds and a
128-bit key. The secret key is first expanded into
a table of 2h + 2 secret words Si of w bits accord-
ing to the key schedule. Let (L0, R0) denote the left
and right halves of the plaintext. Note that a w-bit
word is equivalently viewed as an integer modulo
2w (see modular arithmetic). Then the encryption
algorithm is given by:

L1 ← L0 + S0 mod 2w

R1 ← R0 + S1 mod 2w

for i = 1 to 2h do
Li+1 ← Ri
Ri+1 ← ((Li ⊕ Ri)  Ri) + Si+1 mod 2w

where “⊕” represents bit-wise exclusive-or, and
“X  Y ” is the (data-dependent) rotation of X to
the left by the log2 w least significant bits of Y.
The ciphertext is (L2h+1, R2h+1) and each half-
round i involves exactly one subkey Si . Kaliski and
Yin [3] studied both differential and linear attacks
on nominal RC5. Knudsen and Meier [4] further
improved over their attacks and also showed that
RC5 has weak keys. The best differential (chosen
plaintext) and linear (known plaintext) attacks on
RC5 today are respectively the one by Biryukov
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and Kushilevitz [1] which breaks 12 rounds of
RC5-32/12/16 with 244 chosen plaintexts using
partial differentials, and the one by Borst et al.
[2] which breaks RC5 up to 10 rounds using mul-
tiple linear approximations. Both results suggest
that RC5 should be used with at least 16 rounds.

Helena Handschuh
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RC6

RC6 is an iterative secret-key block cipher de-
signed by Rivest et al. [5] in 1998. It has vari-
able parameters such as the key size, the block
size, and the number of rounds. A particular (pa-
rameterized) RC6 encryption algorithm is des-
ignated as RC6 (w, r, b), where w is the word
size (one block is made of four words), r is the
number of rounds, and b is the number of bytes
for the secret key. The three “nominal” choices
for the algorithm as submitted to the American
Advanced Encryption Standard (Rijndael/AES)
contest and to the European NESSIE contest are
RC6 (32, 20, 16), RC6 (32, 20, 24) and RC6 (32, 20,
32). All three versions have a 128-bit block size,
20 rounds and only differ in the key-size which is
respectively 128, 196 and 256 bits long. The se-
cret key is first expanded into an array of 2r + 4
secret w-bit words Si according to the key schedul-
ing algorithm. Let (A, B, C, D) denote the four w-bit
words of the plaintext. Note that a w-bit word

is equivalently viewed as an integer modulo 2w

(see modular arithmetic). Then the encryption al-
gorithm is given by:

B ← B + S0 mod 2w

D ← D + S1 mod 2w

for i = 1 to r do
A ← ((A⊕ f (B))  f (D)) + S2i mod 2w

C ← ((C ⊕ f (D))  f (B)) + S2i+1 mod 2w

(A, B, C, D) ← (B, C, D, A)
A ← A+ S2r+2 mod 2w

C ← C + S2r+3 mod 2w

where “⊕” represents bit-wise exclusive-or, “X 
Y ” is the (data-dependent) rotation of X to the left
by the log2 w least significant bits of Y, and the
function f plays the role of a pseudo-random gen-
erator defined by:

f (x) = (x(2x + 1) mod 2w)  log2 w.

The ciphertext is (A, B, C, D) and each round r
involves exactly two subkeys Si . RC6 overcomes
certain weaknesses of its predecessor RC5 by in-
troducing fixed rotations as well as a quadratic
function to determine the data-dependent rota-
tions. Contini et al. [1] on one hand, and Iwata and
Kurosawa [3] on the other hand, both give a com-
prehensive analysis of the contribution of these
features to the security of RC6. The best statis-
tical attack on RC6 by Gilbert et al. [2] breaks
RC6 (32, 14, 16) and the best correlation attack by
Knudsen and Meier [4] further enables a distin-
guisher and a key-recovery attack on RC6 (32, 15,
32). For a fraction of the keys called weak keys,
RC6 is vulnerable to a multiple linear attack up
to 18 rounds [6].
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RECIPIENT ANONYMITY

Recipient anonymity is achieved in a messaging
system if an eavesdropper picks up messages from
the communication line of a sender can—after
some time of monitoring the network—not tell
with better probability than pure guessing who
has eventually received the messages. During the
attack, the eavesdropper may listen on all commu-
nication lines of the network including those that
connect the potential senders to the network, he
may send and receive his own messages. It is clear
that all messages in such a network must be en-
crypted to the same length in order to keep the at-
tacker from distinguishing different messages by
their content or length. The anonymity set for any
particular message attacked by the eavesdropper
is the set of all network participants that will have
received a message within a certain time window
after the attacked message was sent. This time
window of course depends on latency characteris-
tics and node configurations of the network itself.

Recipient anonymity against computationally
unrestricted attackers can be achieved by broad-
cast, e.g., DC-Network [1, 4], by Mix-Network [4],
or by anonymous information retrieval [2]. Note
that recipient anonymity is weaker than recipient
unobservability, where the attacker cannot even
determine whether or not a participant has re-
ceived a (meaningful) message. Recipient unob-
servability can be achieved with either of the above
techniques by adding dummy traffic.

Gerrit Bleumer
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REED–MULLER CODES

It is well-known that any property of Reed–Muller
codes is a property of Boolean functions. Reed
Muller codes provide a natural way to quantify the
degree, the nonlinearity, the correlation-immunity
or the propagation characteristics of a Boolean
function [1]. On the other hand, Reed Muller
codes are an important class of error-correcting
codes, in particular they can be viewed as extended
cyclic codes. They play a crucial role in the study
of important families of cryptographic mappings,
such as permutations on finite fields.

Here, we present the multivariable definition of
Reed-Muller codes. More on Reed Muller codes can
be found in [2].

DEFINITION 1. Define {Fm
2 , +} as an ordered vector

space:

Fm
2 = {v0, v1, . . . , v2m−1}, (1)

where vi is an m-dimensional binary vector (often
onetakes vi as the binary representation of inte-
ger i ). The Reed-Muller code of length 2m and or-
der r, 0 ≤ r ≤ m, denoted by R(r, m), is the bi-
nary code of length 2m consisting of all codewords
( f (v0), f (v1), . . . , f (v2m−1)) where f is any Boolean
function of m variables whose algebraic degree is
less than or equal to r.

Note that R(0, m) corresponds to the set of con-
stant functions and that R(1, m) corresponds to
the set of functions which are affine or constant.

The rth order Reed–Muller code is usually con-
structed by using as basis the set of monomials
of degree at most r. One can interpret Fm

2 as an
m × 2m binary matrix, the ith row of which is the
sequence of values ofvariable xi evaluated for the
successive vectors vi . Thus, xi is in fact a Boolean
function over Fm

2 : for each j, xi(v j) equals the
ith symbol of vector v j. This function produces a
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unique codeword whose symbols are labelled with
respect to (1). For the sake of simplicity, we denote
by xi(v j) by xi, j.

Now, any monomial
∏

i∈I xi is, in the same way,
a Boolean function g satisfying for 0 ≤ j ≤ 2m − 1

g(v j) =
{

1, if xi, j = 1, for all i ∈ I,
0, otherwise.

In this way, a basis for R(r,m) can be obtained. An
explicit construction for m = 4 is presented in the
example below.

PROPOSITION 1. The set of monomials

xe1
1 xe2

2 · · · xem
m , ei ∈ {0, 1},

m∑
i=1

ei ≤ r,

is a basis of code R(r, m).

EXAMPLE. Construction of a generator matrix Gr
for each code R(r, 4), 0 ≤ r ≤ 4.

Matrix Gr is obtained by computing the code-
words produced by the monomials of degree less
than or equal to r , using Proposition 1. Observe
that G1 is a 5 × 16 matrix, G2 is a 11 × 16 matrix,
etc. Note also that the lines of G1 are the all-one
vector and the lines of matrix F4

2 (with the given
fixed order).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 G0

x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 G1

x3x4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
x2x4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
x1x4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
x2x3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
x1x3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
x1x2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 G2

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
x1x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
x1x2x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
x1x2x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 G3

x1x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 G4

Clearly, R(r, m) is a linear subspace of the 2m-
dimensional binary vector space. One can easily
verify that its dimension is 1 + m + · · · + (

m
r ). It

can also be shown (see [2]) that different code-
words inR(r, m) differ in at least 2m−r coordinates.
One says that R(r, m) has minimum distance 2m−r

(see Boolean functions).This proves:

PROPOSITION 2. The rth order Reed–Muller code
R(r, m), 0 ≤ r ≤ m, has length n = 2m, dimension
1 + m + · · · + (

m
r ) and minimum distance 2m−r .

Pascale Charpin
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REGISTRATION
AUTHORITY

In Public Key Infrastructure (PKI) solutions, the
most important procedural step is the identifica-
tion and registration of users in the system. This is
normally handled by so-called (Local) Registration
Authorities ((L)RA). There may be a number of
(L)RAs attached to a Certification Authority (CA),
and a typical role is to provide the CA with the
credentials of the user and possibly his public key
(see public key cryptography) through an authen-
ticated channel.

Peter Landrock

RELATED KEY ATTACK

The first attacks of this type were developed in-
dependently by Biham [1] and Knudsen [4] and
the notion of a related key attack was defined
by Biham [1]. The idea of the attack is that the
attacker knows (or chooses) a relation between
several keys and is given access to encryption
functions with such related keys. The goal of the
attacker is to find the keys themselves. If the re-
lation is known but cannot be changed by the at-
tacker, the attack is called a known related key;
and if the attacker may choose the relation, it
is called a chosen related key attack. The sce-
nario of the attack is very powerful in terms of
the attacker’s capabilities and thus quite unreal-
istic in practice. Still these attacks may be seen
as important certificational weaknesses for the
key-schedule of a cipher. A line of ciphers have
been shown to have weaknesses in this attack
scenario [2, 3], namely: IDEA, GOST, G-DES,
SAFER, Triple-DES, 3-WAY, Biham–Biryukov-
DES, CAST, DES-X, NewDES, RC2, and TEA. Re-
cently a new type of cryptanalytic attack called
slide attack has been developed. It can be viewed
as a variant of a related key attack, in which a



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 7, 2005 14:15

Resynchronization attack 519

relation of the key with itself is exploited. Slide
attacks are known plaintext or chosen plaintext
attacks and thus are more practical than related
key attacks since they do not require the attacker
to know relations between different encryption
keys.

Alex Biryukov
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RELATIVELY PRIME

Two integers n, x are relatively prime if they have
no common integer factors other than +1 and −1,
i.e., their greatest common divisor is 1.

Burt Kaliski

RELAY ATTACK

In a relay attack, a party, say Eve, will use the re-
source of a second party in an unauthorized way. A
typical example is related to e-mail. Suppose Eve
wants to send spam e-mail to lots of users, but does
not have the resources (e.g., bandwidth). She will
try to use Alice’s machine to have it send all this
e-mail. This may result in a denial-of-service
against Alice’s machine. Old mail servers allow
mail to be relayed.

Yvo Desmedt

REPLAY ATTACK

A replay attack is an attack in which the adversary
records a commumication session and replays the
entire session, or some portion of the session, at a
later point in time. The replayed message(s) may
be sent to the same verifier as the one that par-
ticipated in the original session, or to a different
verfier. The goal of the replay attack may be im-
personation (see impersonation attack), or it may
be some other deception (e.g., a successful proto-
col exchange to transfer money from A’s account
to B’s account may be replayed by B in an attempt
to transfer more money than A had intended).

Carlisle Adams
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RESPONSE

In a cryptographic identification scheme, a re-
sponse is the answer by a claimant to a question
posed by a verifier in a challenge–response proto-
col. More generally, a response is any answer to a
question or statement made by another party.

Carlisle Adams

RESYNCHRONIZATION
ATTACK

Synchronous stream ciphers require some proce-
dure for resynchronizing in the case of synchro-
nization loss. This opens doors to new attack
scenarios. A typical stream cipher encrypts the
stream in fixed data blocks, called frames (or pack-
ets) by keeping the same secret key for all the
frames but mixing the new initial value (IV) or
the frame-counter for each frame (see, e.g., the
A5/1 cipher). This allows for easy synchroniza-
tion as well as for the late entry mechanism in
the case of multi-party communication. On the
one hand, such mode of operation produces only
short streams for any fixed state which reduces the
chances of some attacks, but on the other hand, it
may open doors to new analysis techniques which



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 7, 2005 14:15

520 Rights management

will attack the resynchronization mechanism it-
self. Depending on the way IV and the key are
loaded and mixed into the state of the stream ci-
pher the scheme may be susceptible to differential,
linear, slide or other attacks. A typical resyn-
chronization attack on stream ciphers is given in
[3]. For more recent results on the subject see
[1, 2, 4, 5, 6].

Alex Biryukov
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RIGHTS MANAGEMENT

Rights management is a subset of general “au-
thorization data” management (see authorization
architecture) in which the data being managed are
rights associated with entities in an environment.
A right may be defined as follows [1]: “something
to which one has a just claim; the power or priv-
ilege to which one is justly entitled; the property
interest possessed under law or custom and agree-
ment in an intangible thing especially of a literary
and artistic nature”.

A Digital Rights Management (DRM) architec-
ture is an authorization architecture in which

the data being managed are rights, and the
components that enforce access control decisions
(the Policy Enforcement Points) are distributed
throughout the environment. In particular, a PEP
resides in each piece of local client equipment to
ensure that a client can only watch the movies,
play the games, listen to the music, and so on,
for which s/he has the appropriate rights. Further
information regarding DRM can be found at [2]
and [3].
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RIGHT-TO-LEFT
EXPONENTIATION

Many exponentiation methods have two variants:
one that examines exponents starting at the most
significant digit and going down to the least signif-
icant one, i.e., in left-to-right direction (assuming
big-endian notation); and a related one that ex-
amines exponents in the opposite direction, i.e.,
right-to-left. For specific methods, see the entries
on binary exponentiation, 2k-ary exponentiation,
and sliding window exponentiation. There is a
general duality between left-to-right and right-to-
left exponentiation (this is explained in [1], an-
swer to exercise 4.6.3-39] by representing addition
chains (see fixed-exponent exponentiation) as di-
rected multi-graphs such that reversing all arcs
turns one into another).

Bodo Möller
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RIJNDAEL/AES

After explaining the relation between Rijndael
and AES, we describe the features of Rijndael.
This is followed by the description of the Rijndael
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cipher structure, the round transformation and its
steps, and the key schedule.

RIJNDAEL AND AES: On October 2, 2000, the
US federal agency National Institute of Standards
and Technology (NIST) officially announced that
Rijndael would become the Advanced Encryption
Standard (AES). NIST chose Rijndael from a set
of 15 candidates after a 3-year public and fully
open selection and evaluation process. The choice
was motivated in an excellent 116-page report in
which they summarize all contributions and mo-
tivate the choice [4].

Both Rijndael and AES are block ciphers that
provide a mapping from plaintext blocks to ci-
phertext blocks and vice versa under a cipher key.
Rijndael supports all combinations of block
lengths and key lengths that are a multiple of 32
bits with a minimum of 128 bits and a maximum
of 256 bits. The Rijndael reference specification
can be found in [1, Appendix E]. AES is equal to
Rijndael limited to a block length of 128 bits and
supports for key length of 128, 192 or 256 bits. AES
is specified in [3].

FEATURES OF RIJNDAEL: The most important
feature of Rijndael is its consistent good perfor-
mance among a wide range of platforms.

On smartcards, Rijndael can be implemented
using less than 1 kbyte of code (tables included),
and using 36 bytes of memory. Since the text in-
put and the key take both 16 bytes, only 4 bytes
extra are required for temporary variables. On the
other hand, on high-end processors, Rijndael can
exploit cache and parallelism to achieve a signifi-
cant speedup.

In order to allow fast key setup times, Rijndael
has a lightweight key schedule. Fast key setup
times are important in systems that switch keys
often such as financial authorisation schemes or
IPsec security.

Along with its performance, Rijndael has shown
to have a high security margin with respect to all
types of cryptanalysis. Moreover, its structure and
choice of operations facilitates implementations
that are resistant against side channel attacks.

These features are a result of the application of
the following design principles:
Keep it simple: No complexity is added unless

there is a demonstrated need for it. The aim is
to have a design that is secure against known at-
tacks, without introducing new vulnerabilities.
There is no reason to go beyond that, i.e., to
add an excessive amount of extra layers of com-
plexity in the hope that this will provide extra
security.

Modularity: The design is composed of differ-
ent building blocks, or steps, each with their
own functionality. Building blocks are selected
according to specific quantitative selection
criteria.

Symmetry and parallelism: All steps can be
parallelized and act in a symmetrical way on
the input. The large degree of parallelism al-
lows to trade-off area for speed in a flexible way
in hardware implementations.

Choice of operations: All steps are defined with
operations in the finite field GF(28) and can
be implemented using XOR and table lookup
instructions only. The fact that no arithmetic
operations are used, saves space on hardware
platforms. The use of operations gives the pro-
grammer a lot of flexibility for implementing
platform-dependent optimizations on a wide
range of processors.
An important factor in the design of Rijndael

is the wide trail strategy. This strategy defines
diffusion and nonlinearity criteria for the build-
ing blocks of the cipher to provide high resistance
against differential and linear cryptanalysis in an
efficient way. For a detailed treatment, we refer to
[1, Chapter 9].

BLOCK CIPHER STRUCTURE: When encrypting,
the bytes of a plaintext block are mapped onto the
elements of a state, the state undergoes a transfor-
mation and the elements of the state are mapped
onto the bytes of a ciphertext block. Rijndael is a
key-iterated block cipher: the transformation from
plaintext to ciphertext can be seen as the repeated
application of an invertible round transformation,
alternated with the addition of round keys. The
number of rounds is denoted by Nr. An encryp-
tion consists of an initial key addition, denoted
by AddRoundKey, followed by Nr − 1 applications
of the transformation Round, and finally one ap-
plication of FinalRound.The initial key addition
and every round take as input the State and a
round key. The round key for round i is denoted by
ExpandedKey [i], and ExpandedKey[0] denotes
the input of the initial key addition. The deriva-
tion of ExpandedKey from the CipherKey is de-
noted by KeyExpansion. A high-level description
of Rijndael in pseudo-C notation is shown in List 1.

The number of rounds depends on the block
length and the key length. Let Nb be the block
length divided by 32 and Nk the length of the ci-
pher key divided by 32. Then we have:

Nr = max(Nk, Nb) + 6. (1)

The number of rounds was determined by consid-
ering the known types of cryptanalysis and adding
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Rijndael (State, CipherKey)

{
KeyExpansion(CipherKey, ExpandedKey);

AddRoundKey (State, ExpandedKey[0]);

for (i = 1; i < Nr ; i + +) Round (State,

ExpandedKey[i]);
FinalRound (State, ExpandedKey[ Nr]);

}

List 1. High-level algorithm for encryption with Rijn-
dael.

a security margin. For example, for a key length
and block length of 128 bits, the best shortcut at-
tack was on 6 rounds. We added 4 rounds result-
ing in Nr = 10. For a detailed treatment, we refer
to [1, Section 3.5]. The encryption and decryption
algorithms of Rijndael are not the same, but do
have the same structure. For a treatment of these
aspects, we refer to [1, Section 3.7].

THE ROUND TRANSFORMATION: The round
transformation is denoted Round, and is a se-
quence of four invertible transformations, called
steps. This is shown in List 2. The final round of
the cipher is slightly different: with respect to the
round transformation, the MixColumns step has
been removed. It is denoted FinalRound and also
shown in List 2. The steps are specified in the fol-
lowing subsections.

Representation

The state is a rectangular array of elements of
GF(28) of four rows and Nb columns.

In the specification of Rijndael, a byte with bits
b7b6b5b4b3b2b1b0 maps to an element in GF(28)
given by the following polynomial:

b(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3

+ b2x2 + b1x + b0. (2)

Round(State, ExpandedKey[i])
{
SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State,ExpandedKey[i]);
}
FinalRound(State,ExpandedKey[Nr])

{
SubBytes(State);

ShiftRows(State);

AddRoundKey(State,ExpandedKey[Nr]);

}

List 2. The Rijndael round transformation.
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Fig. 1. SubBytes acts on the individual bytes of the
state

where the coefficients bi are elements of GF(2) (i.e.,
bits). In this representation, addition consists of
addition of polynomials and multiplication corre-
sponds with multiplication of polynomials modulo

the following irreducible polynomial:

m(x) = x8 + x4 + x3 + x + 1. (3)

In the following of this chapter, we denote con-
stants in GF(28) by the hexadecimal notation of
the corresponding byte value. For example, 57 cor-
responds with bit string 01010111 and hence with
the polynomial x6 + x4 + x2 + x + 1.

The SubBytes Step

The SubBytes step is the only non-linear trans-
formation of the round. SubBytes is a bricklayer
permutation consisting of an invertible S-box ap-
plied to the elements of the state. Figure 1 il-
lustrates the effect of the SubBytes step on the
state.

The same S-box is used for all byte positions.
This is a design choice motivated by concerns of
simplicity and implementation cost.

The S-box is defined by the following function in
GF(28):

fRD(x) = 05 · x254 + 09 · x253 + F9 · x251

+ 25 · x247 + F4 · x239 + 01 · x223

+ B5 · x191 + 8F · x127 + 63.

(4)

The S-box was constructed as the composition of
two invertible mappings:
� Multiplicative inverse: to have the desired non-

linearity properties as required by the wide
trail strategy. This choice was inspired by
Nyberg [2].

� Affine mapping: to complicate the algebraic
expression without affecting the nonlinearity
properties. This was inspired by algebraic at-
tacks such as interpolation attacks.

In hardware and software the S-box can be im-
plemented as a look-up table with 256 entries. In
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Table 1. ShiftRows: shift offsets for different
block lengths

Block length C0 C1 C2 C3

128 0 1 2 3
160 0 1 2 3
192 0 1 2 3
224 0 1 2 4
256 0 1 3 4

hardware the area taken by an S-box can be re-
duced by exploiting the internal structure of the
S-box.

The ShiftRows Step

The ShiftRows step is a transposition that cycli-
cally shifts the rows of the state, each over a
different offset, as imposed by the wide trail
strategy.

Row 0 is shifted over C0 bytes, row 1 over C1
bytes, row 2 over C2 bytes and row 3 over C3
bytes. The shift offsets C2 and C3 depend on the
block length. The different values are specified
in Table 1. Figure 2 illustrates the effect of the
ShiftRows step on the state.

The MixColumns Step

The MixColumns step is a bricklayer permutation
operating on the state column by column.

The columns of the state are considered as poly-
nomials over GF(28) and multiplied modulo x4 + 1
with a fixed polynomial c(x):

c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. (5)

This polynomial has been selected as one of the
simplest polynomial that has a branch number
equal to 5. The branch number is a measure that
expresses the diffusion power of a mapping in the
context of the wide trail strategy. As illustrated in
Figure 3, the modular multiplication with a fixed
polynomial can be written as a matrix multiplica-
tion.

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

a

f

k

p

b

g

l

m

c

h

i

n

d

e

j

o

Fig. 2. ShiftRows operates on the rows of the state
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Fig. 3. MixColumns operates on the columns of the state

The polynomial c(x) is coprime to x4 + 1 and
therefore has an inverse modulo x4 + 1. The in-
verse polynomial d(x) is defined by

(03 · x3 + 01 · x2 + 01 · x + 02) · d(x) ≡ 01
(mod x4 + 1). (6)

This yields:

d(x) = 0B · x3 + 0D · x2 + 09 · x + 0E. (7)

In hardware implementations, these linear
maps can be efficiently hardwired. In software
implementations, table-lookups can be used to
efficiently exploit a wide range of processors.
On 32-bit processors, the sequence of the steps
SubBytes, ShiftRows and MixColumns can
be implemented by a single sequence of table
lookups.

The Key Addition

The key addition is denoted AddRoundKey. In this
transformation, the state is modified by adding
a round key to it. The addition in GF(28) corre-
sponds with the bitwise XOR operation.The round
key length is equal to the block length.

KEY SCHEDULE: The key schedule consists
of two components: the key expansion and the
round key selection. The key expansion speci-
fies how ExpandedKey is derived from the cipher
key.

The expanded key can be seen as a rectangu-
lar array with four rows of elements in GF(28).
The key expansion function depends on the key
length: there is a version for keys up to 224 bits
and a version for keys longer than 224 bits. For
their detailed specification, we refer to [1, Section
3.6]. In both versions of the key expansion, the
first Nk columns of the expanded key are filled
with the cipher key. The following columns are
computed recursively in terms of previously de-
fined columns. The recursion uses the elements
of the previous column, the bytes of the column
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Nk positions earlier, and round constants RC[j].
The round constants are independent of Nk and de-
fined by RC[ j] = x j−1. The recursive key expansion
allows on-the-fly computation of round keys on
memory-constrained platforms.

Joan Daemen
Vincent Rijmen
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RING

A ring R = (S, +, ×) is the extension of a group
(S, +) with an additional operation ×, subject to
the following additional axioms:
� Commutativity of +: For all x, y ∈ S, x + y =

y + x.
� Closure of ×: For all x, y ∈ S, x × y ∈ S.
� Associativity of ×: For all x, y, z ∈ S, (x × y) ×

z = x × (y × z).
� Distributivity of × over +: For all x, y, z ∈ S,

x × (y + z) = (x × y) + (x × z) and (x + y) × z =
(x × z) + (y × z).

In other words, a ring can be viewed as the exten-
sion of a commutative additive group with a
multiplication operation. The rings of interest
in cryptography generally also have an identity
element:
� Identity of ×: There exists a multiplicative

identity element, denoted 1, such that for all
x ∈ S, x × 1 = 1 × x = 1.

Let S∗ denote the elements that have a multiplica-
tive inverse; these are sometimes called the units

of the ring. (The additive identity 0 does not have a
multiplicative inverse. Nonzero elements that do
not have multiplicative inverses are called the zero
divisors of the ring.) Then (S∗, ×) is a group with
respect to the multiplication operation; it is called
the multiplicative group of the ring, or sometimes
the group of units.

A ring is commutative if the multiplicative group
is also commutative, i.e., for all x, y ∈ S, x × y =
y × x. (The additive group is always commutative
as noted above.)

The most common ring in public-key cryptog-
raphy is the ring of integers modulo a composite
number n. Here, the ring, denoted Zn, consists of
the set of integers (i.e., residue classes) modulo n
and the ring operations are modular addition and
multiplication (see modular arithmetic). The mul-
tiplicative group, denoted Z∗

n, consists of the in-
tegers relatively prime to the modulus n, and its
order is φ(n), where φ is Euler’s totient function.
For instance, if n = pq where p and q are distinct
primes, then φ(n) = (p− 1)(q − 1). It is easy to de-
termine φ(n) given the primes p and q and difficult
without them; this fact is one basis for the security
of the RSA problem.

See also field, finite field.

Burt Kaliski

RIPEMD FAMILY

The RIPEMD Family designates a family of five
different hash functions: RIPEMD, RIPEMD-128,
RIPEMD-160, RIPEMD-256, and RIPEMD-320
[1, 2]. They take variable length input messages
and hash them to fixed-length outputs. They all
operate on 512-bit message blocks divided into
sixteen 32-bit words. RIPEMD (later replaced by
RIPEMD-128/160) and RIPEMD-128 produce a
hash value of 128 bits, RIPEMD-160, RIPEMD-
256, and RIPEMD-320 have a hash result of
160, 256, and 320 bits, respectively. All the five
functions start by padding the message accord-
ing to the so-called Merkle–Damgård strength-
ening technique (see hash functions for more de-
tails). Next, the message is processed block by
block by the underlying compression function.
This function initializes an appropriate number
of 32-bit chaining variables to a fixed value to
hash the first message block, and to the inter-
mediate hash value for the following message
blocks.

In RIPEMD, RIPEMD-128, and RIPEMD-160,
two copies are made from the chaining variables,
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and both these sets of line variables are processed
independently by two parallel lines. Each step of
such a parallel line updates in turn one of the line
variables using a different message word Wx. After
16 steps all message words have been used once,
and are reused in the next 16 steps, but in a dif-
ferent order. This is repeated 3, 4 or 5 times de-
pending on the algorithm. In the last step, the ini-
tial values of the chaining variables are combined
with both sets of line variables to form the inter-
mediate hash value. When all consecutive mes-
sage blocks have been hashed, the last interme-
diate hash value is the hash value for the en-
tire message. RIPEMD-256 and RIPEMD-320 are
derived from RIPEMD-128 and RIPEMD-160, re-
spectively, by turning the line variables into chain-
ing variables and by replacing the combination of
line variables at the end by a simple feedforward
of the initial values of the chaining variables. In
addition the contents of two chaining variables be-
longing to different lines is exchanged after ev-
ery 16 steps. The following provides an overview
of RIPEMD-160, RIPEMD-128, and their twins
RIPEMD-320 and RIPEMD-256.

PADDING: The message is appended with a bi-
nary one and right-padded with a variable num-
ber of zeros followed by the length of the original
message (modulo 264) coded over two binary words.
The total padded message length must be a mul-
tiple of the message block size.

INITIAL VALUES: The RIPEMD Family uses up
to ten 32-bit initial values defined as follows:

IV0 = 67452301x IV5 = 76543210x
IV1 = EFCDAB89x IV6 = FEDCBA98x
IV2 = 98BADCFEx IV7 = 89ABCDEFx
IV3 = 10325476x IV8 = 01234567x
IV4 = C3D2E1F0x IV9 = 3C2D1E0Fx

RIPEMD-160 COMPRESSION FUNCTION:
Five 32-bit chaining variables h0, h1, h2, h3, h4 are
either initialized to the fixed values IV0 through
IV4 for the first 512-bit message block or to the
intermediate hash value for the following message
blocks. Let “Xn” represent the cyclic rotation of X
to the left by n bits, and let “+” represents addition

modulo 232. Then the compression function works
as follows:

A ← h0, A′ ← h0

B ← h1, B′ ← h1

C ← h2, C′ ← h2

D ← h3, D′ ← h3

E ← h4, E′ ← h4

for i = 0 to 79 do
T ← (A+ f i(B, C, D) + Wr (i) + Ki)si (r (i)) + E
T′ ← (A′ + f 79−i(B′, C′, D′) + Wr ′(i)

+K ′
i)

si (r ′(i)) + E′

A ← E, A′ ← E′

E ← D, E′ ← D′

D ← C10, D′ ← C′10

C ← B, C′ ← B′

B ← T, B′ ← T′

T ← h1 + C + D′

h1 ← h2 + D + E′

h2 ← h3 + E + A′

h3 ← h4 + A+ B′

h4 ← h0 + B + C′

h0 ← T

where the ordering of message words r (i) and r ′(i),
the non-linear functions f i , the shifts si , and the
constants Ki and K ′

i are defined as:
1. Ordering of the message words r(i) and

r′(i). Take the following permutation ρ:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ( j ) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Further define the permutation π by setting
π ( j) = (9 j + 5) mod 16. The ordering of the mes-
sage words r (i) and r ′(i) is then given by the
following table:

0 ≤ i ≤ 15 16 ≤ i ≤ 31 32 ≤ i ≤ 47 48 ≤ i ≤ 63 64 ≤ i ≤ 79

r (i) i ρ(i − 16) ρ2(i − 32) ρ3(i − 48) ρ4(i − 64)
r ′(i) π (i) ρπ (i − 16) ρ2π (i − 32) ρ3π (i − 48) ρ4π (i − 64)

2. Non-linear functions fi. Let “⊕”, “∨”, “∧”, and
“¬” represent, respectively, bit-wise exclusive-
or, bit-wise or, bit-wise and, and bit-wise com-
plement:

f i(x, y, z) = x ⊕ y ⊕ z, 0 ≤ i ≤ 15
f i(x, y, z) = (x ∧ y) ∨ (¬x ∧ z), 16 ≤ i ≤ 31
f i(x, y, z) = (x ∨ ¬y) ⊕ z, 32 ≤ i ≤ 47
f i(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), 48 ≤ i ≤ 63
f i(x, y, z) = x ⊕ (y ∨ ¬z), 64 ≤ i ≤ 79
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3. Shifts si( j)

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 ≤ i ≤ 15 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
16 ≤ i ≤ 31 12 13 11 15 6 9 9 7 12 15 11 13 7 8 7 7
32 ≤ i ≤ 47 13 15 14 11 7 7 6 8 13 14 13 12 5 5 6 9
48 ≤ i ≤ 63 14 11 12 14 8 6 5 5 15 12 15 14 9 9 8 6
64 ≤ i ≤ 79 15 12 13 13 9 5 8 6 14 11 12 11 8 6 5 5

4. Constants Ki and K ′
i .

0 ≤ i ≤ 15 16 ≤ i ≤ 31 32 ≤ i ≤ 47 48 ≤ i ≤ 63 64 ≤ i ≤ 79

Ki 00000000x 5A827999x 6ED9EBA1x 8F1BBCDCx A953FD4Ex

K ′
i 50A28BE6x 5C4DD124x 6D703EF3x 7A6D76E9x 00000000x

RIPEMD-128 COMPRESSION FUNCTION: The
main difference with RIPEMD 160 is that a hash
result and chaining variable of 128 bits (four 32-
bit words) is used and that there are only 64 steps.
Four 32-bit chaining variables h0, h1, h2, h3 are
either initialized to the fixed values IV0 through
IV3 for the first 512-bit message block or to the
intermediate hash value for the following message
blocks. Then the compression function works as
follows:

A ← h0, A′ ← h0
B ← h1, B′ ← h1
C ← h2, C′ ← h2
D ← h3, D′ ← h3
for i = 0 to 63 do

T ← (A+ f i(B, C, D) + Wr (i) + Ki)si (r (i))

T′ ← (A′ + f 63−i(B′, C′, D′) + Wr ′(i)

+K ′
i)

si (r ′(i))

A ← D, A′ ← D′

D ← C, D′ ← C′

C ← B, C′ ← B′

B ← T, B′ ← T′

T ← h1 + C + D′

h1 ← h2 + D + A′

h2 ← h3 + A+ B′

h3 ← h0 + B + C′

h0 ← T

where the ordering of message words r (i) and r ′(i),
the non-linear functions fi , the shifts si , and the
constants Ki and K ′

i are defined as in RIPEMD-
160, except that K ′

i = 00000000x for 48 ≤ i ≤ 63.

RIPEMD-320 COMPRESSION FUNCTION: Ten
32-bit chaining variables h0, h1, h2, h3, h4, h5, h6,
h7, h8, h9 are either initialized to the fixed val-
ues IV0 through IV9 for the first 512-bit message
block or to the intermediate hash value for the
following message blocks. Then the compression

function works as follows:

A ← h0, A′ ← h5
B ← h1, B′ ← h6
C ← h2, C′ ← h7
D ← h3, D′ ← h8
E ← h4, E′ ← h9
for i = 0 to 79 do

T ← (A+ f i(B, C, D) + Wr (i) + Ki)si (r (i))

E
T′ ← (A′ + f 79−i(B′, C′, D′) + Wr ′(i)

+ K ′
i)

si (r ′(i)) + E′

A ← E, A′ ← E′

E ← D, E′ ← D′

D ← C10, D′ ← C′10

C ← B, C′ ← B′

B ← T, B′ ← T′

if i = 15 then
T ← B, B ← B′, B′ ← T

else if i = 31 then
T ← D, D ← D′, D′ ← T

else if i = 47 then
T ← A, A ← A′, A′ ← T

else if i = 63 then
T ← C, C ← C′, C′ ← T

else if i = 79 then
T ← E, E ← E′, E′ ← T

h0 ← h0 + A, h5 ← h5 + A′

h1 ← h1 + B, h6 ← h6 + B′

h2 ← h2 + C, h7 ← h7 + C′

h3 ← h3 + D, h8 ← h8 + D′

h4 ← h4 + E, h9 ← h9 + E′

where the ordering of message words r (i) and r ′(i),
the non-linear functions f i , the shifts si , and the
constants Ki and K ′

i are defined as in RIPEMD-
160.

RIPEMD-256 COMPRESSION FUNCTION: The
main difference with RIPEMD 320 is that a hash
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result and chaining variable of 256 bits (eight 32-
bit words) is used and that there are only 64 steps.
Eight 32-bit chaining variables h0, h1, h2, h3, h4,
h5, h6, h7 are either initialized to the fixed values
IV0 through IV3 and IV5 through IV8 for the first
512-bit message block or to the intermediate hash
value for the following message blocks. Then the
compression function works as follows:

A ← h0, A′ ← h4
B ← h1, B′ ← h5
C ← h2, C′ ← h6
D ← h3, D′ ← h7
for i = 0 to 63 do

T ← (A+ f i(B, C, D) + Wr (i) + Ki)si (r (i))

T′ ← (A′ + f 63−i(B′, C′, D′) + Wr ′(i)

+K ′
i)

si (r ′(i))

A ← D, A′ ← D′

D ← C, D′ ← C′

C ← B, C′ ← B′

B ← T, B′ ← T′

if i = 15 then
T ← A, A ← A′, A′ ← T

else if i = 31 then
T ← B, B ← B′, B′ ← T

else if i = 47 then
T ← C, C ← C′, C′ ← T

else if i = 63 then
T ← D, D ← D′, D′ ← T

h0 ← h0 + A, h4 ← h4 + A′

h1 ← h1 + B, h5 ← h5 + B′

h2 ← h2 + C, h6 ← h6 + C′

h3 ← h3 + D, h7 ← h7 + D′

where the ordering of message words r (i) and r ′(i),
the non-linear functions f i , the shifts si , and the
constants Ki and K ′

i are defined as in RIPEMD-
160, except that K ′

i = 00000000x for 48 ≤ i ≤ 63.

RIPEMD: The original RIPEMD consists of es-
sentially two parallel versions of MD4, with some
improvements to the shifts and the order of the
message words; the two parallel instances differ
only in the round constants. At the end of the
compression function, the words of left and right
halves are added to each other and to the initial
values of the chaining variable.

SECURITY CONSIDERATIONS: The RIPEMD
Family has been designed to provide collision
resistance. RIPEMD was developed in 1992 in the
framework of the EC-RACE project RIPE [1]. In
1995, Dobbertin found collisions for reduced ver-
sions of RIPEMD [3]. Due to these partial attacks,
RIPEMD was upgraded in 1996 by Dobbertin

et al. to RIPEMD-128 (as plug-in substitute for
RIPEMD) and RIPEMD-160 [2]. At the same time,
the variants RIPEMD-256 and RIPEMD-320 were
introduced as well. An additional reason for the
introduction of RIPEMD-160 are brute force col-
lision search attacks. In [4], van Oorschot and
Wiener estimate that with a 10 million US$ ma-
chine collisions of MD5 can be found in 21 days
in 1994, which corresponds to 4 hours in 2004.
To counter such collision search attacks, hash val-
ues of at least 160 bits are required. RIPEMD-
128 and RIPEMD-160 are included in ISO/IEC
10118-3 [5].

Antoon Bosselaers
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RSA DIGITAL
SIGNATURE SCHEME

In the basic formula for the RSA cryptosys-
tem [30] (see also RSA Problem, RSA public-key
encryption), a digital signature s is computed on a
message m according to the equation (see modular
arithmetic)

s = md mod n, (1)

where (n, d) is the signer’s RSA private key. The
signature is verified by recovering the message m
with the signer’s RSA public key (n, e):

m = se mod n. (2)
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Though the meaning of the value m that is
signed with this formula has changed over the
years, the basic formula has remained the same
since it was introduced in 1977. The purpose
of this entry is to survey the main approaches
based on that formula, each of which can be re-
ferred to as an RSA digital signature scheme
(see also digital signature schemes for general
definitions).

In the definition just given, the value m is itself
the message. This is helpful for illustration, but
introduces a few challenges:
1. The set of messages that can be signed with the

basic formula is limited to the set of integers in
the range [0, n − 1]. A larger value of m could be
signed, but the value m mod n is all that would
be protected.

2. Some messages are quite easy to sign: for in-
stance, m = 0 always has the signature 0 re-
gardless of the signer’s private key, and simi-
larly for m = 1 and m = n − 1.

3. Every signature value s corresponds to some
message m by Equation (2). It is easy there-
fore to construct valid message-signature pairs
given only the signer’s public key by starting
with the signature value s (though the mes-
sages so obtained might not be anything mean-
ingful).

4. Finally, the signer’s willingness to provide sig-
natures on some messages can be exploited by
an opponent to obtain signatures on additional
messages. As one example, if the opponent
wants a signature on a message m but does not
want the signer to see m, the opponent can in-
stead ask to have the message m′ = mre mod n
signed, where r is a random value. Let s ′ be the
signature on m′, and let s = s ′r−1 mod n. Then s
is the signature on m. Though this property has
the benefit of enabling blind signatures, it also
presents an avenue for attack. More generally,
RSA signatures have a multiplicative property
that can be an advantage or a disadvantage de-
pending on the situation: given signatures on
messages m1 and m2, it is straightforward to
determine the signatures on any combination
of products of the form mi

1mj
2.

Due to the various concerns just described, RSA
digital signature schemes in practice are typically
constructed so that the value m is not the mes-
sage itself, but rather a message representative de-
rived from the message. This approach employs
four design principles that address the concerns
just noted:
� Large message space: The set of messages that

can be signed should be as large as possible. For
this reason, the value m is typically derived in

some way from the result of applying a hash
function to the actual message to be signed.

� Nontrivial message representative: Message
representatives such as 0 and 1 should be
avoided, or should be very unlikely. In some
schemes, this is accomplished by giving m a
“random” appearance; in others, just by some
padding.

� Sparse message representative space: Only a
small fraction of values of m should be valid
message representatives; this makes it un-
likely for that a random signature s will cor-
respond to a valid m. For this reason, the value
m generally has some structure that can be ver-
ified, and which is unlikely to occur at random.
Alternatively, if many values of m are valid,
then it should be difficult to find a message with
a given message representative.

� Non-multiplicativity: Multiplicative relation-
ships between signatures should be avoided.
Randomness or padding, and structure, both
help in this regard.

One of the earliest and simplest improvements
over the basic formula is to define the message
representative m as the hash of the message M
being signed, m = Hash(M). This meets the first
three design goals: messages of any length can be
signed; hash values such as 0 and 1 are very un-
likely; and, assuming the hash values are suffi-
ciently shorter than the modulus n, only a small
fraction of values of m will be valid hash values.

However, multiplicative relationships are still a
potential problem. In particular, if the hash output
is significantly shorter than the modulus (e.g., 160
bits vs. 1024 bits with today’s parameter sizes),
then it is possible to attack the signature scheme
by methods from index calculus. Although the op-
ponent cannot factor the modulus, the attacker
can readily factor the much shorter hash values.
From a sufficiently large set of signatures, the at-
tacker can thereby solve for the signatures on all
values m in a factor base by index calculus—and
from those construct the signature on any message
M for which Hash(M) is smooth with respect to
that factor base (see smoothness). (This approach,
observed in the design of the PKCS #1 specification
[14] discussed below, is an extension of an early
attack on the RSA cryptosystem by Desmedt and
Odlyzko [7].)

On the other hand, if the hash value is as long as
the modulus n, then factoring the hash value is as
hard as factoring the modulus, so the attack just
described is not a concern. This is the basis for the
Full Domain Hash (FDH) scheme of Bellare and
Rogaway [2]. In fact, FDH turns out to have an ad-
ditional security benefit, which is that it is possible



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 7, 2005 14:15

RSA digital signature scheme 529

in the random oracle model to obtain a proof that
the signature scheme is as difficult to break, as
the RSA Problem is to solve. (Recall that the RSA
Problem is to solve for x such that y = xe mod n,
given y, n and e, where the target value y is ran-
dom.) It is instructive to explore that proof briefly,
as it is a good example of the modern design of
cryptographic schemes that has resulted from the
insights of Bellare and Rogaway and other con-
temporary researchers.

In the proof, the attacker is assumed to have the
ability to do the following:
� Obtain signatures from the actual signer on

some number of chosen messages M.
� Evaluate the hash function on some number of

chosen messages M.
The underlying hash function is modeled as a ran-
dom oracle, meaning that the attacker’s probabil-
ity of success is taken over a random choice of hash
function. Accordingly, it is not enough that the at-
tack works well for some hash function; rather,
it must work well, on average, for any (theoret-
ical) hash function. This is a strong assumption
on the attack, but a reasonable starting point for
analysis.

The attacker’s goal is to produce a new signature
s′ on a new message M′, and to be able to do so in a
reasonable amount of time with high probability.

Suppose now that there is such an attacker, rep-
resented by an algorithm A. In the proof, this al-
gorithm A is transformed to a second algorithm B
that breaks the RSA Problem in a similar amount
of time and probability. The “reduction” (see
computational complexity) from B to A takes ad-
vantage of the fact that the hash function is a black
box, so the attacker cannot look inside. Accord-
ingly, it is possible to “simulate” both the signer
and the hash function so that they appear to be
actual ones to the algorithm A, but such that when
algorithm A forges the signature, it will in fact be
solving an instance of the RSA Problem.

The reduction employs a table that has a
signature-hash entry for each message, and goes
something like this:
1. When the attacker asks to obtain a signature on

a message M, the simulated signer first looks
in the table to see if there’s an entry for the
message. If so, the signature part of that entry
is returned. If not, see Step 3 below.

2. When the attacker asks to evaluate the hash
function on a message M, the “simulated” hash
function likewise first looks and returns the
hash part of an entry, if there is one. If not, see
Step 3 next.

3. In either case, if there isn’t an entry for the mes-
sage, then a new one is created. First, a random

signature s is generated. Second, a mes-
sage representative m = se mod n is computed.
Third, the pair (m, s) is entered in the table as
the hash-signature pair for the message M. Fi-
nally, the hash or signature is returned accord-
ing to the attacker’s request.
This simulation looks just like an actual signer

and random hash function, because the hash
value for a given message is random (since s is ran-
dom), and the hash-signature pair for each mes-
sage is internally consistent. Thus, an attacker
will be just as successful when interacting with
this simulation, as in the actual environment. But
notice that the simulation doesn’t need the actual
signer’s private key. So the simulator, combined
with the algorithm A, produces another algorithm
B, also independent of the actual signer’s private
key, which can then be applied to solve the RSA
Problem.

In order to produce a forged signature on some
message other than by accident, the attacker has
to ask for the hash of the message. Otherwise,
since the hash value is random, the probability
that the signature will match is 1/n, i.e., essen-
tially 0. Since this signature is a forgery and FDH
is deterministic, though, the attacker can’t also
ask for a signature on the same message. This
means that there will be at least one message that
the attacker asks to be hashed, but doesn’t ask to
be signed.

The one extra message gives the simulator an
opportunity to embed an instance of the RSA Prob-
lem into the hash value. This is done with a small
change to Step 2 above. In particular, at one, ran-
domly selected time during the interaction with
the attacker, instead of constructing a new entry,
the step returns, as the hash value on that mes-
sage, the target value y for the RSA Problem to
be solved. Now, if the attacker also asks for a sig-
nature on the same message, the simulation will
fail. But if the attacker produces a new signature
on that message—a forgery—then the signature
will be the solution to the RSA Problem on y!

Algorithm B is thus able to solve the RSA Prob-
lem whenever algorithm A produces a forgery, pro-
vided that the hash value involved in the forgery
is the one selected by the simulator (and Algo-
rithm A uses the hash value, rather than guess-
ing the signature). Suppose algorithm A succeeds
with probability εA in time TA, and asks for at
most Q messages to be hashed. Then algorithm
B succeeds with probability at least (εA − 1/n)/Q
in time just slightly more than TA. Conversely,
this means that if there is no algorithm for solv-
ing the RSA Problem that succeeds with proba-
bility greater than εB in time TB, then there is no
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algorithm for forging signatures with probability
greater than εBQ + 1/n in time TB.

Since in practice an attacker can run a hash
function a very large number of times, the ratio
between the probabilities εA and εB may be quite
large. Thus, the security proof itself may not imply
as great a minimum difficulty as one might desire
for forging FDH signatures, at least for typical pa-
rameter sizes. For instance, if one believes that
the probability of breaking the RSA problem in a
certain amount of time is at most 2−80, and that
an attacker can run the hash function 264 times,
then the proof only shows that the probability of
forgery is at most about 2−16. This doesn’t mean
that there’s an algorithm that is this successful; it
just means that such an algorithm can’t be ruled
out by the proof itself. Still, the line of reasoning is
better than for “ad hoc” designs, where there is no
clear connection between the difficulty of forgery
and the RSA Problem.

The reason that the reduction for FDH is so
“loose” (i.e., the ratio is so high) is that the sim-
ulator is able to embed the RSA Problem into only
one hash value. Another scheme by the same au-
thors, the Probabilistic Signature Scheme (PSS)
[3], overcomes this limitation by introducing a ran-
dom value (called a seed, which plays a role similar
to salt) into each signature operation. As a result,
each signature is independent of previous hash op-
erations, so each hash value can embed a separate
instance of the RSA Problem.

In PSS, the probability of success for breaking
the RSA Problem is about the same as the proba-
bility for forging signatures, which is the best se-
curity reduction one can achieve.

(Some improvement in the security reduction for
FDH can be obtained by a better proof technique,
as Coron has shown [4]. Coron also gives a very
careful analysis of the effect of the size of the salt
on the reduction in PSS.)

In addition to the tight security proof, PSS has a
second advantage: It has a simple variant, called
PSS-R, that provides message recovery. In PSS-R,
part or all of the message can be carried in the mes-
sage representative in addition to the hash value.
This is a return to the goal of the original formula,
but with stronger security properties.

For the long term, PSS and PSS-R may well pre-
vail as the most common RSA signature schemes,
and they are found in newer standards such as
PKCS #1 v2.1 [15], ISO/IEC 9796-2 [12] and the
forthcoming IEEE P1363a [10]. However, in the
short term, other signature schemes are better
established. The most common today in prac-
tice is the PKCS #1 v1.5 scheme, introduced in
1991 in the first set of Public-Key Cryptography

Standards from RSA Laboratories [14]. The
scheme has an ad hoc design where the message
representative is constructed from a hash value
with simple padding. On the one hand, no practical
attack has been developed on this scheme, though
some specially constructed cases have been shown
to have weaknesses (see [6]). On the other hand,
no security proof is available either, and it seems
unlikely that one would be developed. Thus, like
primitives from symmetric cryptography, the secu-
rity of the scheme depends on resistance against
specific attacks rather than a security reduction
from a hard problem.

Another scheme today, found more in standards
documents than in practice, is the scheme in ANSI
X9.31 [1], which is also in ISO/IEC 14888-3 [13]. (A
variant with message recovery is in ISO/IEC 9796-
2 [12].) This scheme also has an ad hoc design with
similar security properties to PKCS #1 v1.5.

An early scheme with message recovery can be
found in ISO/IEC 9796-1 [11]. The scheme is par-
ticularly attractive for implementation since no
hash function is involved. However, the scheme
has turned out to be vulnerable to attack in some
cases, as shown by Grieu [9] and in drafts cir-
culated by Coppersmith, Halevi and Jutla. The
standard has since been withdrawn. (Not all im-
plementations of the standard are affected by the
attacks; in particular, implementations where the
message being signed and “recovered” is itself a
hash value are not affected.)

Some of the RSA signature schemes men-
tioned also have variants based on the Rabin
cryptosystem; this is true of the schemes in ANSI
X9.31 and the various ISO/IEC documents, as
well as PSS and PSS-R, though not the PKCS
#1 v1.5 scheme. The variants based on the Ra-
bin cryptosystem have the advantage that they
allow the public exponent e = 2, so that signa-
ture verification is very efficient; but on the other
hand some extra steps are required due to the
fact that not every message representative m may
have a square root modulo n. (See Rabin digital
signature scheme for further discussion.)

A complementary approach to the schemes just
described, which is primarily of research interest
so far, is to derive the public exponent e itself from
the message, where the value m is fixed within
the public key. The advantage of this approach, de-
scribed by Gennaro et al. [8], is that it is possible to
obtain a tight security proof in the standard model,
where the hash function is only assumed to have a
certain “division-intractability” property—it does
not need to be modeled as a random oracle. The
difficulty of forging a signature can be shown to
be closely related to the Strong RSA Assumption
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(see again RSA Problem). (Note though that the
initial analysis needed some improvements [5].)
A related approach is presented by Vanstone and
Qu [17]; in their approach, both e and m may be
derived from the message.

Burt Kaliski
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RSA FACTORING
CHALLENGE

Starting in 1991, RSA Data Security offered a set
of “challenges” intended to measure the difficulty
of integer factoring. The challenges consisted of
a list of 41 RSA Numbers, each the product of
two primes of approximately equal length, and an-
other, larger list of Partition Numbers generated
according to a recurrence.

The first five of the RSA Numbers, ranging from
100 to 140 decimal digits (330–463 bits), were fac-
tored successfully by 1999 (see [2] for details on
the largest of these). An additional 512-bit (155-
digit) challenge number was later added in view
of the popularity of that key size in practice; it was
also factored in 1999 [3].

In addition to the formal challenge numbers, an
old challenge number first published in August
1977, renamed ‘RSA-129’, was factored in 1994 [1].

The Quadratic Sieve was employed for the num-
bers up to RSA-129, and the Number Field Sieve
for the rest. The work factor in MIPS-years, sum-
marized in Table 1, was roughly in line with expec-
tations for these methods as techniques steadily
improved. It is noteworthy that the effort for
RSA-130, taking advantage of the Number Field
Sieve, was less than that for RSA-129.

Cash prizes of more than US $50,000 have been
awarded to the winners over the duration of the
contest.
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Table 1. Results of the RSA factoring challenge
(QS = quadratic sieve; NFS = number field sieve);
adapted from [4]

Number Bits Year Method MIPS-Years

RSA-100 330 1991 QS 7
RSA-110 364 1992 QS 75
RSA-120 397 1993 QS 830
RSA-129 426 1994 QS 5000
RSA-130 430 1996 NFS 1000
RSA-140 463 1999 NFS 2000
RSA-155 512 1999 NFS 8000
RSA-160 530 2003 NFS Not given
RSA-576 576 2003 NFS Not given

The current RSA Factoring Challenge has num-
bers from 576 to 2048 bits. As of this writing
only the first challenge number, RSA-576, has
been factored. (The numbers in the current chal-
lenge are designated by their length in bits rather
than decimal digits.) See http://www.rsasecurity
.com/rsalabs/challenges/ for more information.

Burt Kaliski
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RSA PROBLEM

INTRODUCTION: In RSA public-key encryption
[30], Alice encrypts a plaintext M for Bob using

Bob’s public key (n, e) by computing the ciphertext

C = Me (mod n), (1)

where n, the modulus, is the product of two or
more large primes, and e, the public exponent, is
an (odd) integer e ≥ 3 that is relatively prime to
φ(n), the order of the multiplicative group Z ∗

n. (See
also Euler’s totient function, modular arithmetic
for background on these concepts.)

Bob, who knows the corresponding RSA pri-
vate key (n, d), can easily decrypt, since de = 1
(mod φ(n)) implies that

M = Cd (mod n). (2)

An adversary may learn C by eavesdropping,
and may very well also know Bob’s public key;
nonetheless such an adversary should not be able
to compute the corresponding plaintext M.

One may formalize the task faced by this adver-
sary as the RSA Problem:

The RSA Problem: Given an RSA public key
(n, e) and a ciphertext C = Me (mod n), to compute
M.

To solve the RSA Problem an adversary, who
doesn’t know the private key, must nonetheless
invert the RSA function.

The RSA Assumption is that the RSA Prob-
lem is hard to solve when the modulus n is suf-
ficiently large and randomly generated, and the
plaintext M (and hence the ciphertext C) is a ran-
dom integer between 0 and n − 1. The assumption
is the same as saying that the RSA function is a
trapdoor one-way function (the private key is the
trapdoor).

The randomness of the plaintext M over the
range [0, n − 1] is important in the assumption. If
M is known to be from a small space, for instance,
then an adversary can solve for M by trying all
possible values for M.

The RSA Problem is the basis for the secu-
rity of RSA public-key encryption as well as
RSA digital signature schemes.

See also surveys by Boneh [10] and Katzen-
beisser [24].

RELATIONSHIP TO INTEGER FACTORING:
The RSA Problem is clearly no harder than
integer factoring, since an adversary who can fac-
tor the modulus n can compute the private key
(n, d) from the public key (n, e).

However, it is not clear whether the converse
is true, that is, whether an algorithm for integer
factoring can be efficiently constructed from an al-
gorithm for solving the RSA Problem.

Boneh and Venkatesan [9] have given evidence
that such a construction is unlikely when the
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public exponent is very small, such as e = 3 or 17.
Their result means that the RSA Problem for very
small exponents could be easier than integer fac-
toring, but it doesn’t imply that the RSA Problem
is actually easier, i.e., efficient algorithms are still
not known. For larger public exponents, the ques-
tion of equivalence with integer factoring still open
as of this writing.

RECOVERING THE PRIVATE KEY: Clearly, if the
adversary could compute Bob’s private key (n, d)
from his public key (n, e), then the adversary could
decrypt C using Equation (2).

However, de Laurentis [15] and Miller [27] have
shown that computing an RSA private key (n, d)
from the corresponding RSA encryption key (n, e)
is as hard as factoring the modulus n into its prime
factors p and q. As already noted, given the factors
p and q, it is easy to compute d from e, and con-
versely there is a probabilisitic polynomial-time
algorithm which takes as input n, e, and d, and
which factors n into p and q. (See also Fact 1 in
Boneh [10].)

If the modulus n was chosen as the product
of two “sufficiently large” randomly-chosen prime
numbers p and q, then the problem of factoring n
appears to be intractable. Thus, the private expo-
nent d is protected from disclosure by the difficulty
of factoring the modulus n.

An adversary might also try to compute
d using some method of solving the discrete
logarithm problem. For example, an adversary
could compute the discrete logarithm of M to the
base Me (mod n). If d is too small (say, less than
160 bits), then an adversary might be able to re-
cover it by the baby step-giant step method.

Even if d is too large to be recovered by discrete
logarithm methods, however, it may still be at risk.

For example, Wiener [33] has shown that if the
secret exponent is less than n1/4/3, an adversary
can efficiently compute d given n and e. An
improved bound of n0.292 has been presented by
Boneh and Durfee [8] (see Wiener, Doneh-Durfee
and May attacks on the RSA public key crypto-
system).

However, it does appear to be the case that if
the RSA parameters were chosen large enough,
then the adversary cannot solve the RSA Prob-
lem by computing the private RSA exponent of the
recipient.

SELF-REDUCIBILITY: It is conceivable that
someone could devise a clever procedure for solv-
ing the RSA Problem without factoring the mod-
ulus n or determining the private key d. An ad-
versary might, for example, have a procedure that

decrypts a small fraction of “weak” ciphertexts.
However, the RSA procedure enjoys a certain kind
of “self-reducibility”, since it is multiplicative:

(MR)e = Me Re (mod n).

An adversary can transform a given ciphertext
Me into another one (MR)e by multiplying it by
the encryption Re of a randomly chosen element
R of Z∗

n. Since the result has a chance of being a
“weak” ciphertext, it follows that if there is an ad-
versarial procedure A that can decrypt a fraction
ε of ciphertexts, then there is another (random-
ized) adversarial procedure A′ that can decrypt
all ciphertexts in expected running time that is
polynomial in the running time of A, in 1/ε, and
in log n (see polynomial time). (See Motwani and
Raghavan [28, Section 14.4].)

Self-reducibility is a double-edged sword. On the
one hand, it provides assurance that “all” random
ciphertexts are equally hard to invert. This prop-
erty has been helpful in the security proofs for sev-
eral public-key encryption and signature schemes
based on the RSA Problem. On the other hand,
self-reducibility provides an avenue for an adver-
sary to gain information about the decryption of
one ciphertext from the decryption of other cipher-
texts (see “chosen ciphertext attacks”) below.

LOW PUBLIC EXPONENT RSA: A user of the
RSA cryptosystem may reasonably wish to use a
public exponent e that is relatively short: common
choices are e = 3 or e = 216 + 1 = 65537. Using a
short public exponent results in faster public-key
encryption and faster public-key signature verifi-
cation. Does this weaken RSA?

If the public exponent is small and the plaintext
M is very short, then the RSA function may be
easy to invert: in particular, if M <

e
√

N, then C =
Me over the integers, so M can be recovered as
M = e

√
C.

Håstad [22] shows that small public exponents
can be dangerous when the same plaintext is sent
to many different recipients, even if the plaintext
is “padded” in various (simple) ways beforehand.

Coppersmith et al. [12] give a powerful “related
messages” attack, which is effective when the pub-
lic exponent is small, based on the LLL algorithm
[25] for lattice reduction.

Because of these concerns, small public ex-
ponents are sometimes avoided in industry
standards and in practice. However, the concerns
can also be addressed with appropriate padding
schemes (see “chosen ciphertext attacks” below),
provided they are correctly implemented. For dig-
ital signature schemes, small public exponents are
generally not an issue.
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STRONG RSA ASSUMPTION: The Strong RSA
Assumption was introduced by Barić and Pfitz-
mann [3] and by Fujisaki and Okamoto [18] (see
also [13]).

This assumption differs from the RSA Assump-
tion in that the adversary can select the public ex-
ponent e. The adversary’s task is to compute, given
a modulus n and a ciphertext C, any plaintext M
and (odd) public exponent e ≥ 3 such that C = Me

(mod n). This may well be easier than solving the
RSA Problem, so the assumption that it is hard
is a stronger assumption than the RSA Assump-
tion. The Strong RSA Assumption is the basis for
a variety of cryptographic constructions.

BIT-SECURITY OF RSA ENCRYPTION: It is con-
ceivable that RSA could be “secure” in the sense
that the RSA Assumption holds (i.e., RSA is hard
to invert), yet that RSA “leaks” information in that
certain plaintext bits are easy to predict from the
ciphertext. Does RSA provide security to individ-
ual bits of plaintext?

Goldwasser et al. [21] first studied the bit-
security of RSA, showing that an adversary who
could reliably extract from a ciphertext the least
signficant bit (lsb) of the plaintext would in fact
be able to decrypt RSA efficiently (i.e., obtain the
entire plaintext efficiently).

This line of research was pursued by other re-
searchers. For example, Vazirani and Vazirani
[32]) showed that the adversary could still decrypt
even with an lsb procedure that was only 0.732 + ε

accurate. They also showed that the low-order
log(log(n)) bits of plaintext are 3/4 + ε secure.

Chor and Goldreich [11] improved this result to
show that the least-significant bit of RSA plaintext
cannot be predicted with probability better than
1/2 + 1/poly(log(n)) (under the RSA Assumption).
Alexi et al. [1, 2] completed this result to show that
the least-significant log(log(n)) bits are secure in
the same sense. (Fischlin and Schnorr [17] provide
a simpler and tighter proof of this result.)

Håstad and Näslund [23] have shown that all
of the plaintext bits are well-protected by RSA, in
the sense that having a nontrivial advantage for
predicting any one plaintext bit would enable the
adversary to invert RSA completely.

The results about bit-security of RSA gener-
ally involve a reduction technique (see computa-
tional complexity), where an algorithm for solv-
ing the RSA Problem is constructed from an al-
gorithm for predicting one (or more) plaintext
bits. Like self-reducibility, bit-security is a double-
edged sword. This is because the security re-
ductions also provide an avenue of attack on a
“leaky” implementation. If an implementation of
an RSA decryption operation leaks some bits of

the plaintext, then an adversary can potentially
solve the RSA Problem for any ciphertext just
by observing the implementation’s behavior on
some number of other ciphertexts. Such attacks
have been described by Bleichenbacher [7] and by
Manger [26].

CHOSEN CIPHERTEXT ATTACKS: An adversary
may be able to decrypt an RSA ciphertext C if
he can obtain decryptions (e.g., from the legiti-
mate recipient) of other ciphertexts C1, C2, . . . , Ck
(which may or may not be related to C). Such
attacks are known as chosen ciphertext attacks
(CCA1 and CCA2, depending on whether the Cis
are allowed to depend upon C (of course they can’t
be equal to C)); see Bellare et al. [4] for details.

(The attacks related to bit-security are a special
case of chosen-ciphertext attacks in which the ad-
versary only obtains partial information about the
decryption, not the full plaintext.)

Davida [14] first studied chosen ciphertext at-
tacks for RSA, utilizing the multiplicative prop-
erty of RSA.

Desmedt and Odlyzko [16] provided another
chosen ciphertext attack, based on obtaining the
decryption of many small primes.

To defeat chosen ciphertext attacks, researchers
have turned to (possibly randomized) “padding”
schemes that (reversibly) transform a plaintext
before encryption.

One such proposal is Optimal Asymmetric En-
cryption Padding (OAEP) [5] which has been
proven secure for chosen ciphertext attacks by
Fujisaki et al. [19] under the RSA assumption.
Other proposals that also avoid chosen ciphertext
attacks have better security properties [29, 31].
See also RSA public-key encryption for related
discussion.

Chosen-ciphertext attacks on digital sign-
ature schemes are the analogue to chosen cipher-
text attacks on public-key encryption, and various
padding shemes have been developed to defeat
them as well, such as the Probabilistic Signature
Scheme (PSS) of Bellare and Rogaway [6] and
the scheme of Gennaro et al. [20]. See also RSA
digital signature scheme.

CONCLUSIONS: The RSA Problem is now over a
quarter century old. The elegant simplicity of the
problem has led to numerous observations over
the years, some yielding attacks, others avoid-
ing them. Public-key encryption schemes and digi-
tal signature schemes have been developed whose
strength is derived fully from the RSA Problem.
The remaining open question, still, is how closely
the security of the RSA Problem depends on in-
teger factoring, and as with any hard problem in
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cryptography, whether any methods faster than
those currently available for solving the problem
will ever be discovered.

Ronald L. Rivest
Burt Kaliski
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RSA PUBLIC-KEY
ENCRYPTION

TRAPDOOR ONE-WAY PERMUTATIONS: A one-
way function is a function f that anyone can com-
pute efficiently, however inverting f is hard. Such
a primitive is the basis of modern cryptogra-
phy, and relies on the open problem P vs. NP
(see computational complexity). As a consequence,
any NP-complete problem should lead to such a
one-way function candidate. Unfortunately, NP-
complete problems are not so convenient for cryp-
tographic applications, because either they are
hard to solve for very large instances only, or very
few instances are hard but the problem is easy
on average. Furthermore, such a primitive is not
enough for public-key encryption.

A trapdoor one-way permutation primitive (see
also substitutions and permutations) is a permu-
tation f onto a set X that anyone can compute ef-
ficiently; however inverting f is hard unless one
is also given some “trapdoor” information. Given
the trapdoor information, computing g the inverse
of f becomes easy. Naively, a trapdoor one-way
permutation defines a simple public-key encryp-
tion scheme (see public key cryptography): the de-
scription of f is the public key and the trapdoor,
or equivalently the inverse permutation g, is the

secret key. As a consequence, in order to send a
message m ∈ X to the owner of the public key f,
one computes c = f (m). The recipient is the only
one to know the trapdoor, and thus the only one
able to compute m = g(c).

NUMBER THEORY: A first simple candidate that
may come to mind as a one-way function, except
NP-complete problems, is integer multiplication:
while it is easy to multiply two prime integers p
and q to get the product n = p · q, there is no easy
way to get back p and q from n. Indeed, the prod-
uct of two integers p and q of similar bit-size k just
requires a quadratic amount of time in k. How-
ever, the factorization of any integer n, which con-
sists of either writing n as a product of prime num-
bers n = �pvi

i —which decomposition is unique up
to a permutation of the factors—or just extracting
one factor, is much more intricate. Factorization
is indeed believed to be a quite difficult problem
(see integer factorization), especially for products
of two primes of similar sizes larger than 384 bits
each.

Unfortunately, integer multiplication is just
one-way. And no trapdoor can make inversion eas-
ier. However, some algebraic structures are based
on the factorization of an integer n, where some
computations are difficult without the factoriza-
tion of n, but easy with it: in the finite quotient
ring Zn = Z/nZ (see modular arithmetic), one can
easily compute basic operations (equality test, ad-
dition, subtraction or multiplication). About inver-
sion, Bézout’s theorem gives a theoretical result,
while the extended Euclidean algorithm gives the
constructive version, since it explicitly computes
u and v:

THEOREM 1. (Bézout). Let a and n be two integers,
then there exist u, v ∈ Z such that au + nv = 1 if
and only if gcd(a, n) = 1.

As a consequence, for any a ∈ Zn, a is invert-
ible if and only if a is coprime to n and, the
extended Euclidean algorithm efficiently provides
the inverse u. Furthermore, the following corol-
lary comes from the fact that a prime number is
co-prime with any positive integer, less than itself:

COROLLARY 1. The integer p is a prime ⇔ the ring
Zp is a field.

Therefore, the multiplicative group Z
∗
p of the in-

verses modulo the prime p contains all the non-
zero elements. When n is not a prime, Zn is not
a field, but the Chinese Remainder Theorem pro-
vides the structure of Zn, with an explicit isomor-
phism of rings:
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THEOREM 2. (Chinese Remainder Theorem). Let
n = m1m2 be a composite integer, where
gcd(m1, m2) = 1. Then the ring Zn is isomorphic
to the product ring Zm1 × Zm2 .

About the multiplicative group Z
∗
n, one gets the

following corollary:

COROLLARY 2. Let n = m1m2 be a composite inte-
ger, where gcd(m1, m2) = 1.

(Z∗
n, ×) � (Z∗

m1
, ×) × (Z∗

m2
, ×).

The well-known Euler’s Totient Function ϕ(n) is
defined by the cardinality of the multiplicative
group Z

∗
n. Thanks to the Chinese Remainder The-

orem, and in the above corollary, this function is
weakly multiplicative, which means:

gcd(m1, m2) = 1 ⇒ ϕ(m1, m2) = ϕ(m1)ϕ(m2).

Since ϕ(pv) = pv − pv−1 for any prime p and any
valuation v ≥ 1, one can deduce that for any inte-
ger n

n =
	∏
1

pvi
i ⇒ ϕ(n) = n ×

	∏
1

(
1 − 1

pi

)
.

THEOREM 3. The computation of ϕ(n) is polynomi-
ally equivalent to the factorization of n.

PROOF. It is clear that the factorization of n easily
leads to the value of ϕ(n) with the above formula.
Furthermore, Miller’s algorithm [10] outputs the
factorization of any n, given a multiple of ϕ(n)

MODULAR POWERS AND ROOTS: In any group
(denoted multiplicatively), the power to a scalar c
can be performed with a linear complexity in the
size k of this scalar, using the square-and-multiply
technique (see also exponentiation algorithms):

xc = x
i=k
i=0 ci2i =

i=k∏
i=0

xci×2i =
i=k∏
i=0

xci
i ,

where x0 = x and xi = x2
i−1,

where c0, c1, . . . , ck denotes the binary expansion
of c. On the other hand, root-extraction (see
modular root) does not admit any generic algo-
rithm, unless the order of the group is known. In-
deed, the classical Lagrange’s theorem provides a
solution:

THEOREM 4. (Lagrange’s Theorem). Let G be any
group, and c its cardinality, for any element x ∈
G, xc = 1.

This theorem applied to the particular situation
of the multiplicative group Z

∗
n becomes:

THEOREM 5. (Euler’s Theorem). Let n be any inte-
ger, for any element x ∈ Z

∗
n, xϕ(n) = 1 mod n.

Therefore, for any integer e relatively prime to
ϕ(n), and any x ∈ Z

∗
n, if one takes d = e−1mod ϕ(n)

which means that there exists an integer k ∈
Z such that ed + kϕ(n) = 1 and the values of d
(and k) can be easily computed with the extended
Euclidean algorithm, then

(xe)d = xed = x1−kϕ(n) = x · (xϕ(n))−k = x mod n.

As a consequence, y = xd mod n is the eth root of
x in Z

∗
n.

As previously seen, the eth power can be easily
computed using the square-and-multiply method.
The above relation allows to easily compute eth
roots, by computing dth powers, where ed =
1 mod ϕ(n). However, to compute eth roots, one
requires to know an integer d such that ed =
1 mod ϕ(n). And therefore, ed − 1 is a multiple of
ϕ(n) which is equivalent to the knowledge of the
factorization of n. This provides a trapdoor one-
way permutation fn,e whose inverse gn,d requires
the knowledge of d, or equivalently the factoriza-
tion of n:

fn,e : x �→ xe mod n, gn,d : y �→ yd mod n.

THE RSA PRIMITIVE

The RSA Problem

In 1978, Rivest et al. [14] defined the following
problem.

DEFINITION 1. (The RSA Problem). Let n = pq be
the product of two large primes and e an integer
relatively prime to ϕ(n). For a given y ∈ Z

∗
n, com-

pute x ∈ Z
∗
n such that xe = y mod n.

We have seen above that with the factorization
of n (the trapdoor), this problem can be easily
solved. However, nobody knows whether the fac-
torization is required, but nobody knows how to do
without it either, hence the RSA assumption.

DEFINITION 2. (The RSA Assumption). For any
product of two large primes, n = pq, the RSA prob-
lem is intractable (presumably as hard as the fac-
torization of n).

The Plain RSA Cryptosystem

In the RSA cryptosystem, the setup consists of
choosing two large prime numbers p and q, and
computing the RSA modulus n = pq. The public
key is n together with an exponent e (relatively
prime to ϕ(n) = (p− 1)(q − 1)). The secret key d is
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defined to be the inverse of e modulo ϕ(n). Encryp-
tion and decryption are defined as follows:

En,e(m) = me mod n, Dn,d (c) = cd mod n.

Security Weaknesses

Unfortunately, encryption in this naive public-
key scheme is not secure: the accepted secu-
rity requirement for an encryption scheme is the
so-called semantic security (indistinguishability)
against an adaptive chosen-ciphertext attack [13]
or IND–CCA2 for short. But the RSA primitive does
not provide by itself an IND–CCA2 secure encryp-
tion scheme. Under a slightly stronger assumption
than the intractability of the integer factorization,
it gives a cryptosystem that is only one-way under
chosen-plaintext attack—a very weak level of se-
curity. Semantic security fails because encryption
is deterministic: one can indeed easily note that
a deterministic encryption algorithm can never
achieve semantic security, since one can check
a plaintext candidate by simply re-encrypting it.
Even worse, under a CCA2 attack, the attacker can
fully decrypt a challenge ciphertext c = me mod n
using the homomorphic property of RSA:

En,e(m1) · En,e(m2) = En,e(m1m2 mod n) mod n.

To decrypt c = me mod n using a CCA2 attack, one
first computes c′ = c · 2e mod n, then asks for the
decryption of c′ �= c and gets 2m mod n, finally one
can deduce m.

But these are not the only weaknesses of the
plain RSA cryptosystem. More subtle attacks have
been found.

Multicast Encryption. Håstad [9] showed how to
use the Chinese Remainder Theorem to recover
the plaintext sent using the plain RSA encryption
to several recipients which all have a common and
small public exponent. Since the encryption cost is
directly related to the size of the public exponent
e, it is natural that people want to use the smallest
value, that is e = 3.

Let us assume that Alice, Bob and Carole have
three distinct RSA moduli na, nb and nc, but a
common public exponent ea = eb = ec = e = 3. If
Daniel sends the same message m to each of them,
Eve can intercept

ca = m3 mod na, cb = m3 mod nb,

cc = m3 mod nc,

and then, granted the Chinese Remainder Theo-
rem, she can compute c ∈ Znanbnc which satisfies

c = ca mod na, c = cb mod nb, c = cc mod nc,

This system is also satisfied by m3, but the isomor-
phism between Zna × Znb × Znc and Znanbnc says
that there should be a unique solution, thus c =
m3 mod nanbnc, which equality holds in Z since
m3 < nanbnc. An easy third root in Z leads back
to m.

Small Exponents. As already noticed, people may
be interested in using small exponents, either a
small encryption exponent to speed up the en-
cryption process, or a small decryption exponent
to speed up the decryption process.

A short encryption exponent may be dangerous,
as already remarked above, but even in a single-
user environment if the message to be encrypted
is short too: let us assume that one uses a 2048-
bit modulus n for a quite secure application (such
as electronic transactions), with public exponent
e = 3. Then, one uses this cryptosystem to encrypt
a short message m (a transaction, a credit card
number, etc.) over less than 64 characters (that
is less than 512 bits). The ciphertext is c = m3

mod n, but even in Z since m3 is over 1576 bits
only which is less than n: the modular reduction
does not apply—it may be faster! But on the other
hand, to recover m from c, one just has to com-
pute a third root in Z, which does not require any
factorization.

One may think about a short decryption expo-
nent, since the decryption process is often per-
formed by a low-power device (i.e., smart card).
But let us assume that n = pq, with p < q < 2p, e
is the encryption exponent such that the decryp-
tion exponent d is less than n1/4/3, and ed = 1 +
kϕ(n):∣∣∣∣

e
n

− k
d

∣∣∣∣ =
∣∣∣∣
ed − kn

nd

∣∣∣∣ =
∣∣∣∣
1 − k(p+ q − 1)

nd

∣∣∣∣

≤ k(p+ q)
nd

≤ 3k
d

√
n

.

Since e ≤ ϕ(n) and d ≤ n1/4/3, necessarily 3k ≤
n1/4, and 1/n1/4 ≤ 1/3d. As a consequence, the
above difference is upper-bounded by 1/2d2. Us-
ing the continued fractions result, this bound says
that k/d is one of the convergents of the continued
fraction (see integer factoring) expansion of e/n:
in polynomial time, one gets d [6, 16].

CONCLUSION: The RSA function is a quite nice
primitive for cryptographic purposes: it provides
not only a public-key encryption scheme, but also
signature (see RSA digital signature scheme).
However, the basic primitive cannot be used
directly because of the very strong algebraic
structure. As a consequence, practical RSA-based
cryptosystems randomly pad the plaintext prior
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to encryption. This randomizes the ciphertext and
eliminates the homomorphic property. Paddings
have been proposed that provably rule out any
attack, under the sole RSA assumption (see
OAEP).

David Pointcheval
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RUN

A run in a binary sequence is a set of consecutive
0s or 1s. A run of 0s is ofter denoted a 0-run or a
gap and a run of 1s is often denoted a 1-run or a
block. A gap of length k is a set of k consecutive
0s flanked by 1s. A block of length k is a set of k
consecutive 1s flanked by 0s. A run of length k is
a gap of length k or a block of length k.

Tor Helleseth
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RUNNING-KEY

In a stream cipher, the running-key, also called
the keystream, is the sequence which is combined,
digit by digit, with the plaintext sequence for ob-
taining the ciphertext sequence. The running key
is generated by a finite state automaton called the
running-key generator or the keystream generator
(see stream cipher).

Anne Canteaut
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S
SAFE PRIME

A safe prime is a prime number p of the form
p = 2q + 1 where q is also prime. In such a case,
q is called a Sophie Germain prime. Safe primes
are used in some implementations of the Diffie–
Hellman key exchange protocol, for example, to
protect against certain types of attacks.

Anton Stiglic

SALT

A salt is a t-bit random string that may be
prepended or appended to a user’s password prior
to application of a one-way function in order to
make dictionary attacks less effective. Both the
salt and the hash (or encryption) of the aug-
mented password are stored in the password file
on the system. When the user subsequently enters
a password, the system looks up the salt associ-
ated with that user, augments the password with
the salt, applies the one-way function to the aug-
mented password, and compares the result with
the stored value.

It is important to note that the work factor for
finding a particular user’s password is unchanged
by salting because the salt is stored in cleartext
in the password file. However, it can substantially
increase the work factor for generating random
passwords and comparing them with the entire
password file, since each possible password could
be augmented with any possible salt. The effort re-
quired to find the password associated with an en-
try in the password file is multiplied by the smaller
of {the number of passwords, 2t} compared with a
password file containing hashes (or encryptions)
of unsalted passwords.

Another benefit of salting is that two users who
choose the same password will have different en-
tries in the system password file; therefore, simply
reading the file will not reveal that the passwords
are the same.

Carlisle Adams
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SCHNORR DIGITAL
SIGNATURE SCHEME

The Schnorr signature scheme [6] is derived from
Schnorr’s identification protocol using the Fiat–
Shamir heuristic [2]. The resulting digital signa-
ture scheme is related to the Digital Signature
Standard (DSS). As in DSS, the system works in a
subgroup of the group Z

∗
p for some prime number

p. The resulting signatures have the same length
as DSS signatures. The signature scheme works as
follows:
Key Generation. Same as in the DSS system.

Given two security parameters τ, λ ∈ Z (τ > λ)
as input do the following:
1. Generate a random λ-bit prime q.
2. Generate a random τ -bit prime prime p such

that q divides p− 1.
3. Pick an element g ∈ Z

∗
p of order q.

4. Pick a random integer α ∈ [1, q] and compute
y = gα ∈ Z

∗
p.

5. Let H be a hash function H : {0, 1}∗ → Zq .
The resulting public key is (p, q, g, y, H). The

private key is (p, q, g, α, H).
Signing. To sign a message m ∈ {0, 1}∗ using the

private key (p, q, g, α, H) do:
1. Pick a random k ∈ Z

∗
p.

2. Compute r = gk ∈ Z
∗
p. Set c = H(m‖r ) ∈ Zq

and s = αc + k ∈ Zq .
3. Output the pair (s, c) ∈ Z

2
q as the signature

on m.
Verifying. To verify a message/signature pair

(m, (s, c)) using the public key (p, q, g, y, H) do:
1. Compute v = gs y−c ∈ Zp.
2. Accept the signature if c = H(m‖v). Other-

wise, reject.
We first check that the verification algorithm

accepts all valid message/signature pairs. For a
valid message/signature pair we have

v = gs y−c = gαc+k y−c = (ycgk)y−c = gk ∈ Zp

and therefore H(m‖v) = H(m‖gk) = c. It follows
that a valid message/signature is always accepted.

541
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The signature can be shown to be existentially
unforgeable (see existential forgery) under a cho-
sen message attack in the random oracle model,
assuming the discrete logarithm problem in the
group generated by g is intractable. This proof of
security is a special case of a general result that
shows how to convert a public-coin authentication
protocol (a protocol in which the verifier only
contributes randomness) into a secure signature
scheme in the random oracle model [1, 5]. In the
proof of security, the function H is assumed to be
a random oracle. In practice, one derives H from
some cryptographic hash function such as SHA-1.

To discuss signature length we fix concrete secu-
rity parameters. At the present time the discrete-
log problem in the cyclic group Z

∗
p where p is a

1024-bit prime is considered intractable [3] except
for a very well funded organization. Schnorr sig-
natures use a subgroup of order q of Z

∗
p. When q

is a 160-bit prime, the discrete log problem in this
subgroup is believed to be as hard as discrete-log
in all of Z

∗
p, although proving this is currently an

open problem. Hence, for the present discussion
we assume p is a 1024-bit prime and q is a 160-bit
prime. Since a Schnorr signature contains two el-
ements in Zq we see that, with these parameters,
its length is 320-bits.

Schnorr signatures are efficient and practical.
The time to compute a signature is dominated
by one exponentiation and this exponentiation
can be done offline, i.e. before the message is
given. Verifying a signature is dominated by the
time to compute a multi-exponentiation of the
form gahb for some g, h ∈ Zp and a, b ∈ Zq . Multi-
exponentiations of this type can be done at ap-
proximately the cost of a single exponentiation
[4, p. 617].

Dan Boneh
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SCHNORR
INDENTIFICATION
SCHEME

In its simplest form, an identification protocol in-
volves the presentation or submission of some in-
formation (a “secret value”) from a claimant to
a verifier (see Identification). Challenge-response
identification is an extension in which the infor-
mation submitted by the claimant is the function
of both a secret value known to the claimant (some-
times called a “prover”), and a challenge value re-
ceived from the verifier (or “challenger”).

Such a challenge-response protocol proceeds as
follows. A verifier V generates and sends a chal-
lenge value c to the claimant C. Using his/her se-
cret value s and appropriate function f (), C com-
putes the response value v = f (c, s), and returns v
to V. V verifies the response value v, and if success-
ful, the claim is accepted. Choices for the challenge
value c, and additionally options for the function
f () and secret s are discussed below.

Challenge-response identification is an im-
provement over simpler identification because it
offers protection against replay attacks. This is
achieved by using a challenge value that is time-
varying. Referring to the above protocol, there are
three general types of challenge values that might
be used. The property of each is that the challenge
value is not repeatedly sent to multiple claimants.
Such a value is sometimes referred to as a nonce,
since it is a value that is “not used more than
once.” The challenge value could be a randomly
generated value (see Random bit generation), in
which case V would send a random value c to C.
Alternatively, the challenge value might be a se-
quence number, in which case the verifier V would
maintain a sequence value corresponding to each
challenger. At each challenge, the stored sequence
number would be increased by (at least) one be-
fore sending to the claimant. Finally, the challenge
value might be a function of the current time.
In this case, a challenge value need not be sent
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from V to C, but could be sent by C, along with
the computed verifier. As long as the time cho-
sen was within an accepted threshold, V would
accept.

There are three general classes of functions
and secret values that might be used as part
of a challenge-response protocol. The first is
symmetric-key based in which the claimant C
and verifier V a priori share a secret key K. The
function f () is a symmetric encryption function
(see Symmetric Cryptosystem), a hash function,
or a Message Authentication Code (MAC algo-
rithms). Both Kerberos (see Kerberos authen-
tication protocol) and the Needham–Schroeder
protocol are examples of symmetric-key based
challenge-response identification. In addition, the
protocols of ISO/IEC 9798-2 perform identification
using symmetric key techniques.

Alternatively, a public key based solution may
be used. In this case, the claimant C has the
private key in a public key cryptosystem (see
Public Key Cryptography). The verifier V pos-
sesses a public key that allows validation of the
public key corresponding to C’s private key. In gen-
eral, C uses public key techniques (generally based
on number-theoretic security problems) to produce
a value v, using knowledge of his/her private key.
For example, V might encrypt a challenge value
and send the encrypted text. C would decrypt the
encrypted text and return the value (i.e., the recov-
ered plaintext) to V (note that in this case it would
only be secure to use a random challenge, and not
a sequence number or time-based value). Alterna-
tively, V might send a challenge value to C and
ask C to digitally sign and return the challenge
(see Digital Signature Schemes). The Schnorr
identification protocol is another example of pub-
lic key based challenge-response identification.

Finally, a zero-knowledge protocol can be used.
In this case, the challenger demonstrates knowl-
edge of his/her secret value without revealing any
information (in an information theoretic sense—
see “information theoretic security” in glossary)
about this value. Such protocols typically require
a number of “rounds” (each with its own challenge
value) to be executed before a claimant may be
successfully verified.

Mike Just
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SEAL

SEAL stands for Software-optimized Encryption
ALgorithm. It is a binary additive stream cipher
(see the entry concerning synchronous stream
ciphers). It has been proposed in 1993, and several
versions have been published: SEAL 1.0, SEAL 2.0
and SEAL 3.0 [3,4]. Some attacks have been pub-
lished that show how SEAL 1.0, SEAL 2.0 [2] and
later SEAL 3.0 [1] can be distinguished from a true
random function. But there is no really practical
attack for the moment.

SEAL has been designed to be really efficient
in its software implementation, mainly for 32-bit
processors. It is a length-increasing pseudoran-
dom function that maps a 32-bit sequence number
n to an L-bit keystream, under control of a 160-bit
secret key. a more precise description can be found
in the original papers.

Caroline Fontaine
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SECOND PREIMAGE
RESISTANCE

Second preimage resistance is the property of a
hash function that it is computationally infeasi-
ble to find any second input that has the same
output as a given input. This property is related
to preimage resistance and one-wayness; however,
the later concept is typically used for functions
with input and output domain of similar size (see
one-way function). Second preimage resistance is
also known as weak collision resistance. A min-
imal requirement for a hash function to be sec-
ond preimage resistant is that the length of its re-
sult should be at least 80 bits (in 2004). A hash
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function is said to be a one-way hash function
(OWHF) if it is both preimage resistant and second
preimage resistant. The relation between collision
resistance, second preimage resistance and preim-
age resistance is rather subtle, and it depends
on the formalization of the definition: it is shown
in [6] that under certain conditions, collision
resistance implies second preimage resistance
and second preimage resistance implies preimage
resistance.

In order to formalize the definition, one needs
to specify according to which distribution the first
element in the domain is selected and one needs to
express the probability of finding a second preim-
age for this element. Moreover, one often intro-
duces a class of functions indexed by a public
parameter, which is called a key. One could then
distinguish between three cases: the probability
can be taken over the random choice of elements
in the range, over the random choice of the param-
eter, or over both simultaneously. As most practi-
cal hash functions have a fixed specification, the
first approach is more relevant to applications.
The second case is known as a Universal One-Way
Hash Function or UOWHF.

The definition of a one-way function was given
in 1976 by Diffie and Hellman [1]. Second preim-
age resistance of hash functions has been intro-
duced by Rabin in [5]; further work on this topic
can be found in [2–4, 7, 8]. For a complete for-
malization and a discussion of the relation be-
tween the variants and between hash functions
properties, the reader is referred to Rogaway and
Shrimpton [6].

B. Preneel

References

[1] Diffie, W. and M.E. Hellman (1976). “New directions
in cryptography.” IEEE Transactions on Informa-
tion Theory, IT-22 (6), 644–654.

[2] Merkle, R. (1979). Secrecy, Authentication, and Pub-
lic Key Systems. UMI Research Press.

[3] Preneel, B. (1993). “Analysis and Design of Cryp-
tographic Hash Functions.” Doctoral Dissertation,
Katholieke Universiteit Leuven.

[4] Preneel, B. (1999). “The state of cryptographic hash
functions.” Lectures on Data Security, Lecture Notes
in Computer Science, vol. 1561, ed. I. Damgård.
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SECRET SHARING
SCHEMES

Informally speaking, a secret sharing scheme
(SSS, for short) allows one to share a secret among
n participants in a such a way that some sets of
participants called allowed coalitions can recover
the secret exactly, while any other sets of partici-
pants (non-allowed coalitions) cannot get any ad-
ditional (i.e., a posteriori) information about the
possible value of the secret. the SSS with the last
property is called perfect. The set � of all allowed
coalitions is called an access structure.

The history of SSS began in 1979 when this
problem was introduced and partially solved by
Blakley [1] and Shamir [2] for the case of (n, k)-
threshold schemes where the access structure con-
sists of all sets of k or more participants. Consider
the simplest example of (n, n)-threshold scheme.
There is a dealer who wants to distribute a secret
s0 among n participants. Let s0 be an element of
some finite additive group G. For instance, G is
the group of binary strings of length m with addi-
tion by modulo 2, i.e., G = GF(2)m (see finite field).
The dealer generates a random sequence s1, . . . , sn
such that

∑n
i=1 si = s0 (for instance, by generating

independently elements s1, . . . , sn−1 ∈ G and then
putting sn := s0 − ∑n−1

i=1 si). Then the dealer sends
privately to each ith participant the elements si
called share, i.e., other participants have no infor-
mation about the value of si . It is easy to see that
any coalition of less then n participants has no in-
formation except of a priori information about s0
and all participants together recover the value of
the secret as

∑n
i=1 si . These simple schemes ap-

pear to be enough for the realization of arbitrary
monotone (i.e., if A ∈ � and A ⊂ B then B ∈ �) ac-
cess structure �. Namely, for any allowed coali-
tion A ∈ � let the above realize (independently)
an (|A|, |A|)-threshold scheme, i.e., send to the
ith, participant as many shares s A

i ) as the num-
ber of allowed coalitions to which this participant
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belongs it is enough to consider only maximum al-
lowed coalitions).

The probabilistic model of an SSS for the general
case is the following (see [4, 5]). There are n + 1
sets S0,S1, . . . ,Sn and the probability distribution
P on their Cartesian product S = S0 × · · · × Sn. A
pair (P,S) is called a perfect probabilistic SSS re-
alizing the access structure � if the following two
properties hold:
� participants of an allowed set A ( i.e., A ∈ � ) to-

gether can recover the secret exactly (formally,
P(S0 = c0 | Si = ci, i ∈ A) ∈ {0, 1} if A ∈ �);

� participants forming a non-allowed set A (A /∈
�) cannot get additional information beyond
their a priori information about s0, i.e., P(S0 =
c0 | Si = ci, i ∈ A) = P(S0 = co) if A /∈ �. These con-
ditions can be reformulated in the language
of entropy (see information theory) as H(Si,

i ∈ A∪ 0) = H(Si, i ∈ A) + δ�(A)H(S0), where
δ�(A) = 0 if A ∈ �, and δ� A) = 1, otherwise.
There are also combinatorial models of SSSs.

An arbitrary set V ⊂ S is called the “code” of the
combinatorial SSS, and its codewords called “shar-
ing rules”. The simplest combinatorial model de-
mands that at first, for every set A ∈ � the 0th
coordinate of any codeword from V is uniquely de-
termined by the values of the coordinates from the
set A and, secondly, for every set A /∈ � and for any
given selection of values of the coordinates from
the set A the number of codewords with given
value of 0th coordinate does not depend on this
value. This model is a particular case of the prob-
abilistic model, namely, when all nonzero values of
P are equal. The most general definition of combi-
natorial models, which contain probabilistic ones
as a particular case, was given in [6,7].

For both types of models the “size” of share, pro-
vided to any participant, cannot be smaller than
the “size” of the secret, where “size” is defined as
log|Si | or H(Si) respectively for combinatorial and
probabilistic statements of the problem. Special
attention has been paid to so-called ideal SSSs,
where the size of any share coincides with the
size of the secret. For example, any (n, k)-threshold
scheme can be realized as an ideal perfect SSS (see
threshold cryptography). It was shown in a chain
of papers [6–9] that the access structures of ideal
perfect SSS correspond to a special class of ma-
troids [10]. On the other hand, any access struc-
ture can be realized as a perfect SSS but probably
not very efficient (ideal). At least the above given
realization demands for some access structures to
distribute shares which size is exponentially (in
n) larger than the secret’s size. An infinite fam-
ily of access structures was constructed such that
for any perfect realization the size of the shares

is at least n/ ln n times larger than the size of the
secret [11].

To generate shares the dealer of an SSS has to
use some source of randomness, say r ∈ X, where
X is in some probabilistic space, and any share
si is a function of s0 and r , i.e., si = fi(s0, r ). A
linear realization of SSS (or, linear SSS) means
that all functions fi(·) are linear. To make it for-
mal: let s0, . . . , sn be elements in mi-dimensional
vector spaces (i = 0, 1, . . . , n) over some finite field
GF(q) of q elements, let r be an element of the
l-dimensional vector space over the same field.
Then a linear SSS is generated by some (m0 +
l) × m matrix G according to the formula s =
(s0, . . . , sn) = xG, where m = ∑n

i=0 mi and vector
x is the concatenation of vectors s0 and r. Con-
sider vector spaces V0, . . . , Vn, where Vi is the lin-
ear subspace generated by the columns of G that
correspond to si , i.e., by columns gj, where j =
m0 + · · · + mi−1 + 1, . . . , m0 + · · · + mi . Then ma-
trix G realizes the access structure � perfectly if
and only if [12,13]:
� for any set A ∈ � the linear span of subspaces

{Va : a ∈ A} (i.e., the minimal vector subspace
containg all these subspaces Va) contains the
subspace V0;

� for any set A /∈ � the linear span of subspaces
{Va : a ∈ A} intersects with the linear subspace
V0 only by the vector 0.

All aforementioned examples of SSS are linear.
Note that if all dimensions mi are equal to 1
then the matrix G can be considered as a gener-
ator matrix of a linear error-correcting code (see
cyclic codes). In particular, it gives another de-
scription of Shamir’s threshold schemes via Reed–
Solomon codes [14]. This “coding theory approach”
was further developed and generalized to the case
of arbitrary linear codes and their minimal words
as only possible access structures [16]. Surely, a
linear SSS with all dimensions mi = 1 is ideal, but
multidimensional linear SSSs with all mi = m0
give a larger class of ideal SSS [15]. It is an open
question if any ideal SSS can be realized as a (mul-
tidimensional) linear ideal SSS?

Modifications of assumptions of the secret shar-
ing problem’s statement such as perfectness of the
scheme, honesty of the dealer and participants,
sending shares via secure, private channels and so
on lead to many variations of secret sharing prob-
lem. Among them: ramp schemes, publicly verifi-
able secret schemes, SSS with cheaters, SSS
with public reconstruction [17], and visual secret
sharing schemes.

Robert Blakley
Gregory Kabatiansky
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SECURE SIGNATURES
FROM THE “STRONG RSA”
ASSUMPTION

In the late 1990’s it was realized that by mak-
ing a somewhat stronger intractability assump-
tion than RSA (see RSA problem), it is possible to
devise digital signature schemes that are fairly ef-
ficient, and at the same time have a rigorous proof
of security (without resorting to the random-oracle
heuristic). The intractability assumption states
that given a modulus n (see modular arithmetic)
of unknown factorization and an element x in the
ring Z∗

n, it is hard to come up with an exponent
e ≥ 2 and an element y in Z∗

n, such that ye = x
(mod n). This assumption, first used by Barić and
Pfitzmann in the context of fail-stop signatures
[1], is called the strong RSA assumption (or the
flexible RSA assumption).

A simple way of using this assumption for signa-
tures was described by Gennaro et al. [7]. In their
construction, the public key (see public key crypto-
graphy) is a triple (n, x, H), where n is product of
two “quasi-safe primes”, x is a random element in
Z∗

n, and H is a hash function, mapping strings to
odd integers. The secret key consists of the fac-
torization of n. To sign a message m, the signer
picks a random string r, computes e ← H(m, r ),
and then, using the factorization of n, finds an el-
ement y ∈ Z∗

n such that ye = x (mod n). To verify a
signature (r, y) on message m, the verifier checks
that yH(m,r ) = x (mod n).

Gennaro et al. proved that this scheme is
secur—in the sense of existential unforgeability
(see also existential forgery) under an adaptive
chosen message attack (EU-CMA)—under some
conditions on the function H. The first condi-
tion is that H is division intractable. This means
that it is hard to come up with a list of pairs,
(mi, ri), i = 1, . . . , t , where the integer H(mt , rt ) di-
vides the product

∏t=1
i=1 H(mi, ri). The other con-

dition on H means, informally, that one cannot
reduce breaking the strong RSA assumption to
“breaking the hash function H”. It is shown in [7]
that hash functions satisfying these conditions ex-
ist if the strong RSA assumption holds. (It is also
shown in [7] that if H is modeled as a random
oracle, then it satisfies these conditions, provided
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that its output is sufficiently long. However, Coron
and Naccache showed in [2] that the output of
H in this case should be at least as long as the
modulus n.)

Cramer and Shoup [4], followed by Fischlin [6],
proposed more efficient signatures based on the
strong RSA assumption. In the Cramer–Shoup
public key scheme, the public key is a 5-tuple
(n, h, x, e′, H), where n is a product of two “safe
primes”, h, x are random quadratic residues in
Z∗

n, e′ is an odd prime, and H is a hash func-
tion, mapping strings to integers. If � denotes
the output length of H, then the prime e′ must
be at least (� + 1)-bit long. The secret key con-
sists of the factorization of n. To sign a mes-
sage m, the signer picks a new (� + 1)-bit prime
e 
= e′ and a random quadratic residue y ∈ Z∗

n, sets
x′ ← (y′)e′

h−H(m) (mod n), and then, using the fac-
torization of n, finds an element y ∈ Z∗

n such that
ye = xhH(x′) (mod n). To verify a signature (e, y, y′)
on message m, the verifier checks that e is an
odd (� + 1)-bit number, e 
= e′, sets x′ ← (y′)e′

h−H(m)

(mod n), and checks that ye = xhH(x′) (mod n).
In the scheme of Fischlin, the public key is a

5-tuple (n, g, h, x, H), where n, h, x, H are as in
the Cramer–Shoup scheme, and g is yet another
random quadratic residue in Z∗

n. Again, the se-
cret key is the factorization of n, and we use �

to denote the output length of H. To sign a mes-
sage m, the signer picks a new (� + 1)-bit prime e
and a random �-bit string α, and then, using the
factorization of n, finds an element y ∈ Z∗

n such
that ye = xgαhα⊕H(m) (mod n). To verify a signature
(e, α, y) on message m, the verifier checks that e is
an odd (� + 1)-bit number, that α is an �-bit string,
and that ye = xgαhα⊕H(m) (mod n). Fischlin also
proposed other variations of this scheme, where
the prime e can be chosen even shorter than � + 1
bits (and the computation made slightly more ef-
ficient), at the price of a longer public key.

For all of these schemes, it is proved that they
are secure (in the sense of EU-CMA), assum-
ing the strong RSA assumption and the collision-
intractability of the hash function H, and as long
as the signer never uses the same prime e for
two different signatures. The Cramer-Shoup sig-
nature scheme was generalized by Damgård and
Koprowski to any group where extracting roots is
hard [5]. The same generalization can be applied
to the schemes described by Fischlin.

It is interesting to note that the Cramer-Shoup
signature scheme can be viewed as a simple varia-
tion on an earlier scheme by Cramer and Damgård
[3]. The Cramer-Damgård scheme is based on a
tree construction, and one of its parameters is the
depth of that tree. For a tree of depth one, the

scheme maintains in the public key a list of t odd
primes e1, . . . , et , and can be used to generate upto
t signatures, using a different prime each time.
The Cramer-Shoup scheme is obtained essentially
by letting the signer choose the odd primes “on the
fly” instead of committing to them ahead of time
in the public key. One pays for this flexibility by
having to make a stronger intractability assump-
tion. Since the attacker can now choose the ex-
ponent e relative to which it issues the forgery,
one has to assume the strong RSA assumption
(whereas the standard RSA assumption suffices
for the Cramer–Damgård scheme.)

A curious feature of the Cramer-Shoup and
Fischlin schemes (as well as some instances of
the Gennaro–Halevi–Rabin scheme) is that when
there is an a-priori polynomial bound on the total
number of signatures to be made, the signer can
generate its public/private key pair even without
knowing the factorization of the modulus n. (This
is done using the same strategy as the simulator in
the security proof of these schemes.) That makes
it possible in some cases to have many users in a
system, all sharing the same modulus n.

Dan Boneh
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[5] Damgård, I.B. and M. Koprowski (2002). “Generic
lower bounds for root extraction and signa-
ture schemes in general groups.” Advances in
Cryptology—EUROCRYPT 2002, Lecture Notes in
Computer Science, vol. 2332, ed. L. Knudsen.
Springer-Verlag, Berlin, 256–271.

[6] Fischlin, M. (2003). “The Cramer–Shoup strong-
RSA signature scheme revisited.” Public Key
Cryptography—PKC 2003, Lecture Notes in Com-
puter Science, vol. 2567, ed. Y.G. Desmedt. Springer-
Verlag, Berlin, 116–129.



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 14:7

548 Secure socket layer (SSL)

[7] Gennaro, R., S. Halevi, and T. Rabin (1999). “Se-
cure hash-and-sign signatures without the random
oracle.” Advances in Cryptology—EUROCRYPT’99,
Lecture Notes in Computer Science, vol. 1592, ed. J.
Stem. Springer-Verlag, Berlin, 123–139.

SECURE SOCKET
LAYER (SSL)

GENERAL: Secure Socket Layer (SSL) denotes the
predominant security protocol of the Internet for
World Wide Web (WWW) services relating to elec-
tronic commerce or home banking. The majority of
web servers and browsers support SSL as the de-
facto standard for secure client-server communi-
cation. The Secure Socket Layer protocol builds up
point-to-point connections that allow private and
unimpaired message exchange between strongly
authenticated parties.

CLASSIFICATION: In the ISO/OSI reference
model [8], SSL resides in the session layer between
the transport layer (4) and the application layer
(7); with respect to the Internet family of proto-
cols this corresponds to the range between TCP/IP
and application protocols such as HTTP, FTP, Tel-
net, etc. SSL provides no intrinsic synchronization
mechanism; it relies on the data link layer below.

Netscape developed the first specification of SSL
in 1994, but only publicly released and deployed
the next version, SSLv2, in the same year [6].
With respect to public key cryptography, it re-
lies mainly on RSA encryption (RSA public key
cryptosystem) and X.509-compliant certificates.
Block ciphers, such as DES (see Data Encryption
Standard), Triple DES (3DES), and RC4, along
with hash functions like MD5 and SHA, com-
plement the suite of algorithms. SSLv3 followed
in 1995, adding cryptographic methods such as
Diffie–Hellman key agreement (DH), support for
the FORTEZZA key token, and the Digital Signa-
ture Standard (DSS) scheme [5].

This article focuses on SSL version 3.0 and its
designated successor protocol Transport Layer Se-
curity (TLS) 1.0, which the Internet Engineering
Task Force (IETF) published for the first time in
1999 [3]. The IETF published the most recent
Internet-Draft for TLS 1.1 in October 2002 [4].

LAYER STRUCTURE: SSL splits into distinct lay-
ers and message types (see Figure 1). The hand-
shake message sequence initiates the communi-
cation, establishes a set of common parameters

Application Layer

Transport Layer

SSL/TLS Protocol

Record Layer

Application Messages Handshake Messages

ChangeCipherSpec
Message

Alert Messages

Fig. 1. SSL layer and message structure

like the protocol version, applicable cryptographic
algorithms (cipher suites), and assures the valid-
ity of the message sequence. During the hand-
shake, the participants accomplish the negoti-
ated authentication and derive the session key
material.

The record layer fragments the full data stream
into records with a maximum size of 214 bytes
and envelopes them cryptographically under the
current session keys. Records contain a keyed
message authentication code (HMAC). The initial
handshake presupposes a NULL cipher suite ap-
plying no encryption and no HMAC. The record
layer fully provides the use of compression. How-
ever, for patent reasons the core specifications
name no method explicitly, except for the manda-
tory NULL algorithm, which practically makes
compression an incompatible, implementation-
dependent feature.

Additional alert messages inform on exceptional
protocol conditions or one participant’s demand to
end the communication (closure alert).

BASIC PROTOCOL SEQUENCE: The SSL hand-
shake accomplishes three goals. First, both parties
agree on a cipher suite, i.e. the set of cryptographic
algorithms that they intend to use for applica-
tion data protection. Second, they establish a com-
mon master secret in order to derive their session
key material. Third, the participant’s identities
are authenticated. Although the SSL specification
permits anonymous, server-only and mutual au-
thentication, it is customary to only assert the
server’s identity.
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Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec
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SCE
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ChangeCipherSpec

Finished

SCER

SCER

ServerHello

Certificate

CertificateRequest

ServerKeyExchange

ServerHelloDone

SCER

SCE

SCE

C

E

ClientHello SCER

Fig. 2. SSL protocol sequence

Figure 2 gives an overview of the SSL pro-
tocol variants. It comprises four different hand-
shake sequences, each identified by a capital
letter:
� S denotes the server-authenticated message

flow.
� C marks the sequence with additional client au-

thentication.
� E shows the handshake variant with ephemeral

Diffie–Hellman key agreement.
� R stands for the handshake of resumed sessions.

Note, that the message pairs ChangeCipher-
Spec/Finished of client and server are drawn in
reverse order; the server message pair follows
ServerHello immediately.
The client opens the connection with a Client-

Hello message, which contains its selection of ac-
ceptable cipher suites and a random number.

The server chooses a supported cipher suite
and adds another random number, which together
builds the ServerHello response. Later, these two
random numbers become part of the session’s
master secret.

SERVER AUTHENTICATION: The server appends
a Certificate message, which holds a X.509 certifi-
cate bearing its identity and public key. Most of-
ten RSA keys (see RSA digital signature scheme)
are used. DSS signed certificates usually carry a
long term DH public key. If multiple levels of the

public key hierarchy separate the server certifi-
cate from the root authority certificate present in
the client browser, then the server is required to
deliver an ordered list of all dependent certificates.
The empty ServerHelloDone message finishes this
sequence.

The client confirms the validity of the certificate
chain up to one of its built-in root certificates. It
generates another random number and encrypts
it under the server’s RSA public key. This en-
crypted pre master secret forms the ClientKeyEx-
change message.

DH/DSS cipher suites might demand the client
to create (ephemeral) DH keys matching the
server’s domain parameters for the ClientKeyEx-
change message. Note, that if both parties own
certificates with group-compatible, fixed DH pub-
lic keys, every connection generates the identical
pre master secret.

Both sides derive the shared session key ma-
terial independently in two steps. First, the key
derivation function (KDF) transforms the client’s
pre master secret and both exchanged random
numbers into the master secret. Afterwards, the
KDF is re-applied to the master secret and both
random values to compute the final key block.
With respect to the chosen cipher suite, the key
block is broken up into a maximum of six segments
used as directional encryption keys (with initial-
ization vectors) and directional HMAC keys.
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CLIENT AUTHENTICATION: SSL servers can
demand client authentication through a Certifi-
cateRequest message. It contains the permitted
certificate types, i.e. signature algorithms, and a
list of trusted certification authorities identified
by their respective distinguished name.

The client answers with a Certificate message
requiring either a single certificate or the full certi-
fication chain. In addition, it creates a Certificate-
Verify message that contains a digest of the pre-
vious handshake messages, signed by the private
key corresponding to its certificate.

EPHEMERAL DIFFIE–HELLMAN: The ephe-
meral Diffie–Hellman key agreement (DH) em-
beds into the ServerKeyExchange and the Client-
KeyExchange messages. Both sides send their DH
public keys and, together with their own DH pri-
vate keys, calculate a shared pre master secret.
Note, that anonymous DH cipher suites are sus-
ceptible to man-in-the-middle attacks and pro-
tect only against passive eavesdropping (eaves-
dropper).

Both sides end the handshake sequence with
two further messages: ChangeCipherSpec indi-
cates the shift to the newly negotiated cipher pa-
rameters. Finished is the first message encrypted
under the new keys and declares the handshake
sequence complete. It holds an HMAC digest over
the whole handshake sequence and the negotiated
master secret in order to ensure that no message
tampering remains undetected.

The cryptographic state is established and con-
firmed on both sides and the record layer now en-
crypts and authenticates application data under
its new session keys.

The alert message CloseAlert indicates the pro-
tocol end, followed by the TCP layer’s closing FIN
packet.

PROTOCOL RESUMPTION: SSL permits the re-
sumption of formerly established sessions, in or-
der to shortcut the handshake, and preserve CPU
cycles by avoiding, for instance, the computation-
ally expensive pre master secret decryption.

Depending on whether the server supports this
feature, it sends a session identification string en-
closed in the ServerHello message. After estab-
lishing a valid cryptographic state, this ID refers
to the stored master secret. Subsequent client
connections indicate their intention to resume a
session by specifying the ID in the ClientHello
message.

Resumed sessions possess unique key blocks,
because the key generation process recombines

the stored master secret with fresh random nonce
out of both Hello messages.

ADDITIONAL INFORMATION: SSL permits the
re-negotiation of its cipher suites during the
course of the application protocol through a simple
repetition of the handshake sequence.

The Internet Assigned Numbers Authority
(IANA) assigns unique TCP port numbers to
SSL/TLS-enabled protocols, which are marked
with the appended letter s; for example port 443
for HTTPS or 989/990 for FTPS [7].

SECURITY ANALYSIS, BUGS: Several authors
have analysed the SSL protocol suite, stating in
consensus that, beginning with v3.0, it is mature
and without major design flaws [11,12,14].

Wagner and Schneier conclude in their analysis
that “In general SSL 3.0 provides excellent secu-
rity against eavesdropping and other passive at-
tacks. Although export-weakened modes offer only
minimal confidentiality protection, there is noth-
ing SSL can do to improve that fact.” [14]

Some minor attacks are known, however, cau-
tious implementation seems to prevent their ap-
plicability [13].

The man-in-the-middle version rollback attack
tries to establish a SSL v2.0 handshake protocol
between SSLv3/TLS-capable parties in compati-
bility mode. Due to a serious flaw in SSLv2, an
active adversary is capable to enforce an export
weakened cipher suite, and brute-force attack (see
cryptanalysis) to session keys directly. The SSLv2
attack is called cipher suite rollback. Reference [3]
gives recommendations on how to detect down-
grade attempts by embedding a short, well defined
pattern into the PKCS#1 padding data (PKCS)
of RSA encryptions, instead of using of purely
random bytes. If an SSLv3/TLS-capable server
finds the pattern, it will recognize that the other
party operates in backwards compatibility mode
although a later protocol version is supported.

Bleichenbacher published an attack against
PKCS#1 (version 1) formatted RSA encryptions
known as the million message attack [1]. Prob-
ing an SSL/TLS server with chosen ClientKeyEx-
change messages might reveal the encrypted
pre master secret after about 220 attempts, if the
server issues error alerts that allow to distinguish
between correctly and incorrectly formatted mes-
sages (chosen ciphertext attack). The TLS specifi-
cation recommends as a countermeasure to treat
PKCS#1 formatting errors by simply continuing
the handshake protocol with a randomly gener-
ated pre master secret. In this case, the server
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behaves in the same way, whether or not the for-
matting is correct [4].

The general method of timing cryptanalysis
[10] is applicable against SSL/TLS servers, if a
large number of unbiased measurements of pri-
vate key operations is available. Practical attacks
were shown for example by Brumley and Boneh
and Klime, et al. Countermeasures against timing
cryptanalysis usually degrade performance, for in-
stance by randomly delaying cryptographic opera-
tions or by holding a constant response time with-
out dependence of the algorithms’ execution paths.

Clemens Heinrich
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SECURITY

The security of encryption against unauthorized
decryption, unauthorized changing of the data,
etc. Security should depend completely on the key.
One distinguishes between the following two types
of security:
Computational security: quantitative security

against unauthorized decryption, based on par-
ticular (usually mathematical) assumptions like
the inherent difficulty of factoring sufficiently
long numbers. Often a security parameter de-
notes the computational level of the security.

Unconditional security: security against unautho-
rized decryption assuming that the cryptanalyst
has unlimited computing facilities (so, security
in an information theoretic sense).

Friedrich L. Bauer
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SECURITY ARCHITECTURE

Given any system characterized by a number of
devices and/or users communicating with specific
communication protocols, the (related) security ar-
chitecture refers to the enhancing security solu-
tion based on cryptographic techniques, protocols,
and secure storage, as well as protection of keys
and messages.

Examples of security architectures based on
Public key techniques include X.509 and EMV.
As part of the security architecture, a number
of Trusted Third Parties may be defined, such
as Registration Authorities, Certification Autho-
rities, and Time Stamping Authorities. These are
entities that are not part of the original system
as such, but are introduced as part of the security
architecture.
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Other examples are Kerberos, based on con-
ventional cryptography and bespoke key manage-
ment architectures e.g. to handle online PIN-code
(see Personal Identification Number) verification,
which is characterized by key hierarchies, start-
ing with session keys, or data keys at the bottom,
which are protected or exchanged by key encryp-
tion keys, perhaps comprising several layers, and
the top layer consisting of the so-called master
keys.

Peter Landrock

SECURITY EVALUATION
CRITERIA

Security Evaluation Criteria are usually pre-
sented as a set of parameter thresholds that must
be met for a system to be evaluated and deemed
acceptable. These criteria are established based
on a Threat Assessment to establish the extent of
the data sensitivity, the security policy, and the
system characteristics. The system is evaluated,
the evaluation is measured against the criteria,
and then an assessment is made of whether or
not the system security characteristics meet the
requirements as specified by the Security Evalu-
ation Criteria. The criteria is typically unique to
each system, the environment it is in and how it
is used.

Important past frameworks of security evalua-
tion criteria have been the following:
TCSEC by US Department of Defense (1985):

The Trusted Computer System Evaluation Cri-
teria (TCSEC) is a collection of criteria that
was previously used to grade or rate the se-
curity offered by a computer system product.
No new evaluations are being conducted us-
ing the TCSEC although there are some still
ongoing at this time. The TCSEC is some-
times referred to as the “Orange Book” be-
cause of its orange cover. The current version
is dated 1985 (DOD 5200.28-STD, Library No.
S225,711). The TCSEC, its interpretations, and
guidelines all have different color covers and are
sometimes known as the “Rainbow Series” [1]. It
is available at http://www.radium.ncsc.mil/tpep/
library/rainbow/5200.28-STD.html.

ITSEC by the European Commission (1991):
The Information Technology Security Evalua-
tion Criteria (ITSEC) is a European-developed
criteria filling a role roughly equivalent to the
TCSEC. Although the ITSEC and TCSEC have
many similar requirements, there are some
important distinctions. The ITSEC places in-
creased emphasis on integrity and availability,

and attempts to provide a uniform approach to
the evaluation of both products and systems.
The ITSEC also introduces a distinction be-
tween doing the right job (effectiveness) and do-
ing the job right (correctness). In so doing, the
ITSEC allows less restricted collections of re-
quirements for a system at the expense of more
complex and less comparable ratings and the
need for effectiveness analysis of the features
claimed for the evaluation.

CTCPEC by CSE Canada (1993): The Canadian
Trusted Computer Product Evaluation Criteria
is the Canadian equivalent of the TCSEC. It is
somewhat more flexible than the TCSEC (along
the lines of the ITSEC) while maintaining fairly
close compatibility with individual TCSEC
requirements.

Common Criteria ISO 15408 (2001): In 1990,
the Organization for Standardization (ISO)
sought to develop a set of international stan-
dard evaluation criteria for general use. The CC
project was started in 1993 in order to bring all
these (and other) efforts together into a single
international standard for IT security evalua-
tion. The new criteria was to be responsive to the
need for mutual recognition of standardized se-
curity evaluation results in a global IT market.
The common criteria combine the best aspects of
TCSEC and ITSEC and aims to supersede both
of them [2].

Tom Caddy
Gerrit Bleumer
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SECURITY STANDARDS
ACTIVITIES

This article describes a number of highly visi-
ble security standards activities. It cannot be ex-
haustive, but it does include many standards bod-
ies that are influencing the security industry and
product development. Many of the standards are
interrelated; for example, X.509 public key certifi-
cates have been profiled for use in the Internet
by the PKIX working group of the Internet Engi-
neering Task Force (IETF), and that profile has
been augmented for Qualified Certificates, which
are used to identify human beings involved in elec-
tronic commerce.
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X.509: ITU-T Recommendation X.509 defines
public key certificates and attribute certificates.
ITU-T was previously known as CCITT, which has
been developing telecommunications standards
for decades. X.509 [40, 41] is part of a joint effort
between ITU-T and the International Organiza-
tion for Standardization (called ISO), which devel-
oped the X.500 series of standards. The documents
have numbers assigned by both standards bodies,
but the numbers assigned by ITU-T are tradi-
tionally used to refer to the documents. Within
this series, X.509 defines the public key certificate
to provide authentication in a ubiquitous global
directory environment. While the envisioned di-
rectory deployment has never materialized, the
certificate format has been used in small, closed,
networks as well as large, open, deployments. The
public key certificate enables secure communica-
tion between entities that were unknown to each
other prior to the communication. Deployments
of these certificates are known as public key in-
frastructure (PKI). To bring PKI to large multina-
tional corporations or to millions of Internet users,
a common certificate format is necessary. X.509
defines a general, flexible certificate format. The
widespread adoption of X.509 is due to two fac-
tors. First, X.509 is technically suitable for many
environments. Second, it was developed at an im-
portant time. It became an international stan-
dard at a time when a number of vendors were
ready to begin implementing certificate-based
products.

X.509 includes a powerful extension mecha-
nism. It was defined for Version 3 certificates and
Version 2 CRLs (Certificate Revocation Lists). Ar-
bitrary extensions can be defined and incorporated
into a certificate or CRL, and a criticality flag in-
dicates whether or not a certificate using system
needs to understand and examine this extension
as part of the verification process. Thus, certificate
and CRL contents can readily be tailored to spe-
cific environments. The inclusion of a particular
critical extension can restrict use of the certificate
to a particular application environment.

X.509 also specifies the format of the attribute
certificate. The attribute certificate is used in con-
junction with a public key certificate to provide
additional information about the named entity. At-
tribute certificates are most often used to express
authorization information.

Although X.509 is an international standard,
the ITU-T continues to maintain the document
and develop enhancements. Most of the mainte-
nance takes the form of clarifying text, and most of
the enhancements take the forms of new standard
extensions. Any problems found through opera-
tional experience are addressed in the standard

through a formal defect reporting and resolution
process.

PKIX: The Internet Engineering Task Force
(IETF) is responsible for creating standards for
the Internet. For the most part, the IETF devel-
ops protocols. This work is carried out by a num-
ber of working groups, which are organized into
Areas. Within the Security Area, the PKIX (Pub-
lic Key Infrastructure using X.509) working group
was formed at the end of 1995 with the explicit
intention of tailoring the X.509 public key certifi-
cate to the Internet environment. Essentially, the
group set out to define an Internet PKI. Quickly,
the group realized that defining an Internet PKI
was more extensive than profiling the X.509 cer-
tificate. Thus, the PKIX charter was written to en-
compass four major activities:
1. X.509 certificate and certificate revocation list

(CRL) profile;
2. Certificate management protocols;
3. Operational protocols; and
4. Certificate Policy (CP) and Certification Prac-

tice Statement (CPS) framework.
The first activity was the original motivating

task. The profile includes detailed specification of
the mandatory, optional, critical, and non-critical
extensions in a PKIX-compliant certificate or CRL.
The profile was published in January 1999 [15],
and updated in April 2002 [37]. The profile is likely
to be refined to provide guidance on the use of
international character sets [39]. Also, the qual-
ified certificate profile was developed in January
2001 [34], and the attribute certificate profile was
developed in April 2002 [38].

The second activity was to specify the proto-
cols for management operations required in the
Internet PKI, including certification of entities
and their key pairs, certificate revocation, key
backup and recovery (see key management), Cer-
tification Authority (CA) key rollover, and cross-
certification. Two competing protocols were devel-
oped: CMP [16] and CMC [29].

The third activity, operational protocols, was to
specify the protocols for day-to-day Internet PKI
operation, such as certificate retrieval, CRL re-
trieval, and on-line certificate status checking. The
results, to date, include several important spec-
ifications. It tells how to use FTP and HTTP to
access repositories [20]. Others tell how to use an
LDAPv2 directory as a repository [18,21]. Another
specification defines the Online Certificate Status
Protocol (OCSP) [19]. And, others are being devel-
oped to address the use of LDAPv3 directories.

Finally, the fourth activity, guidance to CP and
CPS authors, provides topics and formats for these
documents. The guidance was originally published
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in March 1999 [17]. Since that time, the American
Bar Association’s Information Security Commit-
tee has reviewed it. With the assistance of these
lawyers, an update is in progress.

PKIX has played an essential role in bringing
PKI concepts to the Internet. The protocols and
functions it has defined make a PKI possible, even
in the diverse Internet, because their flexibility
and generality can satisfy the requirements of
greatly differing environments. The PKIX work
continues to evolve, and the charter was expanded
in 1999 to include additional work items, including
time-stamping protocols. The Time-Stamp Proto-
col (TSP) [36] was published in August 2001.

LDAP: The Lightweight Directory Access Proto-
col (LDAP) [2] was originally conceived as a sim-
ple to describe and simple to implement subset of
the capability of the X.500 Directory Access Pro-
tocol (DAP). Over time, the subset of functions
and features has expanded. Today, it is used as
the access protocol for many repositories, some of
which are based on X.500 directories, but many
are not. As part of this evolution, the “lightweight”
aspect of the protocol has diminished. Neverthe-
less, many vendors worldwide use LDAPv2 [6] and
LDAPv3 [8]. The IETF LDAPext Working Group
has been formed to specify useful extensions for
LDAPv3, such as an authentication and access
control mechanism.

An LDAPv2 schema [21] has been specified for
LDAP-compliant repositories that contain certifi-
cate and CRL information. This facilitates inter-
operability between PKI products from different
vendors in an LDAP environment. In a joint effort
between the LDAPext and PKIX working groups,
a similar schema is being developed for LDAPv3.

S/MIME: In 1995, a consortium of industry ven-
dors led by RSA Data Security, Inc., developed a
companion security solution to the Multipurpose
Internet Mail Extensions (MIME) specifications,
which are the basis for any email message that
goes beyond simple text. For example, an email
message that includes bold text or includes an
attachment makes use of MIME. Secure MIME
(S/MIME) specifies encryption and digital signa-
tures for MIME messages. While a formal stan-
dards body did not develop the original S/MIME
specifications, many important product vendors
embraced S/MIME. To build on and expand this
success, the consortium released change control
of the S/MIME Version 2 documents [9, 10] to the
IETF in 1997.

The IETF S/MIME Working Group developed
significant enhancements, resulting in S/MIME

Version 3 [22–26]. The primary focus of the
S/MIME Working Group was to develop an al-
gorithm independent protocol and incorporate a
number of new security features into the specifi-
cations, while preserving compatibility with the
earlier specification whenever possible. In partic-
ular, the S/MIME Version 3 specifications include
support for sending encrypted messages to large
mail lists, security labels on messages (for exam-
ple, “company proprietary,” “secret,” or “top se-
cret”), and signed message receipts. These signed
receipts provide proof that the intended recipient
received a signed message that contained a re-
quest for a receipt.

The S/MIME Version 3 specifications include
discussion of PKI concepts such as certificate for-
mat, certificate processing, and CRLs. These spec-
ifications are compatible with the X.509 profile
developed by the PKIX Working Group, and they
provide additional details for the use of X.509 cer-
tificates in the email environment. Further, pro-
vision is made in the message envelope to carry
an arbitrary numbers of certificates and CRLs to
assist the recipient with the task of path construc-
tion and certificate validation.

IPSEC: IPsec is designed to provide interopera-
ble, high quality, cryptographically-based security
the Internet Protocol (both Version 4 (IPv4) and
Version 6 (IPv6)). The security services offered in-
clude access control, connectionless integrity, data
origin authentication, protection against replays,
confidentiality, and limited traffic flow confiden-
tiality. The services are provided by the use of
two traffic security protocols, the Authentication
Header (AH) [11] and the Encapsulating Security
Payload (ESP) [12], and through the use of cryp-
tographic key management procedures and proto-
cols.

The Internet Key Exchange (IKE) protocol [13]
is used to establish the symmetric keying ma-
terial needed by AH and ESP. IKE provides for
strong, X.509-certificate-based authentication of
the IP layer entities, and it is compatible with the
certificate profile developed by the PKIX Working
Group. However, a companion document is being
developed to describe details of certificate usage
in the IPsec environment.

The IPsec Working Group is working on the sec-
ond version of IKE. The primary goal of the up-
date is to simplify the protocol. The simplification
is targeted at increased interoperability.

TLS: The Transport Layer Security (TLS) speci-
fication [7] is the IETF standards-track version of
the Secure Sockets Layer Version 3.0 (SSLv3.0)
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protocol found in millions of Web browsers and
Web servers. The history has many parallels to
S/MIME. The original specification was developed
outside of any standards body, and then it was re-
leased to the IETF, who took over configuration
control and made enhancements.

TLS creates a secure channel between two
transport layer entities, providing certificate-
based authentication, information integrity, and
data confidentiality. The TLS specification dis-
cusses X.509 certificates, and it is mostly compat-
ible with the profile developed by the PKIX Work-
ing Group. The few conflicts are associated with
compatibility with SSLv3.0 (and earlier) imple-
mentations that were developed well in advance of
the PKIX profile. The PKIX X.509 certificate pro-
file appears to meet the goals of the Internet com-
munity. Interestingly, non-IETF standards groups
are also using the PKIX certificate profile.

AAA: In 1997, the IETF created the first stan-
dard Authentication, Authorization, and Account-
ing (AAA) protocol, called RADIUS (Remote Ac-
cess Dial-In User Service) [30–32]. As the name
implies, RADIUS is designed for use with Dial-In
Access Servers. RADIUS has been a big success,
displacing many proprietary protocols. RADIUS
is widely implemented as Network Access Servers
(NASs) serving analog and digital dial-in Point-to-
Point Protocol (PPP) service, and it is the preva-
lent Internet Service Provider (ISP) access model.
RADIUS has been adapted for use with DSL (us-
ing PPPOE) and cable access (using DOCSIS).
RADIUS has been successful because it offers
a simple and flexible model for client-server ex-
changes. However, this simple model does not
have sufficient security for some new applica-
tions, and it also lacks support for server-initiated
control.

The IETF AAA Working Group is responsible
for building a more secure and capable AAA proto-
col. A number of proposals were evaluated in June
2000, and the working group selected the Diame-
ter protocol [35]. Diameter is designed to be up-
wards compatible with RADIUS, but many of the
messaging underpinnings have been upgraded to
be more secure. Security is provided using CMS
and IPsec. For better response time, the SCTP
(Stream Control Transmission Protocol) transport
is supported as an alternative.

Diameter explicitly supports server-to-client re-
quests and message forwarding. These capabili-
ties have previously been forced into RADIUS [33].
Diameter also includes explicit support for appli-
cation suite additions. Application designs have
been drafted for Mobile IP authentication and

third generation wireless telecommunications [1]
sessions.

SPKI: The IETF formed the Simple Public Key
Infrastructure (SPKI) Working Group in 1996. In
many ways, it is an alternative to PKIX. One
fundamental premise of SPKI is that X.509 is a
complicated and bulky certificate format that, by
explicitly binding a key pair to an identity, rests
upon an inherently flawed foundation. SPKI pro-
ponents argue that the concept of a globally unique
identity will never be realized. Instead, they advo-
cate the use of the public key as an identity. Where
necessary and meaningful, a name or other identi-
fying information may be associated with a public
key, but this is optional and, it is only intended to
have local significance.

The SPKI specifications [27,28] discuss the con-
cepts and philosophy behind this approach to an
Internet PKI. A detailed certificate format and
processing rules are included. SPKI explicitly en-
compasses authorization as well as authentica-
tion. The sophisticated certificate format makes
it possible to express, in a general way, the per-
mitted uses of the certified public key. This capa-
bility (not surprisingly) diminishes the intended
simplicity of the Simple Public Key Infrastructure.
Although SPKI embodies a number of interesting
ideas and research contributions, it has not gained
widespread support.

OPENPGP: As with the S/MIME and TLS Work-
ing Groups, the IETF OpenPGP Working Group
was formed to develop a standard based on
a protocol that was developed outside of any
standards body. The popular Pretty Good Privacy
(PGP) email security package was brought to the
IETF so that interoperable implementations from
different vendors could be developed. OpenPGP
[14] defines email message protection and the
PGP certificate format (an alternative to both
X.509 and SPKI). Despite a loyal installed base,
OpenPGP has not seen corporate or government
adoption. OpenPGP is viewed as an individual-to-
individual solution. The user-centric trust model
cannot easily be centrally controlled by an organi-
zation.

XML SECURITY: Prominent standards bodies
are actively developing XML (eXtensible Markup
Language) security specifications, including the
World Wide Web Consortium (W3C) and the Or-
ganization for the Advancement of Structured In-
formation Standards (OASIS).

The W3C is developing specifications for the
XML syntax with respect to encryption (XML



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 14:7

556 Security standards activities

Encryption) and digital signature (XML Signa-
ture), as well as XML protocols for key manage-
ment (XML Key Management Specification) that
allow a client to obtain key information (including
values, certificates, management, or trust data)
from a Web service.

The OASIS Security Services Technical Com-
mittee is developing the Security Assertion
Markup Language (SAML), an XML framework
for exchanging authentication and authoriza-
tion information. The underlying authentication
mechanism may be PKI-based, but SAML encom-
passes a number of other authentication technolo-
gies as well. A number of other OASIS techni-
cal committees are likely to build upon SAML,
as well as the W3C specifications mentioned
above, to provide security; such committees in-
clude Business Transaction Processing (BTP),
electronic business XML (ebXML), Provisioning
Services Markup Language (PSML), eXtensible
Access Control Markup Language (XACML), Web
Services Security (WSS), and Digital Signature
Services (DSS).

IEEE P802: Local Area Network (LAN) and
Metropolitan Area Network (MAN) standards
encompass a number of data communications
technologies and the applications of these tech-
nologies. There is no single technology that is
applicable to all applications. Correspondingly, no
single local or metropolitan area network stan-
dard is adequate for all applications. As a result,
the Institute of Electrical and Electronics Engi-
neers (IEEE) Standards Association sponsors sev-
eral working groups and technical advisory groups
within Project 802. Security is the focus of IEEE
802.10, which has seen little market adoption.
However, other working groups have also devel-
oped security relevant standards.

IEEE 802.1X specifies port-based access con-
trols. It provides a means of authenticating and
authorizing devices attached to a LAN port, pre-
venting access when authentication and autho-
rization fails.

IEEE 802.11 includes the ability to encrypt
wireless LAN traffic using the Wired Equivalent
Privacy (WEP) protocol. Unfortunately, WEP has
many flaws. IEEE 802.11 is presently working on a
short-term and a long-term replacement for WEP,
called TKIP and CCMP, respectively. The Tempo-
ral Key Integrity Protocol (TKIP) is intended to
replace WEP on current hardware, and it is imple-
mented by firmware and driver software upgrades.
The Counter and CBC-MAC Protocol (CCMP) is
intended for future generations of product. Future
product generations will likely implement both

TKIP and CCMP for compatibility with currently
fielded devices.

IEEE 802.15 is developing security solutions for
personal area networks, and IEEE 802.3 is devel-
oping security solutions for some uses of Ethernet.
Clearly, more customers are demanding security
solutions. Other working groups are likely to have
security initiatives in the near future.

IEEE P1363: IEEE Project 1363 is developing
standard specifications for public key cryptogra-
phy, which includes mathematical primitives for
key derivation, public-key encryption, and digital
signatures. P1363 has been adopted as an IEEE
standard, although work continues on a compan-
ion document, called IEEE P1363a, which will
specify additional techniques. A study group is in-
vestigating newer schemes and protocols not con-
sidered in P1363 and P1363a; such specifications
will appear over time as P1363–1, P1363–2, and
so on.

ANSI X9F: The American National Standards
Institute (ANSI) committee X9 (Financial Ser-
vices) develops and publishes standards for the
financial services industry. These standards fa-
cilitate delivery of financial products and ser-
vices. Subcommittee X9F is responsible for secu-
rity, and it includes working groups that focus
on cryptographic tools (X9F1), security protocols
(X9F3), and digital signature and certification
policy (X9F5), among others. X9F has published
many standards (the X9 on-line catalog can be
found at http://www.x9.org), and many of its stan-
dards become international standards through a
close working relationship with ISO TC68.

INFLUENTIAL ACTIVITIES: Some activities that
are not part of any formal security standards body
are influencing security standards development,
the security industry, and product development.
Again, this discussion cannot be exhaustive, but
a number of the highly visible security standards
influencing activities are discussed.

U.S. FPKI

The U.S. Federal Public-Key Infrastructure
(FPKI) is an initiative by the U.S. Government to
define a PKI suitable for its own use. One focus is
the production of an acceptable profile for X.509
certificates and CRLs, where there is significant
harmonization with the PKIX certificate profile,
but the ultimate goal is a full PKI specification.
This specification will encompasses all relevant
PKI entities, including end entities, registration
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authorities (RAs), certification authorities (CAs),
and Bridge CAs. It also includes the security-
relevant protocols between these entities, as well
as the operational policies and procedures re-
quired for the PKI.

The U.S. FPKI specifications impose compliance
requirements on vendors wanting to sell PKI prod-
ucts to the U.S. Government. To the greatest ex-
tent possible, commercial standards have been ref-
erenced and profiled. The hope is that the FPKI is
sufficiently similar to PKIs for other environments
that compliance will not unduly restrict vendors.

The Minimum Interoperability Specifications
for PKI Components (MISPC) [5] is one component
of the full U.S. FPKI vision. The goal in MISPC is
to understand and to specify the minimum func-
tionality required of PKI entities that will still
enable them to interoperate usefully with other
PKI entities. Thus, for example, the certificate and
CRL profile portion of MISPC identifies which of
the many optional fields in the X.509 and PKIX
specifications must be implemented. Interestingly,
MISPC is more than a detailed specification; a CD
containing a complete reference implementation
compliant with the specification is also available.
Thus, vendors have a straightforward way of test-
ing whether their products are MISPC compliant.

GOC PKI

The Government of Canada Public-Key Infras-
tructure (GOCPKI) is the first large-scale gov-
ernmental PKI initiative in the world. Its goal
similar to the U.S. FPKI, but it defines a PKI
suitable for Canadian federal government use. It is
a full PKI specification, including certificate and
CRL profiles, entity functionality and character-
istics, communications protocols, and operational
policies and procedures. The GOC PKI will im-
pose compliance requirements on vendors, but it
is hoped that this will not preclude Commercial
Off-the-Shelf (COTS) products.

JCP

The Java Community Process (JCP) is an open or-
ganization of international Java developers and
licensees whose charter is to develop and re-
vise Java technology specifications, reference im-
plementations, and technology compatibility kits.
This group publishes Java Specification Requests
(JSRs), and several are related to security and
PKI. For example, JSR 55 discusses certification
path creation, building, and verification; JSR 74
discusses many of the Public Key Cryptography
Standards (PKCS) published by RSA Laborato-

ries; JSR 104 discusses XML trust services; JSR
105 discusses XML Digital Signature services;
JSR 106 discusses XML Digital Encryption ser-
vices; and JSR 155 discusses Web Services Se-
curity Assertions based on the OASIS SAML
specification. These and related efforts are ex-
pected to eventually be included in future versions
of the Java 2 Micro Edition (J2ME), Java 2 Stan-
dard Edition (J2SE), and Java 2 Enterprise Edi-
tion (J2EE) platforms. Further information can be
found at [4].

ICE-CAR

The Interworking Certification Infrastructure for
Commerce, Administration and Research (ICE-
CAR) project, a successor to the ICE-TEL project,
began in January 1999. The objective of this
project is to provide all of the technology com-
ponents that are needed to support the secure
use of the Internet for commercial and adminis-
trative applications in Europe. These applications
include e-commerce, intra-organizational commu-
nication, health-care applications, and research.
An additional goal was to promote the availabil-
ity of technically compatible and interconnectable
PKIs, which guarantee the authenticity and valid-
ity of public keys used in these environments. The
project has produced numerous technical reports
that are available for download from the Deliv-
erables section of the main Web site; see [3] for
further details.

Russ Housley
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SELECTIVE FORGERY

Selective forgery is a message related forgery
against a cryptographic digital signature scheme.
Given a victim’s verifying key, a selective forgery
is successful if the attacker finds a signature s for
a message m selected by the attacker prior to the
attack, such that the signature s is valid for m with
respect to the victim’s verifying key.

Gerrit Bleumer

SELF-SHRINKING
GENERATOR

The self-shrinking generator is a clock-controlled
generator that has been proposed in [1]; it is
strongly related to the shrinking generator, but
uses only one Linear Feedback Shift Register
(LFSR) R, producing a maximum-length linear se-
quence.

Its principle is really easy to get: the output se-
quence of the LFSR is partitioned into pairs of bits.
According to the value of the pair, one bit is added
to the keystream, and then the pair is discarded
and we go to the next one. More precisely:

Pair Bit added

10 0
11 1
01 no bit added
00 no bit added
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EXAMPLE. Let us consider that R has length four,
and that its feedback is given by st+1 = st + st−3. If
the initial state is s0s1s2s3 = 1010, then the output
of the LFSR is 101011001000111101011001000-
1111010110010001111 . . . This gives the following
output for the whole scheme: 00101101001011 . . .

A recent survey on the possible attacks is [2].

Caroline Fontaine
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SELF-SYNCHRONIZING
STREAM CIPHER

In a self-synchronizing, or asynchronous, stream
cipher, the keystream depends on the secret key of
the scheme, but also of a fixed number, say t, of ci-
phertext digits (that have already been produced,
or read; this distinguishes it from a synchronous
stream cipher). It can be viewed as follows:

ciphertext
key

plaintext
ENCRYPTION

key

plaintext
DECRYPTION

According to its design, such a scheme is able
to resynchronize the keystream with the message
with just a few correct bits of ciphertext. This
means that if some bits are inserted or deleted
in the ciphertext, just a small part of the plain-
text will not be obtained correctly; the next set of
t consecutive correct bits in the ciphertext will be
sufficient to resynchronize the keystream and pro-
duce the following bits of the plaintext correctly.

Let us now consider that one bit of the cipher-
text has been altered during the transmission.
This will induce some errors in the decryption of
the next t bits; after this, decryption will go on
correctly.

What can an active attacker do with such a
scheme? According to the propagation of each

error in a ciphertext on about t bits of plaintext, it
is more difficult for an attacker to forge a plaintext
of its choice than in a synchronous stream cipher.
Moreover, it is also more difficult for him to desyn-
chronize the keystream, since the scheme is able
to resynchronize it by itself. If the attacker wants
to desynchronize all the keystream, he has to do
a lot of modifications on the ciphertext. Neverthe-
less, some complementary mechanisms, that can
ensure authentication or integrity of the cipher-
text are welcome to help the receiver check that
all is going well.

At last, since each plaintext digit influences the
whole ciphertext (through the feedback of the ci-
phertext on the keystream generation), the statis-
tical properties of the plaintext are dispersed in
the ciphertext, and such a scheme may be more
resistant against attacks based on plaintext re-
dundancy, than synchronous stream ciphers.

Good references are [1] and [2].

Caroline Fontaine
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SEMANTIC SECURITY

Semantic security is a notion to describe the secu-
rity of an encryption scheme.

An adversary is allowed to choose between two
plaintexts, m0 and m1, and he receives an encryp-
tion of either one of the plaintexts. An encryp-
tion scheme is semantically secure, if an adver-
sary cannot guess with better probability than 1/2
whether the given ciphertext is an encryption of
message m0 or m1. The notion is also referred to
as indistinguishability of encryptions and noted as
IND. Historically the word “semantic” came from
the definition that the encryption reveals no in-
formation no matter what kind of semantics are
embedded in the encryption. It has been proven
that the definition describing this requirement is
equivalent to the indistinguishability of encryp-
tions. The notion of semantic security can be fur-
ther distinguished by the power of adversary. More
specifically, a powerful adversary may have access
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to an encryption oracle and/or decryption oracle
at various stages of the guessing game. Here, an
encryption oracle is an oracle that provides an en-
cryption of a queried plaintext, and a decryption
oracle provides the decryption of a queried cipher-
text (see also random oracle model).

The notion of semantic security can be applied
to both symmetric cryptosystems and public key
cryptosystems. But since the concrete security
analysis of a public key encryption scheme is more
tractable, the term is more frequently used to dis-
cuss the security of public key encryption schemes.

In a public key encryption scheme, the adver-
sary can always access the encryption oracle, be-
cause he can encrypt by himself. Therefore the
semantic security must be achieved against such
an adversary. Such security is called “semantically
secure against chosen plaintext attack” and writ-
ten IND-CPA. The threat of adversary who has
access to decryption oracle is called chosen cipher-
text attack (CCA). If a public-key scheme is seman-
tically secure against an adversary who has access
to a decryption oracle before determining the pair
of plaintexts m0 and m1, it is called IND–CCA1. If
a public-key scheme is semantically secure against
an adversary who has access to a decryption ora-
cle not only before receiving a target ciphertext
but also during the guessing stage, then it is de-
fined as IND–CCA2. It is regarded that this type
of adversary is the most powerful. Therefore the
scheme achieving IND–CCA2 is considered most
secure. (There is a restriction on this type of ad-
versary, namely that he cannot receive an answer
of the target ciphertext from decryption oracle.)

Besides semantic security, there are related
notions such as non-malleability and plaintext
awareness.

Kazue Sako
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SENDER ANONYMITY

Sender anonymity is achieved in a messaging sys-
tem if an eavesdropper who picks up messages
from the communication line of a recipient cannot

tell with better probability than pure guessing
who sent the messages. During the attack, the
eavesdropper may also listen on all communica-
tion lines of the network including those that con-
nect the potential senders to the network and he
may send his own messages. It is clear that all
messages in such network must be encrypted to
the same length in order to keep the attacker from
distinguishing different messages by their content
or length. The anonymity set for any particular
message attacked by the eavesdropper is the set
of all network participants that have sent message
within a certain time window before the attacked
message was received. This time window ofcourse
depends on latency characteristics and node con-
figurations of the network itself.

Sender anonymity can be achieved against
computationally restricted eavesdroppers by MIX
networks [1] and against computationally unre-
stricted eavesdroppers by DC networks [2,3].

Note that sender anonymity is weaker than
sender unobservability, where the attacker can-
not even determine whether or not a participant
sends a message. Sender unobservability can be
achieved with MIX networks and DC networks by
adding dummy traffic.

Gerrit Bleumer

References

[1] Chaum, David (1981). “Untraceable electronic mail,
return addresses, and digital pseudonyms.” Com-
munications of the ACM, 24 (2), 84–88.

[2] Chaum, David (1985). “Security without identifica-
tion: Transaction systems to make big brother ob-
solete.” Communications of the ACM, 28 (10), 1030–
1044.

[3] Chaum, David (1988). “The dining cryptographers
problem: Unconditional sender and recipient un-
traceability.” Journal of Cryptology, 1 (1), 65–75.

SEQUENCES

Sequences have many applications in mod-
ern communication systems, including signal
synchronization, navigation, radar ranging,
Code-Division Multiple-Access (CDMA) systems,
random number generation, spread-spectrum
communications, cryptography, in particular in
stream cipher systems.

In stream cipher systems it is essential to
construct sequences with good random proper-
ties, long periods, and large linear complexity. To
achieve many of these goals one often generates
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sequences using linear recurrence relations. The
period of a sequence {st } is the smallest integer ε

such that st+ε = st for all t. We will explain how
the period of a generated sequence is completely
determined by the characteristic polynomial of the
sequence. For linear sequences the period of the se-
quences generated can easily be controlled, which
makes them good building blocks in stream cipher
systems.

A linear recursion of degree n with binary coef-
ficients is given by

n∑
i=0

fi st+i = 0,

where fi ∈ GF(2) = {0, 1} for 0 < i < n and f0 =
fn = 1. The characteristic polynomial of the recur-
sion is defined by

f (x) =
n∑

i=0

fi xi .

The initial state (s0, s1, . . . , sn−1) and the given
recursion uniquely determines the generated se-
quence. A linear shift register with a characteristic
polynomial f (x) of degree n generates 2n different
sequences corresponding to the 2n different initial
states and these form a vector space over GF(2)
which is denoted 	( f ).

The maximum period of a sequence generated
by a linear shift register is at most 2n − 1. This
follows since a sequence is completely determined
by n-successive bits in the sequence and period 2n

is impossible since n successive zeros implies the
all zero sequence. Sequences with the maximal pe-
riod 2n − 1 are called m-sequences. For example,
with initial state (s0, s1, s2) = (001), then f (x) =
x3 + x + 1 generates the m-sequence 0010111.

EXAMPLE 1. Let the recursion be

st+4 + st+3 + st+2 + st+1 + st = 0 (mod 2)

with characteristic polynomial f (x) = x4 + x3 +
x2 + x + 1. The sequences in 	( f ) consists of
the 24 = 16 sequences corresponding to the se-
quences {(0), (00011), (00101), (01111)} and their
cyclic shifts.

To analyze properties of linear sequences, we as-
sociate a generating function G(x) to the sequence
{st }, and let

G(x) =
∞∑

t=0

st xt .

Let f∗(x) = ∑n
i=0 fn−i xi be the reciprocal polyno-

mial of the characteristic polynomial of f (x) of the

sequence. Then, we can compute the product

G(x) f∗(x) = (s0 + s1x + s2x2 + · · · )
× (1 + fn−1x + · · · + f1xn−1 + xn)

=
∞∑

t=0

ct xt .

The coefficient ct+n of xt+n for any t ≥ 0 becomes

ct+n =
n∑

i=0

fist+i = 0

as a consequence of the recurrence relation.
Hence,

G(x) f∗(x) = φ∗(x)

for some polynomial φ∗(x) of degree at most n − 1.
Its reciprocal polynomial φ(x) is given by

φ(x) = s0xn−1 + (s1 + fn−1s0)xn−2 + · · ·
+ (sn−1 + fn−1sn−2 + · · · + f1s0)

=
n−1∑
i=0

(
n−1−i∑

j=0

fi+ j+1s j

)
xi .

There is a one-to-one correspondence between any
sequence {st } in 	( f ) and any polynomial φ∗(x) of
degree ≤ n − 1. All sequences generated by f (x)
can therefore be described by

	( f ) =
{

φ∗(x)
f∗(x)

∣∣∣ deg(φ∗(x)) < deg( f ) = n
}

.

For example, the m-sequence 0010111 in 	(x3 +
x + 1) can be written

x2

1 + x2 + x3

= x2 + x4 + x5 + x6 + x9 + x11 + x12 + · · ·
= (x2 + x4 + x5 + x6)(1 + x7 + x14 + · · ·

In particular, a simple consequence of the above
description of 	( f ) is that 	( f ) ⊂ 	(g) if and only
if f (x) divides g(x).

The generating function G(x) for a periodic se-
quence of period ε can be written as

G(x) = (
s0 + s1x + · · · + sε−1xε−1)

× (1 + xε + x2ε + · · · )

= s0 + s1x + · · · + sε−1xε

1 − xε
.

Combining the two expressions for G(x), we obtain
the identity

(xε − 1)φ(x) = σ (x) f (x),

where σ (x) = s0xε−1 + s1xε−2 + · · · + sε−1, contains
all the information of a period of the sequence.

The period of the polynomial f (x) is the smallest
positive integer e such that f (x) divides xe − 1. The



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 14:7

562 Sequences

importance of the period e of f (x), is that in order
to find the period of all the sequences in 	( f ), it is
enough to find the period of f (x).

Since f (x) divides xe − 1 it follows that 	( f ) ⊂
	(xe − 1), the set of sequences where st+e = st ,
i.e., of period dividing e. Hence, all sequences gen-
erated by f (x) has period dividing e. Let the se-
quence {st } correspond to the polynomial φ(x). If
gcd( f (x), φ(x)) = 1 then as a consequence of the
identity (xε − 1)φ(x) = σ (x) f (x), it follows that {st }
has smallest period e, since in this case f (x) must
divide xε − 1 and thus ε ≥ e which implies that
ε = e.

In particular, when f (x) is an irreducible poly-
nomial of period e, then all the nonzero sequences
in 	( f ) have period e. For example the polynomial
f (x) = x4 + x3 + x2 + x + 1 in Example 1 is irre-
ducible and divides x5 + 1 and has period 5, and
therefore all nonzero sequences in 	( f ) have pe-
riod 5.

To determine the cycle structure of 	( f ) for an
arbitrary polynomial f (x) that can be factored as
f (x) = ∏

fi(x)ki , fi(x) irreducible, one first needs to
determine the cycle structure of 	( fki

i ) and then
the cycle structure for 	(gh) when gcd(g,h) = 1.

Cycle structure of Ω( f r)

Let f (x) be an irreducible polynomial of period e.
Let k be defined such that 2k < r ≤ 2k+1. Then
	( fr )\	( f ) contains

2n2 j − 2n2 j−1

sequences of period e2 j for j = 1, 2, . . . , k and

2nr − 2n2k

sequences of period e2k+1.

EXAMPLE 2. Let f (x) = x3 + x + 1 be the charac-
teristic polynomial with e = 7, that generates an
m-sequence. The number of sequences of each pe-
riod in 	( f 3) is therefore

Number 1 7 56 448
Period 1 7 14 28

Cycle structure of 	(gh) when gcd(g, h) = 1.

In this case it can be shown that each sequence
{st } in 	(gh) can be written uniquely

{st } = {ut } + {vt }
where {ut } ∈ 	(g) and {vt } ∈ 	(h). Further, the pe-
riod of the sum {ut } + {vt } is equal to the least com-
mon multiple of the period of the two sequences,
i.e.,

per (st ) = lcm(per (ut ), per (vt )).

To find the cycle structure of 	(gh), suppose 	(g)
contains d1 cycles of length λ1 and 	(h) contain d2
cycles of length λ2. Add in all possible ways the
corresponding d1λ1 sequences from 	(g) and the
d2λ2 sequences from 	(h). This gives d1λ1d2λ2 dis-
tinct sequences all of period lcm(λ1, λ2). Formally
we can write this as [d1(λ1)][d2(λ2)] = [d(λ)] where
d = d1d2gcd(λ1, λ2) and λ = lcm(λ1, λ2).

EXAMPLE 3. Let f1(x) = x3 + x + 1 and f2(x) =
x4 + x3 + x2 + x + 1. The cycle structure of 	( f1)
can be written [1(1) + 1(7)], and similarly for 	( f1)
as [1(1) + 3(5)]. Combining the cycle structure as
described above, gives the cycle structure [1(1) +
1(7) + 3(5) + 3(35)].

The discussion above shows that the period of
all sequences in 	( f ) is completely determined
from the periods of the divisors of f (x). This way of
controlling the periods is one of the main reasons
for using linear recursions as building blocks in
stream ciphers.

The sequence {st } can be expressed in terms of
the zeros of its characteristic polynomial f (x) of
degree n. In the case when the zeros of f (x) are
simple, which is the case when the sequence has
odd period, then {st } has a unique expansion in the
form

st =
n∑

i=1

aiα
t
i

for some constants ai and where αi , 1 ≤ i ≤ n are
the zeros of f (x).

The main problem with linear recursions in
cryptography is that it is easy to reconstruct a
sequence {st } generated by a characteristic poly-
nomial f (x) of degree n from the knowledge of 2n
consecutive bits in {st }, since this gives a system
of n equations for determining the unknown coef-
ficients of f (x). The Berlekamp–Massey algorithm
is an efficient method for finding f (x) in this way.
Several methods exist to increase the linear span,
i.e, the smallest degree of the linear recursion that
generates the sequence. We just mention a few
simple ones obtained by multiplying sequences.

Let {ut } and {vt } be two sequences of odd pe-
riod. Then, ut = ∑

aiα
t
i where αi , 1 ≤ i ≤ n, are

the zeros of the characteristic polynomial of {ut }
and vt = ∑

bjβ
t
j where β j, 1 ≤ j ≤ m, are the zeros

of the characteristic polynomial of {vt }. Then the
sequence {wt } = {utvt } can be written as

wt =
∑

aib j(αiβ j)t .

This shows that {wt } is generated by the polyno-
mial with the, at most, nm different zeros αiβ j for
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1 ≤ i ≤ n, 1 ≤ j ≤ n. If gcd(per (ut ), per (vt )) = 1,
then it can be shown that per (wt ) = per (ut )per (vt ).
However, the number of zeros and ones in se-
quence {wt } will in general not be balanced even if
this is the case for {ut } and {vt }. This follows since
wt = 1 if and only if ut = vt = 1, and thus only 1/4
of the elements in {wt } will be 1’s when {ut } and
{vt } are balanced.

Often one considers sequences of the form

wt = st+τ1st+τ2 . . . st+τk ,

where st is an m-sequence. A closer study of the ze-
ros of the characteristic polynomial of {wt } shows
that the linear span is at most

∑k
i=1

(n
i

)
and fre-

quently the equality holds.
Every Boolean function in n variables, f (x1,

x2, . . . , xn), can be written uniquely as the sum

f (x1, x2, . . . , xn) = u0 +
n∑

i=1

ui xi +
n∑

i=1

n∑
j=1

uijxi xj

+ · · · + u12...nx1x2 · · · xn

with binary coefficients (see algebraic normal form
in Boolean functions).

One can determine the linear span ob-
tained by combining n different m-sequences
{at }, {bt }, . . . , {ct } with characteristic polynomials
of pair-wise relative prime degrees e1, e2, . . . , en
using a Boolean combining function. From the
Boolean function f (x1, x2, . . . , xn) we construct
a sequence wt = f (at , bt , . . . , ct ). Then the lin-
ear span of the combined sequence is equal to
f (e1, e2, . . . , en), evaluated over the integers.

It is important in applications of sequences in
communication systems as well as in stream ci-
pher systems to generate sequences with good
auto- and cross-correlation properties.

Let {u(t)} and {v(t)} be two binary sequences of
period e. The cross-correlation of the sequences
{u(t)} and {v(t)} at shift τ is defined as

Cu,v(τ ) =
e−1∑
t=0

(−1)ut+τ −vt

where the sum t + τ is computed modulo e. In the
case when the two sequences are the same, we de-
note this by the auto-correlation at shift τ .

For synchronization purposes one prefers se-
quences with low absolute values of the maximal
out-of-phase auto-correlation, i.e., |Cu,u(τ )| should
be small for all values of τ 
= 0 (mod e).

Let F be a family consisting of M sequences

F = {si(t) : i = 1, 2, · · · , M},
where each sequence {si(t)} has period e.

The cross-correlation between two sequences
{si(t)} and {s j(t)} at shift τ is denoted by Ci, j(τ ).

In Code-Division Multiple-Access (CDMA) appli-
cations it is desirable to have a family of sequences
with certain properties. To facilitate synchroniza-
tion, it is desirable that all the out-of-phase auto-
correlation values (i = j, τ 
= 0) are small. To min-
imize the interference due to the other users in
a multiple access situation, the cross-correlation
values (i 
= j) must also be kept small. For this
reason the family of sequences should be designed
to minimize

Cmax = max{|Ci, j| : 1 ≤ i, j ≤ M,

and either i 
= j or τ 
= 0}.
For practical applications in communication

systems one needs a family F of sequences of pe-
riod e, such that the number of users M = |F | is
large and simultaneously Cmax is small. Also in
stream ciphers it is of importance that the gen-
erated sequences have good auto-correlation and
cross-correlation properties.

Tor Helleseth
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SERPENT

Serpent is a 128-bit block cipher designed by
Anderson et al. and first published in 1998 [1].
Later that year the cipher was slightly modified [2]
and proposed as a candidate for the Advanced En-
cryption Standard (Rijdnael/AES). In 1999 it was
selected as one of the five finalists of the AES com-
petition.

Serpent is a 32-round substitution–permutation
(SP) network operating on 128-bit blocks. Each
round consists of a key mixing operation, a layer
of 32 copies of a 4 × 4-bit S-box, and (except in the
last round) a linear transformation. The replicated
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S-box differs from round to round and is selected
from a set of eight different S-boxes. The last (in-
complete) round is followed by a final key mixing
operation. An additional bit permutation before
the first round and after the last key mixing layer
is applied to all data entering and leaving the SP
network. The 128-bit subkeys mixed with the data
in each round are generated by linearly expanding
a 128-bit, 192-bit, or 256-bit secret key, and pass-
ing the result through a layer of S-boxes.

The initial and final permutations, the S-boxes,
and the linear transformation have all been de-
signed in order to allow an optimized implementa-
tion in software using the “bitslice” technique [3].
The idea is to construct a complete description of
the cipher using only logical bit-operations (as in
hardware) and then execute 32 (or 64) operations
in parallel on a 32-bit (or 64-bit) processor.

Serpent is considered to have a rather high se-
curity margin. The best attacks published so far
break about 1/3 of the rounds. Kelsey, Kohno, and
Schneier [7] presented a first attack breaking 9
rounds with a time complexity slightly faster than
exhaustive key search. This amplified boomerang
attack was improved and extended by one round
by Biham et al. [5]. The best attacks so far are
the linear and the differential-linear attacks pre-
sented in [4] and [6]. Both break 11 rounds out
of 32.

Christophe De Cannière
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SET

SET (Secure Electronic Transactions) is a stan-
dard for a payment protocol for credit card pay-
ments over the Internet and was developed in
1996–97 as a joint initiative of MasterCard, VISA,
IBM, Microsoft, Netscape and others as a more
secure alternative to Secure Socket Layer SSL,
which never really caught on.

SET assumes the existence of appropriate in-
frastructure within the card organisation, and en-
tails the communication between the registered
Payer (cardholder), Payee (merchant) and the Pay-
ment Gateway Provider, i.e. the Acquirer or a Pay-
ment Service Provider. The main purpose of the
protocol is to secure this communication in such a
way that neither the Payee, nor the Payment Gate-
way Provider can access all purchase transaction
details. Thus the Payee has access to the order
information only and not the credit card details,
while the Payment Gateway Provider has access
to the payment information only.

SET is a PKI-solution (see public key infra-
structure). The Certificate Authority (CA) hierar-
chy consists of a Root CA that signs the certificates
of each of the credit card brand CA’s. These CA’s
sign certificates for the Cardholder CA (the Card
Issuer), Merchant CA (the Customer Acquirer)
and the Payment CA. These CA’s then in turn sign
the certificates for the cardholder, merchant, and
payment gateway provider, respectively, using the
X.509 v3 format. Neither cardholder’s name, nor
card number are shown in the certificates. Rather
a number is used that has been computed from
the credit card number and other input by the
Issuer.

In short, the protocol works as follows: the card-
holder indicates that he wants to initiate pay-
ment for his order. The merchant then identifies
himself with his certificate and provides the card-
holder with the public key of the payment gateway
provider. The cardholder encrypts the payment
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information using this key, thus ensuring the mer-
chant cannot access this information and signs
the payment instruction. The merchant forwards
the payment information to the payment gateway
provider in an authorization request, and the pay-
ment gateway provider verifies the content and
authorizes accordingly.

Peter Landrock

SHA FAMILY (SECURE
HASH ALGORITHM)

The SHA (Secure Hash Algorithm) Family des-
ignates a family of six different hash functions:
SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512 [7, 8]. They take variable length input
messages and hash them to fixed-length outputs.
The first four operate on 512-bit message blocks di-
vided into 32-bit words and the last two on 1024-
bit blocks divided into 64-bit words. SHA-0 (the
first version of SHA since replaced by SHA-1) and
SHA-1 produce a message digest of 160 bits, SHA-
224 of 224 bits, SHA-256 of 256 bits, SHA-384 of
384 bits and SHA-512 of 512 bits respectively. All
six functions start by padding the message accord-
ing to the so-called Merkle-Damgård strength-
ening technique. Next, the message is processed
block by block by the underlying compression func-
tion. This function initializes an appropriate num-
ber of chaining variables to a fixed value to hash
the first message block, and to the current hash
value for the following message blocks. Each step
i of the compression function updates in turn one
of the chaining variables according to one mes-
sage word Wi . As there are more steps in the com-
pression function than words in a message block,
an additional message schedule is applied to ex-
pand the message block. In the last step, the ini-
tial value of the chaining variable is added to each
variable to form the current hash value (or the
final one if no more message blocks are avail-
able). The following provides an overview of SHA-
1, SHA-256, and SHA-512. SHA-0 is almost iden-
tical to SHA-1, SHA-224 to SHA-256 and SHA-384
to SHA-512.

PADDING: The message is appended with a bi-
nary one and right-padded with a variable num-
ber of zeros followed by the length of the original
message coded over two binary words. The total
padded message length must be a multiple of the
message block size.

SHA-1 Compression Function

Five 32-bit chaining variables A, B, C, D, E are
either initialized to

A ← IV1 = 67452301x

B ← IV2 = EFCDAB89x

C ← IV3 = 98BADCFEx

D ← IV4 = 10325476x

E ← IV5 = C3D2E1F0x

for the first 512-bit message block or to the current
hash value for the following message blocks. The
first sixteen words of the message schedule are
initialized to input message words. The following
64 message schedule words Wi are computed as

Wi ← (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) � 1,

16 ≤ i ≤ 79

where “⊕” represents bit-wise exclusive-or, and
“X � n” is the cyclic rotation of X to the left by
n bits. Then the compression function works as
follows:

for i = 0 to 79 do
T ← Wi + A � 5 + fi (B, C, D) + E + Ki

mod 232

B ← A
C ← B � 30
D ← C
E ← D
A ← T

where the nonlinear functions fi are defined by

fi f (X, Y, Z) =
(X ∧ Y)|(¬X ∧ Z), 0 ≤ i ≤ 19

fxor (X, Y, Z) =
(X ⊕ Y ⊕ Z), 20 ≤ i ≤ 39, 60 ≤ i ≤ 79

fmaj(X, Y, Z) =
((X ∧ Y)|(X ∧ Z)|(Y ∧ Z), 40 ≤ i ≤ 59

and the constants Ki by

Ki ← 5A827999x, 0 ≤ i ≤ 19
Ki ← 6ED9EBA1x, 20 ≤ i ≤ 39
Ki ← 8F1BBCDCx, 40 ≤ i ≤ 59
Ki ← CA62C1D6x, 60 ≤ i ≤ 79.

After 80 steps, the output value of each chain-
ing variable is added to the previous intermedi-
ate hash value according to the Davies–Meyer con-
struction to give the new intermediate hash value.
When all consecutive message blocks have been
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hashed, the last intermediate hash value is the
final overall hash value.

SHA-0

The only difference between SHA-1 and SHA-0
is the fact that there is no left rotation by one bit
in the message schedule of SHA-0. In other words,
the 64 message schedule words Wi for SHA-0 are
computed as

Wi ←Wi−3 ⊕ Wi−8 ⊕Wi−14 ⊕ Wi−16, 16 ≤ i ≤ 79.

SHA-256 and SHA-512 Compression
Functions

Eight chaining variables A, B, C, D, E, F, G, H are
initialized to fixed values H0 to H7 for the first
message block, and to the current intermediate
hash value for the following blocks. The first six-
teen w-bit words (where w = 32 for SHA-256 and
w = 64 for SHA-512) of the message schedule are
initialized to the input message words. The follow-
ing r − 16 (where r = 64 for SHA-256 and r = 80
for SHA-512) message schedule words Wi are com-
puted as

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15)
+ Wi−16 mod 2w, 16 ≤ i ≤ r − 1

where σ0 and σ1 represent linear combinations of
three rotated values of the input variable. Then
the compression function works as follows:

for i = 0 to r do
T1 ← H + 1(E) + fi f (E, F, G) + Ki

+ Wi mod 2w

T2 ← 0 (A) + fmaj(A, B, C) mod 2w

H ← G
G ← F
F ← E
E ← D + T1 mod 2w

D ← C
C ← B
B ← A
A ← T1 + T2 mod 2w

where 0 and 1 again represent linear combina-
tions of three rotated values of the input variable
and Ki is a different w-bit constant for each step
i. Finally, the output value of each chaining vari-
able is added to the previous intermediate hash
value according to the Davies–Meyer construction
to give the new intermediate hash value. When
all consecutive message blocks have been hashed,
the last intermediate hash value is the final over-
all hash value.

SHA-224

The SHA-224 hash computations are exactly the
same as those of SHA-256, up to the following two
differences: the constants H0 to H7 used in SHA-
224 are not the same as those used in SHA-256,
and the SHA-224 output is obtained by truncating
the final overall hash value to its 224 leftmost bits.

SHA-384

The SHA-384 hash computations are exactly the
same as those of SHA-512, up to the following two
differences: the constants H0 to H7 used in SHA-
384 are not the same as those used in SHA-512,
and the SHA-384 output is obtained by truncating
the final overall hash value to its 6 leftmost words.

SECURITY CONSIDERATION: All six SHA func-
tions belong to the MD4 type hash functions and
were introduced by the American National Insti-
tute for Standards and Technology (NIST). SHA
was published as a Federal Information Process-
ing Standard (FIPS) in 1993. This early version is
known as SHA-0. In 1994, a minor change to SHA-
0 was made, and published as SHA-1 [7]. SHA-
1 was subsequently standardized by ISO [5]. The
following generation of SHA functions with much
larger message digest sizes, namely 256, 384, and
512 bits, was introduced in 2000 and adopted as a
FIPS standard in 2002 [8] as well as an ISO stan-
dard in 2003 [5]. The latest member of the family,
namely SHA-224, was adopted in a Change No-
tice to FIPS 180-2 in 2004. This latter generation
of hash functions provides theoretical security lev-
els against collision search attacks which are con-
sistent with the security levels expected from the
three standard key sizes of the Advanced Encryp-
tion Standard (see Rijndael/AES) (128, 192, and
256 bits). The first attack known on SHA-0 is by
Chabaud and Joux [2]. They show that in about
261 evaluations of the compression function it is
possible to find two messages hashing to the same
value whereas a brute-force attack exploiting the
birthday paradox requires about 280 evaluations
in theory. In 2004, Biham and Chen introduce the
neutral bit technique and find near-collisions on
the compression function of SHA-0 [1] as well as
collisions on reduced-round versions of SHA-1. In
August 2004, Joux, Carribault, Jalby and Lemuet
[6] first provide a full collision on SHA-0 using two
four-block messages and requiring a complexity of
251 compression function computations. In Febru-
ary 2005, Wang, Yin and Yu [10] announce full col-
lisions on SHA-0 in 239 hash operations and report
that collisions on SHA-1 can be obtained in less
than 269 hash operations. Saarinen [9] addresses
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the existence of slid pairs in SHA-1. The first se-
curity analysis on SHA-256, SHA-384 and SHA-
512 in 2003 is by Gilbert and Handschuh [3]. They
show that collisions can be found with a reduced
work factor for weakened variants of these func-
tions. Subsequently, Hawkes and Rose show that
second pre-image attacks are far easier than ex-
pected on SHA-256 [4]. However these observa-
tions do not lead to actual attacks in 2004.

Helena Handschuh
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SHAMIR’S THRESHOLD
SCHEME

In [1], Shamir proposed an elegant “polyno-
mial” construction of a perfect threshold schemes

(see threshold cryptography). An (n, k)-threshold
scheme is a particular case of secret sharing
scheme when any set of k or more participants
can recover the secret exactly while any set of less
than k particiants gains no additional, i.e. a pos-
teriori, information about the secret. Such thresh-
old schemes are called perfect and they were con-
structed in [2] and [1]. Shamir’s construction is the
following.

Assume that the set S0 of secrets is some
finite field GF(q) of q elements (q should be
prime power) and that the number of partici-
pants of SSS n < q. The dealer chooses n differ-
ent nonzero elements (points) x1, . . . , xn ∈ GF(q),
which are publicly known. To distribute a se-
cret s0 the dealer generates randomly coefficients
g1, . . . , gk−1 ∈ GF(q), forms the polynomial g(x) =
s0 + g1x + · · · + gk−1xk−1 of degree less than k and
sends to the i-th articipant the share si = g(xi).
Clearly any k participants can recover the whole
polynomial g(x) and, in particular, its zero coef-
ficient (or g(0)), since any polynomial of degree
l is uniquely determined by its values in l + 1
points and Lagrange interpolation formula shows
how to determine it. On the other hand, the point
0 can be considered as an “evaluation point” x0,
corresponding to the dealer, since s0 = g(0). Then
the above consideration shows that for any given
shares s1 = g(x1), . . . , sk−1 = g(xi) all possible val-
ues of s0 are equally probable, hence the scheme
is perfect.

For some applications it is convenient to have
the maximal possible number n of participants
equal to q, especially for q = 2m. For Shamir’s
scheme n < q but the following simple modifica-
tion allows to have n = q. Namely, the dealer gen-
erates a random polynomial of the form f (x) =
f0 + f1x + · · · + fk−2xk−2 + s0xk−1 and distribute
shares si = f (xi), where the xi are different but not
necessary nonzero elements of GF(q). The perfect-
ness of this scheme can be proved either directly
(along the line of the above proof by considering
the polynomial h(x) = f (x) − s0xk−1 of degree at
most k − 2), or as an application of established
in [3] the relationship between perfect (n, k)-
threshold schemes and (n + 1, k) Reed–Solomon
codes (see cyclic codes), since the above construc-
tion is equivalent to so-called 2-lengthening of
Reed–Solomon codes.

Robert Blakley
Gregory Kabatiansky
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Fig. 1. The conventional cryptosystem
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SHANNON’S MODEL

Although symmetric cryptosystems have been
around for at least two thousand years (see for
instance Caesar cipher), it was only in 1949 that
Claude Shannon gave a formal mathematical de-
scription of these systems [1].

In his description, a sender A (often called
Alice) wants to send a message m to a receiver B
(who is called Bob). The message is called a plain-
text and is taken from a finite set, called plain-
text space M. Of course, Alice may send more
messages.

Since the transmission channel is insecure (a
person called Eve is also connected to the channel),
Alice applies a mapping Ek to m. The result c is
called the ciphertext and is an element of a set C,

the ciphertext space. The mapping Ek is called the
encryption function. It is c that Alice sends to Bob
and so it will be c that is intercepted by Eve.

Clearly, the encryption function Ek must be a
one-to-one mapping, since Bob must be able to re-
trieve the plaintext/message m from the cipher-
text c by means of the decryption function Dk. In
formula: Dk(c) = m.

Since more people may want to use the same
cryptosystem and since Alice and Bob do not want
to use the same mapping too long for security rea-
sons, their function is taken from a large set E of
one-to-one mappings from M to C. It is for this
reason that the encryption and decryption func-
tions carry a label k. This k is called the key and
is taken from the so-called key-space K. It is the
set E = {Ek | k ∈ K} that describes the cryptosys-
tem. Quite clearly Alice and Bob must use the

same key k. To this end, they use a secure chan-
nel, a communication line without any eavesdrop-
pers. A possibility is that they agreed beforehand
on the key, another possibility is that one has
sent the key by means of a courier to the other.
Nowadays public key cryptography is often used
for this purpose.

Normally, the same cryptosystem E will be used
for a long time and by many people, so it is rea-
sonable to assume that E is also known to the
cryptanalyst. It is the frequent changing of the key
that has to provide the security of the data. This
principle was already clearly stated by the Dutch-
man Auguste Kerckhoff (see maxims) in the 19th
century.

Often M = C in which case one wants the num-
ber of plaintexts that are mapped to a particular
ciphertext (under different keys) to be the same. In
that case the ciphertext does not give any informa-
tion about the plaintext (see information theory).

The cryptanalyst who is connected to the trans-
mission line can be:
Passive (eavesdropping): The cryptanalyst tries

to find m (or even better k) from c.
Active (tampering): The cryptanalyst tries to ac-

tively manipulate the data that are being trans-
mitted. For instance, she alters a transmitted
ciphertext.

Henk van Tilborg
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SHARE

Share is a portion of information distributed by a
secret sharing scheme (SSS) to a given user. In the
standard definition of SSS, shares are distributed
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via secure, private channels in such a way that
each participant only knows his own share [1, 2].
We note that it is also possible to organize SSS in
case of public channels [3].

Robert Blakley
Gregory Kabatiansky
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SHORTEST VECTOR
PROBLEM

The Shortest Vector Problem (SVP) is the most
famous and widely studied computational prob-
lem on lattices. Given a lattice L (typically repre-
sented by a basis), SVP asks to find the shortest
nonzero vector in L. The problem can be defined
with respect to any norm, but the Euclidean norm
is the most common (see the entry lattice for a
definition). A variant of SVP (commonly studied
in computational complexity theory) only asks to
compute the length (denoted λ(L)) of the shortest
nonzero vector in L, without necessarily finding
the vector.

SVP has been studied by mathematicians (in
the equivalent language of quadratic forms) since
the 19th century because of its connection to many
problems in the number theory. One of the earliest
references to SVP in the computer science litera-
ture is [7], where the problem is conjectured to be
NP-hard.

A cornerstone result about SVP is Minkowski’s
first theorem, which states that the shortest
nonzero vector in any n-dimentional lattice has
length at most γn det(L)1/n, where γn is an abso-
lute constant (approximately equal to

√
n) that de-

pends only of the dimension n, and det(L) is the
determinant of the lattice (see the entry lattice for
a definition).

The upper bound provided by Minkowski’s the-
orem is tight, i.e., there are lattices such that the
shortest nonzero vector has length γn det(L)1/n.
However, general lattices may contain vectors
much shorter than that. Moreover, Minkowski’s

theorem only proves that short vectors exist, i.e.,
it does not give an efficient algorithmic proce-
dure to find such vectors. An algorithm to find
the shortest nonzero vector in two-dimensional
lattices was already known to Gauss in the 19th
century, but no general methods to efficiently find
(approximately) shortest vectors in n-dimentional
lattices were known until the early 1980s. A g-
approximation algorithm for SVP is an algorithm
that on input a lattice L, outputs a nonzero lattice
vector of length at most g times the length of the
shortest vector in the lattice. The LLL lattice re-
duction algorithm ([4], see lattice reduction) can
be used to approximate SVP within a factor g =
O((2/

√
3)n) where n is the dimension of the lattice.

Smaller approximation factors (slightly subexpo-
nential in n—see subexponential time for a def-
inition) can be achieved in polynomial time us-
ing more complex algorithms like Schnorr’s Block
Korkine–Zolotarev reduction [6].

No efficient (polynomial time) algorithm to com-
pute the length of the shortest vector in a lat-
tice is known to date (leave alone actually finding
the shortest vector). The NP-hardness of SVP (in
the Euclidean norm) was conjectured by van Emde
Boas in 1981 [7]. The conjecture remained wide
open until 1997, when Ajtai proved that SVP is
NP-hard to solve exactly under randomized re-
ductions [1]. The strongest NP-hardness result
for SVP known to date is due to Micciancio [5],
who showed that SVP is NP-hard even to approxi-
mate within any factor less than

√
2. Stronger (but

still subpolynomial) inapproximability results are
known for SVP in the �∞ norm [2]. On the other
hand, Goldreich and Goldwasser [3] have shown
that (under standard complexity assumptions)
SVP cannot be NP-hard to approximate within
small polynomial factors g = O(

√
n/ log n).

As is the case with the related Closest Vector
Problem, finding a good approximation algorithm
(i.e., a polynomial-time algorithm with polyno-
mial approximation factors) is one of the most im-
portant open questions in the area. Indeed, the
hardness of approximating SVP within certain
polynomial factors can be used as the basis for
the construction of provably secure cryptographic
functions (see lattice based cryptography).

Daniele Micciancio
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SHRINKING GENERATOR

The shrinking generator is a clock-controlled
generator that has been proposed in 1993 [1]. It
is based on two Linear Feedback Shift Registers
(LFSRs), say R1 and R2. The idea is that R1’s out-
put will decimate R2’s output. At each step, both
are clocked; if R1 output a 1, then R2’s output bit
is included in the keystream, else (if R1 outputs a
0) R2’s output bit is discarded.

R1

keep

discard

R2

EXAMPLE. Let us consider R1 of length three,
with the feedback relation st+1 = st + st−2, and
R2 of lenth four, with the feedback relation
st+1 = st + st−3. Then the following happens (the

first row concerns only the initialization; the
internal states are of the form stst−1st−2 or
stst−1st−2st−3):

R1 R2

State Output State Output Output

010 0101
001 0 1010 1
100 1 1101 0 0
110 0 0110 1
111 0 0011 0
011 1 1001 1 1
101 1 0100 1 1
010 1 0010 0 0
001 0 0001 0
100 1 1000 1 1
110 0 1100 0
111 0 1110 0
011 1 1111 0 0
101 1 0111 1 1

...
...

...
...

...

The inventors discussed some security points in
their paper. More recent results have been given
in [2, 5]. A discussion about the implementation
and the use of a buffer (in order to avoid the
irregular rate of the output) is presented in [3]
and [4].

Caroline Fontaine
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SIDE-CHANNEL ANALYSIS

INTRODUCTION: Electronic devices have to com-
ply with consumption constraints especially on au-
tonomous equipments, like mobile phones. Power
analysis has been included into most certification
processes regarding products dealing with infor-
mation security such as smart cards.

The electrical consumption of any electronic de-
vice can be measured with a resistor inserted be-
tween the ground or Vcc pins and the actualground
in order to transform the supplied current into a
voltage easily monitored with an oscilloscope.

Within a micro-controller the peripherals con-
sume differently. For instance writing into non-
volatile memory requires more energy than
reading. Certain chips for smart cards enclose a
crypto-processor, i.e., a particular device dedicated
to specific cryptographic operations, which gen-
erally entails a consumption increase. The con-
sumption trace of a program running inside a
micro-controller or a microprocessor is full of in-
formation. The signal analysis may disclose lots
of things about the used resources or about the
process itself. This illustrates the notion of side
channel as a source of additional information.

Fig. 2. Information leakage

Basically a power consumption trace exhibits
large scale patterns most often related to the
structure of the executed code. The picture below
(Figure 1) shows the power trace of a smart-card
chip ciphering a message with the Advanced En-
cryption Standard (AES). The ten rounds are eas-
ily recognised with nine almost regular patterns
first followed by a shorter one.

Zooming into a power signal exhibits a local be-
haviour in close relationship with the silicon tech-
nology. At the cycle scale, the consumption curve
looks roughly like a capacitive charge and dis-
charge response.

A careful study of several traces of a same code
with various input data shows certain locations
where power trace patterns have different heights.
The concerned cycles indicate some data depen-
dence also called information leakage. They may
be magnified by a variance analysis over a large
number of executions with random data. For in-
stance, by ciphering many random plaintexts with
a secret-key algorithm, it is possible to distinguish
the areas sensitive to input messages from the con-
stant areas that correspond to the key schedule.

INFORMATION LEAKAGE MODEL: The charac-
terisation of data leakage (namely, finding the re-
lationships between the data and the variability of
consumption) has been investigated by several re-
searchers. The most common model consists in cor-
relating these variations to the Hamming weight
of the handled data, i.e., the number of nonzero
bits. Such a model is valid for a large number of
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devices. However it can be considered as a special
case of the transition model which assumes that
the energy is consumed according to the number of
bits switched for going from one state to the next
one. This behaviour is represented by the Ham-
ming distance between the data and some a priori
unknown constant, i.e., the Hamming weight of
the data XOR-ed with this constant.

As shown in the next picture (Figure 3), for an
8-bit micro-controller, the transition model may
seem rough but it suffices to explain many situ-
ations, provided that the reference constant state
is known. In most microprocessors this state is ei-
ther an address or an operating code. Each of them
has a specific binary representation and therefore
a different impact in the power consumption: this
is why each cycle pattern is most often different
from its neighbours.

Some technologies systematically go through a
clear “all-zeros” state that explains the simpler
Hamming-weight model.

Fig. 4. Bit tracing (upper curve: power consumption of a single execution; two lower curves: DPA curves respectively
tracing the first and last data bit of a targetted process)

STATISTICAL ANALYSES: With information leak-
age models in mind, it is possible to designsta-
tistical methods in order to analyse the data
leakage. They require a large amount of power
traces assigned to many executions of the same-
code with varying data, generally at random, and
make use of statistical estimators such as aver-
ages, variances and correlations. The most famous
method is due to Paul Kocher et al. and is called
Differential Power Analysis (DPA).

Basically the purpose of DPA is to magnify
the effect of a single bit inside a machine word.
Suppose that a random word in a 	-bit proces-
sor is known and uniformly distributed. Suppose
further that the associated power consumption
obeys the Hamming-weight model. On average the
Hamming weight of this word is 	/2. Given N
words, two populations can be distinguished ac-
cording to an arbitrary selection bit: the first pop-
ulation, S0, is the set of t words whose selection
bit is 0 and the second population, S1, is the set
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of N–t words whose selection bit is 1. On average,
the words of set S0 will have a Hamming weight
of (	 − 1)/2 whereas the words of set S1 will have
a Hamming weight of (	 + 1)/2. The same bias
can be seen through the corresponding power con-
sumption traces since it is supposed to be corre-
lated with the Hamming weight of the data. Let
C0 and C1 respectively denote the averaged power
consumption traces of the blue curvesets S0 and
S1. The DPA trace is defined as the difference
C0 − C1.

The resulting DPA curve has the property of
erecting bias peaks at moments when the selec-
tion bit is handled. It looks like noise everywhere
else: indeed, the constant components of the signal
are cancelled by the subtraction whereas dynamic
ones are faded by averaging, because they are not
coherent with the selection bit.

This approach is very generic and applies to
many situations. It works similarly with the tran-
sition model. Of course the weight of a single selec-
tion bit is relatively more important in processors
with short words like 8-bit chips. If the machine
word is larger, the same DPA bias can be obtained
by increasing the number of trials.

A first application of DPA is called bit tracing. It
is a useful reverse engineering tool for monitoring
a predictable bit during the course of a process. In
principle a DPA peak rises up each time it is pro-
cessed. This brings a lot of information about an
algorithm implementation. To achieve the same
goal Paul Fahn and Peter Pearson proposed an-
other statistical approach called Inferential Power
Analysis (IPA). The bits are inferred from the devi-
ation between a single trace and an average trace
possibly resulting from the same execution: for in-
stance the average trace of a DES round (see Data
Encryption Standard) can be computed over its
sixteen instances taken from a single execution.
IPA does not require the knowledge of the random
data to make a prediction on a bit value. But as
counterpart it is less easy to implement and the
interpretation is less obvious.

After Paul Kocher, Thomas Messerges et al.
have proposed to extend DPA by considering mul-
tiple selection bits in order to increase the signal
to noise ratio (SNR). If the whole machine word is
taken into account, a global approach consists in
considering the transition model as suggested by
Jean-Sébastien Coron et al.

FROM POWER ANALYSIS TO POWER ATTACKS:
Obviously, if the power consumption is sensitive
to the executed code or handled data, critical in-
formation may leak through power analysis. This

k bitsize(d )

y x

for i = k − 2 downto 0 do

y y2 (mod n)

if (bit i of d is 1) then y y . x (mod n)

endfor

return y

Fig. 5. Square-and-multiply exponentiation algorithm

section explains how to turn a side-channel anal-
ysis into an attack.

SPA-Type Attacks

A first type of power attacks is based on Simple
Power Analysis (SPA). For example, when applied
to an unprotected implementation of an RSA pub-
lic key encryption scheme, such an attack may re-
cover the whole private key (i.e., signing or decryp-
tion key) from a single power trace.

Suppose that a private RSA exponentiation,
y = xd mod n (see modular arithmetic), is carried
out with the square-and-multiply algorithm (see
also exponentiation algorithms). This algorithm
processes the exponent bits from left to right. At
each step there is a squaring, and when the pro-
cessed bit is 1 there is an additional multiplication.
A straightforward (i.e., unprotected) implementa-
tion of the square-and-multiply algorithm is given
in Figure 5.

The corresponding power curve exhibits a se-
quence of consumption patterns among which
some have a low level and some have a high level.
These calculation units are assigned to a crypto-
processor handling n-bit arithmetic. Knowing that
a low level corresponds to a squaring and that a
high level corresponds to a multiplication, it is
fairly easy to read the exponent value from the
power trace:
� a low-level pattern followed by another low-

level pattern indicates that the exponent bit is
0, and

� a low-level pattern followed by a high-level pat-
tern indicates that the exponent bit is 1.
This previous picture also illustrates why the

Hamming weight of exponent d can be disclosed
by a timing measurement.

DPA-Type Attacks

Historically, DPA-type attacks—that is, power
attacks based on Differential Power Analysis
(DPA)—were presented as a means to retrieve the
bits of a DES key.
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Fig. 6. SPA trace of the basic square-and-multiply algorithm

At the first round of DES, the output nibble of
the ith S-box (1 ≤ i ≤ 8) can be written as Si(M ⊕
K) where
� M is made of 6 bits constructed from the input

message after IP- and E-permutations: it has to
be chosen at random but is perfectly known and
predictable, and

� K is a 6-bit sub-key derived from the key
scheduling.
Rising up a DPA bias would require the knowl-

edge of the output nibble. As K is unknown to the
adversary this is not possible. But sub-key K can
be easily exhausted as it can take only 26 = 64
possible values. Therefore the procedure consists
in reiterating the following process for 0 ≤ K̂ ≤ 63:
1. form sets S0 = {

M | g(S-boxi(M ⊕ K̂)) = 0
}

and
S1 = {

M | g(S-boxi(M ⊕ K̂)) = 1
}

where selec-
tion function g returns the value of a given bit
in the output nibble; and

2. compute the corresponding DPA curve.
In principle the bias peak should be maximised

when the guess K̂ is equal to the real sub-key
K. Then inverting the key schedule permutation
leads to the value of 6 key bits. In other words the
DPA operator is used to validate sub-key hypothe-
ses. The same procedure applies to the 7 other S-
boxes of the DES. Therefore the whole procedure
yields 8 × 6 = 48 key bits. The 8 remaining key
bits can be recovered either by exhaustion or by
conducting a similar attack on the second round.

The main feature of a DPA-type attack resides
in its genericity. Indeed it can be adapted to
many cryptographic routines as soon as varying
and known data are combined with secret data
through logical or arithmetic operations.

A similar attack can be mounted against the
first round of Rijndael/AES; the difference being
that there are 16 byte-wise bijective substitutions
and therefore 256 guesses for each. Finally, we
note that DPA-type attacks are not limited to
symmetric algorithms, they also apply to certain

(implementations of) asymmetric algorithms, al-
beit in a less direct manner.

Other Attacks

Amongst the other statistical attacks, IPA is more
difficult and less efficient. Its purpose is to retrieve
key bits without knowing the processed data. It
proceeds by comparing the power trace of a DES
round with an average power trace computed for
instance over the 16 rounds. In principle, key bits
could be inferred this way because the differen-
tial curve should magnify the bits deviation where
they are manipulated.

Dictionary (or template) attacks can be con-
sidered as a generalisation of IPA to very com-
fortable but realistic situations. They have been
widely studied in the field of smart cards where
information on secret key or personal identifica-
tion numbers (PIN) could potentially be extracted.
They consist in building a complete dictionary of
all possible secret values together with the cor-
responding side-channel behaviour (e.g., power
trace) when processed by the device (e.g., for au-
thentication purpose). Then a secret value embed-
ded in a twin device taken from the field can be
retrieved by comparing its trace and the entries of
the dictionary.

In practice, things do not happen that easily
for statistical reasons and application restrictions.
Only part of the secret is disclosed and the infor-
mation leakage remains difficult to exploit fully.

Finally, in addition to power consumption, other
side channels can be considered; possible sources
of information leakage include running time or
electro-magnetic radiation.

COUNTERMEASURES: The aforementioned at-
tacks have all been published during the sec-
ond half of the 1990s. In view of this new threat
the manufacturers of cryptographic tokens have
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Round 1 Round 2 Round 3

Fig. 7. DPA trace of the three first rounds of DES (two upper (respectively lower) curves: power consumption curve
of maxima (respectively minima) of a single execution and DPA curve of maxima (respectively minima))

designed a large set of dedicated countermeasures
especially to thwart statistical attacks like DPA.
All the related research activity has now resulted
in tamper resistant devices widely available in the
market. It has given rise to the new concept of “se-
cure implementation” which states that informa-
tion leakage is not only due to the specification of
an application (cryptographic processing or what-
ever), but also to the way it is implemented.

If information leaks through a physical side-
channel there are two defensive strategies. The
first consists in decorrelating the secret data from
the side-channel. The second consists in decorre-
lating the side-channel from the secret data. The
borderline between both is sometimes fuzzy but
roughly speaking, the former is rather software
oriented and intends to mask the data since they
have to leak anyway, whereas the latter is more
hardware oriented and intends to shut the side-
channel physically in order to make the device
tamper-resistant.

Chip manufacturers have introduced into their
hardware designs many security features against
power attacks. They are stricto sensu countermea-
sures since they aim at impeding the power mea-
surement and make the recorded signal unwork-
able.
� Some countermeasures consist in blurring the

signal using smoothing techniques, additive
noise or desynchronisation effects. These coun-
termeasures are poorly efficient against SPA
working on broad scale traces. They are rather
designed against statistical attacks. They may
require some complementary circuits to gen-
erate parasitic components into the consumed
current. Desynchronisation aims at misaligning
a set of power traces by the means of unstable

clocking or the insertion of dummy cycles at ran-
dom, making the statistical combination of sev-
eral curves ineffective.

� Other countermeasures rather intend to de-
crease or cancel the signal at the source. Re-
duction is a natural consequence of the shrink-
ing trend in the silicon industry that diminishes
the power consumption of each elementary
gate. More interesting (and expensive) is the
emerging technology called “precharged dual
rail logic” where each bit is represented by a
double circuitry. At a given time a logical 0 is
represented physically by a 01, and a logical 1
by 10. The transition to the next time unit goes
through a physical 00 or 11 state so that the
same amount of switching occurs whatever the
subsequent state is. Consequently if both rails
are perfectly balanced, the overall consumption
of a microprocessor does not depend on the data
anymore.
Software countermeasures enclose a large vari-

ety of techniques going from the application level
to the most specific algorithmic tricks. One can
classify them into three categories: application
constraints, timing counter-measures and data
masking.
� Application constraints represent an obvious

but often forgotten means to thwart statisti-
cal analyses. For instance DPA requires known
data with a high variability. An application
wherein an input challenge (or an output cryp-
togram) would be strictly formatted, partially
visible and constrained to vary within hard lim-
its (like a counter) would resist DPA fairly well.

� Timing countermeasures mean the usage of em-
pirical programming tricks in order to tune the
time progress of a process. A critical instruction
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may have its execution instant randomised by
software: if it never occurs at the same time,
statistical analysis becomes more difficult. Con-
versely other situations require the code to be
executed in a constant time, in order to protect
it from SPA or timing analysis. For instance a
conditional branch may be compensated with
a piece of fake code with similar duration and
electrical appearance.

� Data masking (also known as whitening or ran-
domization), covers a large set of numerical
techniques designed by cryptographers and de-
clined in various manners according to the al-
gorithm they apply to. Their purpose is to pre-
vent the data from being handled in clear and to
disable any prediction regarding their behavior
when seen through the side channel. For exam-
ple, the modular exponentiation y = xd mod n
(as used in the RSA public key cryptosystem)
can be evaluated as:

y = {(x + r1n)d+r2ϕ(n) mod r3n} mod n

for randoms ri and where φ denotes Euler to-
tient function.
To illustrate how fuzzy the borderline between

hardware and software countermeasures can be,
we have mentioned that for instance desynchroni-
sation can be implemented by hardware or soft-
ware means. The same remark applies to data
masking for which some manufacturers have de-
signed dedicated hardware tokens or mechanisms
such as bus encryption or wired fast implementa-
tions of symmetric algorithms.

The experience shows that combined counter-
measures act in synergy and increase the com-
plexity in a much larger proportion than the sum
of both. For instance the simple combination of
desynchronisation tricks and data masking makes
DPA (or more sophisticated variants thereof) quite
harmless. In the same way, new hardware designs
resist the most state-of-the-art and best equipped
experts.

Marc Joye
Francis Olivier
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SIDE-CHANNEL ATTACKS

Side-Channel Attacks or Environmental Attacks
of cryptographic modules exploit characteristic in-
formation extracted from the implementation of
the cryptographic primitives and protocols. This
characteristic information can be extracted from
timing, power consumption, or electromagnetic
radiation features (see tempest). Other forms of
side-channel information can be a result of hard-
ware or software faults, computational errors,
and changes in frequency or temperature. Side-
channel attacks make use of the characteristics
of the hardware and software elements as well
as the implementation structure of the crypto-
graphic primitive. Therefore, in contrast to ana-
lyzing the mathematical structure and properties
of the cryptographic primitives only, side-channel
analysis also includes the implementation. Some
implementations are more vulnerable to specific
side-channel attacks than others. Examples of
attacks based on side-channel analysis are Dif-
ferential Power Attacks examining power traces
(see Differential Power Analysis), Timing Attacks
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measuring the amount of time used to complete
cryptographic operations (see Timing Attack), and
Fault Induction Attacks exploiting errors in the
computation process of cryptographic primitives
(see Fault Attacks).

Tom Caddy

SIEVING

Sieving refers to a process for selecting candidates
for further processing among a set of elements.
The “sieve” is the test that an element must pass
to be considered further.

In many cases, by employing arithmetic pro-
gressions, it is possible to identify multiple candi-
dates from the set more efficiently than if each el-
ement were tested separately. (Indeed, sometimes
the term “sieving” refers only to this speedup.) For
instance, in the Sieve of Eratosthenes (see prime
number), candidate primes are selected from a
range of integers by crossing off elements divis-
ible by small primes 2, 3, 5, 7, 11, 13, . . . . Crossing
off every second, third, fifth, seventh element and
so on is generally faster than testing each element
separately for divisibility by small primes.

Sieving is the first and major phase of the fastest
general algorithms for integer factoring and for
solving the discrete logarithm problem. Here, the
candidates sought are those that are divisible only
by small primes or their equivalent (see smooth-
ness and factor base). Specific examples of sieving
are described further in the entries Number Field
Sieve, Quadratic Sieve, sieving in function fields,
and index calculus. See also TWIRL for a recent
design for efficient sieving in hardware.

Burt Kaliski

SIEVING IN FUNCTION
FIELDS

Function fields are analogous constructions to
number fields, where the role of the integers is
replaced by polynomials. The coefficients of these
polynomials are elements of finite fields for all
cryptographically relevant applications. But in
contrast to number fields, function fields over fi-
nite fields (so they are called) have interesting
properties, notably concerning smoothness of el-
ements, an important topic for sieving.

Notably, there exists a provable bound for the
necessary size of a factor base, a set of elements
generating a larger, targeted set of elements to be
factored. This is due to the fact that the analog of

the Riemann hypothesis has been proven in the
function field case. The most important applica-
tion to cryptography (although a theoretical re-
sult) is the existence of a provable subexponential-
time algorithm by Adleman et al. in 1992 [1]
for solving the discrete logarithm problem in the
Jacobian of a hyperelliptic curve (in short called
hyperelliptic cryptosystems), a generalization of
the group of points of an elliptic curve, and an ana-
log to the ideal class group of a quadratic number
field in function fields. The result is mostly of a
theoretical nature, since hyperelliptic cryptosys-
tems, as proposed by Koblitz in 1989 [8], are con-
sidered to be not practical enough because of their
complicated arithmetic. Yet there exist some im-
plementations in the group around Frey showing
this performance is not as bad as expected, espe-
cially because the size of the elements is consider-
ably smaller than for elliptic curves which might
make them even more suitable for small comput-
ing devices such as smart cards.

The first implementation actually solving hy-
perelliptic cryptosystems has been done by R.
Flassenberg and the author in 1997 [4]. They ap-
plied a sieving technique to accelerate a variant
of the Hafner–McCurley algorithm [6] (known to
solve discrete logarithms (see discrete logarithm
problem) in ideal class groups of quadratic number
fields). The basic idea of sieving in function fields
is to find a good representation of polynomials by
integers, which allows one to “jump” from one poly-
nomial to another, and to increment the exponent
in the cell of a three dimensional matrix. All the
other optimizations known from the number field
sieve could then be applied. Later, Smart [9] com-
pared the Hafner-McCurley variant with the orig-
inal, theoretically faster, Adleman–De Marrais–
Huang variant which allows one to construct
sparse systems of linear equations, therefore being
better suited for curves of larger genus (the genus
basically being the size of the discriminant of the
function field). It turned out that the size of the
cryptosystems N.P. Smart experienced with was
still too small. Later on, N.P. Smart implemented
the sieving technique for superelliptic cryptosys-
tems (where the degree of the corresponding func-
tion field is at least 3) based on a joint work with
Galbraith and the author [5]. None of these im-
plementations was ever even close to the size real
cryptosystems would use, but no one ever started
a massively parallel project as for the number
field sieve for these types of cryptosystems. As
a consequence, one cannot sincerely decide about
the practical usefulness of hyperelliptic cryptosys-
tems.

This is very different to the other application
of sieving in function fields: namely, to compute
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the discrete logarithm in a finite field. This can
be done by constructing for a given finite field a
function field with the following property: there
is an embedding of subgroups of the multiplica-
tive group of the finite field into the Jacobian of a
curve corresponding to the field. This mapping has
been used for applying the Adleman-De Marrais-
Huang result to finite fields with small character-
istic and high degree, resulting in a subexponen-
tial algorithm for discrete logarithms in this type
of field [2]. Since solving discrete logarithms in fi-
nite fields is of general interest, especially for fi-
nite fields with characteristic 2, there are a few
implementations of these algorithms.

An important point is how the function field
is constructed. Whereas Adleman and Huang [2]
were looking for the most simple representation
for an optimal performance of the necessary func-
tion field arithmetic, Joux and Lercier in 2001
[7] generalized this approach to get better asym-
potic running times. They proved their theoreti-
cal result by solving a discrete logarithm in the
finite field of size 2521 in approximately one month
on one machine. Moreover, they showed that the
specialized algorithm of Coppersmith [3], which
holds the actual discrete logarithm record (in a
field of size 2607), is a special case of their algo-
rithm in the case of characteristic 2. But since the
record computation, done by Thome in 2001 [10],
was performed using massively parallel computa-
tions for collecting relations in the sieving part
of the algorithm, there is still room for practical
improvements of the computation of discrete log-
arithms by using Joux’ and Lercier’s ideas. Es-
pecially, there are no known practically relevant
results for characteristics different from 2 as of
this writing.

Sachar Paulus
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SIGNCRYPTION

INTRODUCTION: Encryption and digital signa-
ture schemes are fundamental cryptographic tools
for providing privacy and authenticity, respec-
tively, in the public-key setting. Traditionally,
these two important building-blocks of public-
key cryptography have been considered as dis-
tinct entities that may be composed in various
ways to ensure simultaneous message privacy and
authentication. However, in the last few years
a new, separate primitive—called signcryption
[14]—has emerged to model a process simulta-
neously achieving privacy and authenticity. This
emergence was caused by many related reasons.
The obvious one is the fact that given that both pri-
vacy and authenticity are simultaneously needed
in so many applications, it makes a lot of sense
to invest special effort into designing a tailored,
more efficient solution than a mere composition of
signature and encryption. Another reason is that
viewing authenticated encryption as a separate
primitive may conceptually simplify the design of
complex protocols which require both privacy and
authenticity, as signcryption could now be viewed
as an “indivisible” atomic operation. Perhaps most
importantly, it was noticed by [2,3] (following some
previous work in the symmetric-key setting [4,10])
that proper modeling of signcryption is not so obvi-
ous. For example, a straightforward composition of
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signature and encryption might not always work;
at least, unless some special care is applied [2].
The main reason for such difficulties is the fact
that signcryption is a complex multi-user primi-
tive, which opens a possibility for some subtle at-
tacks (discussed below), not present in the settings
of stand-alone signature and encryption.

Defining Signcryption

Syntactically, a signcryption scheme consists
of the three efficient algorithms (Gen, SC, DSC).
The key generation algorithm Gen(1λ) generates
the key-pair (SDKU,VEKU) for user U, where λ

is the security parameter, SDKU is the sign-
ing/decryption key that is kept private, and VEKU
is the verification/encryption key that is made
public. The randomized signcryption algorithm
SC for user U implicitly takes as input the user’s
secret key SDKU, and explicitly takes as input the
message m and the identity of the recipient IDR,
in order to compute and output the signcryptext
on �. For simplicity, we consider this identity IDR,
to be a public key VEKR of the recipient R, al-
though ID’s could generally include more convo-
luted information (as long as users can easily ob-
tain VEK from ID). Thus, we write SCSDKU (M, IDR)
as SCSDKU (m, VEKR), or simply SCU (m, VEKR).
Similarly, user U’s deterministic designcryption
algorithm DSC implicitly takes the user’s private
SDKU and explicitly takes as input the signcryp-
text �̃ and the senders’ identity IDS. Again, we
assume IDS = VEKR and write DSCSDKU (�, VEKS),
or simply DSCU (�, VEKS). The algorithm outputs
some message m̃, or ⊥ if the signcryption does not
verify or decrypt successfully. Correctness of prop-
erty ensures that for any users S, R, and message
m, we have DSCR(SCS (m, VEKR), VEKS) = m.

We also remark that it is often useful to add
another optional parameter to both SC and DSC
algorithms: a label L (also termed associated data
[11]). This label can be viewed as a public identi-
fier which is “inseparably bound” to the message m
inside the signcryptext. Intuitively, designcrypt-
ing the signcryptext � of m with the wrong label
should be impossible, as well as changing � into
a valid signcryptext �̃ of the same m under a dif-
ferent label.

Security of Signcryption

Security of signcryption consists of two distinct
components: one ensuring privacy, and the other—
authenticity. On a high level, privacy is defined
somewhat analogously to the privacy of an or-
dinary encryption, while authenticity—to that of

an ordinary digital signature. For example, one
can talk about indistinguishability of signcryp-
texts under chosen ciphertext attack, or existen-
tial unforgeability of signcryptexts under chosen
message attack, among others. For concreteness,
we concentrate on the above two forms of security
too, since they are the strongest.

However, several new issues come up due to
the fact that signcryption/designcryption take as
an extra argument the identity of the sender/
recipient. Below, we semiformally introduce some
of those issues (see [2] for in-depth technical dis-
cussion, as well as formal definitions of signcryp-
tion).
� Simultaneous Attacks. Since the user U utilizes

its secret key SDKU to both send and receive the
data, it is reasonable to allow the adversary A
oracle access to both the signcryption and the
designcryption oracle for user U, irrespective of
whether A is attacking privacy or authenticity
of U.

� Two- vs. Multi-user Setting. In the simplistic
two-user setting, where there are only two users
S and R in the network, the explicit identities
become redundant. This considerably simpli-
fies the design of secure signcryption schemes
(see below), while providing a very useful inter-
mediate step towards general, multi-user con-
structions (which are often obtained by adding
a simple twist to the basic two-user construc-
tion). Intuitively, the security in the two-user
model already ensures that there are no weak-
nesses in the way the message is encapsulated
inside the signcryptext, but does not ensure that
the message is bound to the identities of the
sender and/or recipient. In particular, it might
still allow the adversary a large class of so called
identity fraud attacks, where the adversary can
“mess up” correct user identities without affect-
ing the hidden message.

� Public NonRepudiation? In a regular digital sig-
nature scheme, anybody can verify the valid-
ity of the signature, and unforgeability of the
signature ensures that a signer S indeed cer-
tified the message. Thus, we say that a sign-
cryption scheme provides nonrepudiation if the
recipient can extract a regular (publicly verifi-
able) digital signature from the corresponding
signcryptext. In general, however, it is a-priori
only clear that the recipient R is sure that S
sent the message. Indeed, without R’s secret
key SDKR others might not be able to verify
the authenticity of the message, and it might
not be possible for R to extract a regular sig-
nature of m. Thus, signcryption does not neces-
sarily provide nonrepudiation. In fact, for some
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applications we might explicitly want not to
have nonrepudiation. For example, S might be
willing to send some confidential information to
R only under the condition that R cannot con-
vince others of this fact. To summarize, non-
repudiation is an optional feature which some
schemes support, others do not, and others ex-
plicitly avoid!

� Insider vs. Outsider Security. In fact, even with
R’s secret key SDKR it might be unclear to an
observer whether S indeed sent the message
m to R, as opposed to R “making it up” with
the help of SDKR. This forms the main basis for
distinction between insider- and outsider-secure
signcryption. Intuitively, in an outsider-secure
scheme the adversary must compromise com-
munication between two honest users (whose
keys he does not know). Insider-secure signcryp-
tion protects a given user U even if his partner
might be malicious. For example, without U’s
key, one cannot forge signcryptext from U to any
other user R, even with R’s secret key. Similarly,
if honest S sent � = SCS(m, VEKU) to U and
later exposed his key SDKS to the adversary, the
latter still cannot decrypt �. Clearly, insider-
security is stronger than outsider-security, but
might not be needed in a given application. In
fact, for applications supporting message repu-
diation, one typically does not want to have
insider-security.

Supporting Long Inputs

Sometimes, it is easier to design natural sign-
cryption schemes supporting short inputs. Below
we give a general method how to create sign-
cryption SC′ supporting arbitrarily long inputs
from SC which only supports fixed-length (and
much shorter) inputs. The method was suggested
by [8] and uses a new primitive called conceal-
ment. A concealment is a publicly known ran-
domized transformation, which, on input m, out-
puts a hider h and a binder b. Together, h and
b allow one to recover m, but separately, (1) the
hider h reveals “no information” about m, while
(2) the binder b can be “meaningfully opened” by
at most one hider h. Further, we require |b| � |m|
(otherwise, one could trivially set b = m, h = ∅).
Now, we let SC′(m) = 〈SC(b), h〉 (and DSC′ is sim-
ilar). It was shown in [8] that the above method
yields a secure signcryption SC′. Further, a sim-
ple construction of concealment was given: set h =
Eτ (m), b = 〈τ, H(h)〉, where E is a symmetric-key
one-time secure encryption (with short key τ ) and
H is a collision-resistant hash function (with short
output).

CURRENT SIGNCRYPTION SCHEMES: We now
survey several signcryption schemes achieving
various levels of provable security.

Generic Composition Schemes

The two natural composition paradigms are
“encrypt-then-sign” (EtS) and “sign-then-encrypt”
(StE). More specifically, assume Enc is a seman-
tically secure encryption against chosen cipher-
text attack, and Sig is an existentially unforgeable
signature (with message recovery) against chosen
message attack. Each user U has a key for for Sig
and Enc. Then the “basic” EtS from S to R outputs
SigS (EncR(m)), while StE—EncR(SigS(m)). Addi-
tionally, [2] introduced a novel generic composi-
tion paradigm for parallel signcryption. Namely,
assume we have a secure commitment scheme,
which on input m, outputs a commitment c and
a decommitment d (where c is both hiding and
binding). Then “commit-then-encrypt-and-sign”
(CtE&S) outputs a pair 〈EncR(d), SigS(c)〉. Intu-
itively, the scheme is private as public c reveals
no information about m (while d is encrypted), and
authentic since c binds one to m. The advantage of
the above scheme over the sequential EtS and StE
variants is the fact that expensive signature and
encryption operations are performed in parallel.
In fact, by using trapdoor commitments in place
or regular commitments, most computation in
CtE&S—including the expensive computation of
both public-key signature and encryption—can be
done off-line, even before the message m is known!

It was shown by [2] that all three basic com-
position paradigms yield an insider-secure sign-
cryption in the two-user model. Moreover, EtS is
outsider-secure even if Enc is secure only against
the chosen plaintext attack, and StE is outsider-
secure even if Sig is only secure against no mes-
sage attack. Clearly, all three paradigms are in-
secure in the multiuser model, since no effort is
made to bind the message m to the identities of
the sender/recipient. For example, intercepting a
signcryptext of the form SigS(e) from S to R, an
adversary A can produce SigA(e), which is a valid
signcryptext from A to R of the same message
m, even though m is unknown to A. [2] sug-
gest a simple solution: when encrypting, always
append the identity of the sender to the mes-
sage, and when signing, of the recipient. For
example, a multi-user secure variant of EtS is
SigS(EncR(m, VEKS), VEKR). Notice, if Enc and/or
Sig support labels, these identities can be part of
the label rather than the message.

Finally, we remark that StE and CtE&S always
support nonrepudiation, while StE might or might
not.
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Fig. 1. Generalized paddings as used by signcryption

Schemes from Trapdoor Permutations

The generic schemes above validate the fact that
signcryption can be built from ordinary signature
and encryption, but will be inefficient unless the
latter are efficiently implemented. In practice, ef-
ficient signature and encryption schemes, such as
OAEP [5], OAEPP+ [13], PSS-R [6], are built from
trapdoor permutations, such as RSA, and are ana-
lyzed in the random oracle model. Even with these
efficient implementations, however, the generic
schemes will have several drawbacks. For exam-
ple, users have to store two independent keys, the
message bandwidth is suboptimal and the “ex-
act security” of the scheme is not as good as one
might expect. Thus, given that practical schemes
are anyway built from trapdoor permutations, it is
natural to have highly optimized direct signcryp-
tion constructions from trapdoor permutations (in
the random oracle model).

This is the approach of [9]. In their model, each
user U independently picks a trapdoor permuta-
tion fU (together with its trapdoor, denoted f −1

U )
and publishes fU as its public key (see also trap-
door one-way function and substitutions and per-
mutations). (Notice, only a single key is chosen,
unlike what is needed for the generic schemes.)
Then, [9] considers the following three paradigms
termed P-Pad, S-Pad and P-Pad. Each paradigm
proceeds by constructing a padding scheme pro-
duces π (m) = w|s, and then composing it with the
corresponding permutations of the sender and the

recipient as shown in Figure 1. Table 1 also shows
how the corresponding approaches could be used
for plain signature and encryption as well.

The convenience of each padding scheme de-
pends on the application for which it is used. As
was shown in [9], P-Pad signcryption provides par-
allel application of “signing” f −1

S and “encrypting”
fR, which can result in efficiency improvements on
parallel machines. However, the minimum cipher-
text length is twice as large as compared to S-Pad,
yet the exact security offered by S-Pad is not as
tight as that of P-Pad. Finally, X-Pad regains the
optimal exact security of P-Pad, while maintain-
ing ciphertext length nearly equal to the length
of the trapdoor permutation (by achieving quite
short s).

It remains to describe secure padding schemes
π for P-Pad, S-Pad and X-Pad. All construc-
tions offered by [9] are quite similar. One starts
with any extractable commitment (c, d), where c
is the commitment and d is the decommitment.
Such schemes are very easy to construct in the
random oracle model. For example, if |m| = n, for
any 0 ≤ a ≤ n, the following scheme is an ex-
tractable commitment: split m = m1|m2, where
|m1| = a, |m2| = n − a, and set

c = G(r ) ⊕ m1|H(m2|r )
d = m2|r

where G and H are random oracles (with appro-
priate input/output lengths) and r is a random
salt.

Table 1. Signcryption Schemes Based on Trapdoor Permutations.

Padding Type Encryption Signature Signcryption

P-Pad (Parallel Padding) fR(w)|s w| f −1
S (s) fR(w)| f −1

S (s)
S-Pad (Sequential Padding) fR(w|s) f −1

S (w|s) fR( f −1
S (w|s))

X-Pad (eXtended sequential Padding) fR(w)|s f −1
S (w)|s fR( f −1

S (w))|s
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To get a secure padding scheme for the P-Pad
paradigm, one should then apply the Feistel
Transform to the resulting pair (d, c), with yet
another random oracle F as the round function.
Namely, set w = c, s = F(c) ⊕ d. For example, us-
ing the extractable commitment above with a =
n, we get nothing else but the OAEP padding,
while a = 0 would give the PSSR padding! For
arbitrary a, [9] call the resulting hybrid be-
tween PSSR and OAEP Probabilistic Signature-
Encryption Padding (PSEP).

To get the padding π sufficient for either S-Pad
or P-Pad, one only needs to perform one more Feis-
tel round to the construction above: w′ = s, s ′ =
F′(s) ⊕ w, and set π (m) = w′|s ′. Coincidentally, the
resulting π also gives a very general construction
of the so called universal padding schemes [7].

As described, the paddings π1 and π3 above
would only give insider security in the two-user
setting. To get multi-user security, all one needs
to do is to prepend the pair (VEKS, VEKR) to all the
inputs to the random oracles F and F′: namely,
create effectively independent F and F′ for ev-
ery sender-recipient pairing! More generally, the
paddings above also provide label support, if one
sticks the label L as part of the inputs to F and F′.

Finally, we remark that P-Pad, X-Pad and X-Pad
always support non-repudiation.

Schemes Based on Gap Diffie–Hellman

Finally, we present two very specific, but effi-
cient schemes based on the so called Gap Diffie–
Hellman assumption. Given a cyclic group G of
prime order q, and a generator g of G, the assump-
tion states that the computational Diffie–Hellman
problem (CDH) is computationally hard, even if
one is given oracle access to the decisional Diffie–
Hellman (DDH) oracle. Specifically, it is hard to
compute gab from ga and gb, even if one can test
whether a tuple 〈gx, gy, gz〉 satisfies z = xy mod q.

In both schemes, the user U chooses a ran-
dom xU ∈ Zq as its secret key VEKU, and sets its
public key SDKU = yU = gxU . The scheme of [1] is
based on the following noninteractive key agree-
ment between users S and R. Namely, both S and R
can compute the quantity QSR = gxRxS = yxR

S = yxS
R .

They then set the key KSR = H(QSR), where H is
a random oracle, and then always use KSR to per-
form symmetric-key authenticated encryption of
the message m. For the latter, they can use any
secure symmetric-key scheme, like “encrypt-then-
mac” [4] or OCB [12]. The resulting signcryption
scheme can be shown to be outsider-secure for both
privacy and authenticity, in the multi-user setting.
Clearly, it is not insider-secure, since both S and

R know the key KSR. In fact, the scheme is per-
fectly repudiable, since all the signcryptexts from
S could have been easily faked by R.

To get insider-security for authenticity under
the same assumption, one can instead consider
the following scheme, originally due to [14], but
formally analyzed by [3]. Below G and H are ran-
dom oracles with appropriate domains, and E is
a one-time secure symmetric-key encryption (e.g.,
one-time pad will do). To signcrypt a message
from S to R, S chooses a random x ∈ Zq , com-
putes Q = yx

R, makes a symmetric key K = H(Q),
sets c ← EK(m), computes the “validation tag” r =
G(m, yA, yB, Q) and finally t = x(r + xS)−1 mod q.
Then S outputs 〈c, r, t〉 as the signcryption of
m. To designcrypt 〈c, r, t〉, R first recovers gx via
w = (ySgr )t , then recovers the Diffie–Hellman key
Q = wxR, the encryption key K = H(Q) and the
message m = DK(c). Before outputting m, how-
ever, it double checks if r = G(m, yA, yB, Q). While
this scheme is insider-secure for authenticity, it is
still not insider-secure.

We also mention that the scheme supports pub-
lic nonrepudiation. All that Rhas to do is to reveal
Q, m and a proof that Q = wxR (which can be done
noninteractively using the Fiat-Shamir heuristics,
applied to the three-move proof that 〈g, yR, w, Q〉
form a DDH-tuple).

Yevgeniy Dodis
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SIGNED DIGIT
EXPONENTIATION

Signed digit exponentiation is an approach for
computing powers in any group in which the in-
verse A−1 of any group element A can be computed
quickly (such as the groups of points on an elliptic
curve employed in elliptic curve cryptography). It
is related to sliding window exponentiation: while
in sliding window exponentiation each window
corresponds to a positive digit value, signed digit
exponentiation additionally makes use of the cor-
responding negative digit values, and the ease of
inversion makes these extra digits available al-
most for free. This often makes signed digit expo-
nentation faster when using the same amount of
memory for storing group elements, and allows it
to reach approximately the same speed with less
memory.

Let Bk = {±1, ±3, . . . , ±(2k − 1)} where k is a
positive integer; and let a base-two representation
of an exponent e be given using the digit set {0} ∪
Bk, i.e.

e =
l−1∑
i=0

ei2i, ei ∈ {0} ∪ Bk.

Assuming that l is chosen such that el−1 
=
0, the left-to-right signed digit exponentiation
method computes ge as follows where g is any
group element; cf. the left-to-right sliding window
exponentiation method.

G1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

Gd ← Gd−2 ◦ A

if el−1 > 0 then
A ← Gel−1

else
A ← G−1

−el−1

for i = l − 2 down to 0 do
A ← A ◦ A
if ei 
= 0 then

if ei > 0 then
A ← A ◦ Gei

else
A ← A ◦ G−1

−ei

return A

The right-to-left signed digit exponentiation
method computes ge as follows; cf. the right-to-left
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sliding window exponentiation method. Note that
the algorithm as written can be optimized simi-
larly to the right-to-left 2k-ary exponentiation or
sliding window exponentiation methods to avoid
(at least) 2k−1 applications of the group operation.

for d = 1 to 2k − 1 step 2 do
Bd ← identity element

A ← g

for i = 0 to l − 1 do
if ei 
= 0 then

if ei > 0 then
Bei ← Bei ◦ A

else
B−ei ← B−ei ◦ A−1

if i < l − 1 then
A ← A◦ A

{Now ge = �d∈{1,3,...,2k−1}B
d
d .}

for d = 2k − 1 to 3 step − 2 do
Bd−2 ← Bd−2 ◦ Bd

B1 ← B1 ◦ (Bd ◦ Bd )
return B1

For both the left-to-right and the right-to-left
variant, it remains to be considered how signed
digit representations of exponents e using the digit
set {0} ∪ Bk with Bk = {±1, ±3, . . . , ±(2k − 1)} can
be obtained. An algorithm for the simplest case
k = 1 is due to Reitwiesner [1]; the representation
obtained by it (using digits {−1, 0, 1}) is known
as the nonadjacent form (NAF) of e. The general-
ization for an arbitrary parameter k was simul-
taneously suggested by multiple researchers; the
following algorithm is from [2]:

c ← e
i ← 0
while c > 0 do

if c is odd then
d ← c mod 2k+1

if d > 2k then
d ← d − 2k+1

c ← c − d
else

d ← 0
ei ← d; i ← i + 1
c ← c/2

return ei−1, . . . , e0

This algorithm is a variant of right-to-left scan-
ning as used in sliding window exponentiation
with an effective window size of k + 1. For ef-
ficiency considerations, if the cost of inverting
groups elements and the additional cost for ob-
taining the appropriate representation of e can
be neglected, signed digit exponentiation dif-
fers from sliding window exponentiation with the
same parameter k in that the expected number
of nonzero digits in the representation is approxi-
mately l/(k + 2) instead of approximately l/(k + 1)
(but the maximum possible length of the signed
digit representation is longer: while l cannot ex-
ceed the length of the binary representation of e
for sliding window exponentiation, it can be said
length plus 1 for signed digit exponentiation).
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SIMULTANEOUS
EXPONENTIATION

Various schemes for public-key cryptography in-
volve computing power products in some com-
mutative group (or commutative semigroup). A
straightforward way to compute a power product

n∏
j=1

gej

j

is to compute the individual powers gej

j using
binary exponentiation or some other exponenti-
ation method, and perform n − 1 applications of
the group operation to multiply these partial re-
sults. However, specialized algorithms for comput-
ing power products are often faster. The task of
computing a power product is sometimes called
multi-exponentiation, and performing a multiex-
ponentiation by a procedure that does not in-
volve computing the partial results gej

j is known
as simultaneous exponentiation. Two methds for
multiexponentiation that both generalize left-to-
right sliding window exponentiation are simulta-
neous sliding window exponentiation, which is
due to Yen, Laih. and Lenstra [3] (based on
the simultaneous 2k-ary exponentiation method
from Straus [2]), and interleaved sliding window
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exponentiation [1]. Like the sliding window
method for single exponentiations, these meth-
ods use the binary representation of exponents,
on which nonoverlapping windows are placed such
that every nonzero bit is covered by one of the win-
dows. Simultaneous sliding window exponentia-
tion and interleaved sliding window exponentia-
tion use different approaches for placing windows;
sometimes the former is faster, sometimes the
latter.

Simultaneous sliding window exponentiation
uses windows up to some maximum width k that
span across all n exponents; e.g., for exponents
e1, e2, e3 with binary representations 1011010,
0011001, and 1001011 and k = 2:

e1
e2
e3

1
0
1

0
0
0

1 1
1 1
0 1

0
0
0

1 0
0 1
1 1

Such windows can be found by left-to-right scan-
ning: look at the binary representations of the ex-
ponents simultaneously, going from left to right,
starting a new window whenever a nonzero bit is
encountered, choosing the maximum width up to
k for this particular window such that one of the
rightmost bits is also nonzero. The result of col-
lapsing the window values into the right-most row
of each window can be considered a base-two rep-
resentation

(e1, . . . , en) =
l−1∑
i=0

(e1,i, . . . , en,i)2i

of the vector of exponents, e.g.

e1 1 0 0 3 0 0 2
e2 0 0 0 3 0 0 1
e3 1 0 0 1 0 0 3

for the above example. Assume we have such a
representation with l chosen minimal, i.e. (e1,l , . . . ,

en,l) 
= (0, . . . , 0). To perform a simultaneous slid-
ing window exponentiation, first products

G(d1,...,dn) =
n∏

j=1

gdj

j

of small powers are computed and stored for
all possible window values, namely for the tu-
ples (d1, . . . , dn) with dj ∈ {0, 1, . . . , 2k − 1} for j =
1, . . . , n such that at least one of the dj is odd.
There are 2nk − 2n(k−1) such tuples, and comput-
ing the table of those products can be done with

2nk − 2n(k−1)

applications of the group operation, n of which are
squarings (g1, . . . , gn appear in the table and are

available without any computation; once gj ◦ gj for
j = 1, . . . , n have been computed as temporary val-
ues, each of the 2nk − 2n(k−1) − n remaining table
values can be obtained by using the group oper-
ation once). The multi-exponentiation result then
is computed using the table of small powers:

A ← G(e1,l−1,...,en,l−1)

for i = l − 2 down to 0 do
A ← A◦ A
if (e1,l , . . . , en,l) 
= (0, . . . , 0) then

A ← A◦ G(e1,i ,...,en,i )

return A

For random b-bit exponents, this requires at most
another b − 1 squaring operations and on average
approximately another

b · 1

k + 1
2n−1

general group operations. Note that in practice it
is not necessary to completely derive the represen-
tation

(e1,l−1, . . . , en,l−1), . . . , (e1,0, . . . , en,0)

before starting the exponentiation; instead, left-
to-right scanning can be used to determine it win-
dow by window when it is needed.

In interleaved sliding window exponentiation,
each single exponent has independent windows
up to some maximum width k; e.g., for exponents
e1, e2, e3 with binary representations 1011010,
0011001, and 1001011 and k = 3:

e1 1 0 1 1 0 1 0

e2 0 0 1 1 0 0 1

e3 1 0 0 1 0 1 1

For each exponent, such windows can be found by
left-to-right scanning: look at the binary represen-
tation of the respective exponent, going from left to
right, starting a new window whenever a nonzero
bit is encountered, choosing the maximum width
up to k for this particular window such that the
rightmost bit is also nonzero. To perform an in-
terleaved sliding window exponentiation, first for
each gj, the powers for odd exponents 1 up to 2k − 1
are computed and stored:

for j = 1 to n do
G j,1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

G j,d ← G j,d−2 ◦ A
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Rule A Rule B

wk
1

+1 = Gk(wk
1) ⊕ wk

4 ⊕ counterk

wk
3

+1 = wk
1 ⊕ wk

2 ⊕ counterk

wk
1

+1 = wk
4

wk
2

+1 = Gk(wk
1)

wk
4

+1 = wk
3

wk
2

+1 = Gk(wk
1)

wk
3

+1 = wk
2

wk
4

+1 = wk
3

Fig. 1. Rule A and Rule B

Then the multi-exponentiation result is computed
using that table of powers. The following algo-
rithm shows how this computation can be imple-
mented including left-to-right scanning of expo-
nents up to b bits. The algorithm accesses the bits
e j[i] of the binary representations

e j =
b−1∑
i=0

e j[i]2i, e j[i] ∈ {0, 1}

of the exponents; the notation e j[i . . . h] is short-
hand for i

ν=he j[ν]2ν−h.

A ← identity element
for j = 1 to n do

window position j ← −1
for i = b − 1 down to 0 do

A ← A◦ A
for j = 1 to n do

if window position j = −1
and e j[i] = 1 then

h ← i − k + 1
if h < 0 then

h ← 0
while e j[h] = 0 do

h ← h + 1
window position j ← h
Ej ← e j[i . . . h]

if window position j = i then
A ← A◦ G j,Ej

window positioni ← −1
return A

The algorithm as written can be improved by a
simple optimization: while A still has its initial
value, omit the statement A ← A◦ A, and use a
direct assignment A ← G j,Ej instead of the first as-
signment A ← A◦ Gj,Ej. With this optimization, an
interleaved sliding window exponentiation takes
up to n + b − 1 squarings and on average about

n ·
(

2k−1 − 1 + b − 1
k + 1

)

general group operations.

Interleaved sliding window exponentiation es-
sentially interleaves the operations of n single
exponentiations using left-to-right sliding window
exponentiation, saving many of the squarings. In
groups where computing inverses of elements is
possible very quickly, it is possible to similarly in-
terleave the operations of n single exponentiations
using left-to-right signed digit exponentiation for
faster multi-exponentiation.
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SKIPJACK

Skipjack [6] is the secret key encryption algorithm
(see symmetric cryptosystem) developed by the
NSA for the Clipper chip initiative (including the
Capstone chip and the Fortezza PC card). It was
implemented in tamper-resistant hardware and
its structure was kept secret since its introduction
in 1993.

On June 24, 1998, Skipjack was declassified,
and its description was made public on the web
site of NIST [6]. It is an iterative block cipher with
64-bit block, 80-bit key and 32 rounds. It has two
types of rounds, called Rule A and Rule B. Each
round is described in the form of a linear feedback
shift register with an additional nonlinear keyed
G permutation. Rule B is basically the inverse of
Rule A with minor positioning differences. Skip-
jack applies eight rounds of Rule A, followed by
eight rounds of Rule B, followed by another eight
rounds of Rule A, followed by another eight rounds
of Rule B. The original definitions of Rule A and
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Rule B are given in Figure 1, where counter is the
round number (in the range 1 to 32), G is a four-
round Feistel permutation whose F function is de-
fined as an 8 × 8-bit S box, called F Table, and each
round of G is keyed by eight bits of the key.

The key schedule of Skipjack takes a 10-byte
key, and uses four of them at a time to key each G
permutation. The first four bytes are used to key
the first G permutation, and each additional G per-
mutation is keyed by the next four bytes cyclically,
with a cycle of five rounds.

Skipjack has been subject to intensive analy-
sis [2–5]. For example, Skipjack reduced to (the
first) 16 rounds can be attacked with 217 cho-
sen plaintexts and 234 time of analysis [5], which
may be reduced to 214 texts and 216 steps using
the yoyo-game approach [1]. Attacking the mid-
dle 16 rounds of Skipjack requires only 3 cho-
sen plaintexts and 230 time of analysis. The cur-
rently most successfull attack against the cipher is
the imposible differential attack which breaks 31
rounds out of 32, marginally faster than exhaus-
tive search.

In addition, it is worth noting that Skipjack can
be attacked by a generic time-memory tradeoff ap-
proach requiring 280 steps of precomputation and
254 80-bit words (i.e., 260 bits) of memory, but then
each search for a key requires only 254 steps of
computation.

Alex Biryukov
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SLIDE ATTACK

Slide attack is generic attack designed by
Biryukov and Wagner [1, 2]. It can be applied in
both known plaintext or chosen plaintext scenar-
ios. It can be viewed as a variant of a related key
attack, in which a relation of the key with itself
is exploited. The main feature of this attack is
that it realizes a dream of cryptanalysts: if the
cipher is vulnerable to such an attack, the com-
plexity of the attack is independent of the num-
ber of rounds of the ciphel. A typical slide of
one encryption against another by one round (un-
der the same key) is shown in Figure 1. If the
equation F1(P0, K1) = P1 holds, the pair is called
a slid pair. The attacker would then obtain two
equations:

F1(P0, K1) = P1, Fr (C0, Kr ) = C1,

where the second equation would hold for free
due to sliding. These equations involve only a
single round function, and thus could be solved
by the attacker for the secret subkeys K1, Kr of
these rounds. The attacker may create properly
slid pairs (P0, P1) by birthday paradox or by care-
ful construction. For an arbitrary cipher the attack
has complexity of 2n/2 known-plaintexts, where n
is the blocksize. For a Feistel cipher complexity is
reduced to 2n/4 chosen plaintexts.

Several ciphers or slight modifications of exist-
ing ciphers have been shown vulnerable to such
attacks: for example the Brown-Seberry variant
of the Data Encryption Standard (DES) [3] (rota-
tions in key-schedule are by seven positions, in-
stead of varying 1, 2 rotations as in the original
DES), DES-X, the Even-Mansour scheme [4], ar-
bitrary Feistel ciphers with 4-round periodic key-
schedule as well as round-reduced versions of
GOST. The basic attack has been extended into
a slide-with a twist, a technique where encryption
is slid against decryption and complementary slide

P0 F1 F2 F3 . . . Fr C1

P1 F1 F2 F3 . . . Fr C2.

Fig. 1. A typical slide attack
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technique [2], where the inputs to the rounds do
not have to be identical but may have the differ-
ence which is canceled out by a difference in the
keys. In the same paper another generalization
of the technique for the case of a composition of
strong round functions is given.

It is clear that slide-attack would apply to
any iterative construction which has enough self-
similarity in its rounds. It could be applied
to block-ciphers as described above, to stream-
ciphers (see for example resynchronization attack
on WAKE-ROFB [1]) or to MAC and hash-
functions (see for example a recent slid pair dis-
covery for SHA-1 by Saarinen [5].

In practice the attack seems easy to avoid by
breaking the similarity of the round transforms
by applying round counters (as is done for ex-
ample in Skipjack) or different random constants
in each round (as in Rijndael/AES, SHA-256 and
many other constructions). Whether such simple
changes are indeed sufficient is a matter of further
research.

Alex Biryukov
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SLIDING WINDOW
EXPONENTIATION

Sliding window exponentiation is an approach for
computing powers in any group (or semigroup).

Like 2k-ary exponentiation, it generalizes binary
exponentiation and is parameterized by a positive
integer k, where the case k = 1 is the same as bi-
nary exponentiation. Sliding window exponenti-
ation can be considered an improved variant of
2k-ary exponentiation: with identical k ≥ 2, slid-
ing window exponentiation needs storage for fewer
group elements and usually performs less applica-
tions of the group operation than 2k-ary exponenti-
ation. However, the algorithms for sliding window
exponentiation are slightly more complicated. 2k-
ary exponentiation uses the 2k-ary representation
of exponents, which can be considered as looking at
the binary representation through fixed windows
of width k:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0

The sliding window method is based on the obser-
vation that fewer windows of width up to k can
suffice to cover all nonzero exponent bits if one
allows the windows to take arbitrary positions.
Also, one can arrange for all windows to be odd-
valued (i.e., have a 1 as the rightmost bit). Then
the bits covered by each single window correspond
to a value in the set Bk = {1, 3, . . . , 2k − 1}, and
the number of possible window values is less than
with the 2k-ary exponentiation method. Covering
the binary representation of the exponent by such
windows yields a base-two representation of the
exponent that uses the digit set {0} ∪ Bk. One pos-
sible way to determine windows for a given ex-
ponent is to look at the binary representation of
the exponent from left to right, starting a new
window whenever a nonzero bit is encountered,
choosing the maximum width up to k for this par-
ticular window such that the rightmost bit is also
nonzero:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0
⇒ 7 0 1 0 0 0 0 3 0 0 0 0 5 0

Another possibility is to look at the binary repre-
sentation of the exponent from right to left, start-
ing a new width-k window whenever a nonzero bit
is encountered:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0
⇒ 3 0 0 5 0 0 0 0 3 0 0 0 0 5 0

Such left-to-right scanning or right-to-left scan-
ning yields a representation

e =
l−1∑
i=0

ei2i, ei ∈ {0} ∪ Bk.

In the following we assume that we have such a
representation of some positive integer e with l
chosen minimal; thus, el−1 
= 0.
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The left-to-right sliding window exponentiation
method computes ge, where g is an element of the
group (or semigroup), as follows. First the powers
for odd exponents 1 up to 2k − 1 are computed and
stored:

G1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

Gd ← Gd−2 ◦ A

Then ge is computed using the tables of powers
G1 = g, G3 = g3, . . . , G2K−1 = g2K−1 :

A ← Gel−1

for i = l − 2 down to 0 do
A ← A◦ A
if ei 
= 0 then

A ← A◦ Gei

return A

Note that in practice it is not necessary to com-
pletely derive the representation el−1, . . . , e0 be-
fore starting the exponentiation; instead, left-to-
right scanning can be used to determine it digit
by digit when it is needed without storing it com-
pletely. Left-to-right sliding window exponentia-
tion is a slight modification of the method de-
scribed in [2, proof of Theorem 3]; the idea to use
variable windows is from [2, p. 912])

Like binary exponentiation and 2k-ary expo-
nentiation, sliding window exponentiation has a
variant that performs a right-to-left exponentia-
tion:

for d = 1 to 2k − 1 step 2 do
Bd ← identity element

A ← g

for i = 0 to l − 1 do
if ei 
= 0 then

Bei ← Bei ◦ A
if i < l − 1 then

A ← A◦ A

{Now ge = �d∈{1,3,...,2k−1}B
d
d ; this can be

computed as follow :}

for d = 2k − 1 to 3 step − 2 do
Bd−2 ← Bd−2 ◦ Bd

B1 ← B1 ◦ (Bd ◦ Bd )
return B1

Again, in practice it is not necessary to completely
derive the representation el−1, . . . , e0 before

starting the exponentiation; here, right-to-left
scanning can be used to determine it digit by digit
when it is needed. The algorithm as written can
be optimized similarly to the right-to-left 2k-ary
exponentiation method to avoid (at least) 2k−1 ap-
plications of the group operation. The idea used to
perform sliding window exponentiation in right-
to-left fashion is due to Yao [3]; the sub-algorithm
shown above for computing

∏
d∈{1,3,...,2k−1} Bd

d is
due to Knuth [1, answer to exercise 4.6.3–9].

The number of group operations performed dur-
ing a sliding window exponentiation with max-
imum window width k depends on the length l
of the sliding window representation and on the
number of digits in the representation el−1, . . . , e0
that are non-zero. For any b-bit exponent (2b−1 ≤
e ≤ 2b), the length l is bounded by b − k < l ≤ b.
Assume that left-to-right or right-to-left scanning
is performed on a sequence of independently and
uniformly random bits; then a new window will
be started on average every k + 1 bits. For b-
bit exponents, one bit is necessarily nonzero, and
both scanning techniques will usually have an
unused part in the final window when the end
of the exponent is reached. The expected num-
ber of nonzero values among el−1, . . . , e0 for ran-
dom b-bit exponents lies between b/(k + 1) and
1 + (b − 1)/(k + 1).

Using the upper bounds to derive estimates for
average performance that are on the safe side (i.e.
slightly pessimistic) gives b squaring operations
(one time g ◦ g and b − 1 times A◦ A) and

2k−1 − 1 + b − 1
k + 1

general group operations for left-to-right sliding
window exponentiation, or

2k−1 − 2 + b

squaring operations (b − 1 times A◦ A and 2k−1 −
1 times Bd ◦ Bd ) and

1+ b−1
k +1︸ ︷︷ ︸

loop over i

+ 2 · (2k−1 − 1)︸ ︷︷ ︸
loop over d

− 2k−1︸︷︷︸
optimization

= 2k−1 − 1 + b−1
k +1

general group operations for right-to-left sliding
window exponentiation with the optimization ex-
plained above.

In some groups, such as those employed in
elliptic curve cryptography, computing inverses of
elements is a very fast operation. For such groups,
better performance than with ordinary sliding
window exponentiation can often be obtained by
using signed digit exponentiation instead.

Bodo Möller
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SMARTCARD TAMPER
RESISTANCE

Tamper-resistant cryptographic modules are de-
vices intended for applications that need to pro-
tect stored cryptographic keys and intermediate
results of algorithms against unauthorized access.
The most popular portable form is the smart-
card, which has the form of a banking plas-
tic card with embedded microcontroller. The typ-
ical interfaces are either five visible electrical
contacts (for ground, power supply, reset, clock,
and a bi-directional serial port) or an induc-
tion loop. Typical smartcard processors are 8-bit
microcontrollers with a few hundred bytes of
RAM and 4–64 kilobytes of ROM or non-volatile
writable memory (NVRAM). Battery-like small
steel cans (“crypto buttons”), CardBus/PCMCIA
modules, and various PCI plug-in cards for non-
portable applications are other popular form fac-
tors for tamper-resistant modules.

Smartcards are used in applications with both
tamper-resistance and tamper-evidence require-
ments. Tamper resistance means that stored in-
formation must remain protected, even when the
attacker can work on several samples of the mod-
ule undisturbed for weeks in a well-equipped labo-
ratory. Tamper evidence is a weaker requirement
in which the regular holder of the module must
merely be protected against unnoticed access to
information stored in the module.

One common application for tamper-resistant
smartcards are pay-TV conditional-access sys-
tems, where operators hand out millions of cards
to customers, each of which contains the key neces-
sary to descramble some subscription TV service.
Pirates who manage to extract the key from one
single issued card can use it to produce and sell
illicit clone cards. Most proposed forms of digital
rights management (DRM) mechanisms are based
on some form of tamper-resistant element in the
user system.

Examples for smartcard applications where op-
erators can rely more on just a tamper-evidence
requirement are digital signature identity cards,
banking cards, and GSM subscriber identity mod-
ules. Here, stored secrets are specific to a single
card or cardholder and can be revoked, should the
module get stolen.

There are four broad categories of attacks
against tamper-resistant modules:
� Software attacks use the normal communication

interface of the processor and exploit security
vulnerabilities found in protocols, crypto-
graphic algorithms, or the software implemen-
tation. Countermeasures involve very careful
design and in-depth implementation reviews,
possibly augmented by formal techniques.

� Microprobing techniques access the chip sur-
face directly, such that the attacker is able
to observe, manipulate, and interfere with the
integrated circuit. This has been the domi-
nant form of attack against pay-TV conditional-
access cards since about 1993. Chemical de-
packaging (e.g., with fuming nitric acid) is used
to dissolve conventional packaging materials
without damaging the silicon chip. Microscopes
with micromanipulators are then used to place
fine tungsten hairs onto micrometer-wide on-
chip bus lines, in order to establish an electrical
contact between the chip circuits and record-
ing equipment such as digital oscilloscopes. The
glass passivation layer that covers the metal in-
terconnects can be broken mechanically or re-
moved with UV laser pulses. The content of the
main memory can then be reconstructed from
observed on-chip bus traffic, a process that can
be simplified by damaging the instruction de-
coder to prevent the execution of jump com-
mands. Attackers have also succeeded in ac-
cessing the memory with the help of circuitry
placed on the chip by the manufacturer for post-
production testing. Modern chips with smaller
feature sizes require the use of focused ion-beam
workstations. With these, the surface of a de-
packaged chip can be modified inside a vac-
uum chamber. A beam of accelerated gallium
ions and various added processing gases re-
move chip material or deposit either conduct-
ing and insulating substances with a resolution
of tens of nanometers. This not only allows
attackers to modify the metal connections be-
tween the transistors, effectively to edit the pro-
cessor design, but also helps in establishing
larger probing pads for the connection of record-
ing equipment. Countermeasures involve more
difficult-to-remove packaging materials (e.g.,
silicon, silicon carbide), obfuscated circuits,
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additional top-layer metal sensor meshes, the
careful destruction of test circuitry before the
chip is delivered to customers, and the design
of instruction decoders that frustrate modifica-
tions aimed at simplifying access to all memory
locations [1].

� Fault generation techniques or fault attacks use
abnormal environmental conditions to generate
malfunctions in the processor aimed at provid-
ing additional access. A simple example would
be a deliberately caused and carefully timed
glitch that disrupts the correct execution of
a single security-critical machine instruction,
such as the conditional branch at the end of a
password comparison. Carefully placed, a single
glitch can help to bypass many layers of cryp-
tographic protection. Such glitches have been
generated by increasing the provided clock fre-
quency for a single cycle, by brief supply volt-
age fluctuations, by applying light flashes to
the entire chip or single gates, and with the
help of electromagnetic pulses. Another class
of fault generation attacks attempts to reduce
the entropy generated by hardware random-bit
generators. For example, where multiple noisy
oscillators are used to generate randomness,
externally applied electromagnetic fields with
carefully selected frequencies can result in a
phase lock and more predictable output. Coun-
termeasures against fault generation include
adding filters into supply lines, regular statis-
tical checks of random-bit generators, redun-
dant consistency checks in the software, and
new logic design techniques that lead to inher-
ently glitch-resistant circuits.

� Eavesdropping or side-channel analysis tech-
niques monitor with high time resolution the
characteristics of all supply and interface con-
nections and any other electromagnetic radia-
tion produced by a processor. A simple exam-
ple is the determination of the length of the
correct prefix of an entered password from the
runtime of the string-compare routine that re-
jects it. This can significantly reduce the aver-
age number of guesses needed to find the correct
string. The nature of the executed instruction,
as well as parts of the processed data, are ev-
ident in the power-supply current of a CPU. A
conditional branch that takes effect can easily
be distinguished from one that passes through
by examining with an oscilloscope the voltage
drop over a 10 	 resistor inserted into the pro-
cessor’s ground connection line. The current
consumed by the write operation into memory
cells is often proportional to the number of bits
that change their value. Even status register

flags and Hamming weights of data processed in
arithmetic units can show up in power consump-
tion curves. The technique of differential power
analysis determines secret-key bits by correlat-
ing measured current curves with externally
simulated intermediate results of a symmetric
cipher. It has been demonstrated as a practi-
cal attack technique, even in situations where
there has not been a microprobing attack first
to disassemble the software in the targeted
smartcard. Countermeasures include the addi-
tion of filters and shields against compromising
emanations, circuitry and routines for adding
random noise and delays, new balanced or dual-
rail logic design techniques that lead to inher-
ently less information in the power signal, and
algorithmic techniques for reducing the num-
ber of intermediate results useful for eavesdrop-
pers.

Microprobing requires time and careful prepara-
tion in a laboratory environment and is therefore
primarily a challenge of tamper resistance. The
other three attack classes are noninvasive and
can, with suitable preparation, be performed in
just a few seconds with attack equipment that
could be disguised as a regular smartcard reader.
The holder of the card might not notice such an
attack, and then even the tamper evidence would
be lost.

Markus Kuhn
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S/MIME

S/MIME (see also Security Standards Activities)
is the IETF Internet Security Syntax for MIME
(Multipurpose Internet Mail Extensions), cur-
rently available in version 3, under constant de-
velopment and communicated in a range of RFCs
(abbreviation for “Request for Comments”). It



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 14:7

592 Smoothness

basically specifies the syntax for the integration
of various cryptographic mechanisms and algo-
rithms within the MIME format scope.

The Cryptographic Message Syntax (CMS) (see
RFC 3369) is cryptographic algorithm indepen-
dent, but, typically, applying an actual algorithm
is not entirely defined uniquely and requires
some attendance and care for seamless interoper-
ability.

As part of the specification update, a new suite
of “mandatory to implement” algorithms are con-
stantly being selected, reflected in updates to Cer-
tificate Handling (RFC 2632), and S/MIME v3
Message Specification (RFC 2633).

Building on the CMS Compressed Data content
type specified in RFC 3274, the update to RFC
specifies conventions for message compression as
well as to message signature and encryption. Few
are used in reality.

To aid implementers, documentation containing
example output for CMS is made available, some of
which for example, include structures and signed
attributes defined in the Enhanced Security Ser-
vices (ESS) (RFC 2634) document.

CMS, and thus S/MIME version 3 and later, per-
mit the use of previously distributed symmetric
key-encryption keys, and the underlying Public
Key Infrastructure (PKI) is based on the PKIX
standard, e.g. for certificates and CRLs (see cer-
tificate revocation), whilst the underlying syntax
for cryptographic mechanisms rely on the PKCS
standards.

Peter Landrock
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SMOOTHNESS

A natural number n is called B-smooth if its factor-
ization does not contain any prime factors larger
than B, i.e.

n =
∏
p≤B

pnp.

Analogously, we can also consider elements of the
polynomial ring Fp[x]. For a polynomial f of degree
deg( f ) define the norm of f to be pdeg( f ). An element
of Fp[x] is called B-smooth if its factorisation does
not contain any irreducible polynomials of norm
greater than B.

For t, c ∈ R such that 0 ≤ t ≤ 1 the complexity-
theoretic L-notation is defined by

Lx[t, γ ] = e(γ+o(1))(log x)t (log log x)1−t
,

where x → ∞. Note that for t = 0 this equals
(log x)γ , while for t = 1 we obtain xγ (neglecting
the o(1) term). Hence we see that for values of t be-
tween 0 and 1 the function L interpolates between
polynomial time and exponential time behaviour.
For these values we say that L is subexponential
in x (see subexponential time).

The main observation about the distribution of
smooth numbers in an interval [0, a] is that if the
smoothness bound B is chosen subexponentially
in x, then the probability that a random integer
in this interval is B–smooth (or more precisely the
inverse of that probability) is also subexponential.

More precisely, set a = Lx[r, α] and B = Lx[s, β],
where r, s, α, β ∈ R>0 and s < r ≤ 1, then the prob-
ability that a random number in [0, a] is B–smooth
is given (see smoothness probability) by

Lx[r − s, −α(r − s)/β] (1)

where x → ∞.
A similar result holds for the polynomial case:

Assume r, s, α, β ∈ R>0 such that r ≤ 1 and essen-
tially s < r . Then the probability that a random
element of Fp[x] of norm bounded by Lx[r, α] is
Lx[s, β]–smooth is given exactly by expression 1
(see [3] for details).

Smooth numbers or polynomials are used in
the most effective methods to factor natural num-
bers (see integer factoring) and compute discrete
logarithms in finite fields (see discrete logarithm
problem). The overall subexponential complexity
of these methods is a direct consequence of the fact
that the number of smooth elements in a given in-
terval grows subexponentially if the smoothness
bound is chosen subexponential as well.

For further background, please see [1, 2, 4].

Kim Nguyen
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SMOOTHNESS
PROBABILITY

Let α, β, r, s ∈ R>0 with s < r ≤ 1. With Lx as in
L-notation, it follows from [1, 2] that a random
positive integer ≤ Lx[r, α] is Lx[s, β]-smooth (see
smoothness) with probability

Lx[r − s, −α(r − s)/β], for x → ∞.

Arjen K. Lenstra
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SOLITAIRE

Solitaire is a stream cipher designed to be imple-
mented using a deck of cards. It was invented by
Bruce Schneier for use in the novel Cryptonomi-
con, by Neal Stephenson [1], where it was called
Pontifex. Solitaire gets its security from the inher-
ent randomness in a shuffled deck of cards. By ma-
nipulating this deck, a communicant can create a
string of “random” letters which he then combines
with his message. Solitaire can be simulated on a
computer, but it is designed to be used by hand.

Manual ciphers are intended to be used by spies
in the field who do not want to be caught carry-
ing evidence that they send and receive encrypted
messages. In David Kahn’s book Kahn on Codes
[2], he describes a real pencil-and-paper cipher
used by a Soviet spy. Both the Soviet algorithm
and Solitaire take about the same amount of time
to encrypt a message: most of an evening.

Solitaire, as described in the appendix to Crypto-
nomicon, has a cryptographic weakness. While
this weakness does not affect the security of short
messages, Solitaire is not recommended for actual
use.1

Bruce Schneier

1 See http://www.schneier.com/solitaire.html
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SPKI/SDSI

SPKI (Simple Public Key Infrastructure) [2, 1]
was developed starting in 1995 to remedy short-
comings [3] in the existing ID certificate defini-
tions: X.509 and PGP (see Pretty Good Privacy).
It provided the first authorization certificate def-
inition [4, 5]. Originally, SPKI used no names
for keyholders but, after the merger with SDSI
(Simple Distributed Security Infrastructure), now
includes both named keyholders and named
groups or roles—specifying authorization grants
to names and definitions of names (membership
in named groups).

In public-key security protocols, the remote
party (the prover) in a transaction is authenticated
via public key cryptography. Upon completion of
that authentication, the verifier has established
that the prover has control over a particular pri-
vate key—the key that corresponds to the public
key the verifier used. This public key is itself a
good identifier for the prover. It is a byte string
that is globally unique. It also has the advantages
of not requiring a central ID creator or distribu-
tor and of being directly usable for authentication.
However, since anyone can create a key pair at any
time, a raw public key has no security value. It is
the purpose of a certificate to give value or mean-
ing to this public key.

ID certificate systems bind names to public keys.
This is an attempt to directly answer the question
“who is that other party?”. The shortcomings of ID
certificates that SPKI addresses are:
1. Because there is no single, global name source,

names are not globally unique. Therefore map-
ping from public key to name can introduce
nonuniqueness. In SPKI, the real identifier is
a public key or its cryptographic hash—each of
which is globally unambiguous.

2. Names have no special value to a computer, but
are strongly preferred by people over raw keys
or hash values. However, people have a limited
ability to distinguish from among large num-
bers of names, so the use of names can intro-
duce scaling problems. The original SPKI did
not use names, but SDSI names are defined by
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Table 1. Certificate name sources

Type Source of names

X.509 Certificate Authority (CA)
PGP End Entity (EE)
SDSI Relying Party (RP)

the Relying Party (RP) and presumably limited
to the set that the RP can distinguish.

3. Name assignments are made by some
Certificate Authority (CA) and the intro-
duction of that additional component reduces
overall system security. In SPKI/SDSI there is
no CA, in the X.509 sense.

4. The real job is to make a security decision and a
name by itself does not give enough information
to make that decision. SPKI carries authoriza-
tion information.
There are certain characteristics of SPKI/SDSI

that set it apart from other certificate systems:
SDSI names, authorization algebra, threshold
subjects, canonical S-expressions and certificate
revocation (see authorization architecture, autho-
rization management, and authorization policy).

SDSI NAMES: Keys, and by implication their
keyholders, need to be identified. SPKI uses the
public key itself or its cryptographic hash as the
ID of the key and the keyholder. This ID is glob-
ally unique and requires no issuer, therefore no
expense or added insecurity of an ID issuer. For
computers and the protocols between them, this
ID is nearly perfect: globally unique and directly
authenticable. The hash of the key has the added
advantage of being fixed length.

For humans, such IDs fail miserably. They have
no mnemonic value. SPKI uses SDSI names for
human interfaces. Each human in a system using
SPKI/SDSI maintains his or her own dictionary
mapping between that human’s preferred name
for a keyholder and the public key or hash. The
human operator can see friendly and meaningful
names displayed via a UI, while the underlying
system uses the key or its hash as an ID.

Source of Names

There is sometimes confusion among X.509, PGP,
and SDSI—all of which build name certificates.
The best way to distinguish them is via the source
of the names used (see Table 1).

X.509 started out planning to use globally
unique assigned names from the one global X.500
directory. That single directory has never been cre-
ated and is unlikely ever to be. This leaves X.509

names to be chosen by the CA that issues a certifi-
cate. PGP leaves choice of name up to the person
generating the key. SDSI gives choice of name to
the person who will need to use that name.

Advantage of SDSI Names. When a name is used
by a human, the correctness of that use depends on
whether the human calls the correct person, thing,
or group, to mind on seeing the name. When SDSI
names are used, the one who chose that name is
the same person who must correctly understand
the linkage between the name and the person,
thing, or group.

For example, the RP might choose the SDSI
name “John Smith”, if the RP knows only one John
Smith—but a global naming authority would form
“John Smith 3751” or jsmith39@localisp.net and
require the RP to somehow deduce from that name
which John Smith was intended. If the RP has an
offline channel to John Smith and can ask him
what his global ID is, then the RP can keep a local
mapping from his preferred “John Smith” to the
global name—but that is exactly what happens
with SDSI (the global name being the hash of a
key). If the RP does not have off-line contact with
this John Smith, then the RP is forced to guess
which John Smith is behind the name—and that
guess is a source of security error [6].

Group Names

Both X.509 and PGP assume that the name is of
an individual. SDSI names are of groups or roles.
A named individual is a group of one.

Globally Unique SDSI Names

There are times when a SDSI name needs to
be included in a certificate: when rights are as-
signed to the name or the name is added to some
other named group. Since SDSI names are inher-
ently local, a global form must be constructed. For
example:

(name (hash sha1
#14dc6cb49900bdd6d67f03f91741cfefa2d26fa2#)
Leanna)

stands for the name Leanna in the local dictionary
of the keyholder of the key that hashes via SHA1
to 14dc6cb49900bdd6d67f03f91741cfefa2d26fa2.

This is an advantage of SPKI/SDSI over other
ID certificate forms. SDSI knew that names were
local and had to do something to make them glob-
ally unique while X.509 and PGP assumed names
were global, even when they were not.
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AUTHORIZATION ALGEBRA: SPKI carries autho-
rization information in its certificates and (Access
Control List) ACL entries. This authorization is
constrained to be in a language defined by SPKI
so that the SPKI library can perform set intersec-
tions over authorizations. Each authorization is a
set of specific permissions. That set is expressed as
an enumeration (a literal set) or in a closed form
(e.g., ranges of strings or numbers). The language
is defined by intersection rules [2] that were de-
signed to permit the intersection of two authoriza-
tion sets to be expressed in the same closed form
(see also authorization architecture, authoriza-
tion management, and authorization policy).

By contrast, X.509v3 certificate extensions can
be used to carry permission information, but
because the extension is completely free-form,
custom code must be written to process each dif-
ferent extension type.

FORMAT: An SPKI certificate has five fields:
1. Issuer: the key of the certificate issuer.
2. Subject: a key, hash, SDSI name or threshold

subject construct.
3. Delegation: a Boolean, indicating whether the

Subject is allowed to delegate some or all of the
rights granted here.

4. Tag: a canonical S-expression listing a set of
rights granted by the issuer to the subject.

5. Validity: limits on validity: not-before or not-
after dates, requirements to check online status
or to get a revocation list, etc.
An SPKI ACL entry has fields 2.5 of the above

since the authority (issuer) of an ACL entry is the
machine that holds it.

A name membership certificate has four fields:
1. Issuer
2. Name being defined
3. Subject (key, hash or name)
4. Validity
There is one certificate for each member of a name.

A threshold subject is a list of N subjects (possi-
bly including a subordinate threshold subject) and
a parameter K. Only when K of the N subjects
agree to delegate some rights or sign some docu-
ment is that certificate or ACL entry considered
valid. (The keys used by these subjects need not
be in the same algorithm so, among other things,
a threshold subject might tolerate the catastrophic
break of one algorithm.)

Canonical S-expressions (CSEXP)

SPKI/SDSI certificates are expressed and
communicated as canonical S-expressions. An

S-expression is of power equivalent to XML
(Extensible Markup Language). Canonical S-
expressions are binary forms with only one
possible encoding. S-expressions in SPKI/SDSI
are constrained to have each list start with an
atom (the equivalent of an XML element name).
Atoms are binary strings, with an explicit length
stated, so CSEXP creation is trivial. CSEXP
parsing requires under 10KB of code, in the
open-source implementation. If element names
are kept small, CSEXP binary forms are smaller
than equivalent ASN.1 forms.

CERTIFICATE REVOCATION: At the time SPKI
was designed, X.509 used Certificate Revocation
Lists (CRL) that were optional and were not
dated. A new CRL could be issued at any time
and would override any prior CRL. In SPKI, re-
vocation is deterministic. Each certificate that
could be subject to revocation includes the revo-
cation/validation agent’s key and URL and all va-
lidity instruments (CRLs, etc.) have contiguous,
non-overlapping date ranges.

IMPLEMENTATIONS: SPKI certificates are used
in HP’s eSpeak and several prototype sys-
tems. It is available in open source code in
two sourceforge.net projects: CDSA and JSDSI.
SPKI’s spiritual descendent XrML V.2 [5] is in
use in Microsoft’s Rights Management Services
(RMS).

Carl Ellison
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SSH

Secure Shell, a product from SSH Communica-
tions Security, allows the user to log into another
machine over a network, to execute commands in
a remote machine, and to move files from one ma-
chine to another. For sometime, it was developed
as a standard under IEFT.

SSH basically provides strong authentication
and secure communications over insecure chan-
nels. It was originally intended as a replacement
for various UNIX commands such as telnet, rlogin,
rsh, and rcp. For SSH2, there was in addition a re-
placement for FTP, namely sftp.

When the standardisation was terminated,
there were two versions of Secure Shell avail-
able: SSH1 and SSH2, which unfortunately are
quite different and incompatible. As for the
use of cryptographic algorithms, SSH1 supported
DES (the Data Encryption Standard) Triple-DES,
IDEA, and Blowfish, for encryption, while SSH
supports 3DES, Blowfish, Twofish, and a few oth-
ers. For authentication, SSH1 supported RSA dig-
ital signature scheme, while SSH2 supported the
Digital Signature Standard.

Peter Landrock

STATION-TO-STATION
PROTOCOL

In a two-party authenticated key exchange the le-
gitimate parties can compute a secret key, while at
the same time being certain about the authentic-
ity of the parties with whom they exchange a key.
The scheme must, in particular, be secure against
a man-in-the-middle attack.

A popular authenticated version of the Diffie–
Hellman key exchange protocol is the Station-to-
Station protocol. It was proposed by Diffie-van
Oorschot-Wiener [1].

Let 〈g〉 be a suitable finite cyclic group of large
enough order in which the computational Diffie–
Hellman problem is (assumed to be) hard. We as-
sume that q (not necessarily prime) is a multiple
of the order of g and publicly known. Let signA(m)
indicate the digital signature of the bitstring m
by party A. So, signA(m) can be verified using the
public key of A. Let Ek(m) be a conventional en-
cryption of the bitstring m using the conventional
key k. If k is too long, one assumes it is hashed
(see hash function). The corresponding decryption
is written as Dk(·).

The protocol, in which Alice (A) and Bob (B) want
to exchange a key, works as following:
Step 1. A sends B α := grA computed in 〈g〉, where

rA is chosen uniformly random in Zq .
Step 2. B chooses rB uniformly random in Zq and

computes β := grB in 〈g〉, kB := αrB in 〈g〉 and
γB := EkB(signB(α, β)), where α and β are con-
catenated. B sends A: β, γB.

Step 3. A computes kA := βrA and verifies whether
the string DkA(γB) is the digital signature of
(α, β), signed by B. If so, she sends B: γA :=
EkA(signA(α, β)) and views kA as the authenti-
cated key exchanged with B.

Step 4. B verifies whether the string DkB(γA) is
the digital signature of (α, β) signed by A. If so, B
regards kB as the authenticated key exchanged
with A.

As in the Diffie-Hellman key agreement scheme,
if there are no dishonest parties, Alice and Bob
will exchange the same key, i.e. kA = kB.

Yvo Desmedt
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STREAM CIPHER

A stream cipher is a symmetric cryptosystem (see
key) which operates with a time-varying trans-
formation on individual plaintext digits. By con-
trast, block ciphers operate with a fixed transfor-
mation on large blocks of plaintext digits. More
precisely, in a stream cipher a sequence of plain-
text digits, m0m1 . . ., is encrypted into a sequence
of ciphertext digits c0c1 . . . as follows: a pseudo-
random sequence s0s1 . . ., called the running-key
or the keystream, is produced by a finite state au-
tomaton whose initial state is determined by a se-
cret key. The ith keystream digit only depends on
the secret key and on the (i − 1) previous plaintext
digits. Then, the ith ciphertext digit is obtained
by combining the ith plaintext digit with the ith
keystream digit.

Stream ciphers are classified into two types:
synchronous stream ciphers and asynchronous
stream ciphers. The most famous stream cipher is
the Vernam cipher, also called one-time pad, that
leads to perfect secrecy (the ciphertext gives no
information about the plaintext).



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 22, 2005 14:7

Strong RSA assumption 597

Stream ciphers have several advantages which
make them suitable for some applications. Most
notably, they are usually faster and have a lower
hardware complexity than block ciphers. They
are also appropriate when buffering is limited,
since the digits are individually encrypted and
decrypted. Moreover, synchronous stream ciphers
are not affected by errorpropagation (see also non-
linear feedback shift register).

Anne Canteaut
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STRONG PRIME

A strong prime [1] is an integer p such that
� p is a large prime.
� p− 1 has a large prime number factor, denoted

r .
� p+ 1 has a large prime factor.
� r − 1 has a large prime factor.

The precise qualification of “large” depends on
specific attacks the strong prime is intended to
protect against. For a long time, strong primes
were believed to be necessary in the cryptosys-
tems based on the RSA problem in order to guard
against two types of attacks: factoring of the RSA
modulus by the p+ 1 and Pollard p− 1 factor-
ing methods, and “cycling” attacks. Rivest and
Silverman [2] published a paper in 1999 argu-
ing that strong primes are unnecessary in the
RSA public key encryption system. There are two
points in their argument. First, that the use of
strong primes provides no additional protection
against factoring attacks, because the Elliptic
Curve Method for factoring is about as effective
as the p+ 1 and the p− 1 methods (though none
is particularly likely to succeed for random, large
primes) and is not prevented by the strong prime
conditions. Furthermore, the Number Field Sieve
can factor RSA modulus with near certainty in less
time than these methods. (See integer factoring
for a discussion on factoring methods.) Secondly,
they argue that cycling attacks are extremely un-
likely to be effective, as long as the primes used
are large. This has recently been formally proven
in [3]. Thus, in the current state of knowledge,

there is no rationale for requiring strong primes
in RSA. A new factoring method might once again
make strong primes desirable for RSA, or on the
contrary exploit the properties of strong primes
in order to factor more efficiently and thus make
strong primes appear to be dangerous.

Anton Stiglic
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STRONG RSA ASSUMPTION

Let 1 < τ ∈ Z be a security parameter. Let N = pq
be a product of two random τ -bit primes and let s
be an element of the group Z

∗
N (see also modular

arithmetic). The strong-RSA problem is defined as
follows:

given (N, s) as input, output a pair a, b ∈ Z

such that ab = s mod N and b 
= ±1.

Loosely speaking, the Strong-RSA assumption
states that for a sufficiently large τ the strong RSA
problem is intractable.

The Strong-RSA assumption was introduced
by Baric and Pfitzman [2]. The assumption is
used to construct efficient signature schemes
that are existentially unforgeable under a chosen
message attack without the random oracle model.
One such system is described in [4] and an-
other in [3]. The Strong-RSA assumption is also
the basis of several efficient group signature
schemes [1].

Dan Boneh
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STRUCTURAL
CRYPTANALYSIS

Structural Cryptanalysis is a branch of Crypt-
analysis which studies the security of cryptosys-
tems described by generic block diagrams. It
analyses the syntactic interaction between the
various blocks, but ignores their semantic def-
inition as particular functions. Typical exam-
ples include meet-in-the-middle attacks on mul-
tiple encryptions, the study of various chaining
structures used in modes of operation, and the
properties of Feistel structures or substitution–
permutation networks with a small number of
rounds.

Structural attacks are often weaker than actual
attacks on given cryptosystems, since they cannot
exploit particular weaknesses (such as bad differ-
ential cryptanalysis properties or weak avalanche
effect) of concrete functions. The positive side of
this is that they are applicable to large classes of
cryptosystems, including those in which some of
the internal functions are unknown or key depen-
dent. Structural attacks often lead to deeper the-
oretical understanding of fundamental construc-
tions, and thus they are very useful in establishing
general design rules for strong cryptosystems.

Alex Biryukov

SUBEXPONENTIAL TIME

A subexponential-time algorithm is one whose run-
ning time as a function of the size k of its input
grows more slowly than bx for every base b > 1.
That is, for every constant base b > 1, the running

time T(x) satisfies

T(x) < bx

for all sufficiently large x. In O-notation, this
would be written T(x) = 2o(x) or eo(x).

(In computational complexity, subexponential
security sometimes refers to the related notion
that for all ε > 0, T(x) < 2xε

, for all sufficiently
large x.)

Subexponential-time algorithms occur in cryp-
tography in connection with the discrete loga-
rithm problem and integer factoring. The fastest
algorithms known for those problems (i.e., the ones
that grow most slowly as a function of input size)
typically have running times of the form

e(γ+o(1))(log x)t (log log x)1−t
, for x → ∞,

for some constants γ > 0 and 0 < t < 1, where x is
the order of the finite field in which discrete loga-
rithms are being computed, or the modulus to be
factored. The size of the input to these algorithms
is proportional to the length in bits of x, so the run-
ning time, being subexponential in log x, is subex-
ponential in the input size as well (see L-notation).

For further discussion, see exponential time and
polynomial time.

Burt Kaliski

SUBGROUP

A subset of elements of a group that is itself a
group, i.e., that follows the group axioms (clo-
sure, associativity, identity, inverse). For example,
if G = (S, ×) is a group, then for any g ∈ S, the set
of elements

g, g2, g3, . . .

(together with the multiplication operation) is a
subgroup of G. The order of any subgroup of a
group G divides the order of the group G itself;
this is known as Lagrange’s theorem.

Burt Kaliski

SUBGROUP
CRYPTOSYSTEMS

In cryptographic applications it is often advan-
tageous to replace a generator of the multiplica-
tive group F∗

pt of a finite field Fpt of character-
istic p by a generator g of a subgroup of F∗

pt , as
originally suggested by Schnorr [2]. The subgroup
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〈g〉 generated by g must be chosen in such a way
that solving the discrete logarithm problem in 〈g〉
is not easier than computing discrete logarithms
in F∗

pt .
Because of the Pohlig–Hellman algorithm (see

discrete logarithm problem), the order of g must
be chosen in such a way that it contains a suffi-
ciently large prime factor. Usually, g is chosen in
such a way that its order q is prime. Because q
divides the order pt − 1 of F∗

pt and because pt −
1 = ∏

s dividing t �s(p), where �s(X) is the tth cyclo-
tomic polynomial (as defined in the generalization
of Pollard’s p− 1 method—see integer factoring),
the prime order q of g divides �s(p) for one of
the s dividing t. However, if q divides �s(p) for
some s < t , then 〈g〉 can effectively be embedded
in the proper subfield Fps of Fpt . This has the un-
desirable consequence that the discrete logarithm
problem in 〈g〉 can be solved in the multiplicative
group F∗

ps of the substantially smaller field Fps ,
which is easier than solving it in F∗

pt . Thus, in or-
der not to affect the hardness of the discrete loga-
rithm problem in 〈g〉, the order q of g must be cho-
sen as a sufficiently large prime divisor of �t (p).
Given q, a proper g can be found as g = h(pt −1)/q

for any h ∈ F∗
pt such that g 
= 1.

If t = 1, this implies that p must be chosen so
that �1(p) = p− 1 has a large enough prime factor
q. If t = 2, however, q must be a large prime factor
of �2(p) = p+ 1 and if t = 6 of �6(p) = p2 − p+ 1.
The case t = 1 corresponds to the traditional and
conceptually easiest choice of using the prime
field Fpt = Fp: for 1024-bit security, representa-
tion of elements of the subgroup 〈g〉 requires about
1024 bits. The latter two cases, t = 2 and t = 6
(or, more generally, t divisible by 2 or 6, respec-
tively) are of interest because they allow a more
efficient representation of the subgroup elements
when LUC or XTR are used (where LUC [3] refers
to ‘Lucas’ because of LUC’s use of Lucas sequences,
and XTR [1] is an abbreviation of ECSTR which
stands for efficient compact subgroup trace repre-
sentation). For 1024-bit security 1024/2 = 512 bits
suffice for even t when using LUC and 1024/3 ≈
342 bits suffice for t divisible by 6 when using XTR.
Let f be the factor indicating the improvement in
representation size: f = 2 for LUC and f = 3 for
XTR.

For any finite field Fu, extension field Fuv , and
w ∈ Fuv the trace Tr (w) of w over Fu is defined
as the sum of the v conjugates of w over Fu:
Tr (w) = ∑

0≤i<v wui ∈ Fu (the inclusion in Fu be-
cause Tr (w)u = Tr (w)). LUC and XTR work by
representing elements of 〈g〉 by their trace over
the subfield Fpt/ f. The resulting representation ad-
vantage of a factor f compared to the traditional

representation applies in principle to any element
of Fpt . When applied to the order-�t (p) subgroup
G of F∗

pt with t as above, however, the trace repre-
sentation has other important advantages: given
Tr (w) ∈ Fpt/ f for any w ∈ G, it determines w and
its conjugates uniquely and the trace of any power
of w can be computed very efficiently. Since g was
chosen in such a way that 〈g〉 ⊂ G, this fast ‘ex-
ponentiation’ applies to the subgroup 〈g〉 as well.
LUC with t = 2 and XTR with t = 6 allow very
efficient methods to find proper p and q of cryp-
tographically relevant sizes. For large choices of
t parameter selection becomes more cumbersome.
For details of the exponentiation and parameter
selection methods, see [3] for LUC and [1] and [4]
for XTR.

The fact that the distinction between subgroup
elements and their pt/ f-th powers (i.e., their con-
jugates over Fpt/ f) is lost, has been shown (see [1])
to have no negative impact on the security of LUC
and XTR. A potential disadvantage of the trace-
based systems is that they complicate ordinary
multiplication of subgroup elements (represented
by their traces).

Arjen K. Lenstra
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SUBSTITUTIONS AND
PERMUTATIONS

A substitution cipher is usually described by a
sequence or list of single substitutions, each of
which is commonly denoted by an arrow, like
p �−→ π.
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Example: The Russian-English ISO translitera-
tion (using diacritical marks) is a substitution.

A B V G D E · Z I $I K L M N O P R S T U F H C Q X W _ Y ^ ⁄ Yu ”
↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓−
A B V G D E Ž Z I Ĭ K L M N O P R S T U F H C Č Š Šč ’ Y ” Ė Ju Ja

A substitution may have homophones (see
encryption).

A permutation is a one-to-one mapping from an
alphabet to itself.

A substitution may be described by two lines:
the first one being the standard alphabet, the sec-
ond one being a mixed alphabet (see alphabet). An
example is a given below:

a b c d e f g h i j k l m n o p q r s t u v w x y z
↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓−
B E K P I R C H S Y T M O N F U A G J D X Q W Z L V

Note that we have used small letters for the plain-
text and capital letters for the ciphertext.

In mathematics, there is a commonly used, sim-
plified notation with two lines bracketed together:

↓
(

a b c d e f g h i j k l m n o p q r s t u v w x y z
B E K P I R C H S Y T M O N F U A G J D X Q W Z L V

)

This is convenient for encryption. For decryption,
it is worth while to rearrange the list:

↑
(

q a g t b o r h e s c y l n m d v f i k p z w u j x
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

)

or

↓
(

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
q a g t b o r h e s c y l n m d v f i k p z w u j x

)

There is also the cycle notation which is shorter

(a b e i s j y l m o f r g c k t d p u x z v q) (h) (n) (w)

but this notation is inconvenient both for encryp-
tion and decryption. The cycle is generated by it-
erating the substitution on a arbitrarily chosen
starting letter; whenever a cycle is closed, a new
starting letter is chosen until all letters are ex-
hausted.

Self-reciprocal permutations are permutations
that, when applied twice, restore the original. Put
equivalently, they are their own inverse. Their cy-
cle notation shows a decomposition in 2-cycles and
1-cycle, for example:

(a n) (b x) (d s) (e i) (f v) (g h) (k u) (l c) (m q) (o w)
(p y) (j) (r) (t) (z)

If a self-reciprocal permutation has no 1-cycle
(so n is even) there is also the following notation

�
(

a b c d e f g h i j k l m
n o p q r s t u v w x y z

)

The Enigma machine of the German Wehrmacht
used a (properly) selfreciprocal permutation. This
was thought to be particularly practical since the
same machine could be used for encryption and
decryption, disregarding the fact that this opened
ways for a cryptanalytic attack (see noncoinci-
dence exhaustion in Cryptanalysis).

A substitution cipher in general replaces certain
groups of characters by certain other groups of
characters. This may be described by a list, e.g.
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for ZZ3
2 → ZZ3

2:

(000) �−→ (001), (001) �−→ (010), (010) �−→ (011), (011) �−→ (100),
(100) �−→ (101), (101) �−→ (110), (110) �−→ (111), (111) �−→ (000).

We shall give some more terms that one may see in
this context. A monographic substitution is a sub-
stitution of single characters, while a unipartite
substitution is a substitution by single characters.

A simple substitution is a substitution of single
characters by single characters, so it is a mono-
graphic, unipartite substitution.

A digraphic substitution is a substitution of bi-
grams (ordered pairs of characters). A bipartite
substitution is a substitution by bigrams. Finally,
a bigram substitution is a substitution of bigrams
by bigrams, so a digraphic, bipartite substitution.

In general, an n-graphic substitution is a sub-
stitution of n-tuples of characters (n-grams) and
an n-partite substitution is a substitution by n-
tuples of characters. Similarly, a polygraphic sub-
stitution is an n-graphic substitution, n ≥ 2, and
a multipartite substitution is an n-partite substi-
tution, n ≥ 2.

A linear substitution is a block encryption ZZn
N →

ZZm
N that is the composition of a translation t and

an homogenous part ϕ which is additive with re-
spect to addition modulo N (for all x, y ∈ ZZn

N :
ϕ(x + y) = ϕ(x) + ϕ(y)).

A null is meaningless ciphertext character, the
encryption image of the empty plaintext word. It
is used, e.g., for swamping the plaintext statistics
or masking the occurrence of idle times.

A straddling encryption or straddling cipher is
a substitution with encryption steps V(l) → W(m),

where Z(k) denotes the set of all sequences of at
most k characters from Z, in formula {ε} ∪ Z ∪
Z2 ∪ Z3 . . . ∪ Zk, where Zn is the set of all words
of length n over the alphabet Z, and ε denotes the
empty word.

Example: Z(3)
20 → ZZ(2) with the homophonic sub-

stitution

↓
(

che con non et a b c d e f g h i
44 64 00 08 1 86 02 20 62 22 06 60 3

)

82

↓
(

l m n o p q r s t v z ε

24 26 84 9 66 68 28 42 80 04 88 5

)

40 7

Both 5 and 7 are in this example (Matteo Argenti,
1590) nulls. Other elements of Z(3)

20 have no image,
except by composition of their individual letters.

Let a block be a text of predetermined length.
Then a block cipher or block encryption is a sub-
stitution with encryption steps Vn → Wm, i.e.

without straddling. The block length is usually
rather high (for instance, the Data Encryption
Standard has a block length of m = n = 64,
and the Advanced Encryption Standard (see
Rijndael/AES) has a block length of m = n = 128,
192, or 256 bits). The same block encryption step
with its key is repeated on and on, thus, each bit
of ciphertext in a given block normally depends on
the complete corresponding plaintext block, with
as consequence the possibility of error propagation
over the full block.

A stream cipher (also called stream encryption)
is a substitution (Vn)∗ → (Wm)∗ between infinite
series of blocks, controlled by a key generating al-
gorithm. The generated key may have a finite pe-
riod. Autokey or other cipher feedback is excluded.

A transposition cipher or tranposition does not
substitute the characters of a message, but per-
mutes their position: it may be considered as a
special case of a polygraphic substitution Vn → Vn

of the kind

(x1, x2, . . . , xn) �−→ (xπ (1), xπ (2), . . . , xπ (n)),

where π is a permutation of the subscripts {1,

2, . . . , n}. It can be performed by multiplication of
(x1, x2, . . . , xn) with a permutation matrix, i.e., an
n × n {0, 1}-matrix such that in every row and in
every column, one occurs just once. This extreme
property makes cryptanalysis of transposition ci-
phers very different from cryptanalysis of normal
substitution ciphers and explains why alternating
composition of substitutions and transpositions
(see “pastry dough mixing” below) is so effective.

A grille is a tool, usually in the form of punch
cards, that can be rotated to perform a transposi-
tion of the letters.

Pastry dough mixing stands for a composition
of alternating substitutions and transpositions. It
was already recommended by Shannon in 1949
and used, e.g., in the DES cryptosystem. The ex-
pression ‘pastry dough mixing’ was introduced by
Eberhard Hopf in the mathematical theory of com-
pact spaces.

Friedrich L. Bauer
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SUBSTITUTION–
PERMUTATION (SP)
NETWORK

Shannon [1] suggested to use several mixing
layers interleaving substitutions and permuta-
tions to build strong block ciphers. Such design
is called a substitution–permutation sandwich or
a substitution-permutation network (SPN). Al-
though weak on its own, a line of substitutions
followed by a permutation has good “mixing” prop-
erties: substitutions add to local confusion and per-
mutation “glues” them together and spreads (dif-
fuses) the local confusion to the more distant sub-
blocks (see also substitutions and permutations).
If one considers flipping a single bit at the input
of such a network, it effects the m output bits of
particular S-box which in turn are sent to different
S-boxes by a permutation. Thus inputs/outputs of
up to m S-boxes would be effected by the avalanche
of change. These are again permuted into different
S-boxes, covering almost all the S-boxes of the net-
work. On the output of such network about half of
the bits are effected by change and are flipped and
about half of the bits are not flipped. This makes
an outcome of a single bit change at the input hard
to predict, especially if secret key bits are mixed
into the block between the layers of encryption.
Without a secret key the SPN performs a complex
but fully deterministic function of its inputs. Mod-
ern ciphers tend to use linear or affine mappings
instead of permutations, which allows them to
achieve better diffusion in fewer iterations. Such
networks are called substitution-linear (SLN) or
substitution-affine networks (SAN). The current
block encryption standard Rijndael/AES is a SLN
cipher.

Alex Biryukov
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SUMMATION GENERATOR

The summation generator is based on a combina-
tion of n Linear Feedback Shift Registers (LFSRs)
and was first proposed in [5, 6]. The combining
function is an addition over the set of integers.
From a binary point of view, it is a nonlinear func-
tion, with maximum correlation immunity. The

output bit is the least significant bit of the inte-
ger sum.

LFSR 1

LFSR 2

LFSR n

Carry

output
sequence

Powerful attacks exist in the case n = 2 [1, 4].
Hence, it is better to use several LFSRs, with mod-
erate lengths, than just a few large ones. But it has
also been shown that this scheme is vulnerable
if all the LFSRs are short [3]. A Fast Correlation
Attack has recently been presented in [2]. (See also
combination generator.)

Caroline Fontaine
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SYMMETRIC
CRYPTOSYSTEM

The type of cryptography in which the same key
is employed for each of the operations in the
cryptosystem (e.g., encryption and decryption),
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and thus that same key, typically a secret, must
be shared by the parties performing the various
operations. See also block cipher, stream cipher,
MAC algorithms, and (for the contrasting notion)
asymmetric cryptosystem.

Equivalent names are conventional cryptosys-
tem, secret key cryptosystem, classical cryptosys-
tem, and private key cryptosystem.

Burt Kaliski

SYNCHRONOUS STREAM
CIPHER

A synchronous stream cipher consists of a cipher,
in which the keystream is generated indepen-
dently of the plaintext and of the ciphertext. It
can be depicted as follows:

ciphertext
key

keystream

plaintext
ENCRYPTION

key
keystream

plaintext
DECRYPTION

The keystream is usually produced by a pseudo-
random generator, parameterized by a key, which
is the secret key of the whole scheme.

This means that it is impossible to dynamically
check the synchronization between the keystream
and the message. The keystreams generated by
the sender (encryption), and by the receiver
(decryption) must be perfectly synchronized. If
synchronization is lost, then decryption fails
immediately. If we want to be able to resyn-
chronize both signals, we need some additional

techniques (through reinitialization, or by putting
some marks in the message, . . .).

Nevertheless, there is an advantage, in terms of
errors of transmission. If the ciphertext is altered
by some errors, then this will only affect the de-
cryption of the wrong bits, but this will have no
effect on the others.

These two properties (perfect synchronization
needed, no propagation of errors) lead to some ac-
tive attacks: the first one could be to modify the
ciphertext in order to desynchronize the message
and the keystream during decryption (this can
easily be achieved by deleting or inserting some
bits, for example); the second one consists in mod-
ifying the values of some bits, in order to modify
the plaintext obtained after decryption (this can
be powerful if the attacker knows sufficient in-
formation about the message in order to choose
the meaning of the modified plaintext). This im-
plies that it is important to use, at the same time
as encryption, some integrity/authentication tech-
niques in order to avoid such attacks.

Most of the stream ciphers used nowadays (see
for example E0 and SEAL) are binary additive
stream ciphers; they are synchronous stream ci-
phers, in which all the data (plaintext, keystream,
and ciphertext) are binary, and that simply add
(through the XOR function) the message (plain-
text/ciphertext) to the keystream.

A good reference on the topic is [1].

Caroline Fontaine
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TAMPER DETECTION

Tamper detection is the ability of a device to sense
that it is under physical attack and initiate defen-
sive actions through tamper response. The tam-
per detection design can be implemented to sense
different types, techniques, and sophistication of
tampering. Examples of techniques used to detect
tampering may include any or all of the following;
switches to detect the opening of doors or access
covers, sensors to detect changes in light or pres-
sure within the device, or a barrier or matrix to
detect drilling or penetrating the device boundary.
To be effective, the detection mechanism must be
active regardless of the current logical state of the
module.

Tom Caddy

TAMPER RESISTANCE

Tamper resistance is the ability of a device to de-
fend against a threat. The device is often a crypto-
graphic module, but this characteristic could also
be important for noncryptographic devices that
need to protect design intellectual property or pro-
vide evidence of the device integrity for trust or
warranty purposes. A device that is designed to
have relatively more tamper resistance will re-
quire a higher level of attack skills, added work
effort, and more sophisticated equipment to per-
form the tamper actions. Added tamper resistance
reduces the probability of compromising the device
without damaging the device or triggering a tam-
per event that will erase keys or disable the device.
Often a goal of tamper resistance is to cause the
attacker to inflict clear visible evidence on the de-
vice, so that the operator and/or manufacturer is
aware of the tamper actions and can take appro-
priate precautions and actions.

Tom Caddy

TAMPER RESPONSE

Tamper Response is the action a device (cryp-
tographic module) performs in order to prevent

misuse of the cryptographic module or disclosure
of Critical Security Parameters (CSPs) that are
generated or stored within the device. The re-
sponse mechanism is typically triggered by either
a signal from a sensor designed to detect (see
tamper detection) that the module is in a threat
condition or by an explicit command from an op-
erator. The objective of the tamper response is
to zeroize (erase) all memory locations that con-
tain cryptographic keys, passwords, PINs (see Per-
sonal Identification Number), or other critical se-
curity parameters that need to be protected from
disclosure to hostile entities. To be effective the
response also needs to prevent the module from
being misused while in the threat condition, by
inhibiting authentication, key management, and
cryptographic services from being initiated. The
response action needs to be completed quickly
enough to prevent the threat from compromising
the integrity and trust of the device and CSPs be-
fore the response actions have been completed.

Tom Caddy

TEMPEST

The term TEMPEST was initially a US military
codeword for a secret research project that orig-
inated in the late 1950s and studied compro-
mising emanations. Later, it became the name of
the resulting family of (still classified) US and
NATO protection standards and test procedures
for equipment and facilities that are specially
shielded against the unwanted broadcast of sen-
sitive information via spurious electromagnetic,
acoustic and other emissions from information
processing equipment. The term is sometimes also
used as a synonym for compromising emanations
and related protective measures in general.

Markus Kuhn
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THRESHOLD
CRYPTOGRAPHY

INTRODUCTION: In modern cryptography most
schemes have been developed for a scenario with
one sender and one receiver. However, there
are scenarios in which many receivers (or many
senders) need to share the power to use a cryp-
tosystem. The main motivation for threshold cryp-
tography was to develop techniques to deal with
the multi-sender/multi-receiver scenarios.

To illustrate the aforementioned scenarios we
first discuss several particular cases of thresh-
old cryptography to clarify its importance. To mo-
tivate threshold decryption, take the setting of
key escrow [4, p. 210]. In Micali’s approach [33]
as well as the NIST proposal Clipper Chip pro-
posal [7], a threshold scheme is used. Key Es-
crow agents have shares of each user’s secret key.
When a court order is received, the law enforce-
ment receives these shares from the Key Escrow
agents. This permits recovering the user’s secret
key. A major disadvantage of these schemes is
that once these shares of a user have been pro-
vided, the law enforcement receives the technical
means (the key) to decrypt any ciphertext received
(or sent) by this user. This includes even those ci-
phertexts sent before the court order was issued.
A solution that reduces this risk is one in which
a threshold of shareholders decrypt specific mes-
sages without leaking during this process anything
about other plaintexts or the secret key. Achieving
the above is precisely the goal of threshold decryp-
tion. So, while in threshold schemes the share-
holders (called the Key Escrow Agencies in the
Clipper proposal) reveal their shares to the law en-
forcement agency, in threshold decryption they use
their shares; only the plaintext (see cryptosystem)
is revealed to the law enforcement agency.

Now consider threshold signatures. Often doc-
uments do not originate from a single source but
from multiple. Indeed, consider a democracy, e.g.
the parliament, in which no member has the
power himself/herself to make a law. There, a
majority is required. So, the original concept of
digital signature needs to be adapted. A seemingly
trivial approach would be to have the members

have shares of the secret key (corresponding to the
parliament public key), and when a message needs
to be signed, a member voting for the proposal, just
reveals his/her share to the speaker (chair). The
speaker can then compute the secret key and sign
the message. However, this approach has a major
security problem. Indeed, the speaker obtaining
the secret key could fraudulently (now or in the fu-
ture) authenticate other messages alone. The real
solution to prevent this type of fraud is to have the
members calculate the digital signature together
without divulging, to each other or to others, any-
thing more about digital signatures for different
messages, or about the secret key used in the pro-
cess. Achieving this is the goal of threshold signa-
tures.

In general, any traditional cryptosystem has a
threshold variant. Consider a scheme that has
some security requirement S against an adver-
sary. In such a system usually a party has some
secret key. To achieve the threshold variant, first,
this secret key is shared among l parties, often
called shareholders. To achieve a threshold cryp-
tography variant one needs the following condi-
tions:
Reliability: The new cryptographic scheme,

when executed by t of the shareholders, satis-
fies the security condition S.

Threshold Security: Any attempt by t − 1 share-
holders to help a passive (active) adversary
break the original security condition S will
fail.

A scheme satisfying these conditions is called a
t-out-of-l threshold cryptosystem (for a more de-
tailed description among these lines, see [17]).

So, one can speak, for example, about:
� threshold pseudorandomness in which a

threshold of parties generate jointly a pseudo-
random string.

� threshold zero-knowledge interactive
proof of knowledge in which a threshold
of parties prove to know jointly a secret,
without divulging to each others and outsiders
anything additionally about this secret.

� threshold authentication codes in which a
threshold of parties is required to generate a
MAC (see MAC algorithms).

We will first focus on the case insiders try to
help a passive adversary. Note that in the above
description of threshold cryptography, the thresh-
old condition can be replaced by a general access
structure, as already addressed by [20]. From now
on when we speak about threshold cryptography,
we include the case the access structure is a gen-
eral access one.
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Since threshold cryptography is a very active
research area, it is impossible in a few pages to
give a complete survey of all the work done and
all of the subtle issues.

DIFFERENT APPROACHES: We distinguish two
main approaches and a variant.

A General Approach

For the case of the general approach [10], let us
express the underlying cryptographic scheme as
f k(input), where k is a secret key and, in the case
of, for example:
threshold decryption: the input is a ciphertext,
threshold signatures: the input is a message to

sign.
In the general approach, one defines a parameter-
ized function g such that ginput(k) = f k(input) for
each k and input. The general approach now works
when the function ginput is an homomorphism, i.e.

ginput (k1) ∗ ginput (k2) = ginput (k1 + k2), (1)

where k1, k2 ∈ K(+), an Abelian group.
Note that many cryptographic schemes satisfy

this condition. Examples are the one-time pad (see
key) encryption/decryption and the RSA digital
signature scheme. A part of the decryption in the
ElGamal public key encryption scheme also satis-
fies this condition. Indeed when receiving (c1, c2),
to decrypt the receiver computes m′ := c2 · (ca

1 )−1.
The exponentiation is the only part that uses the
secret key a. This exponentiation trivially satisfies
Equation (1).

We now explain how one can use such a cryp-
tosystem to make a threshold cryptographic vari-
ant. To facilitate the reading, we start with a
simple case. In general one uses a multiplica-
tive secret sharing scheme, which is discussed
in Section “Using a multiplicative secret sharing
scheme.”

A 2-out-of-2 Case. Equation (1) can be used im-
mediately to obtain a 2-out-of-2 threshold crypto-
graphic variant of the cryptographic scheme based
on g. Indeed, assume k ∈ K(+) is the secret key,
where K is a group (a quasigroup [1] is sufficient).
Now assume that k1 was chosen uniformly random
in K and that k2 = −k1 + k. Give the first partici-
pant k1 and the second k2 as shares of k.

Each time now that the cryptographic scheme
must be used on some input a, participant i com-
putes the partial result αi := ga(ki) = f ki (a), i.e.
the underlying cryptographic scheme is used as if
the key is replaced by the share ki . (If we talk about

threshold signatures the partial result is called
partial signature, etc.)

Now, from α1 and α2 anybody can compute what
the output of the original cryptographic scheme
would have been using Equation (1). If this re-
sult is transmitted outside some organization, the
party that performs this computation is called a
combiner.

The proof of security is rather easy in this case.
Since slightly different arguments are needed de-
pendent whether the security condition is an un-
conditional or condition one, we give a sketch.
First, the reliability condition is satisfied due to
the homomorphic property of g and the fact that
k = k1 + k2. The threshold security property fol-
lows from the following argument. Suppose one
participant could help an adversary in beating
the security condition S, then the adversary does
not need that participant (informally, the origi-
nal scheme does not satisfy the condition S). We
demonstrate that the adversary can just simulate
that participant. Indeed k1 occurs uniformly ran-
dom, and due to the one-time pad property [39] so
does k2. Suppose the inside participant is P1, then
the adversary chooses a uniformly random k1 and
computes ga(k1). Since ga(k) = ga(k1) · ga(k2), the
task for the adversary to compute ga(k) is as hard
as the computation of ga(k2).

The more general case of a t-out-of-l threshold
cryptographic scheme (or the use of a general ac-
cess structure) is only a little more complex.

Using a Multiplicative Secret Sharing Scheme.
First we define what a multiplicative secret shar-
ing scheme is.

DEFINITION 1. Let K(∗) be a group from which the
secrets are chosen and Si be a set from which
the shares of the ith participant are chosen. Let
A = {P1, . . . , Pl} be a set of l participants, and �A
be an access structure over A. A multiplicative
sharing scheme for G is a secret sharing scheme
in which the dealer distributes the shares in such
a way that if Pi gets si , i = 1, . . . , n, then for each
B = {Pi1 , . . . , Pi|B| } ∈ �A, any secret k ∈ K can be ex-
pressed as

k = ψi1,B(si1 ) · ψi2,B(si2 ) · · · · · ψi|B|,B(si|B| ), (2)

where ψ j,B, j ∈ B, are functions from S j to K which
any Pj can compute.

If the participants Pj are polynomially bounded,
then one should assume that ψi,B(s j), j ∈ B, can be
computed in polynomial time.
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Note that when K is an Abelian group, and we
use additive notation, then Equation (2) becomes:

k =
∑
i∈B

ψi,B(si). (3)

We now explain how to achieve the threshold
cryptographic scheme. Let the participants have
shares si of the secret key k. To execute the cryp-
tographic scheme on input a, when the set B is
known, each participant Pi in B computes the par-
tial result ga(ψi,B(si)) = fψi,B(si )(a). These partial re-
sults are sent to the combiner, who basically per-
forms a multiplication. Indeed due to the homo-
morphic property of g, we have that

ga(k) =
∏
i∈B

ga(ψi,B(si)). (4)

The case that B is not known in advance is
briefly discussed in Section “Unknown subsets of
participants”.

We now list some examples of multiplicative se-
cret sharing schemes. If K is a finite field, then
Shamir’s threshold scheme is multiplicative. This
allows to explain the threshold ElGamal public
key encryption scheme [12]. In the case of the
RSA digital signature scheme, K = Zφ(n) (see
modular arithmetic and Euler’s totient function)
and so Shamir’s threshold scheme cannot be used.
An additional problem is that making φ(n) pub-
lic would allow an enemy to break RSA. To ad-
dress this issue black box secret sharing schemes
were studied. These work, regardless what K is,
provided one can perform the group operation in
the Abelian group K efficiently. For details of such
schemes see [8,15].

(For more details about multiplicative secret
sharing, see, e.g. [9,11,13] and also [20,24].)

Unknown Subset of Participants. An interesting
case occurs when the set of participants is un-
known before the final output is computed by the
combiner, and one wants to avoid interaction be-
tween the shareholders and the combiner.

This issue can be resolved in the case the func-
tions ψi,B correspond with multiplications with the
scalar ai,B. This can be addressed using module
theory [28]. Still these scalars depend on B. So,
this multiplication cannot be executed by the par-
ticipant. Using a property of modules [29], the
combiner can instead perform an equivalent op-
eration. For more details consult, e.g. [10].

Particular Approaches

The general approach suffers from two main prob-
lems, being:

� not all cryptographic schemes satisfy the homo-
morphic property of Equation (1). In its gener-
ality no practical solution has been proposed
to address this problem. For some algorithms,
such as the Digital Signature Standard (DSS),
a practical approach was studied in [26,32].

� Using the most general approach does not
necessarily result in the most efficient scheme.
The use of a black box secret sharing scheme,
when K is a finite field is just one example.
Shoup [40] proposed a scheme specifically de-
signed to achieve threshold RSA signatures.

A Variant of the General Approach

It seems that the last approach should outper-
form the first in efficiency. However, King [30] (see
also [31]) demonstrated that when the set of share-
holders that will jointly execute RSA is known
in advance, that the scheme in [19] outperforms
Shoup’s scheme.

So, the idea to start from a general scheme and
then to (sub-)optimize it to a particular underly-
ing cryptographic scheme, is not necessarily a bad
approach.

ENHANCEMENTS: The aforementioned schemes
can be viewed as basic schemes. Indeed, until now
we assumed that insiders would only help a pas-
sive adversary. When protecting against insiders
trying to help an active adversary, several issues
need to be addressed. These are now surveyed and
references are given.

Robustness

To analyze the reliability aspect, let us focus on
Equation (4). It is clear that if one (or more) share-
holder sends one wrong partial result, ga(ψi,B(si))
the result will (likely) be wrong. If a public key
system is used one can, using the public key, ver-
ify that the result is wrong. When the numbers
of wrong partial results is small, and a public
key system is used, an exhaustive search will evi-
dently find out the subset of participants that sent
the wrong partial result [38]. One can then recom-
pute the result ga(k) by ignoring the wrong partial
results, provided one has at least t + e partial re-
sults, where e is the number of wrong ones.

A threshold scheme that addresses this issue is
called robust. Several schemes that do not need
above exhaustive search have been presented for
variant underlying cryptographic schemes, e.g.
[23,25,26].

To avoid this exhaustive search, in the case of an
underlying public key scheme, the following can be
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used. If t participants each prove that what was
sent is the correct partial result, then one can ig-
nore all other partial results.

No Trusted Dealer

One can wonder who computes the secret share
the participant will use. In the first schemes a sin-
gle trusted dealer was often used. It is clear that
such an approach can best be avoided, however
this is not always that easy.

If the secret key can be chosen randomly, as
is usually the case in a discrete log setting, then
the following use of homomorphic secret sharing
can be utilized towards abolishing the need for a
trusted dealer. We first define the notion of homo-
morphic secret sharing.

DEFINITION 2. Let (s1, s2, . . . , sl) be a share as-
signment of the key k and similarly (s ′

1, s ′
2, . . . , s ′

l)
be the shares of the key k′. Assume operations,
denoted using “+”, are defined on the share
spaces and the key space. A secret sharing scheme
is called homomorphic [3] if ((s1 + s ′

1), (s2 + s ′
2),

. . . , (sl + s ′
l)) is a possible share assignment of the

key k + k′.

Shamir secret sharing scheme is homomorphic. In
fact, any multiplicative secret sharing scheme in
which each function ψi,B (for B ∈ �A) is a homo-
morphism, forms a homomorphic secret sharing
scheme.

We now survey how to avoid a dealer. The first
participant chooses a uniformly random key k1
and plays distributor of this key generating shares
(s1,1, s1,2, . . . , s1,l). The first participant sends, us-
ing a secure channel, the shares s1,i to participant i
and 1 ≤ i ≤ l. Now, t participants, let say those in
B ⊂ A, will perform similar operations (choosing
the randomness independently) and create shares
s j,i instead of s1,i and send those privately to par-
ticipant i. A participant i can then compute the
share si = ∑

j∈B s j,i . Since the sharing scheme is
homomorphic, si is a share of the key k = ∑

j∈B k j.
If the keys kj belong to an Abelian group (see
also [24]) and the secret sharing scheme is per-
fect, then t − 1 shareholders have no information
about the secret key k.

The first use of this idea in the context of
threshold cryptography was by Pedersen in [35].
Pedersen’s scheme also guarantees that the distri-
bution is verifiable, i.e., that the shares the share-
holders received will always recompute the same
secret key. Pedersen’s scheme also guarantees that
this secret key corresponds to the public key that
is made public (see public key cryptography).

Note that the problem of avoiding a trusted
dealer is much more complex in the context of RSA
(see, e.g. [5,36]).

Proactive Security and its Generalizations

One can wonder what should happen when a share
is stolen or lost. Worse, what happens when an
outsider collects more shares than the threshold?
As already observed in [16], it is a bad idea to
change the public key of a group, in particular
when this group is well known. Those who have
not updated their public key database will use the
old one. Also the new public key must be certi-
fied enough times independently before it can be
trusted.

The solution that has been proposed to address
this problem is to get new guaranteed correct
shares without relying on a trusted dealer and
to keep the old public key as long as is reason-
able possible. The old shares should be destroyed
and the update should be done frequently enough,
taken the power of the enemy who may collect
shares into account. This solution is called proac-
tive secret sharing.

We briefly explain how the use of homomorphic
secret sharing can contribute towards achieving
proactive threshold cryptography. We assume that
the secret sharing scheme is homomorphic.

If (s1, s2, . . . , sl) is a share assignment for the
key k and (s ′

1, s ′
2, . . . , s ′

l) is a uniformly random
share assignment for the “key” 0, then (s ′′

1, s ′′
2, . . . ,

s ′′
l ) = (s1 + s ′

1, s2 + s ′
2, . . . , sl + s ′

l) is a new share
assignment for the same key k. Assume that
one trusts t shareholders. Then t participants,
denoted by j, can each contribute their own
random (s ′

j,1, s ′
j,2, . . . , s ′

j,l). This is done in a similar
way as in Section “No Trusted Dealer,” however
the shares correspond with the “keys” 0. When
working in an Abelian group (see also [24]) and
when the secret sharing scheme is perfect, the
resulting share s ′′

i = si + ∑
j∈B s ′

j,i will be guaran-
teed independent of the original share si , due to
the properties of the one-time-pad [39]. Both si
and s ′′

i are shares of the same key k.
One should note that the schemes are more com-

plex since each contributing shareholder needs to
prove that his contribution (s ′

1, s ′
2, . . . , s ′

l) consists
of shares of 0. Also, achieving proactive thresh-
old RSA is more complex. The concept of proactive
secret sharing is based on [34] and its combina-
tion with threshold cryptography has been studied
in [22,27,37].

The following is a more general problem. How,
given shares for authorized subsets of the partici-
pants in A, specified by an access structure �A, can
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the participants in A, without the use of a trusted
dealer, distribute new shares for an access struc-
ture �′

A′ , where A′ is the new set of participants. If
�A �⊆ �′

A′ it is clear that some shareholders must
destroy their shares. The security requirement is
that no unauthorized set of parties learns any-
thing new about the secret key. For more details
see [2,6,13,21].

OTHER SURVEYS: Other surveys of threshold
cryptography can for example be found in [14,18].

Yvo Desmedt
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EUROCRYPT’92, Balatonfüred, Hungary, Lecture



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 13, 2005 15:40

Threshold signature 611

Notes in Computer Science, vol. 658, ed. R.A. Ruep-
pel. Springer-Verlag, Berlin, 25–34.

[21] Frankel, Y., Y.P. Gemmell, P.D. MacKenzie, and M.
Yung (1997). “Optimal resilience proactive public
key cryptosystems.” 38th Annual Symp. on Foun-
dations of Computer Science (FOCS), October 20–
22, Miami Beach, FL, USA. IEEE Computer Soci-
ety Press, Los Abumitos, CA.

[22] Frankel, Y., P. Gemmell, P.D. MacKenzie, and
M. Yung (1997). “Proactive RSA.” Advances in
Cryptology—CRYPTO’97, Santa Barbara, CA,
August 17–21, Lecture Notes in Computer Science,
vol. 1294, ed. B. S. Kaliski. Springer-Verlag, Berlin,
440–454.

[23] Frankel, Y., P. Gemmell, and M. Yung (1996).
“Witness-based cryptographic program checking
and robust function sharing.” Proceedings of the
Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, ACM Press. May 22–24, 499–
508.

[24] Frankel, Y., Y. Desmedt, and M. Burmester (1993).
“Non-existence of homomorphic general shar-
ing schemes for some key spaces.” Advances in
Cryptology—CRYPTO’92, Santa Barbara, CA, Au-
gust 16–20, Lecture Notes in Computer Science,
vol. 740, ed. E. F. Brickell. Springer-Verlag, Berlin,
549–557.

[25] Gennaro, R., S. Jarecki, H. Krawczyk, and T. Ra-
bin (1996). “Robust and efficient sharing of RSA
functions.” Advances in Cryptology—CRYPTO’96,
Santa Barbara, CA, August 18–22, Lecture Notes
in Computer Science, vol. 1109, ed. N. Koblitz.
Springer-Verlag, Berlin, 157–172.

[26] Gennaro, R., S. Jarecki, H. Krawczyk, and T.
Rabin (1996). “Robust threshold DSS signa-
tures.” Advances in Cryptology—EUROCRYPT’96,
Zaragoza, Spain, May 12–16, Lecture Notes in
Computer Science, vol. 1070, ed. U. Maurer.
Springer-Verlag, Berlin, 354–371.

[27] Herzberg, A., S. Jarecki, H. Krawczyk, and M.
Yung, (1995). “Proactive secret sharing.” Advances
in Cryptology—CRYPTO’95, Santa Barbara, CA,
August 27–31, Lecture Notes in Computer Science,
vol. 963, ed. D. Coppersmith. Springer-Verlag,
Berlin, 339–352.

[28] Jacobson, N. (1985). Basic Algebra I. W. H. Free-
man and Company, New York.

[29] Jacobson, N. (1989). Basic Algebra II. W. H. Free-
man and Company, New York.

[30] King, B. (1976). “Improved methods to per-
form threshold RSA.” Advances in Cryptology—
ASIACRYPT 2000, December 2000, Kyoto, Japan,
Lecture Notes in Computer Science, vol. 1976, ed.
T. Okamoto. Springer-Verlag, Berlin, 359–372.

[31] King, B. (2000). “Algorithms to speed up computa-
tions in threshold RSA.” Information Security and
Privacy, 5th Australian Conference, ACISP2000,
Brisbane, Australia, July 10–12, Lecture Notes in
Computer Science, vol. 1841, eds. E. Dawson, A.
Clark, and C. Boyd. Springer-Verlag, Berlin, 443–
456.

[32] Langford, S.K. (1995). “Threshold DSS signatures
without a trusted party.” Advances in Cryptology—
CRYPTO’95, Santa Barbara, CA, August 27–31,
Lecture Notes in Computer Science, vol. 963, ed. D.
Coppersmith. Springer-Verlag, Berlin, 397–409.

[33] Micali, S. (1993). “Fair public-key cryptosystems.”
Advances in Cryptology—CRYPTO’92, Santa Bar-
bara, CA, August 16–20, Lecture Notes in Com-
puter Science, vol. 740, ed. E.F. Brickell. Springer-
Verlag, Berlin, 113–138.

[34] Ostrovsky, R. and M. Yung (1991). “How to
withstand mobile virus attacks.” Proceedings of
the 10-th Annual ACM Symp. on Principles of
Distributed Computing, August 19–21, Montreal,
Quebec, Canada, ACM Press 51–60.

[35] Pedersen, T.P. (1991). “A threshold cryptosystem
without a trusted party.” Advances in Cryptology—
EUROCRYPT’91, April 1991, Brighton, UK, Lec-
ture Notes in Computer Science, vol. 547, ed. D.W.
Davies. Springer-Verlag, Berlin, 522–526.

[36] Poupard, G. and J. Stern (1998). “Generation of
shared RSA keys by two parties.” Advances in
Cryptology—ASIACRYPT’98, Beijing, China, Oco-
tober, Lecture Notes in Computer Science, vol.
1514, eds. K. Ohta and D. Pei. Springer-Verlag,
Berlin, 11–24.

[37] Rabin, T. (1998). “A simplified approach to thresh-
old and proactive RSA.” Advances in Cryptology—
CRYPT’98, Lecture Notes in Computer Science,
vol. 1462, ed. H. Krawczyk. Springer, Berlin, 89–
104.

[38] Reiter, M.K. and K.P. Birman (1994). “How to se-
curely replicate services.” ACM Transactions on
Programming Languages and Systems, 16 (3),
986–1009.

[39] Shannon, C.E. (1949). “Communication theory of
secrecy systems.” Bell System Techn. Jour., 28,
656–715.

[40] Shoup, V. (2000). “Practical threshold signa-
tures.” Advances in Cryptology—EUROCRYPT
2000, Bruges, Belgium, May 14–18, Lecture Notes
in Computer Science, vol. 1807, ed. B. Preneel.
Springer-Verlag, Berlin, 207–220.

THRESHOLD SIGNATURE

Threshold signatures are digital signatures where
signers can establish groups such that only cer-
tain subsets of the group can produce signatures
on behalf of the group. The collection of subsets
that are authorized to produce signatures is called
the access structure of a threshold scheme. More
particularly, a (t, n)-threshold signature scheme is
a digital signature scheme where any t or more
signers of a group of n signers can produce sig-
natures on behalf of the group. In general, a
threshold signature does not reveal the actual
group members that have cooperated to produce it.
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Multisignatures are threshold signatures with the
additional feature that they reveal the identi-
ties of the group members who produced them
[2, 12]. In multisignatures, the signing members
are not anonymous at all. The special case of a
(1, 1)-threshold signature scheme is an ordinary
digital signature scheme. The goal of a threshold
signature scheme is to enforce dual control over
the signing capability (choose t > 1) or to elim-
inate single points of failure (choose n > 1), or
both. Each group of signers can be managed by
a trusted group authority, which oversees joining
and leaving the group. Obviously, many groups can
choose to be managed by the same trusted group
authority, or a group can choose to fully distribute
the group management among its members such
that every member is involved in all management
transactions. Comprehensive overviews of thresh-
old signatures are given by Desmedt [4,5].

In a threshold signature scheme, each signing
member of a group has an individual signing key
pair (see also public key cryptography). If individ-
uals generate their key pairs without having to
agree on common domain parameters, the thresh-
old signature scheme is called separable [3]. An
individual is registered for a group by presenting
a suitable ID certificate to the respective trusted
group authority and submitting her or his pub-
lic verifying key. The trusted group authority con-
structs a group key pair, which consists of a private
group key and a public group key, and publishes
the public group key through one or more authen-
tic channels such as a public key infrastructure
(PKI). A member leaves a group by revoking her or
his public verifying key from the trusted group au-
thority. It is the responsibility of the trusted group
authority to keep track of who belongs to the group
at any point of time.

Any subset of ≥ t-out-of-n members of a group
G can produce a signature. To do so, each mem-
ber contributes a partial signature to a designated
combiner, and the combiner derives the intended
threshold signature from the partial signatures.
Everyone who has access to the public group key
of group G can verify the threshold signature. The
designated combiner can be a real entity such as
the trusted group authority, or it can be a virtual
entity whose operations are computed in a dis-
tributed fashion among all group members [8]. A
threshold signature scheme is robust, if the des-
ignated confirmer can verify the validity of each
partial signature before accepting it as an input
to a threshold signature [8,13]. Many of the early
threshold signatures were not robust [2,6,7].

The most important security property of thresh-
old signatures is security against existential

forgery. In ordinary digital signature schemes, one
considers adaptive chosen message attacks, i.e., an
attacker who has repeated oracle access to sign-
ers in order to get messages signed, but with-
out access to the signer’s private signing key. In
threshold signatures, one considers stronger at-
tackers, who can take complete control over some
of the group members at some time (including
access to their private signing keys). Such an ad-
versary is called static if he chooses the group
members to be controlled before the attack begins.
Otherwise, the adversary is called adaptive. Note
that this kind of adaptivity is different from the
one introduced by Goldwasser, Micali and Rackoff
[10] for attackers against ordinary digital signa-
ture schemes. Resilience is the number or fraction
of cheating members a group can tolerate dur-
ing group key generation or update while it still
maintains unforgeability of the resulting thresh-
old signatures (also see secret sharing schemes).
The adversary is called erasure-free if it does not
require that group members erase all information
from their computer systems once this information
is no longer needed, e.g., replaced private signing
keys [11]. Further characteristics of adversaries
are discussed in [11].

Key management is a particularly important is-
sue in threshold signatures. For example, if the
public group key changes whenever members join
or leave the group or update their private sign-
ing keys, then it becomes a burden for the trusted
group authority to publish the public group keys
for all recent time-intervals in a timely fashion.
Moreover, if a private signing key of a group mem-
ber is compromized, then the attacker can freely
produce signatures on behalf of the group until the
respective public verifying key is revoked. There-
fore, all the signatures of the victimized group
members must be regarded invalid if there is no
way of distinguishing the signatures produced by
the honest group members from those produced
by the attackers. These problems are addressed
by an approach called proactive security. Proac-
tive threshold signature schemes allow individual
group members to join or leave a group or update
their private signing keys without affecting the
respective public group key. By dividing the life-
time of all individual private signing keys into dis-
crete time intervals, and by tying all signatures to
the time interval when they are produced, group
members who are revoked in time interval i have
their signing capability effectively stripped away
in time interval i + 1, while all their signatures
produced in time interval i or before (and of course
the signatures of all other group members) remain
verifiable and valid [9, 13]. Proactive security in
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threshold signature schemes is similar to forward
security in group signature schemes.

Of particular interest are those proactive
threshold schemes, where the effort of signing and
verification and the length of each signature is in-
dependent of the number of signers who actually
produce a signature and of the group size. An ex-
ample of such threshold signature scheme is pro-
posed by Rabin [13]. Multisignatures with these
properties are proposed in [1]. They are based
on the Gap Diffie–Hellman Groups, i.e., groups in
which the computational Diffie–Hellman (CDH)
problem is hard, while the decisional Diffie–
Hellman (DDH) problem is easy to solve.

A threshold signature scheme has the following
operations: (i) An operation for generating pairs,
a private signing key, and a public verifying key
for an individual, (ii) an operation for generating
pairs of a private group key and a public group key
for a trusted group authority, (iii) operations for
group management such as joining and revoking
group members and updating their individual key
pairs, (iv) an operation for signing messages, (v) an
operation for verifying signatures against a public
group key.

The characteristic security requirements of a
threshold signature scheme are:
Unforgeability: Resistance against existential

forgery under chosen message attacks by com-
putationally restricted attackers.

Threshold: In general, any of the authorized sub-
sets of group members can produce a thresh-
old signature, but no other coalitions. In (t, n)-
threshold signature schemes, any ≥ t-out-of-n
group members can produce a threshold sig-
nature, but no less than t group members can
do so.

Robustness: If all partial signatures contributing
to one threshold signature are valid for a mes-
sage m with respect to the private verifying keys
of their respective group members, then the re-
sulting threshold signature will be valid for m
with respect to the public group key.

Traceability (optional): Any coalition of cheat-
ing signers cannot produce a valid threshold sig-
nature that will not reveal all of their identities
to a verifier.

Proactive Security: The members of a group can
update their individual keys without changing
the public group key. The updating can tolerate
a certain fraction of cheating group members.

In general, computing threshold signatures can be
regarded as a multiparty computation; a problem
that has practical solutions [14]. The point of spe-
cific constructions [14] of threshold signatures is
in either being more efficient than general multi-

party computation, or in having additional fea-
tures such as robustness, proactive security, non-
erasure, etc.

The early construction (see [4]) employed a (ver-
ifiable) secret sharing scheme in order to share a
private group key among all of its members. The
group members then used their private shares in
order to produce partial signatures, which then
had to be combined by the trusted group center to
arrive at a threshold signature that is verifiable
against the public verifying key of the group.

Gerrit Bleumer
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TIME-MEMORY
TRADEOFFS

Many searching problems allow time-memory
tradeoffs. That is, if there are K possible solutions
to search over, the time-memory tradeoff allows
the solution to be found in T operations (time) with
M words of memory, provided the time-memory
product T × M equals K. Cryptanalytic attacks
based on exhaustive key search are the typical con-
text where time-memory tradeoffs are applicable.

Due to large key sizes, exhaustive key search
usually needs unrealistic computing powers and
corresponds to a situation where T = K and M =
1. However, if the same attack has to be carried
out numerous times, it may be possible to execute
the exhaustive search in advance and store all the
results in a memory. Once this precomputation is
done, the attack could be performed almost instan-
taneously, although in practice, the method is not
realistic because of the huge amount of memory
needed: T = 1, M = K. The aim of a time-memory
tradeoff is to mount an attack that has a lower
online processing complexity than exhaustive key
search, and lower memory complexity than a ta-
ble lookup. The method can be used to invert any

one-way function and was originally presented by
Hellman in [1].

THE ORIGINAL METHOD: Let EK(X) : 2n × 2k →
2n denote an encryption function of a n-bit plain-
text X under a k-bit secret key K. The time-
memory tradeoff method needs to define func-
tion g that maps ciphertexts to keys: g : 2n → 2k.
If n > k, g it is a simple reduction function that
drops some bits from the ciphertexts (e.g., in the
Data Encryption Standard (DES), n = 64, k = 56).
If n < k, g adds some constant bits. Then we define

f (K) = g(EK(P)), (1)

where P is a fixed chosen plaintext. Computing
f (K) is almost as simple as enciphering, but com-
puting K from f (K) is equivalent to cryptanalysis.
The time-memory tradeoff method is composed of
a precomputation task and an online attack that
we describe as follows.

Precomputation task: The cryptanalyst first
chooses m different start points: SP1, SP2, . . . , SPm
from the key space. Then he computes encryption
chains where Xi,0 = SPi and Xi, j+1 = f (Xi, j), for
1 ≤ j ≤ t :

X0,0
f→ X0,1

f→ X0,2
f→ . . . . . . .

f→ X0,t

X1,0
f→ X1,1

f→ X1,2
f→ . . . . . . .

f→ X1,t

X2,0
f→ X2,1

f→ X2,2
f→ . . . . . . .

f→ X2,t

. . . . . . .

Xm,0
f→ Xm,1

f→ Xm,2
f→ . . . . . . .

f→ Xm,t (2)

To reduce the memory requirements, the crypt-
analyst only stores start and end points (SPi =
Xi,0, EPi = Xi,t ) and sorts the {SPi, EPi}m

i=1 on the
end points. The sorted table is stored as the result
of this precomputation.

Online attack: Now we assume that someone
has chosen a key K and the cryptanalyst inter-
cepts or is provided with C = EK(P). Then he can
apply the function g to obtain Y = g(C) = f (K) and
follows the algorithm:

ALGORITHM 1. Online attack
1. If Y = EPi , then either K = Xi,t−1 or EPi has

more than one inverse image. We refer to
this latter event as a false alarm. If Y = EPi ,
the cryptanalyst therefore computes Xi,t−1 and
checks if it is the key, for example by seeing if
it deciphers C into P

2. If Y is not an end point or a false alarm
occurred, the cryptanalyst computes Y = f (Y)
and restarts step 1.
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Note that the cryptanalyst needs to access the ta-
ble lookup every time a new Y is computed. If
all m × t elements are different, the probability
of success PS would be m×t

2k . The actual probabil-
ity of success depends on how the precomputed
chains cover the key space. Unfortunately, there
is a chance that chains starting at different keys
collide and merge. The larger is a table, the higher
is the probability that a new chain merges with a
previous one. Each merge reduces the number of
distinct keys that are actually covered by the ta-
ble. If f is a random function, then the probability
of success is bounded by:

PStable ≥ 1
N

m∑
i=1

t−1∑
j=0

(
1 − it

N

) j+1

. (3)

Equation 3 indicates that, for a fixed value of N,
there is not much to be gained by increasing m
or t beyond the point at which mt2 = N. To ob-
tain a high probability of success, a more effcient
method is to generate multiple tables using a dif-
ferent function g for each table. The probability of
success with r tables is:

PStot ≥ 1 − (1 − PStable)r . (4)

Chains of different tables can collide, but not
merge, since the function g is different for every
table.

DISTINGUISHED POINTS AND RAINBOW
TABLES: The idea of using distinguished points
(DPs) in time-memory tradeoffs refers to Rivest
in [2]. If {0, 1}k is the key space, a DP property of
order d is usually defined as an easily checked
property that holds for 2k−d different elements
of {0, 1}k, e.g. having d bits of the key locked
to zero. In a time-memory tradeoff using DPs,
the start and end points of the precomputed
chains fulfill a DP property. As a consequence,
the chains have variable length but detectable
extreme points. This greatly reduces the number
of table lookups during the online attack from t
to 1.

A remarkable property of the DP method is
that mergers can be easily detected and therefore,
can possibly be rejected during the precomputa-
tion in order to build perfect tables [3]. The ma-
jor drawback of DPs is that they introduce vari-
able chain lengths and they are more difficult to
analyze [4].

An alternative solution to reduce the number
of table lookups is to use the rainbow tables pre-
sented in [5]. That is to use a different function g

for each point in a chain:

X0,0
f1→ X0,1

f2→ X0,2
f3→ . . . . . . .

f t→ X0,t

X1,0
f1→ X1,1

f2→ X1,2
f3→ . . . . . . .

f t→ X1,t

X2,0
f1→ X2,1

f2→ X2,2
f3→ . . . . . . .

f t→ X2,t

. . . . . . .

Xm,0
f1→ Xm,1

f2→ Xm,2
f3→ . . . . . . .

f t→ Xm,t . (5)

Two rainbow chains can only merge if they col-
lide at the same position. Other collisions do not
provoke a merge. The method is extremely easy to
analyze and one rainbow table may contain t times
more chains than an original table. This reduces
the number of table lookups from t to 1.

As a consequence, rainbow tables are the easiest
and most effcient way to perform a time-memory
tradeoff. DP methods have a more theoretical
interest but may also be used to detect collisions
(e.g., of hash function) as suggested in [6,7]

Jean-Jacques Quisquater
François-Xavier Standaert
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TIME-STAMPING

INTRODUCTION: As more and more of the world’s
data is created, stored, and manipulated online,
it is sometimes crucial to verify when a digital
document or record was created or last modi-
fied. Ideally, any time-stamping procedures to do
this should depend only on the data in the docu-
ment in question, and should not be susceptible to
tampering—either with the data, or with the time
and date.

To be precise, and to fix our vocabulary, a time-
stamping system consists of two procedures: a cer-
tification procedure, which produces for any dig-
ital record a time-stamp certificate attesting to
the time of certification; and a validation proce-
dure, which checks whether or not a given record–
certificate pair is valid. Naturally, the aim is to
ensure that the only pairs that will pass the vali-
dation test are those consisting of a record and a
correctly computed time-stamp certificate for that
record.

In many situations, a time-stamp certificate for
a document will be more important as an attes-
tation to its integrity than it is in indicating the
precise time of its creation.

A particularly significant application of digital
time-stamping is to enable later verification of the
validity of a long-lived digital signature for a doc-
ument, as explained in Section “Long-lived digital
signatures”.

TECHNIQUES: Perhaps, the most straightfor-
ward solution to the time-stamping problem would
make use of a trusted server, as follows. Certi-
fication of a record would consist of sending a
copy of it to the server, which would save it as
a dated entry in a secure database, and return
a receipt which would serve as the time-stamp
certificate. One would validate this certificate by
querying the server. This is clearly an unsatisfac-
tory solution to the problem, except in special cir-
cumstances (e.g., when the owner of the database
is the only party that will ever need to verify
certificates).

The first step towards improving this naive so-
lution is to make use of a one-way hash function
(see also one-way function). In practice, every dig-
ital time-stamping scheme begins its certification
procedure by hashing the record which is its in-
put. Since it is infeasible to compute any other bit-
string input that produces the same hash value
output, the resulting hash value can serve as a
proxy for the record itself in all further processing;
the validation procedure includes a recomputation
of the record’s hash value.

In addition, the hash value is short, whatever
the length of the original record, and preserves
the confidentiality of the record.

The task now is to bind this hash value to a date
or time in a verifiable manner. This can be done in
two essentially different ways, leading to two dif-
ferent families of time-stamping algorithms, those
using digital signatures and those based entirely
on one-way hashing. We describe each of these in
turn.

Hash-and-Sign

One can achieve an improvement in the naive so-
lution above by replacing the transmission of a
copy of the record with the transmission of its hash
value. But this is still unsatisfactory in its contin-
ued reliance on the server’s securely maintaining
its database. One can avoid this burden by the use
of digital signatures.

In a hash-and-sign time-stamping scheme, the
hash value of the record to be certified is sent to a
trusted entity, a time-stamping server, which uses
a digital signature algorithm to sign a statement
that amounts to the claim that “I saw this hash
value at this time.” The resulting signature is the
time-stamp certificate for the record.

According to what is desired, the “trusted” time-
stamping server can be local or remote, imple-
mented in software or hardware, with greater or
lesser protection for its private signing key, and
with varying levels of precision and of reliability
for the time value it uses.

The procedure to validate a certificate consists
mainly of validating the digital signature; as with
any digital-signature system, this requires:
1. checking that the digital signature is correctly

computed, using the server’s public key; and
2. checking the validity of the key used in Step 1.
In the first step, the verifier checks the mathe-
matical correctness of the signature. In the second
step, however, the validity that is checked is not
mathematical but rather semantic, corresponding
to these questions: Do I trust that this public key
was deemed to be “valid” for time-stamping pur-
poses by this time-stamping server at this time?
If so, do I trust that the key is still valid now (at
the time of validation)? If it is no longer valid, ei-
ther because it was later compromised or revoked
or because its validity period has expired, do I
have an independent reason to believe that the
signature was computed at the time asserted? The
procedures sketched in Section “Long-lived Digital
Signatures” provide two examples of ways to sup-
ply such an independent reason.

In general, the meaning of “validity” here may
depend on several factors, including for example
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the design of the system, the management of
the time-stamping server, and the relationships
among the owner of the record whose time-
stamp certificate is in question, the verifier of
the time-stamp certificate, and the time-stamping
server. Especially, if the certificate is not a re-
cent one, determining validity may require ac-
cess to trustworthy archived data recording the
history of key-validity status in the system. This
point is further discussed in Section “Long-lived
digital signatures.” To be charitable, not many
currently deployed PKI systems (see public-key
infrastructure) make a serious effort to build this
component with an eye towards long-lasting se-
cure use of the system. In fact, some of them com-
pletely ignore it.

Linking

In a time-stamping scheme based on hash-
linking, the hash value of the record to be cer-
tified is combined—by means of further hash
computations—with other hash values, and the
resulting witness hash value is stored, along with
the time of storage, in a secure repository. A server
managing the repository returns a time-stamp cer-
tificate consisting of:
1. the time of storage;
2. a pointer to the location in the repository of the

witness; and
3. the list of hash values that can be used to com-

pute (or recompute) the witness hash value
from the hash value of the record.

(Optionally, the certificate may be digitally signed
by the repository server.) Validation of a record–
certificate pair consists of computing the hash
value of the record, computing a tentative value
for the witness hash, and comparing this with
the value stored in the repository. (If the certifi-
cate is accompanied by a digital signature, then

validation will also include a validation of the sig-
nature, as in a pure hash-and-sign scheme.)

This basic approach to “linking” of hash val-
ues can be executed in several ways. The simplest
method to describe would simply store a record’s
hash value directly in the repository.

To lessen the load on the repository, a time-
stamping server can compute a hash-linked chain
as follows: keep a running current summary hash
value vi , and with each new request compute a
new value vi+1 as the hash of the concatenation of
vi and the incoming request. At appropriate inter-
vals, the latest summary hash value is stored in
the repository as a witness value. The time-stamp
certificate for each time-stamp request in the in-
terval is the list of hash values needed to recom-
pute the witness value at the end of the chain.

In a more elaborate variation, certification
requests—i.e., hash values of records to be time-
stamped—are sent to a coordinating server. At
regular intervals the server builds a Merkle bi-
nary tree out of all the requests received during
the interval: the leaves are the requests, and each
internal node is the hash of the concatenation of
its two children [13]. The root of this tree is hashed
together with the previous interval’s witness hash
to produce the current witness hash. The linking
information that is returned in each requester’s
time-stamp certificate is the list of sibling hash
values along the path from the requester’s leaf
up to the witness hash (each one accompanied by
a bit—denoted below as R and L, respectively—
indicating whether it is the right or the left
sibling).

For example, Figure 1 illustrates this process for
an interval during which the requests y1, . . . , y8
were received. In this diagram, H12 is the hash
of the concatenation of y1 and y2, H14 is the hash
of the concatenation of H12 and H34, and simi-
larly for the other nodes, and Wi and Wi−1 are the

Wi−1 Wi

H18

H14 H58

H12 H34 H56 H78

y1 y2 y3 y4 y5 y6 y7 y8

Fig. 1. Linked Merkle trees
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respective witness hash values for the current and
the previous intervals. The time-stamp certificate
for the third request (the one containing hash
value y3), for example, is

[ti ; (y4, R), (H12, L), (H58, R), (Wi−1, L)],

where ti is the time associated with the current
round. If h denotes the one-way hash function
employed by the system (and “|” denotes string
concatenation), then one validates the claim that
this is a correct time-stamp certificate for a dig-
ital record d by computing, in turn, v3 = h(d),
y34 = h(v3 | y4), y14 = h(H12 | y34), y18 = h(y14 | H58),
and finally z = h(Wi−1 | y18), and then querying the
repository for the witness value Wi stored at the
location associated with the time ti ; the validation
is deemed to be correct exactly when z = Wi .

Variations of this procedure have been imple-
mented by [7,12] and by Surety, which has offered
it as a commercial service since 1995 [16].

The “secure” repository can be managed in a
number of different ways, according to the desired
reliability and longevity of the system. For exam-
ple, the repository could consist of one or more
hash values published in a widely distributed
newspaper. Surety backs up the sequence of in-
terval witness hash values in its repository by,
once a week, using that week’s sequence of wit-
ness hashes to compute, in turn, a weekly “super-
witness” hash value that is placed in a classified
advertisement in the U.S. national edition of the
Sunday New York Times [16].

Time-stamping based on hash-linking was first
proposed by [8–10], and later elaborated by [3,4,7]
and other researchers.

Accumulators. In the scheme just described, a
time-stamp request that is included in a Merkle
tree with n leaves results in a time-stamp certifi-
cate of length log2 n, and validating the certificate
requires log2 n hash computations. This certificate
can be regarded as a proof of membership in the
list of leaves whose “accumulated hash value” is
the root of the tree.

Benaloh and de Mare proposed the use of
a one-way accumulator, which is a hash func-
tion h with the additional property that it is
“quasi-commutative”: for all appropriate inputs
x, y1, y2, we have h(h(x, y1), y2) = h(h(x, y2), y1) [5].
By means of such a function, it is easy to give
proofs of membership of constant size, indepen-
dent of the length of the list.

Benaloh and de Mare constructed one-way
accumulators as follows. Given an RSA modulus
N (see RSA problem), they propose the function
hN(x, y) = xy mod N (which is considerably slower

to compute than more traditional one-way hash
functions, as long as N is reasonably large). In
this scheme, anyone knowing the factorization of
N can compute hash collisions at will, so it is only
applicable if one is willing to trust the party that
chooses N. There are techniques by which many
parties can jointly generate an RSA modulus
so that no party knows its factorization (see [6]
and later references), but these are unlikely to
be used for a widely deployed high-throughput
time-stamping system.

Nyberg has described a one-way accumulator
without a trapdoor (such as the factorization for
the RSA construction), but this construction is nei-
ther space- nor time-efficient [14].

Researchers have further investigated the prop-
erties of one-way accumulators, proposing a num-
ber of constructions (including [2,15]), but it is still
an open research problem to devise a one-way ac-
cumulator that is secure, efficient, and useable in
practice.

LONG-LIVED DIGITAL SIGNATURES: The dis-
cussion in Section “Hash-and-sign” of the two dis-
tinct steps for validating the digital signature that
constitutes the time-stamp certificate of a hash-
and-sign time-stamping scheme is of course com-
pletely generic, and applies as well to any digital
signature that is meant to be long-lived.

A secure system must allow the verifier of a dig-
ital signature s on a document d to ascertain that
the public key p used to check the correctness of
s was “valid” at the time when s was computed
for document d. Clearly, this requires in turn that
the verifier have the means to know when s was
computed; in other words, this requires the use of
a time-stamping scheme of some sort.

In a typical PKI ( public-key infrastructre),
the validity of a public key is checked by means
of a combination of public-key certificates (see
certificate), certificate revocation lists (CRLS),
and signed statements by trusted third parties
such as Online Certificate Status Protocol (OCSP)
servers. In a particular PKI, let V denote the data
(certificates, etc.) needed to validate the public
key used for signature s on document d. Here are
two different ways to integrate time-stamping
securely:
� The receiver of (d, s) assembles the key-

validating data V, requests a time-stamp certifi-
cate c for (d, s, V), and saves (d, s, V, c). A later
verifier needs to revalidate each of s, V, and c.

� The signer of d computes a time-stamp certifi-
cate c for (d, s) and saves (d, s, c). Later verifiers
of this triple must retrieve (from an appropriate
service) a trustworthy archived version of V,
and revalidate all the data.
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By time-stamping the concatenation (d, s),
and not just the signature s, one avoids the
possibility that the hash function used in the
computation of the signature may later be sub-
ject to devastating attack, making it possi-
ble to use s as a valid signature for another
document d ′ that collides with d (cf. Section
“Renewability”).

Naturally, other choices are possible for dividing
up the responsibilities. However it is done, secure
time-stamping is crucial.

RENEWABILITY: As computational resources in-
crease, and as researchers make advances in
cryptanalytic algorithms, the cryptographic secu-
rity of any time-stamping system may be called
into question. This raises the question [3]: can
time-stamp certificates be renewed?

Suppose that an implementation of a particular
time-stamping system is in place, and consider the
pair (d, c1), where c1 is a valid time-stamp certifi-
cate (in this implementation) for the digital docu-
ment d. Now suppose that some time later an im-
proved time-stamping system is implemented and
deployed—by replacing the hash function used in
the original system with a new hash function, or
even perhaps after the invention of a completely
new algorithm.

Is there any way to use the new time-stamping
system to buttress the guarantee of integrity sup-
plied by the certificate c1 in the face of potential
later attacks on the old system?

One could simply submit d as a request to the
new time-stamping system; but this would lose
the connection to the original time of certifica-
tion. Another possibility is to submit c1 as a re-
quest to the the new time-stamping system. But
that would be vulnerable to the later existence of
a devastating attack on the hash function used
in the computation of c1, as follows: If an adver-
sary could find another document d ′ that collides
with d under that hash function, then he could use
this renewal system to back-date d ′ to the original
time.

Suppose instead that the pair (d, c1) is time-
stamped by the new system, resulting in a new
certificate c2, and that some time after this is done
(i.e., at a definite later date), the original method is
compromised. The certificate c2 provides evidence
not only that the document d existed prior to the
time of the new certificate, but also that it existed
at the time stated in the original certificate, c1;
prior to the compromise of the old implementa-
tion, the only way to create a valid time-stamp
certificate was by legitimate means.

Observe that the supposition that the first
system will be compromised at a definite time

after the second system is launched is not an un-
reasonable one. Advances in cryptanalytic attacks
on hash functions typically proceed incrementally,
and well before a hash function is completely bro-
ken, fielded systems can swap in a new hash func-
tion.

STANDARDS: There are international standards
in place for time-stamp mechanisms and formats,
including those of the IETF for hash-and-sign
time-stamping [1], and those of the ISO for both
hash-and-sign and hash-linking [11].

Stuart Haber
Henri Massias
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TIMING ATTACK

INTRODUCTION: When the running time of a
cryptographic device is not constant, this time may
leak information about the secret parameters in-
volved, so that careful timing measurement and
analysis may allow to recover the system’s secret
key. This idea first appeared in the scientific liter-
ature in 1996 [7].

Targeting implementation specificities, timing
attacks belong to the side-channel attacks family,
of which they were one of the first representatives
(see also side-channel analysis).

TIME MEASUREMENT: To conduct the attack,
the adversary needs to collect a set (sample) of
messages, together with their processing time by
the cryptographic device. Running time might be
obtained by measuring the question-answer delay,
by monitoring the processor activity, etc.

One privileged target for timing attacks—as
well as other side-channel attacks—is that of
smart cards. A classical smart card (like defined by
the ISO 7816 standard) is not equipped by an in-
ternal clock, but has its clock ticks provided by the
terminal it is inserted in. Hence, a rogue terminal
makes it straightforward to obtain a very accurate
measurement of the running time.

TIMING ANALYSIS: Timing attacks use the
divide-and-conquer strategy. The secret key is re-
covered by parts, by predicting and verifying some
correlation between a partial key value and the ex-
pected running time.

For each part of the key, the attack goes as fol-
lows: First, depending on a guess for this partial
key’s value, define a criterion about the expected
running time. Then, check whether the actual run-
ning times match the criterion. If they do, conclude
the partial key guess was correct; if they do not,
conclude it was wrong and repeat with another
guess.

EXAMPLE: ATTACK AGAINST RSA WITH
MONTGOMERY MULTIPLICATION: Consider the
case of a private RSA exponentiation (see RSA
public key encryption) where modular multiplica-
tions are performed using the square and mul-
tiply (Algorithm 1; see also binary exponentia-
tion method) and Montgomery arithmetic. As can
be seen from function MonPro() in Montgomery
arithmetic, the Montgomery algorithm will be-
have differently depending on whether the tem-
porary value u is less (in which case u is returned)
or greater than n (in which case u − n is returned).
Depending on the input value, this algorithm will
have to perform an additional subtraction or not,
which will impact its running time.

ALGORITHM 1. Square and multiply algorithm
computing ge mod n

a ← g
for i = l − 2 down to 0 do

a ← a.a mod n
if ei = 1 then

a ← a. g mod n
end if

end for
return a

Therefore, a simple method to recover the first
bit of the secret key [3] is to assume it is equal
to 1 (partial guess), and, for each message in the
sample, to simulate the first multiplication by g.
The sample set is then divided in two subsets, de-
pending on whether that multiplication requires
an additional subtraction or not. The criterion is
“running time for the first subset is longer than for
the second”. Simple comparison between the av-
erage (actual) running times can then be used to
validate or invalidate the partial key guess. Once
the first secret bit is known, the process can be re-
peated against the second secret bit, without the
need for additional measurements.
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More powerful statistical tools greatly improve
the attack’s efficiency [8].

OTHER APPLICATIONS: Timing attacks were
applied against other asymmetric cryptosystems
(GPS [2], elliptic curve-based cryptosystems [6])
and symmetric cryptosystems (RC5 [5], Rijndael/
AES [8]), as well as against some internet
protocols (SSL-TLS [1]), although the latter’s ef-
ficiency quickly decreases when the number of re-
laying machines grow.

COUNTERMEASURES: Two types of countermea-
sures can be applied against timing attacks. The
first one consists in eliminating timing variations
whereas the second renders these variations use-
less for an attacker.

The only absolute way to prevent timing attacks
is to make the computation strictly constant time,
independent of the input. However, this would
imply a very severe performance drawback, es-
pecially for asymmetric cryptosystems, since this
constant time would be that of the slowest pos-
sible case (for RSA, for example, this would cor-
respond to an exponent equal to 111 . . . 1). Such
a countermeasure would therefore not be very
practical.

More efficient, although less generic, counter-
measures can be applied to defeat specific timing
attacks. For example, several countermeasures
against the aforementioned attack on RSA focus
on the additional subtraction in Montgomery mul-
tiplication [4,9].

Adding random delays to the algorithm in or-
der to hide time variations is an intuitive, but not
very efficient countermeasure, since it is equiva-
lent to adding white noise to a source. Such noise
can easily be filtered out for an increase in sample
size.

The second type of countermeasure consists in
hiding the internal state, so that the attacker can-
not simulate internal computations any more. For
example, Kocher [7] suggests the following blind-
ing strategy: before computing the modular ex-
ponentiation (see modular arithmetic), choose a
random pair—we refer the reader to this reference
for a way to generate such pairs at a reasonable
cost—(vi, vf) such that v−1

f = ve
i ; multiply the mes-

sage by vi (mod n) and multiply back the output
by vf (mod n) to obtain the searched result. These
countermeasures make internal computations im-
possible to simulate by the attacker, therefore pre-
venting exploitation of knowledge of the running
times. Although they are not guaranteed to elim-
inate all possible timing attacks, these counter-
measures are pretty efficient. In addition, blind-

ing techniques have also proven efficient against
other side-channel attacks.

François Koeune
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TOKEN

A token usually refers to a handheld device, used
in connection with two-factor authentication. The
token shares a key with a central server and pro-
vides user authentication and possibly message
authentication. The token may come with or with-
out a (restricted) pin pad (see Personal Identifi-
cation Number), and a display. Various protocols
may be deployed, time or counter dependent, or
based on a challenge–response approach.

Whichever the protocol, an input (challenge), is
provided to the key token either time or counter
based by the token itself, or through a user input
using the pin pad. A key dependent response is
then calculated by the token and displayed, which
is then keyed in by the user on the work sta-
tion or terminal connected to the central server,
where the response is verified using the same
key.

This notion is not to be to confused with a key
token which is often used to mean an encryption
using a key encryption key of a key and some ad-
ditional information related to the key.

Peter Landrock

TRAITOR TRACING

INTRODUCTION: Traitor tracing is a method for
providing personal decryption keys for users, such
that (1) there is a single encryption key corre-
sponding to all the decryption keys, and (2) any
(illegitimate) decryption key, even one that was
generated by a coalition of corrupt users (traitors),
identifies personal keys that were used to generate
it. The concept of traitor tracing was introduced by
Chor et al. [2].

Tracing the source of illegitimate keys is impor-
tant if these keys enable access to sensitive data.
The data can be encrypted to keep its confiden-
tiality but at some point it must be revealed in the
clear to the parties using it, who must therefore
have corresponding decryption keys. In some sce-
narios corrupt parties (the traitors), who have le-
gitimate access to decryption keys, wish to further
distribute the decrypted data to other users. In
many cases it is ineffective for the traitors to leak
the decrypted data, since the economics of scale
make it much more expensive for them, compared
to the legitimate distributor, to distribute this
data in a timely manner. This argument seems to
hold for example in cases such as the distribution
of encrypted pay-TV programs, access to online

databases, or distribution of content in encrypted
high-capacity media such as DVDs.

An alternative and cheaper approach for the
traitors is to further distribute the decryption keys
that enable the decryption of the encrypted con-
tent. (These decryption keys are typically secured
in tamper-resistant software or hardware, for ex-
ample in a smartcard, but such security measures
are often broken by dedicated hackers, for exam-
ple by using differential power analysis.) The de-
cryption keys are much shorter than the encrypted
data itself, and therefore it is much easier to dis-
tribute them. The purpose of traitor tracing is that
given an illegitimate key, for example, one found
in a pirate decoding device, it would be possible to
trace traitors whose keys were used to generate
this key. Note that a coalition of several traitors
might collude to generate an illegitimate key by
mixing information from the different personal
keys of the coalition members.

Traitor tracing is different from fingerprinting
or watermarking, whose goal is to trace illegiti-
mate copies of the content itself. These methods
have better functionality than tracing, since they
enable authorized parties to trace the source of
content even after its decryption. On the down
side, their overhead is much higher (especially
that of fingerprinting), and their security guaran-
tees are weaker (especially in the case of water-
marking).

Traitor tracing also provides different function-
ality than broadcast encryption. Tracing enables
the identification of the source of a piracy problem,
i.e., the parties whose keys are used to enable il-
legal usage of content. Broadcast encryption can
then be used to take measures against the piracy
by preventing further usage of these keys.

A different version of tracing, described below, is
dynamic traitor tracing. Given a real-time broad-
cast from a pirate who is illegitimately distribut-
ing content, dynamic traitor tracing enables the
identification of the source of the keys that are
used for generating the illegitimate broadcast.

TRACING SCHEMES: If different parties receive
the same decryption key then it would be impos-
sible to tell which of them leaked it. Each party
should therefore receive a personal key, different
from the key of any other party. A simple solution
is to provide each party with an independent per-
sonal key, encrypt each data block using a random
key, and then separately encrypt this key using
each of the different personal keys. The problem
with this approach is that its overhead is linear in
the number of users, i.e., given N users the sys-
tem needs to distribute N additional encrypted
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messages. Since N might be large (in the millions),
the overhead is undesirable.

Tracing schemes are usually designed to be se-
cure against coalitions that contain a limited num-
ber of traitors. Let us denote by k an upper bound
on the size of a coalition of traitors. Following
is a description of the basic tracing scheme sug-
gested by Chor, Fiat and Naor in [2], which is
secure against coalitions of up to k parties. (In
addition, [2] contains more efficient schemes. See
also [3] for a more detailed discussion.)
� Initialization: The system uses a table of l

rows and 2k2 columns. Each table entry con-
tains an independent key. Each user is mapped
to a random location in every row. The user’s
personal key contains the keys of the entries to
which the user is mapped, a total of l keys.

� Encryption: The data is encrypted using a ran-
dom key S. Then l random shares Sl, . . . , Sl
are generated, subject to the constraint that
Sl ⊕ · · · ⊕ Sl = S. Each share Si , for 1 ≤ i ≤ l, is
independently encrypted using every key in row
i, giving a total of 2lk2 encryptions for all the
shares.

� Decryption: Each user has a key from every
row i, enabling it to decrypt the share Si . The
user can then compute S = S1 ⊕ . . . ⊕ Sl , and de-
crypt the data.

� Tracing: The tracing procedure is given a pi-
rate decoder that was generated by a coalition
of at most k traitors. This decoder must contain
a key from every row. Assume, without loss of
generality, that it contains one key from every
row. Then at least one traitor contributed l/k
or more of the keys in the decoder. On the other
hand, the personal set of keys of each other user
is expected to intersect with only l/(2k2) keys
of the decoder. The tracing algorithm therefore
identifies the user whose personal set of keys
has the largest intersection with the set of keys
of the pirate decoder, and declares it to be a
traitor. Setting the number of rows to be l = k2

log N ensures that this user is a traitor with
high probability.
Two major measures of the overhead of a tracing

system are the size of the personal key of each
user (k2 log N keys in the scheme described above),
and the total communication overhead (2k4 log N
encryptions in this example). The overhead can
be substantially improved using more advanced
techniques, such as mapping users into smaller
subsets and running a different tracing scheme
for every subset.

A further significant improvement in the over-
head is achieved using threshold tracing [5]. The
difference between this method and basic tracing

schemes is that the latter can trace the source of
keys of any pirate decryption device which can
decrypt content with nonnegligible probability,
whereas threshold tracing is only effective against
pirate devices that succeed in the decryption with
probability greater than a given threshold t , (e.g.,
t = 90%). The use of threshold tracing is quite
appealing, however, since decryption devices that
cannot decrypt a substantial fraction of the con-
tent are not very attractive, and threshold tracing
is considerably more efficient than basic traitor
tracing.

The tracing operation is based on examining a
pirate decryption device. Conceptually, it is sim-
pler to imagine that we can apply reverse engi-
neering to the device, find out exactly which keys
it is using, and trace their source. In practice,
however, the reverse engineering operation might
be quite complex, and it is preferable to perform
black-box tracing, which is based on the function-
ality of the decryption device, rather than on ob-
taining its keys. Specifically, the tracing procedure
operates by sending specially crafted encrypted
messages to the decoder and examining how it de-
crypts them. The tracing schemes in [2, 3, 5] sup-
port black-box tracing.

Many tracing schemes are based on combina-
torial constructions, and there is considerable re-
search on designing codes supporting tracing (see,
e.g., [7]). There are also several schemes that sup-
port both tracing and broadcast encryption, en-
abling both the identification of traitors and the
disabling of their keys (see, e.g., [6]).

PUBLIC-KEY TRAITOR TRACING: The tracing
methods of [2] and their like are based on com-
binatorial or probabilistic constructions, and can
be used for either symmetric-key or public-key
encryption. Boneh and Franklin [1] introduced
an efficient public-key only tracing scheme which
is based on an algebraic (number theoretic) con-
struction. The security of this system is based
on the decisional Diffie–Hellman assumption. Its
overhead is linear in k, and does not depend on
the number of users N. Furthermore, tracing is de-
terministic, and ensures that all parties who con-
tributed their keys to the pirate devices are traced.
On the downside, the system does not support
full black-box tracing, except for some specific
cases.

The system operates by using a fixed base of 2k
field elements. Each user receives a private per-
sonal key which is a solution to the discrete log
problem of representing a known value relative
to the base. The paper shows that any useful pi-
rate key must be a convex combination of private
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keys. However, the private personal keys are de-
rived from a Reed–Solomon code (see cyclic codes)
in such a way that any 2k keys are linearly inde-
pendent. Therefore any convex combination of at
most k of them can be efficiently traced to the keys
that were used to generate it.

DYNAMIC TRAITOR TRACING: The tracing
schemes described above are only effective against
pirates that generate illegitimate decryption de-
vices. These schemes are not helpful against pi-
rates that rebroadcast content using a pirate
broadcasting system. Dynamic traitor tracing was
suggested by Fiat and Tassa [4]. It operates
against such pirates by examining their broad-
casts and dynamically changing the method used
to encrypt the content, until the keys used by the
pirates are identified. Dynamic tracing is differ-
ent than watermarking schemes since the latter
trace the source of leaking content by performing
a “post mortem” examination of a pirate copy, and
do not adaptively change the way the content is
encrypted.

Dynamic tracing is based on the “watermarking
assumption”, i.e. the ability to generate different
versions of the same content such that all versions
have the same functionality (e.g. look the same to
humans), while it is impossible for the receivers
of these versions to generate a new version that
hides its source and retains reasonable quality.

After a pirate rebroadcast of the content is iden-
tified, dynamic tracing generates different ver-
sions of the content on the fly. The tracing al-
gorithm compares the pirate broadcast to the
different versions, splits the set of legitimate re-
ceivers into subsets, and identifies a subset of
receivers that contains a traitor. Further splitting
is performed based on feedback learned from the
rebroadcast of the content, until the identity of
the traitor becomes known. Unlike static tracing,
there is no need to decide in advance on an up-
per bound to the number of colluding traitors. The
tracing process adapts to the number of traitors on
the fly. In addition tracing can be rerun until all
traitors are traced (whereas in the static case it is
only assured that one of the traitors is identified).

Benny Pinkas
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TRANSPORT LAYER
SECURITY (TLS)

The Transport Layer Security (TLS) standard de-
fines the successor of the prominent Internet se-
curity protocol SSL (see Secure Socket Layer). Al-
most all cryptographically protected World Wide
Web (WWW) communication relies on protocols of
the TLS/SSL suite, like for example e-commerce,
home banking or email services. The protocol is
supported by major browser products, such as
the current versions of Microsoft Internet Ex-
plorer, Netscape Navigator, Opera and the Mozilla
projects.

TLS secures client-server sessions through
strong cryptographic methods against eavesdrop-
ping (eavesdropper), tampering, and forgery. It
allows connections to be anonymous, server-only,
and mutually authenticated, and transfers the
application data confidentially and integrity pro-
tected.

The rough outline of the protocol is very similar
to SSLv3; therefore, the descriptions given in SSL
apply to TLS as well.

According to Rescorla Ref. [7], the technical dif-
ferences between SSLv3 and TLS are very small;
most important changes relate to the construc-
tion of message authentication codes (HMAC)
and the key expansion method. The new pseudo-
random function (PRF) transforms secret
data, contributed by the client side, and both
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participants’ random numbers into a raw key
block, which is subsequently broken up into
session keys. Although the overall design of the
HMAC and PRF algorithms were quite similar to
SSL, in detail the alterations made TLS largely
incompatible to SSL.

A number of cryptographic methods were de-
fined as mandatory for implementations, such
as the Diffie–Hellman key agreement (DH) and
authentication following the Digital Signature
Standard (DSS). The requirements for the block
cipher Triple DES (3DES) raised difficulties con-
cerning the US export regulations on crypto-
graphic software. Until January 2000, when these
restrictions were loosened, no standard compliant
TLS implementation could be exported legally.

The Internet Engineering Task Force (IETF) re-
leased TLS version 1.0 in 1999 as RFC2246 [9].
The current Internet-Draft is version 1.1 [10];
among other things, it addresses vulnerabilities
noted by Moeller [6], relating to padding ambigu-
ities and alert definitions of CBC cipher suites.

Several extensions to the core standard
have been specified. Chown complements cipher
suites for the Advanced Encryption Standard
(Rijndael/AES) [8]; Hollenbeck [3] assigns two
additional compression methods. Gupta, Blake-
Wilson, Moeller and Hawk specify key exchange
mechanisms based on Elliptic Curve Cryptogra-
phy, especially the (ephemeral) Elliptic Curve
Diffie–Hellman (ECDH) key agreement (elliptic
curve protocols for key agreement schemes) and
the Elliptic Curve Digital Signature Algorithm
(ECDSA, elliptic curve protocols for signatures)
Ref. [2].

The adaptation of TLS to other than X.509-
compliant public key infrastructures (PKIX) is
addressed by Mavroyanopoulos for OpenPGP
(see Pretty Good Privacy) [4] and by Medvinsky
and Hur for the symmetric key-based Kerberos
authentication system [5].

A general guideline for generic TLS extensions
is given by Blake-Wilson, Nystrom et al. [1]. Note
that some of the referenced articles are in IETF-
Internet-Draft status and subject to change.

Clemens Heinrich
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TRAPDOOR ONE-WAY
FUNCTION

A trapdoor one-way function is a one-way function
with an additional requirement. Informally, a one-
way function might be described as a function
for which evaluation in one direction is straight-
forward, while computation in the reverse direc-
tion is far more difficult. Such a function becomes
a trapdoor one-way function when we add the
requirement that computation in the reverse di-
rection becomes straightforward when some addi-
tional (trapdoor) information is revealed [3].

While there are alternative descriptions [2] we
might describe a trapdoor one-way function as a
function f with domain X and range (codomain)
Y where f (x) is ‘easy’ to compute for all x ∈ X but
for ‘virtually all’ elements y ∈ Y it is ‘computation-
ally infeasible’ to find an x such that f (x) = y. Yet,
given certain trapdoor information z, it is easy
to describe an ‘efficient’ function gz with domain
Y and range X such that gz(y) = x and f (x) = y.
Just as a bijective one-way function with identical
domain and range is a one-way permutation, a bi-
jective trapdoor one-way function with identical
domain and range is a trapdoor permutation (see
also substitutions and permutations).
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Paralleling the theoretical development of one-
way functions, trapdoor one-way functions were
introduced by Diffie and Hellman [1] and their
implications for the development of public-key
cryptography explored in that remarkable pa-
per. The full power of trapdoor one-way func-
tions was elegantly captured in the proposal for
public-key cryptography and the introduction of
digital signature schemes.

However, unlike the case of one-way functions,
no candidate trapdoor one-way function was pro-
posed by Diffie and Hellman in their original pa-
per [1]. Instead, arguably the most important pro-
posal for a trapdoor one-way function (in fact a
trapdoor one-way permutation) is due to Rivest,
Shamir, and Adleman and is known as RSA (see
RSA public key encryption) [5]. The difficulty of
integer factoring is vital to the security of RSA and
the trapdoor that allows the legitimate receiver
to decrypt an encrypted message effectively con-
sists of the factorization of some large number. The
knapsack problem [4] (see knapsack cryptosystem
provides an example of a candidate trapdoor one-
way function that was compromised by subse-
quent cryptanalysis.

The theoretical treatment of both one-way func-
tions and trapdoor one-way functions is extensive
[6], yet in practice there remain only a few prac-
tical and trusted proposals on which much of the
machinery for the electronic information revolu-
tion relies.

Matt Robshaw
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TRIPLE-DES

Since the introduction of the Data Encryption
Standard (DES) in the mid 1970s, cryptanalysts
have been increasingly concerned about the 56-bit
secret key used in the cipher and its vulnerabil-
ity to exhaustive key search. In 1977, Diffie and
Hellman [2] estimated the cost of a machine ca-
pable of recovering a 56-bit key within a day at
US$20 million. In 1993, Wiener provided a de-
tailed design for a machine which would reduce
the average search time to 3.5 hours [10]. The de-
sign consisted of 57,000 custom chips and had an
estimated cost of US$1 million. Half a decade later,
the Electronic Frontier Foundation (EFF) actually
built the first search machine. The US$250,000
machine was called “Deep Crack” [3] and ran
through the complete key space in nine days.

As it became clear that DES did not provide ad-
equate security because of its 56-bit secret key,
the cipher was gradually replaced by Triple-DES
(also known as TDEA). Triple-DES is a multiple
encryption scheme. The idea of triple encryption
was proposed by Diffie and Hellman, who noted
that double encryption schemes did not improve
the security much. Matyas and Merkle suggested
a variant on this scheme, which was included in
the ANSI X9.52 [1] standard, and replaced sin-
gle DES as FIPS approved symmetric algorithm
of choice in 1999 (FIPS 46-3 [7]). Triple-DES itself
is now being replaced in favor of the Advanced En-
cryption Standard (Rijndael/AES). The transition
is slow, however, and both encryption schemes are
expected to coexist for many years (see for example
NIST SP 800-67 [8]).

The Triple-DES encryption algorithm consists
of three applications of DES. The ANSI X9.52 vari-
ant is defined as

C = EK3 (DK2 (EK1 (P))) ,

where P and C are 64-bit plaintext and ciphertext
blocks, and EK(·) and DK(·) denote the DES en-
cryption and decryption functions. The standard
specifies three different ways of choosing the 56-
bit keys K1, K2, and K3:
� Keying Option 1: K1, K2, and K3 are indepen-

dent (168 secret bits);
� Keying Option 2: K1 and K2 are independent,

K3 = K1 (112 secret bits);
� Keying Option 3: K1 = K2 = K3 (56 secret

bits).
The last keying option is equivalent to a single
DES encryption and provides backward compati-
bility with older systems. Because of this conve-
nient feature, the E-D-E scheme described above
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is usually preferred over the E-E-E variant, which
consists of three consecutive encryptions.

Option 2 (two-key Triple-DES) effectively dou-
bles the number of key bits and triples the num-
ber of rounds of DES. Option 1 (three-key Triple-
DES) triples both. As a result, the algorithm is
strengthened both against cryptanalytical attacks
(linear and differential cryptanalysis) and against
exhaustive key search. Still, the security gain
obtained by doing multiple encryptions is not
as high as one might expect, mainly because of
meet-in-the-middle attacks. It is especially true
for double encryption schemes, but the technique
also applies to two-key and three-key Triple-DES.
However, none of the attacks pose an immediate
threat, as they currently require an impractical
amount of resources.

A first meet-in-the-middle attack on two-key
Triple-DES was proposed by Merkle and Hellman
[6]. Their attack takes 256 operations, but requires
256 chosen plaintexts (see chosen plaintest attack)
and a large amount of memory to store 256 64-
bit data blocks. The attack was later improved by
van Oorschot and Wiener [9], who demonstrated
that an adversary could recover the 112-bit key in
2120−t steps, if he is given 2t known plaintexts (see
known plaintext attack) and 2t blocks of storage.

The classical meet-in-the-middle attack applied
to three-key Triple-DES requires three known
plaintexts, 256 units of storage and in the order of
2112 operations. In [5], Lucks proposes an alterna-
tive attack, requiring the same amount of memory,
245 known plaintexts and 2108 analysis steps. Ad-
ditionally, Kelsey, Schneier, and Wagner [4] have
demonstrated that three-key Triple-DES is vul-
nerable to related key attacks.

Two-key and three-key Triple-DES have consid-
erably longer secret keys than single DES, but
they still operate on 64-bit data blocks. This im-
plies that the cipher starts leaking information
about the plaintext when more than 232 data
blocks are encrypted without changing the key (a
matching ciphertext attack as a consequence of the
birthday paradox). This limitation, together with
the fact that Triple-DES is rather slow, motivates
the switch to a 128-bit block cipher such as the
Advanced Encryption Standard.

Christophe De Cannière
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TROJAN HORSES,
COMPUTER VIRUSES
AND WORMS

A program which is different from the specified
(specs) one, is said to contain a Trojan horse. The
Trojan horse may be malicious. It is difficult to
decide whether a program is free of Trojan horses.

A Trojan horse that, when executed, can modify
other computer programs, e.g., by copying itself
(or a part of it) into these, is called a computer
virus. Protection mechanisms used against com-
puter viruses are to:
use digitally signed computer programs.

Provided these digitally signed programs were
developed in a secure and trusted environment,
then one can detect modifications to the digitally
signed program [3]. (For implementation issues
see [1].) If the environment was not trusted,
known computer viruses may be in the digitally
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signed program and remain undetected unless
virus scanners are used.

use virus scanners. To a known computer virus
corresponds a fingerprint (also known as a “sig-
nature” in the computer virus literature). Be-
fore running a program (e.g., at the start-up of
the computer) a virus scanner will check the
program for fingerprints of known computer
viruses. The disadvantage of this method is that
it cannot detect new computer viruses that dif-
fer enough from old ones.
Originally, a computer worm was a means of per-

forming distributed computation using segments
[4]. Today it is primarily used to indicate Trojan
Horses that spread, using network resources. A
hybrid may have characteristics of both a worm
as well as of a computer virus. A collection of sci-
entific texts on the topic can be found in e.g. [2].

Yvo Desmedt
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TRUNCATED
DIFFERENTIALS

The notion of a truncated differential was defined
by Knudsen in [2] and was applied to cryptanalyse
the cipher SAFER due to its word-oriented opera-
tions [3]. Truncated differentials are an extension
of the notion of differentials, used in differential
cryptanalysis. The main idea is to leave part of the
difference unspecified, thus clustering several dif-
ferentials together. This can be done by specifying
m-bit constraints on the whole block (where m is
smaller than the block size n), like: (A, −A, B, 2B),
where A, B can take any value as was done in [2];
or by fixing part of the data block to certain value
and allowing the rest to vary arbitrarily, like:
(0, ∗, 3, ∗, 255, ∗, ∗), where ∗ may take any value.

Such “wild-card” differentials were introduced in
the cryptanalysis of the hash-function Snefru [1].
Truncated differentials are a powerful tool against
ciphers with word-oriented structure, and play
an important role in extensions of differential
techniques such as impossible-differentials and
boomerang attacks. Truncated differentials are
often combined with a technique of packing data
into structures, which sometimes allow to exploit
truncated differentials even with probabilities
lower than 2−n. See also differential cryptanalysis.

Alex Biryukov
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TRUST MODELS

INTRODUCTION: Public-key infrastructure (PKI)
manages trust in electronic transactions. The
principal elements used for maintaining that trust
are the contents of the certificates and the secu-
rity safeguards in effect in the environments of the
various parties involved. These two elements are
derived by a risk management procedure from the
business purpose of the exchanges, as captured in
the certificate policy.

Before discussing trust management in PKI, a
definition of the word “trust” is required.

Reference [1] defines trust in the following way:
“Generally, an entity can be said to “trust” a

second entity when it (the first entity) makes the
assumption that the second entity will behave ex-
actly as the first entity expects.”

The first entity makes this assumption about
a relevant area of the second entity’s behaviour,
and so the trust between them is limited to that
specific area. In PKI the behaviour of interest is
related to the distribution and use of public keys
for electronic commerce. Different types of trust
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relationship are capable of conveying different
types of assurance between the parties. A trust
relationship based upon public-key cryptography
technology is intended to ensure the authenticity
of the second entity’s identifying descriptor and
the enforceability of commitments undertaken by
both entities.

TRUST RELATIONSHIPS: Trust is a well-
established concept, and there are many exam-
ples of conventional trust relationships, including
those between a bank and its account holders, be-
tween an employer and its employees, between a
government and its citizens, between the media
and its subscribers, between an industry associa-
tion and its members, and so on. These conven-
tional trust relationships also play an essential
role in establishing new trust relationships based
on public-key technology.

In the realm of public-key technology, a neces-
sary step towards establishing a trust relationship
is for the first entity to import a public key from
the second one and protect its integrity for stor-
age or communication to other entities. The entity
that imports the public key is known as the relying
party, because it intends to rely upon the public
key for protecting subsequent exchanges with the
key-holder (the entity from whom the key is im-
ported). Figure 1 illustrates a basic direct trust
relationship between a key-holder and a relying
party.

Any entity may act, simultaneously, as both a re-
lying party and a key-holder. But, for the sake of
simplicity, these two roles are separated through-
out this discussion.

In order to avoid confusion between the two
parties, the public key import operation must be
performed in a manner that preserves the key’s
authenticity and integrity (i.e., it must be received,
unmodified, from the correct key-holder) and its
“clarity” (i.e., the relying party’s understanding of
the approved uses for the public key must be the
same as the key-holder’s understanding). These
security properties can only be established by
means of an existing trust relationship capable of
conveying the necessary assurances. So, it appears
to be axiomatic that a trust relationship cannot be
“created” where there is no existing trust relation-
ship. Rather, existing trust relationships can only

relying
party key-holder

trusts

imports public
key from

Fig. 1. Direct trust relationship

key-holder
safeguards

evaluate risk

business
purpose

relying party
safeguards

residual risk

adjust
safeguards

finish

acceptable
risk

yes

no

Fig. 2. Safeguard selection

be “qualified” and “combined” to form trust rela-
tionships with new characteristics. This paper dis-
cusses ways of building trust relationships with
desirable characteristics including business con-
trols, based on public-key technology, and using
existing conventional trust relationships as their
starting point.

One way of building on an existing trust rela-
tionship, to form a new trust relationship based
on public-key techniques with integrity and clar-
ity, is to precede the import of a public key with
an exchange of a trusted authentication token for
the key-holder to the relying party. Following that
exchange, an automated transfer of the public key
and its qualifying information can be conducted
between the key-holder and the relying party. The
trustworthiness of that exchange depends upon
the information covered in the exchange of the au-
thentication token for the key-holder.

The authentication token may take the form of
a displayable string of characters (which the re-
lying party can conveniently read and enter at a
computer keyboard), or some pre-existing shared
secret information, which is linked with the public
key and qualifying information. Proper transfer of
the authentication token relies upon the existing
trust relationship. The authenticity and integrity
of the public key and its qualifying information
can then be protected by relying on this authenti-
cation token.

An essential component of the qualifying infor-
mation is an identifying descriptor for the key-
holder. The descriptor may be unique or shared,
or some combination thereof. Sometimes it is the
key-holder’s name, but this is not necessarily the
case. In many applications, the relying party’s end-
goal is to associate a privilege with the key-holder,
and it will use the public key to authenticate the



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 13, 2005 15:40

630 Trust models

key-holder merely as an initial step in controlling
the granting of that privilege. In other circum-
stances, the qualifying information may indicate
directly that the key-holder possesses the required
privilege. In self-service and inter-personal mes-
saging applications, the key-holder’s identifying
descriptor is commonly sufficient.

The property of clarity may be implemented by
the qualifying information in a number of differ-
ent ways. It may be partially and implicitly ex-
pressed in the type of the public key, because
for technical reasons not all public keys can be
used for all business purposes. It may be explic-
itly encoded in key-usage codes and it may be
included by reference in the form of certificate pol-
icy identifiers.

Risk

According to the X.509 definition of trust, the
risk that the key-holder might fail to behave as
expected naturally attaches to the relying party.
Some examples of the elements of risk in a public-
key-based trust relationship are the following:
� the identifying descriptors associated with a key

are incorrect or misleading;
� the public-key holder’s private key has been dis-

covered by another entity;
� the public-key holder’s implicit privilege has

been withdrawn recently;
� the public-key holder has a prevailing right not

to be bound by its signature in the way the re-
lying party expects;

� the public-key holder does not adequately pro-
tect the confidentiality of the sensitive informa-
tion with which it is entrusted;

� etc.
For dealings between individuals, where the

relying party has a close and long-standing re-
lationship with the community of key-holders,
this allocation of risk is appropriate, because the
relying party is able to evaluate its risk and decide
whether or not to accept it. But, in electronic-
commerce, the relying party may either be
unqualified to evaluate its risk or will evaluate it
and choose not to accept it. The following strate-
gies can be used to manage risk.
� Minimize: to minimize risk, the risk taker

attempts to reduce the probability of a loss-
causing event as much as practicable. To avoid a
loss-causing event, each party attempts to per-
form according to the other’s expectations.

� Avoid or contain consequences: if a fail-
ure of one party’s expectations occurs, the other
party tries to reduce the economically signifi-
cant consequences, as much as is practicable.
For example, disclosure of the key-holder’s pri-

relying
party subscriber

authority

truststrusts

Fig. 3. Trusted third party

vate key may breach an obligation to a relying
party, but if the key-holder informs the relying
party before the relying party suffers any harm,
then the damages due to the breach are only
nominal.

� Bear the residual risk: it is generally not pos-
sible or cost-effective to reduce the risk of a loss-
causing event to zero, so the residual risk must
be borne, usually by spreading it among a large
group of risk bearers, so that financially the risk
amounts to a fixed, budgetable expense rather
than the unpredictable possibility of a crippling
loss. This spreading can often happen over time,
so that the time value of money is involved, as
well as over geography, societies, etc.

Suitable safeguards are chosen according to the
intended business purpose of the key by means
of the risk management process, as shown in
Figure 3.

The safeguards applied by the relying party and
the key-holder are evaluated in the context of the
intended business purpose of the public key, and
if the residual risk is not acceptable, then adjust-
ments to the choice of safeguards must be made.

Independent of the question of selecting suit-
able safeguards, there is the question of “assur-
ance”. That is, if, when properly implemented, the
chosen safeguards reduce the risk to an accept-
able level for the intended business purpose, each
party requires assurance that the safeguards are
indeed properly implemented, both in its own en-
vironment and in those of the other parties.

In the majority of its dealings, the relying party
will be able to identify a suitable trusted third
party in the form of an appropriate traditional
source of trust to assist it in bearing its risk; suit-
able sources include, but are not limited to, an em-
ployer, bank, doctor, government, etc.

The Trusted Third Party

When reliance is placed on an authority, the key-
holder is commonly referred to as a subscriber,
because, sometimes, the key-holder elects to sub-
scribe to a service operated by the authority. As
we place greater and greater reliance in electronic
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commerce systems, the authority may be required
to accept a significant measure of risk from the
relying party. An authority with a close and
long-standing relationship with the subscriber
community will be better placed to mitigate risk
associated with registering and controlling the
behaviour of that community. In order to restrict
its risk acceptance to matters that are under its
direct control, the authority will have to redis-
tribute that portion of its risk that is associated
with other matters to the parties, such as the sub-
scriber and the relying party, who do have direct
control over them.

The involvement of a trusted third party, or “au-
thority”, is shown in Figure 3.

The relying party trusts the authority; the au-
thority trusts the subscriber; so, the relying party
trusts the subscriber.

In general, a single relying party may rely on
more than one primary source of trust for its
dealings in different aspects of its life. However,
for simplicity, this paper assumes a single “trust
anchor.”

Authentication and
Certification Authorities

Relying parties tend to redistribute risk to author-
ities, which are “close to”, or have a direct and
long-standing relationship with, the subscriber
community. The main reason for this is that prox-
imity facilitates familiarity, so people close at hand
have access to better information and evidence. In
economic terms, they can confirm the accuracy of
certified information more cheaply and easily than
remote persons, whose information is more likely
to be derivative, based on heuristic assumptions,
etc.

Such authorities may take one of two forms:
� An authentication authority has only con-

ventional trust relationships with the rely-
ing party and the subscriber, not a public-key
relationship. The public-key relationship exists
directly only between the relying party and the
subscriber.

� A certification authority has a public-key
relationship established between itself and the
relying party and between itself and the sub-
scriber as a precursor to the establishment of
the direct public-key relationship between the
relying party and the subscriber.
An authentication authority trust relation-

ship is comprised of the following elements:
(a) The subscriber provides an authentication to-

ken to the authentication authority.
(b) Upon successful registration, the authority

makes the authentication token, and applica-

ble qualifying information, available to the re-
lying party.

(c) A relying party can then obtain the sub-
scriber’s public key directly from the sub-
scriber and use the authentication token to
confirm its authenticity and suitability to its
business purpose.

A certification authority trust relationship is
comprised of the following elements:
(a) The subscriber’s public key is supplied to

the certification authority by an authentic
means.

(b) The authority’s public key is supplied to the
relying party by an authentic means.

(c) Subsequently, the subscriber’s public key and
qualifying information are supplied to the re-
lying party either directly from the author-
ity, or by some other communications path,
with its authenticity, integrity and clarity
protected by a digital signature applied by
the authority. The corresponding data struc-
ture is called a certificate and the most com-
mon means for implementing this scheme is
X.509 [1]. The certificate can be viewed as
the secure means by which the certification
authority communicates trust to the relying
party.

The main advantages of a certification authority
over an authentication authority are:
(a) Evidence of the role of the certification author-

ity appears in the sequence of certificates used
by the relying party to validate the subscriber’s
public key, whereas evidence of the role of the
authentication authority does not;

(b) Consequently, in the case of the certification
authority, the relying party identifies the basis
of its trust with the authority that introduced
it to the subscriber, rather than with the sub-
scriber itself, as is the case with the authenti-
cation authority;

(c) The certification authority can automatically
revoke the trust in the subscriber, whereas the
authentication authority cannot; and

(d) The mechanisms and protocols are defined for
the function of the certification authority, but
not for the function of the authentication au-
thority.

The main advantages of an authentication author-
ity over a certification authority are:
(a) The authentication authority does not have to

be implemented in an automated information
processing system, whereas the certification
authority does; and

(b) when using an authentication authority, the
certificate path contains one fewer certifi-
cate than it does when using a certification
authority.
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Fig. 4. Basic trust transformations

TRUST MODELS: Figure 4 illustrates the two
elementary trust transformations, based upon
the authentication authority and the certifica-
tion authority, introduced earlier. The light ar-
rows represent exchanges in a conventional trust
relationship. The dark arrows represent ex-
changes in a trust relationship derived from the
conventional trust relationship using the first ex-
change. The broken arrows represent certificates.

These transformations can be applied repeat-
edly to form more complex compound trust models.
Five such models of particular interest are shown
in Figure 5 to Figure 9. The characteristics of these
models are discussed further below.

Subscriber Registration Authority. The subscriber
registration authority model is shown in Figure 5.

This model results from applying transforma-
tion 2 and then transformation 1 to the subscriber
relationship. It is useful when the CA is remote
from the subscriber community. In this configu-
ration, the authentication authority is commonly
referred to as a subscriber registration authority.
Although there are two authorities, there is only
one certificate, and the involvement of the authen-
tication authority is invisible to the relying party.
� The relying party has as its trust anchor the

public key of its local CA.
� A subscriber certificate issued by the local CA,

signed with the private key that corresponds to
the public key that is the relying party’s trust
anchor, is the authentic means by which the

AA

R S

CA
subscriber
registration
authority

Fig. 5. Subscriber authentication authority

CA

R S

CA

Fig. 6. Direct cross-certification

local CA provides the subscriber’s public key to
the relying party to be trusted.

Direct Cross-certification. The direct cross-
certification model is shown in Figure 6.

This model results from applying transforma-
tion 2 twice to the relying party relationship.
Direct cross-certification is an applicable model
when authorities operated by separate organiza-
tional entities enter into a direct trust relation-
ship. In this case, there are two authorities and
two certificates, and the involvement of each au-
thority is visible to the relying party.
� The relying party has as its trust anchor the

public key of its local CA.
� The cross-certificate, issued by the local CA

to the remote CA and signed with the private
key corresponding to the public key that is the
relying party’s trust anchor, is the authentic
means by which the local CA provides the re-
mote CA’s public key to the relying party to be
trusted.

� The subscriber certificate issued by the remote
CA, signed with the private key correspond-
ing to the public key in the previous cross-
certificate, is the authentic means by which the
remote CA provides the relying party with the
subscriber’s public key to be trusted.

Two-tier Hierarchy. The two-tier hierarchy model
is shown in Figure 7.

This model results from applying transforma-
tion 1 to the relying party relationship shown
in Figure 6. In this case, the authentication au-
thority is more commonly referred to as a certifi-
cate list manager. The two-tier hierarchy is an

CA

R S

CA

AA

root CA subordinate CA

certificate list
manager

Fig. 7. Two-tier hierarchy
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applicable model when the certificate list man-
ager and the subordinate CA are operated by sep-
arate organizational entities and their trust re-
lationship is facilitated by a third entity, which
operates the root CA. There are three authori-
ties, but only two certificates and the involvement
of the authentication authority is not recorded
in the list of certificates, which, in conjunction
with the business transaction, form the complete
evidence.
� The certificate list manager is the means by

which the relying party establishes trust in the
public key of its local CA.

� A subordinate cross-certificate issued by the
root CA, signed by the private key correspond-
ing to the public key that is the relying party’s
trust anchor, is the authentic means by which
the root CA supplies the subordinate CA’s public
key to the relying party to be trusted.

� The subscriber certificate issued by the subordi-
nate CA, signed by the private key correspond-
ing to the public key certified in the subordinate
certificate, is the authentic means by which the
subordinate CA provides the subscriber’s public
key to the relying party to be trusted.

Bridge Certification Authority. The bridge certifi-
cation authority model is shown in Figure 8.

This model results from applying transforma-
tion 2 to the relying party relationship shown in
Figure 6. The bridge certification authority is an
applicable model when the two spoke certification
authorities are operated by separate organiza-
tional entities and their trust relationship is facil-
itated by a third entity, which operates the bridge
CA. There are three authorities and three certifi-
cates, so the role of each authority is recorded in
the list of certificates that form the evidence.
� The relying party has, as its trust anchor, the

public key of its local spoke CA.
� A cross-certificate issued by its local spoke CA,

signed with the private key corresponding to the
public key that is the relying party’s trust an-
chor, is the authentic means by which the local

CA
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CA
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spoke CA

Fig. 8. Bridge certification authority

spoke CA provides the relying party with the
bridge CA’s public key to be trusted.

� A cross-certificate issued by the bridge CA,
signed with the private key corresponding to
the public key in the cross-certificate issued by
the local spoke CA, is the authentic means by
which the bridge CA provides the relying party
with the remote spoke CA’s public key to be
trusted.

� The subscriber certificate issued by the remote
spoke CA, signed with the private key cor-
responding to the public key certified in the
cross-certificate issued by the bridge CA, is the
authentic means by which the remote spoke CA
provides the subscriber’s public key to the rely-
ing party to be trusted.

The bridge certification authority model is becom-
ing a popular model, especially in environments
where a large number of CAs need to cross-certify
with one another in order to facilitate trusted
transactions among the members of their respec-
tive subscriber and relying party communities. In
particular, this model is popular with national gov-
ernments where it enables the domain of trust
to be expanded beyond the domain of a single
government department or agency to the com-
plete national government. Each agency CA cross-
certifies bi-directionally with the central bridge
CA. This enables a simple certification path to
be built between parties within any agencies in
the complete bridge community through a single
common point of trust. Each agency need estab-
lish only a single cross-certification relationship,
that with the bridge, and they are immediately
capable of trusting certificates issued through-
out the bridged community. Without a bridge
CA, individual direct cross-certification relation-
ships would need to be established between every
pair of agencies/departments within that national
government. A bridge CA acts as an introducer
and facilitator of trust to the total environment,
while enabling each spoke in the model to retain
relative autonomy over their own domain.

Bridge Authentication Authority. The bridge au-
thentication authority model is shown in Figure 9.

This model results from applying transfor-
mation 1 to the relationship between the two
authorities shown in Figure 6. The bridge
authentication authority is an applicable model
when the two spoke certification authorities are
operated by separate organizational entities and
their trust relationship is facilitated by a third en-
tity, which operates the bridge authentication au-
thority. This model is useful when the third entity
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is not equipped to operate an automated informa-
tion system. There are three authorities, but only
two certificates. Therefore, the involvement of the
bridge authentication authority is not recorded in
the list of certificates that form the evidence.

The mechanism used by the relying party to es-
tablish trust in the subscriber’s key is identical to
that described for the bridge certification author-
ity model above.

Summary

The trust transformations described above may be
repeatedly applied to create even more elaborate
trust models. However, the five shown above are
the ones of most practical interest.

Different trust models are suited to different
business situations. But, no matter which trust
model is chosen, the relying party expectation is
that its trust requirements are satisfied by the
authority upon which it relies directly, and if that
authority makes private arrangements to redis-
tribute its risk to other authorities or subscribers,
then this in no way diminishes its obligation to
its relying parties. So, it must take whatever
measures are necessary to control the behaviour
of other authorities and subscribers whose keys it
has certified, directly or indirectly, so that its risk
remains under control.

In practical terms, the trust brand displayed to
the relying party will be that of the certification
authority upon which it relies directly. Where an
authentication authority is involved, its role is in-
visible to the relying party at the time of validating
the subscriber certificate. Although a significant
measure of risk may be accepted by an authenti-
cation authority, the relying party appears to rely
solely on the certification authority whose public
key it has imported directly.

TRUST MODEL BUSINESS CONTROLS: With
any of the trust models described above, the busi-
ness requirements reflected in the policies of the
authorities involved in the structure need to be

reflected and enforced within the trust model it-
self. X.509 [1] standardizes a set of tools that can
be used to impose technical business controls on
the trust models intended to reflect the business
requirements associated with risk as described
earlier. The standard tools include:
� Extensions in end-user (subscriber) certifi-

cates
� Extensions in cross-certificates
� Variable inputs to the path validation process.

The set of extensions used to reflect business
controls in certificates is both comprehensive and
flexible. The intent of this flexibility is to enable
each authority to reflect its specific business re-
quirements through an appropriate set of optional
extensions, thereby minimizing risk. The path
validation algorithm in X.509 specifies standard
inputs to the process as well as the rules for pro-
cessing each of the business control related cer-
tificate extensions. In addition to the inclusion
of business control extensions in certificates, the
ability to initialize values for some variables in
the standard path validation process enables fur-
ther refinement of the business controls on a per-
relying-party basis. If all relying parties in the lo-
cal domain have exactly the same set of business
requirements, these requirements can generally
be addressed solely through inclusion of appropri-
ate extensions in cross-certificates issued by the
local CA to remote CAs. If, however, different sub-
sets of the local relying party community have
different business requirements, then the busi-
ness controls imposed through extensions in cross-
certificates may need to be complemented with
relying-party-specific business controls through
the initialization of path validation variables for
those subsets. Note that business controls imposed
through this configuration technique cannot ex-
pand the acceptable set of remote certificates be-
yond that permitted by the business controls in the
cross-certificates. Configuration of relying party
path validation variables can only further restrict
the acceptable set of remote certificates.

Certificate Extensions

The set of standard extensions related to busi-
ness controls is outlined below. Many of these can
be flagged as either critical or noncritical to the
use of the certificate. If an extension is flagged
critical, then a relying party shall not trust the
certificate without understanding and processing
that extension. If an extension is flagged non-
critical then a relying party that does not under-
stand that extension is permitted to ignore that
extension in determining whether or not to trust
the certificate. In general, if business controls are
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included in certificates they should be flagged crit-
ical to ensure that the business requirements are
respected.

Certificate Policies Extension. In an end-user cer-
tificate this extension indicates the certificate poli-
cies under which this certificate can be used. In
a cross-certificate the extension indicates the set
of certificate policies for which this certificate can
be used in a certification path. The standard path
processing procedure defines the steps relying par-
ties must go through to determine whether, based
on policy, the certificate and path are acceptable.
Processing this extension is one of those steps.

Policy Mappings Extension. This extension can
only appear in cross-certificates. It enables trust
to be placed in remotely issued certificates that
have been issued under certificate policies that are
equivalent to local policies understood by the re-
lying party but which have different identifiers.
Mapping policies has the effect that a remote pol-
icy is considered equivalent to a local policy for
purposes of path processing.

Policy Constraints Extension. This extension can
only appear in cross-certificates. It enables a certi-
fication authority to ‘turn off ’ policy mappings that
may appear in other certificates in the path. For
purposes of path validation, the presence of this
extension in a cross-certificate indicates that any
path that would only be acceptable through map-
ping of policies as indicated in subsequent certifi-
cates is not an acceptable path. This extension can
also be used by a certification authority to require
to acceptable policy identifiers to be present in all
certificates in the path, for the path to be accept-
able.

Inhibit Any Policy Extension. X.509 defines a spe-
cific identifier that can be present in the certificate
policy’s extension to indicate that the certificate
can be used under any policy. This identifier be-
comes a ‘wild card’ in policy matching and is
considered a match to any other policy identi-
fier. This extension, which only appears in cross-
certificates, can be used by a certification author-
ity to prevent that special identifier from being an
acceptable policy match in the certification path.

Basic Constraints Extension. This extension can
be present in end-user certificates as well as in
cross-certificates. In an end-user certificate, its
sole purpose is to indicate that the subject is an
end-entity and not a certification authority. As

such this certificate can only be the final certifi-
cate in a certification path and not an interme-
diary certificate. When this extension appears in
a cross-certificate it serves two purposes. First it
identifies the subject as a certification authority
and therefore indicates that the certificate can be
used as an intermediary certificate in a certifica-
tion path. Second, it enables a certification author-
ity to impose a restriction on the number of sub-
sequent intermediary certificates that can appear
in a certification path that includes this certificate.
In terms of business controls, this enables an au-
thority to reflect, within the certificates, its policy
with respect to some of the boundaries of the re-
mote trusted environment.

Name Constraints Extension. This extension can
only appear in cross certificates. It enables a cer-
tification authority to impose further boundary
restrictions on the set of remote certificates that
can be trusted through this cross-certificate. Name
subtrees that are permitted and names that are
prohibited can both be specified.

Relying Party Configuration

The path processing procedure defined in X.509
defines the standard set of inputs to the process.
Many of these have predetermined initial val-
ues while some are configurable, with default val-
ues defined in the standard. These configurable
variables can be used to enhance the enforce-
ment of business controls for the relying party
community. Business controls deployed through
extensions in cross-certificates, while very useful,
necessarily must be generic enough to satisfy the
requirements of the whole community of local re-
lying parties. In many cases this is insufficient
as different sets of relying parties perform differ-
ent business functions and therefore have vary-
ing requirements in terms of business controls
used to determine which set of certificates are
acceptable for a given relying party set or even
a given application or specific transaction. For ex-
ample, assume that some relying parties in the lo-
cal community are working with a purchase order
system and that only certificate policy x is accept-
able for that application and those relying parties,
while other relying parties in the same community
may be exchanging emails with remote users and
that policy y is an acceptable policy for those rely-
ing parties. Cross-certificates issued by their local
certification authority to other remote authorities
would necessarily include both policy x and policy
y as acceptable for that cross-certification relation-
ship. In order to further restrict the specific trust
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placed by each distinct subset of the local relying
party community, additional business controls are
necessary. These further controls are realized by
configuring the initial values for the relevant in-
puts to the path processing procedure with distinct
values for each subset of the community.

Initial Policy Set. This variable, which defaults to
“any policy” is used to establish a different set of
acceptable policies for each distinct subset of the
relying party community. In the above example
relying parties that use the purchasing system
would have this variable initialized to the value
for policy x and the other relying parties would be
initialized to the value for policy y.

Explicit Policy Indicator. This variable is used to
configure some relying parties to only accept paths
where acceptable policies are included in every
certificate in the path, while other relying parties
can be configured to the default setting for this
variable, which does not require the policy to be
present in each certificate. This variable is partic-
ularly useful where the relying party community
has some instances where the policy is absolutely
required and others where it is not. In such an
environment, setting the “requires explicit policy”
extension in cross certificates is not an option as
it would require that all local relying parties only
accept paths where each and every certificate con-
tains an acceptable policy identifier.

Policy Mapping Inhibit Indicator. This variable is
particularly valuable where the local relying party
is divided with some for which policy mapping
is an acceptable feature and others where it is
not and must be inhibited. As with the previous
variable, this situation cannot be handled by set-
ting the policy constraints extension in cross cer-
tificates to inhibit policy mapping as this would
impact all relying parties and would force no
mappings to ever be acceptable to any local relying
party.

Inhibit Any Policy Indicator. As with the other
variables, the ability to configure this variable for
relying parties is particularly valuable where the
relying party community is heterogeneous, with
some instances where the special identifier for
“any policy” is an acceptable policy and others
where it is not. The relying parties can be config-
ured so that only the appropriate instances have
this identifier prohibited. As with the other vari-
ables, the related cross-certificate extension (in-
hibit any policy) is not suitable unless the com-

plete relying party community shares exactly the
same business requirement for this identifier.

Permitted and Excluded Subtrees. At present,
X.509 has a specific predetermined value for each
of these (empty set). The only way to restrict ac-
ceptance of remote certificates, based on names, is
through the name constraints extension in cross-
certificates. This has been identified as a short-
coming and work is underway at the time of this
writing to enhance [1] to allow initial values for
these two variables to be configurable as well.
Once this work is completed it would be possible
for subsets of relying parties to be configured to
accept remote certificates issued to users in differ-
ent naming subtrees. For example, this would en-
able relying parties in the marketing department
to be configured so that only their counterparts in
the remote organization’s marketing department
would be acceptable, while relying parties in the
local finance team could be configured to accept
certificates issued to their remote finance counter-
parts. As with the other variables, this is partic-
ularly valuable if the relying party community is
not completely homogenous with respect to their
requirements. Otherwise the name constraints ex-
tension in cross-certificates can satisfy the com-
mon requirements for the total relying party
community.

Combined Business Controls

Together, the set of certificate extensions and
the set of configurable path validation variables
provide a comprehensive toolkit for authorities to
enforce business controls on the trust that local
relying parties place in remotely issued certifi-
cates. Extensions placed in cross-certificates can
be thought of as enabling business controls. Al-
though they actually restrict the set of remote
certificates that will be trusted locally, their pur-
pose is to enable the complete set of local rely-
ing parties to place trust in the remote certifi-
cates that satisfy their business requirements and
as such these can be considered ‘enabling’ busi-
ness controls. The ability to configure subsets of
the local relying community with different val-
ues for the path processing variables enables au-
thorities to enforce business controls at a much
finer granularity and support the overall specific
business requirements of each subset of the lo-
cal relying party community. The business con-
trols established through this process have the
effect of further restricting the subset of remote
certificates than any relying party will trust
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beyond that which would be trusted if reliance was
placed solely on the business controls established
in the extensions in cross certificates. Therefore,
these controls can be considered ‘restricting’ busi-
ness controls.

SUMMARY: As illustrated in this paper there
are a variety of trust models that can be im-
plemented in Public Key Infrastructure. No sin-
gle trust model is the best for all environments.
Rather, the business environment, business re-
quirements for electronic commerce, and policies
related to minimizing risk determine the most ap-
propriate trust model for any particular environ-
ment. Regardless of the trust model deployed, the
trust established through the infrastructure must
reflect and satisfy the business requirements for
each of the parties involved in the electronic com-
merce transactions. Through a set of standard-
ized technical tools, PKI enables those business
requirements to be reflected in the certificates
themselves and enforced by standard path vali-
dation engines to ensure the security associated
with a transaction is in accordance with the rele-
vant security policies that govern the transactions
themselves.

Sharon Boeyen
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TRUSTED THIRD PARTY

A Trusted Third Party (TTP), sometimes referred
to as a Trusted Authority, is an entity within
a given community that is trusted by all en-
tities in that community to properly perform
a particular service. In some architectures, the
TTP must store and adequately protect long-term
secrets. The compromise of such secrets will im-
mediately render insecure all future communica-
tions in the network and may also render insecure
all past communications protected by using those
secrets; this situation will persist until new long-
term secrets can be established. In some archi-
tectures the TTP may have the ability to read
all messages. Typically, the service performed by
the TTP will enhance the security of other mes-
sages or transactions between entities in the com-

munity; example services include key generation,
entity authentication, time stamping, and nota-
rization.

Examples of TTPs in well-known architec-
tures include the Key Distribution Center (KDC)
in Kerberos, the Certification Authority (CA) in
a PKI (see Public Key Infrastructure), and the
Naming Authority (or name server) in an orga-
nizational environment.

Carlisle Adams
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TWIRL

TWIRL (The Weizmann Institute Relation Loca-
tor) is an electronic device designed to speed up
the sieving part of modern integer factoring al-
gorithms such as the Quadratic Sieve and the
Number Field Sieve. It was designed in 2003 by
Shamir and Tromer [3], and improves upon the op-
toelectronic TWINKLE device of Shamir [2]. See
also: factoring circuits.

The goal of sieving algorithms is to find all the
smooth numbers in an interval of candidate inte-
gers x, where a smooth number (see smoothness)
is x such that (almost) all prime divisors of x are
small primes belonging to a factor base. For exam-
ple, to factor 1024-bit composites TWIRL would
test about 1015 numbers against a factor base con-
sists of all primes smaller than about 1010, and re-
peat this about 108 times for different collections
of numbers.

The standard implementation of sieving algo-
rithms is to use computers with large amounts of
RAM and devote one memory location to each can-
didate x. For each prime p in the factor base, the
value log(p) is added to every pth memory loca-
tion. At the end of the algorithm the accumulated
value in each memory location is approximately
equal to the binary size of the smooth part of the
corresponding x, and thus the output consists of
the indices of all the memory locations whose val-
ues exceed a certain threshold.

The TWIRL device is based on three basic ideas.
The first, borrowed from TWINKLE, is exchanging
the roles of space and time. Instead of assigning a
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memory location to each candidate x and iterating
over the primes p in the factor base, TWIRL as-
signs a circuit element on a silicon wafer to each
prime p and, during the operation of the wafer, as-
signs a clock cycle to each candidate x. Each circuit
element emits a log(p) value in those clock cycles
that correspond to x which are divisible by p. These
emissions are summed using an addition pipeline,
and compared to a threshold.

The second idea is to speed up the operation
by “compressing time”, i.e., by handling thou-
sands of consecutive candidates x in every clock
cycle. Each prime p needs to be simultaneously
tested against many candidates at each clock
cycle, which necessitates means for scheduling,
routing, and congestion control for the emitted
log(p) values.

The third idea is to also “compress space”. In the
factor base, most p values are very large and thus
contribute log(p) very seldom. Hence, thousands
of primes can be bunched together and handled
by shared circuitry, in which each prime is rep-
resented very compactly in DRAM-type memory
which is inspected and updated cyclically by a sim-
ple dedicated processor.

The TWIRL and TWINKLE devices have at-
tracted considerable attention, but it is not known
whether any devices of this type have been
built so far, and if so, what was their actual
performance. Theoretical analysis indicates that
TWIRL-assisted factorization of 1024-bit numbers
can be done in 6 weeks on a device whose construc-
tion cost is about $10 M using 90 nm VLSI process
technology [1, 3]. For smaller key sizes, a single
TWIRL wafer (which would cost a few thousand
dollars) can factor a 768-bit composite within a
month, or a 512-bit composite in under 3 minutes.
However, in all these cases there would be a large
initial R&D investment (on the order of $20 M)
due to the use of a custom VLSI design.

Adi Shamir
Eran Tromer
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TWO-FACTOR
AUTHENTICATION

This term indicates user authentication where two
factors are involved in the process: something the
user knows (like a static password) and something
the user possesses, like a token or a mobile phone
used for one-time passwords.

Peter Landrock

TWOFISH

Twofish [4] is a 128-bit block cipher submit-
ted to the Advanced Encryption Standard
(Rijndael/AES) selection process by Bruce
Schneier et al. It was one of the five AES finalists
in 1999.

Twofish has a Feistel-type design and was in-
spired by the 64-bit block cipher Blowfish [3],
published in 1993. Twofish has 16 rounds and
accepts 128-bit, 192-bit, and 256-bit secret keys.
The 64-bit F-function used in the Feistel net-
work consists of two parallel 32-bit branches called
g-functions. Each of them contains a layer of four
key-dependent 8 × 8-bit S-boxes and a 4-byte lin-
ear transform based on a Maximum Distance Sep-
arable (MDS; see cyclic codes) code. The outputs
of both branches are combined using a Pseudo–
Hadamard Transform (PHT) and the result is
mixed with two 32-bit subkeys. Two additional
128-subkeys are XORed with the data before the
first and after the last round (this is called input
and output whitening).

The key schedule (see block cipher) of Twofish
has to provide 1280 bits of key material and 4
key-dependent S-boxes usedin the g-function. The
main component in the key schedule is a 32-bit
h-function, which is constructed by alternating
layers of fixed S-boxes and key additions, and
ends with an MDS-transform. The schedule can be
implemented in different ways and allows differ-
ent tradeoffs between setup time and throughput.

Today, the best attack on reduced-round Twofish
is the saturation attack by Lucks [1] (see
multiset attack). The attack breaks 8 rounds out of
16 and requires 2127 chosen plaintexts (i.e., half of
the codebook). Another interesting cryptanalytical
result is an observation by Mirza and Murphy [2]
concerning the key schedule.

Christophe De Cannière
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2k-ARY EXPONENTIATION

2k-ary exponentiation is an approach for exponen-
tiation in any group (or semigroup). It general-
izes binary exponentiation and is based on the
2k-ary representation of the exponent. The pos-
itive integer parameter k determines the mem-
ory usage and the expected running time of the
exponentiation algorithm. The case k = 1 of 2k-

ary exponentiation is the same as binary exponen-
tiation.

First we describe how the left-to-right 2k-ary
exponentiation method, for an arbitrary integer
k ≥ 1, computes ge where g is an element of the
group (or semigroup) and e is a positive integer
whose 2k-ary representation is

e =
l−1∑
i=0

ei2ki , ei ∈ {0, . . . , 2k − 1}.

We assume that l is chosen minimal; thus, el−1 �= 0.
First, the small powers for exponents 1 up to 2k −
1 are computed and stored; this can be done like
this:

G1 ← g
for d = 2to 2k − 1 do

Gd ← Gd−1 ◦ g

Second, the result ge is computed using this table
of small powers G1 = g, . . . , G2k−1 = g2k−1:

A ← Gel − 1
for i = l − 2 down to 0 do

for j = 1 to k do
A ← A◦ A

if ei �= 0 then
A ← A◦ Gei

return A
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Left-to-right 2k-ary exponentiation is due to
Brauer [1].

Like binary exponentiation, 2k-ary exponenti-
ation has a variant that performs right-to-left
exponentiation, i.e., that starts scanning e at the
least significant digit e0 rather than at the most
significant digit el−1. Whereas the left-to-right
method uses a fixed table of values G1, . . . , G2k−1,
the right-to-left method uses a dynamically modi-
fied array.

for d = 1 to 2k − 1 do
Bd ← identity element

A ← g

for i = 0 to l − 1 do
if ei �= 0 then

Bei , ← Bei , ◦A
if i < l − 1 then

for j = 1 to k do
A ← A◦ A

{Now ge = �2k−1
d=1 Bd

d ; this can be computed
as follows:}
for d = 2k − 1 downto2 do

Bd−1 ← Bd−1 ◦ Bd

B1 ← B1 ◦ Bd

return B1

The algorithm as written can be optimized so
that (at least) 2k − 1 applications of the group
operation are avoided: for each of the variables Bd ,
an assignment of the form Bei ← Bei ◦ Aor Bd−1 ←
Bd−1 ◦ Bd can be simplified to Bei ← A or Bd−1 ←
Bd , respectively, when the variable still contains
the identity element. (In the final loop, one more
application of the group operation can be saved
in the case that both Bd−1 and Bd still have their
initial value. Below, we disregard this possible ad-
ditional optimization for simplicity as in practice
it will rarely have an effect.) An array of 2k − 1
flags can be used to implement this optimization
(cf. the similar optimization in the pseudo-code for
the right-to-left binary exponentiation method).
Right-to-left 2k-ary exponentiation is due to Yao
[3]; the subalgorithm show above for computing∏2k−1

d=1 Bd
d is due to Knuth [2, answer to exercise

4.6.3-9].
The most significant 2k-ary digit el−1 is nonzero

for all exponents with a length from l(k − 1) + 1 to
lk bits. Assuming that all other bits are uniformly
and independently random, the expected number

of 2k-ary digits among e0, . . . , el−2 that will be non-

zero is (l − 1)
2k−1

2k . Thus, the left-to-right 2k-ary ex-
ponentiation method as shown above will perform
(l − 1)k squaring operations (A◦ A) and

2k − 2 + (l − 1)
2k − 1

2k

general group operations on average. The right-
to-left 2k-ary exponentiation method will also per-
form (l − 1)k squaring operations and on average

(l − 1)
2k − 1

2k
+ 1 + 2(2k − 2) − (2k − 1)

= 2k − 2 + (l − 1)
2k − 1

2k

general group operations (this tally includes
(l − 1)

2k−1

2k + 1 for the loop over i, 2(2k − 2) for the
loop over d, and a reduction of 2k − 1 achieved by
the optimization explained above, which affects
both loops).

In practice it is often the case that group op-
erations can be implemented such that comput-
ing a square A◦ A is faster than a general mul-
tiplication. For slightly improved speed in such
scenarios, both the algorithm for computing the
table of the Gi for the left-to-right method and
the algorithm for computing the product

∏2k−1
d=1 Bd

d
in the right-to-left method can be modified to use
2k−2 − 1 squarings instead of 2k−2 − 1 of the gen-
eral multiplications. (In the left-to-right method,
Gd can be computed as G2

d/2 instead of Gd−1 ◦ g
whenever d is even. An according modification for
the right-to-left method follows from the duality
between left-to-right and right-to-left exponentia-
tion; see right-to-left exponentiation).

2k-ary exponentiation is convenient in that the
2k-ary representation of the exponent e can be eas-
ily obtained from its binary representation. How-
ever, a different generalization of binary exponen-
tiation can further reduce the expected number of
group operations needed for each exponentiation;
see sliding window exponentiation.

Bodo Möller
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U
UNDENIABLE
SIGNATURES
Undeniable signatures are digital signatures that
can be verified only by some help from the
signer. These were introduced by Chaum and van
Antwerpen [2]. Unlike an ordinary digital sig-
nature that can be verified by anyone who has
accessed the public verifying key of the signer
(universal verifiability), an undeniable signature
can only be verified by engaging in a—usually
interactive—protocol with the signer. The outcome
of the protocol is an affirming or rejecting asser-
tion telling the verifier whether the undeniable
signature has originated from the alleged signer
or not. The verifier cannot enforce a clarification
about a signature’s validity because a signer can
always refuse to cooperate, but nonrepudiation is
still guaranteed since a signer cannot convince a
verifier that a correct signature is invalid or that
an incorrect signature is valid.

Undeniable signatures are useful for signers of
nonpublic sensitive information who seek to keep
control over who can verify their signatures. For
example, a company producing software for safety
critical systems could deliver its executables with
undeniable signatures. This would allow regis-
tered customers to verify the origin of the software,
while software pirates could not do so. In case a
significant bug is discovered later in the software,
a registered customer could hold the software com-
pany liable for the bug and perhaps for its conse-
quences.

An undeniable signature scheme has three op-
erations: one for generating pairs of a private sign-
ing key and a public verifying key (see also public
key cryptography), one for signing messages, and
a confirming operation for proving signatures
valid (confirmation) or invalid (disavowal). The
confirming operation must have two defined out-
puts to signal confirmation or disavowal in order to
distinguish three possible cases: (a) the signature
in question is valid (operation returns “confirm”),
(b) the signature in question is invalid (operation
returns “disavow”), and (c) the alleged signer is
not willing or not available to cooperate and let
the verifier find out whether (a) or (b) holds (op-
eration fails). This latter problem is addressed by
designated confirmer signatures.

The characteristic security requirements of an
undeniable signature scheme are:
� Unforgeability: Resistance against existential

forgery under adaptive chosen message attacks
by a computationally restricted attacker.

� Invisibility: A cheating verifier, given a
signer’s public verifying key, a message, and an
undeniable signature, cannot decide with non-
negligible probability better than a pure guess
whether the signature is valid for the message
with respect to the signer’s verifying key or
not.

� Soundness: A cheating signer cannot misuse
the confirming operation in order to prove a
valid signature invalid (nonrepudiation), or an
invalid signature valid (false claim of origin).

� Nontransferability: A cheating verifier ob-
tains no information from the confirming oper-
ation that allows him to convince a third party
that the alleged signature is valid or invalid,
regardless of if the signature is in fact valid or
not.

The property of nontransferability was intended
by the original work of Chaum and van Antwerpen
[2], but Jakobsson [7] showed that their par-
ticular undeniable signature construction cannot
achieve nontransferability against mutually dis-
trusting but interacting verifiers. Jakobsson et al.
[8] proposed undeniable signature constructions
that satisfy non-transferability as well.

Constructions of undeniable signatures have
been based on groups, in which the discrete loga-
rithm problem is hard [2, 4, 9] and on the problem
of factoring integers [5].

Undeniable signature schemes can be equipped
with additional features: the confirming oper-
ation can be noninteractive according to [8].
Pedersen [10] suggested distribution of the power
of confirming signatures over a set of delegates
in order to increase the availability of individ-
ual signers. Harn and Yang [6] proposed the con-
cept of undeniable threshold signatures, where
certain subsets (coalitions) of signers are autho-
rized to produce signatures on behalf of a whole
set of signers. Efficient and secure constructions
were proposed by Michels and Stadler [9]. Chaum
et al. proposed convertible undeniable fail-stop
signatures [3], where signers can convert their
undeniable signatures into fail-stop signatures.
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Sakurai and Yamane [11] have proposed undeni-
able blind signatures.

CONVERTIBLE UNDENIABLE SIGNATURES:
Convertible undeniable signatures [1] are an
interesting extension to undeniable signatures.
In a convertible undeniable signature scheme, a
signer can convert each individual undeniable sig-
nature into an ordinary digital signature that is
universally verifiable. Upon request by a veri-
fier, the signer provides an individual receipt for
a requested undeniable signature to the verifier.
Henceforth, the verifier can unlock the respective
undeniable signature and forward it together with
the receipt to any third party, who can now verify
the signature against the signer’s public verify-
ing key. Moreover, the signer can provide a uni-
versal receipt that instantly allows a recipient to
universally verify all signatures of the respective
signer. In effect, convertible undeniable signature
schemes support signers in gradually increasing
the verifiability of their signatures in a controlled
fashion.

Let us reconsider the software company men-
tioned in the introduction and imagine it is go-
ing bankrupt. It may still have contractual lia-
bilities to support its customers in verifying their
software for a number of years. However, this ser-
vice may be too costly and there may even be no
need any more to further control who is verifying
which software packages. In this case, the com-
pany could release a universal receipt on their Web
page, which would henceforth allow anyone to ver-
ify the signatures of its software packages at any
time.

A convertible undeniable signature scheme has
the same three operations as an undeniable sig-
nature scheme and the following three additional
operations:
� An individual conversion operation, which

takes as input a message, an undeniable sig-
nature, a signer’s private signing key, and re-
turns an ordinary, i.e., universally verifiable sig-
nature.

� A universal conversion operation, which
takes as input a signer’s private signing key
and returns a universal receipt that allows to
convert all undeniable signatures valid with re-
spect to the signer’s public verifying key into
ordinary, i.e., universally verifiable signatures.

� A universal verifying operation, which
takes as input a message, a converted undeni-
able signature, and a signer’s public verifying
key and returns whether the signature is valid
or not with respect to the alleged signer’s public
verifying key.

The characteristic security requirements of a
convertible undeniable signature scheme include
those of an undeniable signature scheme and ad-
ditional security requirements guaranteeing that
valid (invalid) signatures can only be converted
into valid (invalid) signatures, etc. These addi-
tional security requirements have not yet been for-
malized in the open literature.
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UNIVERSAL ONE-WAY
HASH FUNCTIONS

A Universal One-Way Hash Function (UOWHF)
is a class of hash functions indexed by a public pa-
rameter (called a key), for which finding a second
preimage is hard. The main idea is that first the
challenge input is selected, and subsequently the
function instance (or parameter) is chosen. Only
then should the opponent try to find a second input
with the same output as the challenge. A UOWHF
is a weaker notion than a collision resistant hash
function (CRHF). In a CRHF, the opponent is first
given the key and then he has to produce two col-
liding inputs. Finding collisions for a fixed param-
eter of a UOWHF may be rather easy, but this will
not help the opponent to violate the security re-
quirement, as the instance is chosen after the chal-
lenge. This also implies that the birthday paradox
does not apply to a UOWHF and a hash result
of 80 bits may offer adequate security (in 2004).
Simon [8] has shown that there exists an ora-
cle relative to which a UOWHF exists, but no
CRHF.

The concept of UOWHF has been introduced by
Naor and Yung [5]. Bellare and Rogaway [1] pro-
pose the alternative name Target Collision Resis-
tant (TCR) hash function. Alternative definitions
and generalizations were introduced by Zheng
et al. [9] and Mironov [4].

UOWHFs can replace CRHFs in the construc-
tion of efficient digital signature schemes: in this
case the signer needs to pick first the message m
and then the key K and sign the pair (K, hK(m)).
Note that this has the disadvantage that a cheat-
ing signer could reverse the order: first choose K,
then find a collision (m, m′), and later on claim

that he has signed m′ rather than m. It depends
on the context whether or not this is a problem.
However, this situation can be avoided by employ-
ing a CRHF.

Naor and Yung construct a UOWHF based on a
strongly universal hash function and a one-way
permutation [5]. Rompel [6] describes an inter-
esting scheme to turn any one-way function in
a UOWHF, which shows that one-way functions
imply digital signature schemes. Impagliazzo and
Naor present a construction based on the subset
sum problem [2] (see also knapsack cryptographic
schemes). None of these constructions is very
efficient.

Naor and Yung [5] describe a composition con-
struction. Several papers have studied the prob-
lem of constructing an efficient UOWHF based on
a fixed size UOWHF which compresses n bits to m
bits (with n > m). Bellare and Rogaway show that
the Merkle–Damgård construction, which is used
for CRHFs (see hash functions), does not work [1].
They present a linear construction, that is sequen-
tial, and a tree construction, that allows for a par-
allel implementation. The linear construction has
been optimized by Shoup [7]: his scheme requires
2t invocations of the fixed size UOWHF and a
key of t m-bit strings to hash a message of length
2t (m − n) + m bits to m bits; this has been shown
to be optimal [4]. The tree construction has been
optimized by Lee et al. [3]; the best scheme allows
for a t-fold parallelism in exchange for a slightly
larger key (see [3] for a comparison of several
alternatives).
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UNLINKABILITY

Unlinkability of two events occurring during a pro-
cess under observation of an attacker is the prop-
erty that the two events appear to the attacker
after the process exactly as much related—or
unrelated—as they did before the process started
(see [1]).

In order to apply this notion to a particular
cryptographic scheme, the attacker model needs
to be specified further. For example, whether it
is a passive attacker such as an eavesdropper,
or an active attacker (see cryptanalysis for this
terminology). If passive, which communication
lines he can observe and when. If active, how he
can interact with the honest system participants
(e.g., oracle access) and thereby stimulate certain
behavior of the honest participants, or how many
honest participants he can control entirely (see
resilience in threshold signature), and whether
the attacker is computationally restricted or
computationally unrestricted (see computational
security). Based on a precise attacker model,
certain events occurring in a given cryptographic
scheme can then be defined as unlinkable.

An individual who interacts with other indi-
viduals or authorities may keep its interactions
unlinkable by using different pseudonyms in
different transactions. As Rao and Rohatgi [3]
showed, this may not be a sufficient measure to
achieve unlinkability, but it is usually a neces-
sary one. Anonymity, untraceability, and privacy
are all closely related to the notion of unlinkability.
In fact, many privacy oriented payment schemes,

credential schemes, electronic voting schemes, and
secure auction schemes are built around the no-
tion of unlinkability and employ transaction
pseudonyms (see [2]).
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UNTRACEABILITY

Untraceability of an object during a process under
observation of an attacker is the property that the
attacker cannot follow the trace of the object as it
moves from one participant or location to another.
A standard example is e-mail, which in certain
anonymizing networks cannot be observed by
attackers to flow from a sender to a recipient
through a sequence of network nodes (see [1]).
Another prominent example is an electronic coin,
which in certain privacy oriented electronic cash
schemes cannot be traced being spent from one
participant to another.
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USER AUTHENTICATION

User authentication is identical to entity authen-
tication except that the term “entity” is restricted
to denoting a human user (as opposed to a server,
a process, a device, a computer terminal, or any
other system entity). In practice, this restric-
tion typically limits the possible authentication
techniques to password-based schemes.

Carlisle Adams
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V
VERIFIABLE ENCRYPTION

Verifiable encryption is an encryption scheme
where one can prove some property of a message
m, while the message is given in an encrypted
form. When an encryption scheme is secure, the
encryption E(m) should reveal no information re-
garding m. But this property may not be suit-
able in cases where checking a property of the en-
crypted content is required before processing the
encrypted data. Verifiable encryption is useful in
such cases. An example of such a case is a key
escrow scheme. In key escrow schemes, a sender
wants to prove that a key given in an encrypted
form under the escrow agent’s public key is indeed
the right key to decrypt the encrypted message
that the sender is transmitting to the receiver. An-
other example is a group signature scheme where
the information to identify the signer is encrypted
under the public key of the trusted group authority
(also known as group manager) so that the author-
ity can trace the signer in a case of dispute.

Verifiable encryption is also used in the con-
text of electronic voting. In a yes–no voting, a
voter encrypts ‘1’ if voting for ‘yes’ and ‘−1’ if vot-
ing for ‘no’. Using homomorphic encryption (see
homomorphism), the addition of encryption yields
the encryption of the sum of these values. If the
sum is a positive number, it means the majority
was for yes-vote. However, it is important that a
vote is the encryption of either 1 or −1 and not 100
or 1000. Verifiable encryption can be used in this
purpose.

Verifiability is usually achieved by employing
a zero-knowledge protocol to prove possession of
knowledge regarding the property of the encrypted
message.
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VERIFIABLE SECRET
SHARING
A basic secret sharing scheme is defined to resist
passive attacks only, which means that its secu-
rity depends on the assumption that all parties
involved run the protocols as prescribed by the
scheme. After taking part in the distribution pro-
tocol, a non-qualified set of participants is not able
to deduce (part of) the secret from their shares.

In many applications, however, a secret shar-
ing scheme is also required to withstand active
attacks. This is accomplished by verifiable secret
sharing (VSS) schemes, as first introduced in 1985
[3]. Specifically, a VSS scheme is required to with-
stand the following two types of active attacks:
� a dealer sending inconsistent or incorrect

shares to some of the participants during the
distribution protocol, and

� participants submitting incorrect shares during
the reconstruction protocol.

Clearly, Shamir’s threshold scheme is not a VSS
scheme, since it does not exclude either of these
attacks.

A well-known example is Feldman’s VSS scheme
[4]. Informally, Feldman’s scheme runs as follows
for the case of (t, n)-threshold access structures,
1 ≤ t ≤ n. Let g denotes a generator of a cyclic
group G of order p (where p is a large prime
number, p > n). The distribution protocol and re-
construction protocol for dealer and participants
P1, . . . , Pn are defined as follows:
� Distribution. Let s ∈R Zp (see modular arith-

metic) denotes the secret to be distributed by the
dealer. The dealer chooses a random polynomial
in Zp[x] of the form

a(x) = s + α1x + · · · + αt−1x t−1,

subject to the condition that α0 = s. The dealer
sends share si = a(i) to participant Pi in private,
for i = 1, . . . , n. In addition, the dealer broad-
casts values Bj = g α j, 0 ≤ j < t . Upon receipt
of its share si , each participant verifies the va-
lidity of the share by evaluating the following
equation:

g si =
t−1∏
j=0

Bi j

j . (1)

� Reconstruction. Each share si contributed by
participant Pi is verified using Equation (1). The
secret s = a(0) is then recovered as in Shamir’s
threshold scheme, using t valid shares.
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Because of Equation (1), it is impossible for the
dealer to give out inconsistent shares (to hon-
est participants). The only way the dealer may
cheat is by sending incorrect shares to some par-
ticipants. Each participant receiving an incor-
rect share during the distribution protocol is sup-
posed to file a complaint against the dealer. If
the dealer receives t or more complaints, the dis-
tribution is said to fail. Otherwise, the dealer is
required to broadcast the correct shares si for
all participants Pi who filed a complaint. If the
decisional Diffie–Hellmann problem is hard for
group G, Feldman’s VSS scheme is secure against
cheating by the dealer and cheating by at most
t − 1 of the participants as long as 2(t − 1) < n.

Another well-known example is Pedersen’s VSS
scheme [10]. The schemes by Feldman and Peder-
sen are called non-interactive because the distri-
bution protocol does not require any interaction
between the dealer and participants, nor between
participants among each other, except for the filing
of complaints.

Publicly verifiable secret sharing (PVSS)
schemes, as introduced by Stadler [12], remove
the need for interaction entirely by ensuring
that anyone (not just the participants) is able to
verify the shares distributed by the dealer (see
also [5,11,13]).

Many examples of interactive VSS schemes can
be found in papers presenting protocols for secure
multiparty computation (see [1,2,8] and later pa-
pers). Typically, interactive VSS schemes rely on
the use of authentication tags, checking vectors, or
similar ideas. For instance, the VSS scheme of [1]
lets the dealer choose a random bivariate polyno-
mial p(x, y) of degree at most t − 1, such that s =
p(0, 0) for a secret s. The dealer sends each partic-
ipant Pi two univariate polynomials of degree at
most t − 1: ai(x) = p(x, i) and bi(y) = p(i, y). Each
participant is supposed to check that ai(i) = bi(i).
Furthermore, each pair of participants Pi and Pj
checks that ai( j) = bj (i). An interactive protocol
between the dealer and the participants is used to
determine whether distribution was successful or
not.

Apart from their use in secure multiparty com-
putation, VSS schemes are specifically used in
the construction of distributed key generation
(DKG) protocols, which are in turn a basic tool in
threshold cryptography. The object of a DKG pro-
tocol is to let a group of n parties jointly generate
a key, consisting of a private key and a public key,
such that the private key is shared among the n
parties (see, e.g., [6,7,9]).
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Verlag, Berlin, 287–299.

VERNAM CIPHER

This is an encryption operating on groups of 5-
bit words, by means of coordinate-wise addition
modulo 2 (see modular arithmetic). Normally, the
CCIT2-code is used. The key should be a com-
pletely random, one-time key (see key).

The Vernam table for Z32 = Z5
2 (Gilbert S.

Vernam, 1917) looks like:

0 a b c d e f g h i j k l m n o p q r s t u v w x y z 2 3 4 5 1
0 0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 2 3 4 5 1
A A 0 G F R 5 C B Q S 4 N Z 1 K 3 Y H D I W 2 X T V P L U O J E M
B B G 0 Q T O H A F 1 L P J S Y E K C W M D V U R 2 N 4 X 5 Z 3 I
C C F Q 0 U K A H G 4 S E M L 5 P O B 2 J V D T X W 3 1 R Y I N Z
D D R T U 0 4 2 W X K 5 I 3 Y S Z 1 V A N B C Q G H M O F L E J P
E E 5 O K 4 0 N 3 Y U R C W X F B Q P J 2 Z I 1 L M H T S G D A V
F F C H A 2 N 0 Q B J I 5 1 Z E Y 3 G U 4 X R W V T O M D P S K L
G G B A H W 3 Q 0 C M Z Y 4 I P 5 N F T 1 R X 2 D U K J V E L O S
H H Q F G X Y B C 0 L 1 3 I 4 O N 5 A V Z 2 W R U D E S T K M P J
I I S 1 4 K U J M L 0 F D H G R V T Z N A P E O Y 3 W Q 5 X C 2 B
J J 4 L S 5 R I Z 1 F 0 2 B Q U W X M E C 3 N Y O P V G K T A D H
K K N P E I C 5 Y 3 D 2 0 X W A Q B O S R 1 4 Z M L G V J H U F T
L L Z J M 3 W 1 4 I H B X 0 C V R 2 S O Q 5 Y N E K U A P D G T F
M M 1 S L Y X Z I 4 G Q W C 0 T 2 R J P B N 3 5 K E D F O U H V A
N N K Y 5 S F E P O R U A V T 0 H G 3 I D M J L 1 Z B X 4 Q 2 C W
O O 3 E P Z B Y 5 N V W Q R 2 H 0 C K L X 4 1 I J S F D M A T G U
P P Y K O 1 Q 3 N 5 T X B 2 R G C 0 E M W I Z 4 S J A U L F V H D
Q Q H C B V P G F A Z M O S J 3 K E 0 X L U T D 2 R 5 I W N 1 Y 4
R R D W 2 A J U T V N E S O P I L M X 0 K G F H B Q 1 3 C Z 5 4 Y
S S I M J N 2 4 1 Z A C R Q B D X W L K 0 Y 5 3 P O T H E V F U G
T T W D V B Z X R 2 P 3 1 5 N M 4 I U G Y 0 Q C A F S E H J O L K
U U 2 V D C I R X W E N 4 Y 3 J 1 Z T F 5 Q 0 B H G L P A M K S O
V V X U T Q 1 W 2 R O Y Z N 5 L I 4 D H 3 C B 0 F A J K G S P M E
W W T R X G L V D U Y O M E K 1 J S 2 B P A H F 0 C I 5 Q 4 3 Z N
X X V 2 W H M T U D 3 P L K E Z S J R Q O F G A C 0 4 N B I Y 1 5
Y Y P N 3 M H O K E W V G U D B F A 5 1 T S L J I 4 0 2 Z C X Q R
Z Z L 4 1 O T M J S Q G V A F X D U I 3 H E P K 5 N 2 0 Y R B W C
2 2 U X R F S D V T 5 K J P O 4 M L W C E H A G Q B Z Y 0 1 N I 3
3 3 O 5 Y L G P E K X T H D U Q A F N Z V J M S 4 I C R 1 0 W B 2
4 4 J Z I E D S L M C A U G H 2 T V 1 5 F O K P 3 Y X B N W 0 R Q
5 5 E 3 N J A K O P 2 D F T V C G H Y 4 U L S M Z 1 Q W I B R 0 X
1 1 M I Z P V L S J B H T F A W U D 4 Y G K O E N 5 R C 3 2 Q X 0

Friedrich L. Bauer
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VIGENÈRE ENCRYPTION

The Vigenère encryption is an encryption with
shifted standard alphabets. It makes use of a so-
called Vigenère table. For Z26 (“tabula recta” of
Trithemius, 1518), this table looks like:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

An encryption example with the keytext
“GOLD” of length 4 is given by:
plaintext m u c h h a v e i t r a v e l l e d
keytext G O L D G O L D G O L D G O L D G O
ciphertext S I N K N O G H O H C D B S W O K R

Friedrich L. Bauer
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VIRUS PROTECTION

Computer viruses are probably the most well-
known and widespread threat to computer secu-
rity. Some viruses such as Chernobyl, Melissa and

The Love Bug spread so rampantly that they be-
came common household names. Microsoft Win-
dows is the operating system most plagued with
viruses though viruses are not restricted to it.
Viruses can cause damage in many ways: they can
delete or corrupt data on the infected host; they
can use the infected host to mount attacks such as

Denial of Service on other hosts; and they cause
enormous wastage of computing resources. The
threat of a fast-spreading malicious virus bring-
ing down millions of computers in the matter of a
few minutes looms over us. Such a virus could cost
billions of dollars in losses and would be a disaster
for today’s computer-driven economy.

WHAT IS A VIRUS?: The first thing in a study
of viruses is obviously knowing exactly what one
is. Unfortunately, it is not easy to find a satisfac-
tory definition because of several reasons. Over the
years, the term virus has been overloaded with
many definitions. Often a virus is mistaken for a
Worm or a Trojan horse (see Trojan horses, com-
puter viruses and worms), and vice-versa. This is
sometimes unavoidable because a “good” virus
(one that spreads rapidly, avoids detection and
causes lot of damage) often has several character-
istics of a worm and Trojan horse too.
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Firstly, a virus is a computer program written
in a similar way as other normal programs. Infact,
anybody with even the most modest programming
knowledge can write one [1, 3, 6]. The most dis-
tinguishing property of a virus is that the virus
program copies itself to other programs or docu-
ments so that the virus code is executed whenever
the program is run or the document is opened. Pro-
grams to which the virus copies or attaches itself
are said to be infected with the virus. When the in-
fected program is run, the virus searches for other
uninfected files and tries to attach itself to them
too.

Malicious action of viruses includes but is not
restricted to deleting or zeroing the files, trash-
ing the BIOS, leaving backdoors, spying private
information, using the infected machine to mount
Denial of Service (DoS) attacks, etc. Even if the
virus does not perform any such destructive activ-
ity, it might impede the normal working of com-
puter systems by consuming too much CPU and
memory or causing too much network traffic.

Often, the virus’ malicious action is triggered
by a time bomb or logic bomb. These are pieces of
code that get activated when a certain date or time
is reached (time bomb) or when some given logic
condition becomes true (logic bomb). For example,
the famous CIH or Chernobyl virus was triggered
to destroy files on the infected machine on 26th
April, the date of the Chernobyl nuclear disaster.

INFECTION OF FILES: This section briefly de-
scribes how a virus infects a file. Traditionally,
most viruses have infected executables. This is be-
cause the goal of a virus is to run on the local host
and the obvious way to achieve this is by attaching
itself to an executable. Recently, a new category of
viruses, called macro-viruses, have surfaced that
attach themselves to document files and are able
to run whenever the document is opened. In this

section, the two types of viruses are discussed in
turn.

Traditional Executable Virus

The traditional virus targets executables and ei-
ther overwrites the entire file or attaches itself to
it so that the virus also runs whenever the ex-
ecutable is run. Viruses normally attach them-
selves in such a way that the virus runs first af-
ter which the program proceeds normally. This
strategy ensures that the virus runs even in cases
when the infected program crashes or runs forever.
It also makes detection hard since the program
seems to run normally to the user.

Attaching a virus to text-based executables such
as shell scripts is trivial—just put the virus code in
the beginning—but suffers from the obvious dis-
advantage of being easily detectable if anybody
happens to view the code. Since most executables
are binaries, attaching a virus to a binary exe-
cutable is more common. It is more complicated
but has the advantage that the virus is better hid-
den. A very general overview of how a virus at-
taches itself to a binary is given below.

All operating systems have a minimum unit of
hard disk access called block (it is often 512 or
1024 bytes). Files on the hard disk always occupy
an integer number of blocks, thus the last block
of a file is only partly used. For example, if the
block size is 512 bytes, and if a program needs
only 998 bytes, it would occupy 2 blocks on disk,
of which 998 bytes are the program itself and 26
bytes are unused. Viruses fit themselves within
the unused space and thus do not require any ad-
ditional blocks. Figure 1 gives a graphical picture
of how this is done. It shows the structure of a bi-
nary before and after a virus attaches itself to it.
The virus is able to modify the binary so as to fit
in the available unused space in such a manner

OS relevant
Information

Starting Address
Pointer

Actual Program Code

OS relevant
Information

Actual Program Code

Virus CodeFree Space

Fig. 1. How a virus attaches itself to a binary executable
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that when the binary is launched, the virus runs
first and then the program. The binary contains
a location called the starting address pointer that
points to the first instruction to be executed and
is required by the operating system to load the bi-
nary. The virus, after fitting itself into the unused
space, modifies the starting pointer to point to the
virus’ first instruction. At the end of the virus code,
a jump instruction sends control to the program’s
first instruction so that it is able to run normally.

Macro-virus

Some software packages allow their associated
data files to contain script like code that is exe-
cuted when the file is opened. Viruses exploit this
feature by attaching themselves to data files in
the form of a script. The Microsoft Office software
suite has been the most vulnerable to this type of
viruses. Programs such as Microsoft Word and Ex-
cel files can contain macros (VB Script code) that
is executed when the document is opened. The fact
that Word and Excel are widely used and the doc-
uments are often shared makes this a very attrac-
tive target for viruses.

VIRUS PROPAGATION AND INITIATION: The
previous section described how a virus infects a
file. This section discusses how it initiates the in-
fection. Infection requires two things: firstly, the
virus needs to reach the host (propagation) and
secondly, it needs to run on the host at least once
in order to initiate the infection (initiation).

Any communication medium used to transfer
data between computer systems can be used for
propagation. Since the widespread deployment of
computer networks, they have become the de facto
medium. More specifically, some of the common
ways viruses spread are:
1. Email. Email has been the most popular trans-

port for viruses in the last few years. Melissa
was the first virus to spread widely through
email. Since then, Happy 99, Worm.ExploreZip,
BubbleBoy, The Love Bug and many others
have used it. The Love Bug sent out emails from
the infected host to addresses in Microsoft Out-
look’s addressbook. The message had the sub-
ject “I Love You” and asked the recipient to open
the accompanying attachment that contained
the virus. People got pulled by the love message
into opening the attachment that let the virus
loose on their machine. BubbleBoy exploited
a feature in Microsoft Outlook that allowed
it to execute code on the local host when the
email was previewed. Another common feature

viruses exploit is that some operating systems
(such as Windows) decide what action to per-
form on a file (whether to execute it, open it with
Microsoft Word, etc.) based on just the file’s ex-
tension. Moreover, the extension is often hidden
from the user and the operation is performed
automatically without user intervention. The
combination of unsuspecting user actions, so-
cial engineering, software bugs/idiosyncrasies
along with email as the underlying transport
has been very successful for viruses.

2. Internet Downloads. A very common way to
get viruses on the desktop is by downloading in-
fected files from the Internet. When the infected
file is opened, it infects the local machine. This
strategy is often employed by virus writers to
launch their viruses by posting them on the In-
ternet in the guise of useful programs.

3. Floppies. Before networks became wide-
spread, floppies were the most common
medium through which viruses moved from one
machine to another. There are two ways in
which this is done. The first way is to use flop-
pies to move infected files between machines.
The second way is to infect a floppy’s boot sector
so that whenever the floppy is used in a machine
(for any purpose), the virus gets transferred to
the machine.

4. Infect Boot Sector. A common technique
viruses employ to ensure that they get activated
on an infected host is to install themselves in
the boot sector or partition sector of the host’s
disk drive. This activates the virus every time
the system boots up. These viruses are signifi-
cantly more difficult to remove with surety.

GUIDELINES TO PREVENT VIRUS INFECTION:
As described above, viruses depend hugely on un-
safe usage practices to spread fast. Curbing some
of these would greatly reduce the risk of virus in-
fection. Some guidelines for safe computer usage
from the perspective of virus prevention are as
follows:
1. Do not carelessly open executables or macro-

supported documents downloaded from the In-
ternet or received as email attachments. If
there is any way to verify the authenticity and
integrity of such files using digital signatures or
cryptographic checksums, it should be done. If
such techniques are not available, files should
be downloaded only from reputed websites or
checked with the sender of the email. Files
should be passed through an anti-virus soft-
ware before being executed or opened.

2. If possible, support for macros or similar script-
ing ability in documents should be disabled. In
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particular, macro support in Microsoft Office
software such as Microsoft Word and Microsoft
Excel should be turned off unless absolutely re-
quired.

3. Do not allow operating systems to hide file ex-
tensions from the user or make security critical
decisions (such as opening a file received as an
email attachment) on its own.

4. Be extremely careful when booting systems
from floppies. Floppies should not be carelessly
left in drives since many systems have their
BIOS configured to first try to boot from floppy.
If it is necessary to use a floppy to boot a sys-
tem, it should be thoroughly checked to be clean
of viruses. Boot from floppy option in the BIOS
should be disabled.

5. Most viruses are operating system specific.
Thus, having a heterogeneous computing envi-
ronment greatly helps in ensuring that not all
machines get infected or compromised at the
same time.

ANTI-VIRUS SOFTWARE: Anti-virus software
has become more and more important over the last
few years and has become a necessity on the more
vulnerable operating systems. Even though users
can adopt safe usage practices such as the ones
mentioned above, viruses still get through. Over
50,000 viruses were known in 2000 and new ones
get written everyday. Keeping track of all viruses
and protecting a Windows desktop against them
is not possible without anti-virus software. Unfor-
tunately, it is impossible to build software that is
always able to correctly determine whether a file is
virus-infected or not [3]. However, anti-virus soft-
ware is definitely a potent and effective weapon
against all known viruses and, to some extent,
against new viruses too.

Many anti-virus softwares are available today
in the market. The basic detection technique in-
volves matching patterns in files against a virus
“signature” database. A virus signature is a code
pattern that represents the virus and can identify
it. This technique is successful only against known
viruses whose signature is available. The most im-
portant thing with a virus signature database is to
continuously update it with new virus signatures.
It is safe to say that an anti-virus software is only
as good as its signature database. Therefore, anti-
virus software companies include update mecha-
nisms in their software.

To detect new viruses, some virus checkers em-
ploy heuristics. Heuristics can be put into two cat-
egories: static and dynamic. Static heuristics go
through a file, analyzing its structure and looking

for malicious patterns. They use this information
to decide whether the file contains a virus. Dy-
namic heuristics set up a controlled virtual envi-
ronment where the suspect program is run and
its behavior monitored. Based on the observations,
the heuristic determines whether or not the file is
infected. As both the static and dynamic schemes
are heuristics, they are not always correct. The
exact details of the scheme determine the trade-
offs between the false positive and false negative
rates as well as efficiency. In general, though static
schemes have the advantage of being fast whereas
dynamic schemes provide a lower false positive
rate. Dynamic schemes are often susceptible to
the logic and whims of viruses affecting their false
negative rate. Some other heuristics use crypto-
graphic checksums to detect viruses.

THE LATEST IN VIRUSES: Unfortunately for the
security community, viruses are getting sophisti-
cated and harder to detect. Polymorphic viruses
and encrypted viruses are two of the latest viruses
aimed at making detection harder. Polymorphic
viruses change themselves (i.e., change the code)
every now and then, allowing only a small detec-
tion window. Encrypted viruses encrypt the virus
code so that it does not match any regular pat-
terns. The encryption key can also be changed, and
this results in a polymorphic encrypted virus. Not
only are viruses getting harder to detect, but they
are also getting faster in spreading, some tech-
niques for which are discussed in [10].

WHERE TO LEARN MORE ABOUT VIRUSES:
Viruses are a vast area of study and involve lot of
low-level detail that cannot be included here. Some
of the earliest ground-laying academic work on
viruses is presented in [1,3,4,7]. Duff [6] presents
a simple virus on the UNIX operating system,
and helps in demystifying the process of writing
viruses. Most security books devote a chapter or a
few sections to viruses. In particular, [5] is a good
reference.

The CERT Coordination Center [2] is an excel-
lent reference for practical details about viruses.
It keeps an up to date list of viruses describing
their symptoms, operating systems affected, safe-
guards, etc.

Some good on-line sources for reference are
viruslist.com [12] and the websites of two major
anti-virus software providers: McAfee [8, 9] and
Symantec [11]. VXHavens [13] contains virus code
and material on how to write a virus.

Pavan Verma
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VISUAL SECRET SHARING
SCHEMES

Visual secret sharing schemes (VSSS, for short-
ness) were introduced in 1995 [1]. They form a
particular case of secret sharing schemes with the
additional restriction that allowed (also called
privileged or trusted in access structure) coalitions
can recover the secret by visual means.

More precisely, consider the case when just one
bit of visual information, i.e., a black or white
pixel, has to be distributed as a secret s among
n participants of VSSS. To realize this, the dealer
uses two sets B and W of binary (Boolean) n × m
matrices in the following way. To distribute a
“black” secret (s = 1), he randomly chooses a ma-
trix B = (bi, j) ∈ B and sends to the ith participant
a transparency consisting of m subpixels, where
the j th subpixel is black if bi, j = 1 and the jth sub-
pixel is white if bi, j = 0. For distributing s = 0, the
dealer does the same but with a randomly cho-
sen matrix W = (wi, j) ∈ W. An allowed coalition

recovers the secret by stacking their transparen-
cies (called shares) and setting s = 1 if the stack
is “sufficiently” black. The latter means calculat-
ing the number c of black subpixels in the stack,
i.e., the Hamming weight (see cyclic codes) of the
stack, and comparing it with some threshold.

Note that stacking transparencies is equivalent
to evaluating the OR of the corresponding Boolean
vectors bi = (bi,1, . . . , bi,m) or wi = (wi,1, . . . , wi,m).
For the most interesting case of a visual (n, k)
threshold scheme where any set of k or more par-
ticipants can recover the secret “visually” (see
Conditions 1 and 2 below), while any set of less
than k participants gains no additional, i.e., a pos-
teriori, information about the secret (see Condi-
tion 3 below) the formal definition is the follow-
ing [1].

Two collections B and W of n × m binary ma-
trices are called (n, k) VSSS if the following three
conditions are met:
1. For any B ∈ B, the OR of any k of the n rows of

B has Hamming weight of at least d1.
2. For any W ∈ W, the OR of any k of the n rows

of W has Hamming weight of at most d0.
3. For any subset {i1, . . . , il} ⊂ {1, . . . , n} with l <

k, the two collections obtained by restricting
each matrix in B and W to the rows i1, . . . , il are
indistinguishable in the sense that they contain
the same matrices with the same frequencies.
The value α = (d1 − d0)/m is called the contrast

of the VSSS. Two other important parameters of
VSSS are:
� m, the number of subpixels in a share, or length

of VSSS;
� r, the number of matrices in collectionsB andW.

Obviously the contrast should be sufficiently
large while keeping m and r as small as it pos-
sible. Construction of a VSSS turned out to be a
much more complicated problem than that of an
ordinary SSS, even for the case of threshold (n, k)-
schemes.

For the simplest case of an (n, n) threshold
scheme, the optimal visual version consists of all
2n−1! permutations of the columns of the n × 2n−1

matrix W, which columns of W are all binary vec-
tors x = (x1, . . . , xn) with

∑n
i=1 xi = 0 (mod 2) (in

words, W is the code book of the (n, n − 1) even-
weight code defined by a single overall parity-
check symbol), and also of all 2n−1! permutations of
columns of the matrix B, where, analogously, the
columns of B are all binary vectors y = (y1, . . . , yn)
such that

∑n
i=1 yi = 1 (mod 2). This scheme has pa-

rameters m = d1 = 2n−1 and α = 1/m, and is opti-
mal since in any visual (n, n)-scheme α ≤ 1/2n−1

and m ≥ 2n−1 [1].



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg April 11, 2005 21:33

Visual secret sharing schemes 653

For general visual threshold (n, k)-schemes,
various constructions were given in [1] yielding
α = 2−�(k), which were further improved in [2, 3].
Starting with [2, 4] the technique of linear pro-
gramming was applied to evaluate the maxi-
mal possible contrast of (n, k) visual threshold
schemes. This led [5] to the asymptotically an-
swer lim 4nα = 4 for fixed k and growing n (see [6]
for small values of k = 3, 4, 5). Generalizations of
VSSS to the colored case have been also consid-
ered, see [3].

Robert Blakley
Gregory Kabatiansky
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WATERMARKING

Watermarking is a method in computer security
by which identifiers of sources or copyright owners
of digital or analog signals are embedded into the
respective signals themselves in order to keep
track of where a signal comes from or who the copy-
right owners are. Thus, watermarking is for copy
protection of electronic content, predominantly,
digital content. The signal carrying the content
before a watermark is embedded is sometimes
called the cover-signal, and the piece of data
carrying the copyright ID (and other optional
information) is called the watermark. The term
“watermark” dates back to the 13th century when
paper makers used traditional watermarks to
differentiate their products from each other. Thus,
traditional watermarks serve as authentication
tags of print media, while electronic watermarks
serve as copyright tags of the content itself.

The demand for watermarking comes mainly
from the movie and music industry, which is trying
to limit the pirating of their digital audio, video
and artwork.

The characteristic security requirements on dig-
ital watermarking schemes, also called electronic
copyright marking schemes (ECMS), are as fol-
lows:
Unobstrusiveness: Watermarks should not de-

grade the quality of the cover-signal in a way
that annoys consumers when listening to or
watching the content. The watermark may still
be visible though, like, for example, the logo of
a TV station that is continuously visible in one
of the corners of the screen.

Robustness: Watermarks should be embedded
into the content, in such a way that any sig-
nal transform of reasonable strength cannot re-
move the watermark. Examples of transforma-
tions are digital-to-analog conversion, compres-
sion or decompression, or the addition of small
amounts of noise. Hence, pirates trying to re-
move a watermark will not succeed unless they
degrade the quality of the cover-signal so much
that the result is of little or no commercial in-
terest any more.

Note how watermarking is different from digital
steganography, which was originally introduced
as invisible communication by Gus Simmons [7].
In steganography, the sender hides a message

in a cover signal in order to conceal the exis-
tence of a message being transferred. The main
goal is imperceptability of the hidden message.
Unobstrusiveness and robustness are no primary
concerns in steganography. The cover signal may
be degraded to a certain extent and no precau-
tions are taken to avoid losing the hidden message
should the cover signal be manipulated. Water-
marking and steganography are different topics
in the area of information hiding.

Watermarking is also different from authentica-
tion and non-repudiation (see unforgeability). On
the one hand, robustness is a stronger require-
ment than unforgeability, because an attacker
against robustness is already successful if he de-
stroys or removes a watermark, whereas a forger
is only successful if he comes up with an authenti-
cation tag that verifies against the verification key
of an existing sender. In another sense, robustness
is a weaker requirement than nonrepudiation, be-
cause there are watermarking schemes where all
decoders use the same secret that is used to cre-
ate a watermark. Thus any decoder could be used
to pick up a watermark from some cover signal
A and embed it to another signal B, thus making
the impression that the copyright owner of signal
Aalso owns a copyright for signal B. There are wa-
termarking mechanisms, though, that depend not
only on the sender ID, but also on the cover-signal
itself, and thus can be used for authentication
purposes.

Important classes of digital watermarking
schemes are the following:
� Blind watermarking (sometimes called public

watermarking) means that a decoder can detect
a watermark without a need to look at the cover
signal. Only the sender’s secret key is required
in order to re-construct some random sequence
that the sender used to construct the watermark
in the first place. These types of schemes can
be used easily in mass market electronic equip-
ment or software. In some cases you may need
extra information to help your decoder (in par-
ticular to synchronise its random sequence on
the possibly distorted test signal).

� Non-blind watermarking (sometimes called pri-
vate watermarking) means that a decoder re-
quires the sender’s secret key and the original
cover signal in order to detect the watermark in
it.
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� Asymmetric watermarking (sometimes called
public-key watermarking) means that the
sender uses a private key to construct the water-
mark in a similar way as a digital signature is
created by using a private key, and any decoder
who has access to the corresponding public key
can detect and recognize the respective water-
mark (see also public key cryptography). The
public key would neither allow to reconstruct
the sender’s private key (under certain complex-
ity theoretic assumptions), nor to forge a water-
mark, nor to remove an embedded watermark.
No sufficiently robust and secure asymmetric
watermarking schemes are known [3].
Prominent examples of electronic copyright

marking schemes are the following:
DVD (Digital Video Disk later reissued as Digi-

tal Versatile Disk) [1]. This technique has been
cryptanalyzed by Petitcolas et al. in [5].

SDMI (Secure Digital Music Initiative) [6]. This
technique uses echo hiding, which was cryptan-
alyzed by Craver et al. [2].

A good introduction and papers about modern
watermarking techniques is collected by Katzen-
beisser and Petitcolas [4].

Gerrit Bleumer
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WEAK KEYS

The strength of the encryption function EK(P) may
differ significantly for different keys K. If for some
set WK of keys the encryption function is much
weaker than for the others, this set is called a
class of weak keys. The attack technique that suc-
ceeds against the keys in the class WK is called a
membership test for the class. For example, if the
test uses differential cryptanalysis, then it will be
called a differential membership test.

Suppose the key space has k bits, so that com-
plexity of exhaustive key search is 2k. Suppose
there exists a class of weak keys of size 2 f, with a
complexity of the membership test of 2w. If 2w < 2 f,
exploiting weak keys is more efficient than using
the exhaustive search. In other words if the choice
of the key of the cryptosystem is restricted to a
weak-key class, the attack succeeds if it is faster
than exhaustive search over this restricted key-
class.

The following attack model allows to compare
the conventional attacks and the attacks using
weak keys. Suppose the attacker is given an access
to the block box performing encryption/decryption
function. Suppose that the box has a key-reset
button,which causes the key to change inside
the box uniformly at random. We call the attack
successful if the attacker can recover at least
one of the keys of the box faster than exhaustive
search (or in a relaxed scenario, is able to dis-
tinguish a box with a cipher from a box with a
collection of random-permutations). The measure
of complexity of such an attack in a weak key
scenario is 2k− f+w. This can be compared directly
to the complexities of the conventional attacks, in
which the attacker will try to break a “fixed” key,
i.e., will not touch the key-reset button. The larger
the weak-key class the faster the membership
test—the better the attack would be. A typical
example of a cipher with large weak-key classes is
IDEA. For example, a class of 263 weak keys out of
total 2128 keys has been reported [2] for a full
8.5-round IDEA. The membership test has negli-
gible complexity given only 20 chosen plaintexts.
The measure of complexity in this case would be
2k− f+w ≈ 2128−63+4 = 269 steps to recover one of the
128-bit keys of the black-box containing the IDEA
cipher. An example of a cipher completely broken
by the weak key analysis is Lucifer [1]. In this
128-bit block cipher half of the keys can be
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discovered by a differential membership test
using 236 chosen plaintexts and analysis steps.
The attack complexity measure in this case is
2128−127+36 = 237. In the case of DES (see Data
Encryption Standard) there is a set of four keys for
which the cipher is an involution, i.e.,
DESk(DESk(m)) = m.

Alex Biryukov
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WEB SECURITY

INTRODUCTION: Millions of users use the World
Wide Web (web) everyday to obtain information,
make purchases, move money, etc. Virtually ev-
ery company uses the web to enhance its busi-
ness, whether by publishing information on the
company web site or by using the web site for
electronic commerce. The web enabled business-
to-consumer and business-to-business electronic
commerce. Everyday, people and businesses pub-
lish sensitive information on their web sites and
transfer sensitive data through the Internet to
web servers. All of those actions involve certain se-
curity risks, which affect users, web servers, and
networks that host web sites.

The risks are severe from the Webmaster’s per-
spective. A web server opens a window into your
local network that the entire Internet can peer
through. Most web users will only look at the infor-
mation that is provided to them and will not try to
access things they are not authorized to see. Unfor-
tunately, some users will try to circumvent access
controls and gain unauthorized access to confiden-
tial information. They may even try to break into
the host computer on which the web server is run-
ning and use it to gain access to other computers on
the organization’s local area network. The results
can range from the merely embarrassing (i.e., the
discovery one morning that your site’s home page
has been replaced by an obscene parody) to the
damaging (i.e., the theft of your entire database of
customer information).

The end-users aren’t without risk either. Active
content, such as ActiveX controls and Java ap-
plets, introduces the possibility that web browsing
will introduce viruses or other malicious software
into the user’s system.

Both end-users and web administrators need
to worry about the confidentiality of data trans-
mitted across the web. Confidential information
might be intercepted by an attacker when doc-
uments are transmitted from a web server to a
browser or when the end-user sends private in-
formation back to the web server inside a fill-out
form. To prevent information theft, it might be nec-
essary to encrypt data traveling between clients
and servers. The SSL and TLS protocols (see
Secure Socket Layer and Transport Layer Secu-
rity) were developed to enable secure transfer of
confidential information between web servers and
clients. These protocols encrypt the data so that
potential eavesdroppers on the Internet cannot
read the information.

Authentication is essential to most web appli-
cations. It is important for the clients to know
that they are sending personal information, such
as credit card numbers, to the right web site.
It is just as important for the server to authen-
ticate clients. Currently, servers use usernames
and passwords to authenticate clients. Clients, on
the other hand, use certificates to authenticate
servers. See authentication codes for more infor-
mation on different authentication schemes and
possible vulnerabilities.

SSL and TLS protect data in transit between
web clients and web servers. Steps must also be
taken to prevent theft of that data from servers or
clients themselves. The following sections describe
existing threats in web server and web client se-
curity and possible solutions.

WEB BROWSER SECURITY: From the beginning
of the web, developers have looked for ways to en-
hance static HTML pages and display dynamic
and more interactive content on web pages. Sun,
Netscape, and Microsoft have developed technolo-
gies to automatically download and run programs
on demand. Such programs are often called mobile
code.

Downloading and running unknown programs
on a user’s computer introduces serious security
risks. Many programs have bugs that may cause
the browser or even the computer to crash. Some
bugs can also be exploited to gain access to pri-
vate information on the computer. Other mobile
programs are malicious by design. They might
erase all of the information on your computer’s
disk, plant a virus, or scan your keyboard to obtain
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passwords, credit card numbers, etc. They might
also search for confidential information stored on
your computer and transmit it to some location on
the Internet. Some companies have also used mo-
bile code to learn the email addresses or browsing
history of unaware users.

This section describes different mobile code
technologies and related security risks, as well as
examples of security breaches due to flaws in mo-
bile code implementations.

MIME

Multipurpose Internet Mail Extensions (MIME)
[4, 5] is an Internet standard that specifies how
messages must be formatted so that they can
be exchanged between different email systems.
MIME is also used by web servers and browsers.
MIME is a very flexible format, permitting one to
include virtually any type of file or document in an
email message. Specifically, MIME messages can
contain text, images, audio, video, or other appli-
cation specific data.

MIME defines a number of header fields de-
scribing a message, including Content-Type. The
Content-Type field is used to specify the nature of
the data in the body of a MIME message. For ex-
ample, Content-Type: image/jpeg describes a jpeg
image file.

Mailers and browsers use MIME to determine
how to handle a particular message. In case of
image/jpeg file, an email program or a browser
can invoke a picture viewer to display the file.

MIME was designed to be flexible and extensi-
ble. It allows an “application” media type which is
used to describe data to be processed by some type
of external application. This could cause serious
security risks if the external application is not se-
cure or if the application is a language interpreter.
For example, application/PostScript indicates a
PostScript program. The PostScript language in-
cludes a number of dangerous features that make
it risky to invoke external PostScript interpreters
to process files obtained via email or downloaded
from the web. Some dangerous operations in the
language include “deletefile,” “renamefile,” etc.

Plug-ins

Plug-ins were developed to extend the functional-
ity of a browser. Often written by a third-party,
they usually add the capability to display a non-
standard media type in the browser window (ani-
mations, video clips, etc.).

Traditionally, plug-ins are manually down-
loaded by the web user. Modern browsers offer

Fig. 1. Security warning displayed by Internet Explorer
when trying to install a plug-in

to automatically download plug-ins for unknown
media types. Plug-ins must be installed using
a “setup” utility. During installation, a plug-in
registers itself with the browser. If the browser
downloads a file with a registered file type, the
plug-in is automatically loaded into the browser’s
memory and started. By default, browsers dis-
play a security warning when a plug-in is about
to be downloaded and installed (Figure 1). Mod-
ern web browsers allow users to turn off warnings
or to disable downloading of executable files alto-
gether. Plug-ins for Internet Explorer are usually
signed using Microsoft’s Authenticode technology.
The signature clearly states who created the plug-
in. A user can download the plug-in if he trusts
the plug-in maker. Downloading plug-ins made by
trustworthy organizations only can minimize the
risks described below. Section 2.4 describes the
Authenticode technology in more detail.

Plug-ins pose several risks to a user’s computer:
� The plug-in might be a malicious program. Such

program can do anything from stealing credit
card numbers from your disk to deleting impor-
tant files and dialing expensive phone numbers.

� The plug-in might be a legitimate plug-in,
but the downloaded copy might have been
modified by third parties. Such plug-in might
change your security settings, or even contain a
virus.

� The plug-in might contain a bug that can be ex-
ploited by someone who wants to steal informa-
tion or damage your computer.

� The plug-in might implement a programming
language that can be misused by an attacker.
To limit risk, one should only download widely

used plug-ins with no known security problems.
Plug-ins should be downloaded only from the orig-
inal source or another reliable web site to reduce
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the risk of getting a modified plug-in. It is also
important to keep track of updates to different
plug-ins and to install security patches as they be-
come available.

Java

Java is an object-oriented programming language
that was first designed at Sun Microsystems for
use in embedded devices such as television set-top
boxes. With the failure of interactive cable TV tri-
als, Java was repositioned as the language for the
World Wide Web. Java was designed to run inde-
pendently of the underlying hardware and oper-
ating system. Java programs can run on virtually
any platform. This cross-platform compatibility
makes Java an ideal candidate for mobile code pro-
grams.

In a typical Java implementation, Java pro-
grams are compiled into a processor-independent
bytecode. The bytecode is loaded into a computer’s
memory by the Java Class Loader. Finally, the
bytecode is executed on a Java virtual machine
(JVM).

The Java virtual machine can run Java pro-
grams directly on an operating system such as
Windows or Unix; alternately, the JVM can be em-
bedded inside a web browser, allowing programs
to be executed as they are downloaded from the
web. Java bytecode can be executed directly using
the interpreter, or the JVM can use a just-in-time
compiler to convert the bytecode into native ma-
chine code. Java can also be compiled directly into
machine code and run on a target machine. Com-
piling Java code for a particular architecture is
done for performance reasons but compiled code
looses its portability.

Java was designed to be a safe programming
language, which increases reliability of programs
written in it. The main way that Java achieves
this reliability is by providing automatic memory
management mechanisms.

Java has a built-in garbage collection system.
Programmers do not have to manually use stan-
dard memory services (i.e., malloc, free, etc.) since
they are automatically called by the Java envi-
ronment. Programmers also do not have to worry
about memory leaks due to the automatic mem-
ory allocation and deallocation. Java also has au-
tomatic bounds checking on all strings and arrays,
which eliminates buffer overflows. Buffer overflow
errors are a major source of bugs and security
flaws in C and C++ programs. Java lacks point-
ers that can be arithmetically manipulated and
dereferenced, which helps avoid memory leaks
and bugs. Unlike C and C++, Java is a strongly

typed language and it provides a sophisticated ex-
ception mechanism.

Since most security problems are due to bugs
and programming errors, programs written in the
Java language are thought to be more secure than
programs written in traditional languages such as
C or C++.

Having safe programming language protects
users from many conventional security problems
but it cannot protect users from programs that
are intentionally malicious. It is necessary to place
limits on what downloaded programs can do.

Java Security Architecture. Java employs a variety
of techniques to limit what a downloaded program
can do:
� Java sandbox

Java programs (applets) are prohibited from di-
rectly manipulating a computer’s hardware or
making calls to the operating system. Java pro-
grams run on a virtual computer inside a re-
stricted virtual space.

� SecurityManager class
Java allows programs to run with different sets
of privileges, depending on where the program
comes from. For example, programs downloaded
from an untrusted Internet source should be
more restricted than programs run directly
from the user’s hard disk. The SecurityManager
class determines whether “dangerous” opera-
tions (disk writes, network access, etc.) should
be allowed.

� Class Loader
It is important that malicious code cannot dis-
able security checks built into the Java system.
One way to do this would be to have a malicious
program disable or modify the SecurityManager
class. Class Loader examines classes to make
sure they do not violate the runtime system.

� Bytecode Verifier
The Bytecode Verifier makes sure that the
downloaded bytecode was created by compiling
a valid Java program. For example, it ensures
that the downloaded program neither forges
pointers nor does it violate access restrictions
or the types of objects.
Originally, Java applets downloaded from the

web were restricted in their capabilities: applets
could not access files on the user’s disk; they could
not initiate network connections to any computer
other than the computer from which an applet
was downloaded; they could not receive network
connections, etc. With time, web browser makers
(Microsoft, Netscape, etc.) were forced by web con-
tent developers to relax those restrictions and to
allow downloaded Java programs to execute more
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• Disable Java
This setting prevents Java programs and applets from executing.

• High safety
This setting allows applets to run in the Java sandbox. Applets cannot access
files on the disk and can only connect to the web site from which they were
downloaded.

• Medium safety
Applets run in the Java sandbox. They can also access “scratch space,” and
access certain files as allowed by the user.

• Low safety
Applets run outside the sandbox. Applets have access to all resources on the
computer and can make connections to any computer on the Internet.

• Custom
This setting allows the user to specify each individual permission.

Fig. 2. Default Java security policies in Internet Explorer

functions. Rather than giving all Java applets
full access to a user’s computer, those compa-
nies implemented user control over the additional
capabilities.

Users can customize privileges given to down-
loaded applets through Java security policy. Inter-
net Explorer allows you to create multiple security
policies for different categories of web sites and
then to assign web sites to these categories. Mi-
crosoft calls these categories security zones. They
can be configured through the “Security” tab of the
Internet Options control panel.

Microsoft Internet Explorer uses four different
policies for running Java programs. The policy
used for a given program depends on the current
security zone for the web page that you are view-
ing. A user can also create custom policies. The de-
fault Java security policies are showed in Figure 2.

Java Security Problems. Unfortunately, in the
short time since its release, a number of security
holes have been found in Java. Most of the prob-
lems were implementation errors such as bugs
in the Java runtime system that allowed spe-
cially designed Java applets to execute arbitrary
programs on the user’s machine. A buffer over-
flow bug in some Windows 95/NT versions of the
Java virtual machine was discovered in September
1998. This bug could potentially cause your com-
puter to crash. A demonstration of how the bug
could compromise your computer can be found at
http://www.eyeone.no/KillerApp/KillerApp.htm. A
list of vulnerable browsers can also be found at
that URL.

Major errors found in Java implementations in-
clude bugs in the Java virtual machine that let
programs violate Java’s type system. These types
of bugs made it possible for applets to execute arbi-
trary code. Class library bugs found in a number of
Java implementations allowed hostile programs to

learn “private information” about the user. A num-
ber of fundamental design errors, leading to web
spoofing and unrestricted network access, were
also found. Most of the problems were fixed shortly
after they were reported. For a list of problems
found by a security group at Princeton University,
see [11].

Java is believed to be a far better alternative
than the other forms of active content. Unfortu-
nately, it is difficult to guarantee that implemen-
tations of JVM are free of bugs that could open
security holes due to the complexity of the Java
environment. In addition to Java security archi-
tecture described above, recent versions of Java
allow cryptographic signing of programs similar
to Microsoft’s Authenticode described in the next
section.

ActiveX

ActiveX is a technology developed by Microsoft
Corporation for distributing software over the In-
ternet. ActiveX “controls” can be embedded in Web
pages, where they typically appear as smart inter-
active graphics. You can think of ActiveX controls
as self-installing plug-ins.

ActiveX controls are automatically downloaded
when the web browser encounters a <OBJECT>

tag on a web page. Depending on the current se-
curity settings of the browser, the tags are either
ignored or cause the software to be downloaded.
After downloading, the ActiveX control may be run
automatically, or the user may be prompted as to
whether the control should be allowed to execute
or not. Figure 3 shows the ActiveX security set-
tings in Internet Explorer.

ActiveX controls can do anything a regular pro-
gram can—from displaying a new file type to up-
grading your computer’s operating system. This
amount of power comes with increased risks.
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Fig. 3. ActiveX security settings in Internet Explorer

Instead of trying to develop a new system for
downloading code that would be “safe” (like Java),
Microsoft decided that each ActiveX control can be
digitally “signed” by its author in such a way that
the signature cannot be altered or repudiated us-
ing a system called “Authenticode”. The digital sig-
natures are then certified by a trusted “certifying
authority”, such as VeriSign, to create the equiva-
lent of a shrink-wrapped software package. When
a digital certificate is granted, the software devel-
oper pledges that the software is free from viruses
and other malicious components. If you download
a signed ActiveX control and it crashes your ma-
chine, you will at least know who to blame. In
other words, “Authenticode” vouches for the down-
loaded program but does nothing to restrict its
execution.

There are many potential problems with the
Authenticode technology. To illustrate that Au-
thenticode could not provide safety, a software de-
veloper Fred McLain (mclain@halcyon.com) pub-
lished an ActiveX control named Exploder in 1996.
This control, which has been fully signed and cer-
tified, performs a clean shutdown of any Windows
95 machine that downloads the Exploder control
(using Microsoft Internet Explorer version 3.0 or
higher). After learning about Exploder, Microsoft
and VeriSign jointly revoked Fred McLain’s cer-
tified digital signature, claiming that he had vi-
olated the agreement when the certificate was
issued. Therefore, if you are running a newer

version of Internet Explorer, you’ll see a mes-
sage that the Exploder’s software certificate is
invalid.

While Exploder does not cause any data loss,
a less friendly control might reformat the user’s
hard disk or plant a virus. For example, in Febru-
ary 1997, Chaos Computer Club of Hamburg,
Germany demonstrated an ActiveX control that
would hack into a copy of Quicken on a computer
and initiate a funds transfer (without the user en-
tering any passwords into the program).

For a detailed report on ActiveX security see the
report published by CERT [1].

JavaScript

JavaScript was developed by Netscape to add
forms validation, local computation, and more
interactivity to web browsers. JavaScript pro-
grams reside in HTML files, usually surrounded
by <SCRIPT> tags. JavaScript programs can also
open new windows, fill out fields in forms, jump to
new URLs, process image maps, change the HTML
content of the page itself, compute mathemati-
cal results, and perform many other functions.
JavaScript can also modify the appearance of web
browsers, making elements of the web browser ap-
pear and disappear dynamically.

JavaScript in its basic form should be more se-
cure than Java or other mobile code technologies
since there are no JavaScript methods that di-
rectly access the network or the files on the user’s
computer.

Unfortunately, most JavaScript implementa-
tions have had a number of significant bugs, which
opened a number of security holes. As with Java,
JavaScript was developed without a formal secu-
rity model. Security relied on hunches and ad-hoc
methods developed by creators. This lack of a secu-
rity model was the main cause of a large number
of security problems discovered in JavaScript.

Some of the major problems found include a
bug in the JavaScript implementation in Netscape
Communicator 4.5 and 4.04–4.05, which allows a
Web page to read arbitrary files from the user’s
machine and transmit those files across the Inter-
net. A similar bug was also found in Internet Ex-
plorer versions 4.0–4.01 and prerelease versions
of IE 5.0. A different type of error, which al-
lows remote sites to read the user’s browsing his-
tory, was found in Netscape Navigator 3.04, 4.07
and 4.5.

Many other bugs have been discovered (see [3]).
Although in most cases Microsoft and Netscape
quickly corrected the reported bugs, users were
not quick to upload new patches.
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Other JavaScript Attacks. JavaScript can be used
to mount a denial-of-service attack against the
user’s computer. These attacks can reside on web
pages or they can be sent to users via email.
Most of those attacks result in the web browser
crashing. The computer itself can also crash as
a result of these attacks. A simple JavaScript
denial-of-service attack is shown below:

<script>
while (1) {
alert(“Denial of Service”);
}
</script>

JavaScript can also be used to spoof user con-
text. For example, the status line of a browser
normally displays the URL that will be accessed
if the user clicks on a link. Using JavaScript, an
attacker can change the status line of a browser,
tricking a user into believing that that the URL
points someplace else. For example, an HTML
link can display the URL http://www.shopping-
mall.com/order.html when a mouse is moved over
the link, but clicking on the link will jump to the
web page http://www.hacker.com/gotcha.html.

WEB SERVER SECURITY: Installing a web server
can be a very simple operation that has profound
implications. A web server provides a place where
clients, customers, and partners come to learn
more about your organization, to shop, to exchange
ideas, or to find entertainment. Unfortunately, the
increased visibility can attract some unwelcome
attention. A web site host is a natural target for
attack. Some attackers might attempt to break the
web server’s access control in order to view confi-
dential information, customer records, etc. Others
might try to “Webjack” your site and modify its
content. Webjackings are becoming more and more
common and many widely known sites have been
vandalized in recent years.

Breaking into a web server can also be a pre-
lude to an attack on other computers on the local
area network. Once inside the web server host,
an attacker can attempt to access file servers,
databases, and other confidential systems.

Web server security can be divided into three
different areas: physical security (see also physical
attacks), host security, and application security.

Physical Security

If the server hardware isn’t secure, nothing is.
Surprisingly, physical security is ignored by most
organizations. The role of physical security is to

protect computer hardware and the data stored
on it. Physical security threats include theft as
well as natural (and man-made) disasters. An ad-
vanced security system designed to prevent secu-
rity breaches becomes useless if an attacker can
simply steal hardware (including the web server
or its data drives) from the organization’s build-
ings.

Physical security deals with restricting access
to the hardware on which your servers are run-
ning as well as protecting desktops and laptops
and the data that may be stored on them. Part of
physical security is also prevention and recovery
after disasters (i.e., fire, earthquake, war, terror-
ism). It may be impossible to prevent most of such
disasters, but organizations that are prepared will
recover faster. Redundant servers at different lo-
cations and off-site backup are some of the essen-
tial techniques for disaster recovery. For more on
physical security, see Chapter 14 of [8].

Host Security

The host computer, on which the web server is run-
ning, must be secure. If an attacker can gain access
to the computer through security holes in the op-
erating system or other applications, then the web
server itself and the data it serves may be compro-
mised.

Many organizations that run servers on the In-
ternet do not secure them against an external at-
tack. There are a number of techniques that an
attacker can use to gain access and control over a
target computer. Many of these techniques allow
the attacker to run unrestricted code on the target.
Some of these techniques include remote exploits,
malicious programs, and password theft:
� Remote exploits

Most computer systems contain vulnerabilities
that allow an attacker to compromise or dis-
able the system over the network. Many of the
remote exploits are based on the buffer over-
flow technique. This technique relies on the way
C and C++ programs handle input data and
the fact that historically, many programs did
not check if input data is larger than the input
buffer.

� Malicious programs
Many attackers will deliver malicious pro-
grams (often hidden inside other, non-malicious
software) to users, hoping that some of them
will run it. When executed, such programs of-
ten give attackers remote access to the com-
promised machine. These programs are called
back doors because they allow access to the
system bypassing standard security measures.
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Similarly, trojan horses often give control of the
system to the attacker.

Viruses and worms are self-replicating pro-
grams that travel from computer to com-
puter via the Internet or as email attachments
(see virus protection or Trojan horse, computer
viruses and worms). Viruses can often exhibit
malicious behavior and delete/modify files on
the system. Both viruses and worms can be used
to install trojan horses or back doors on the in-
fected system.

� Stolen usernames and passwords
On many computer systems, it is possible for
a regular user to gain root or administrative
access through a number of exploits. Because
of these exploits, many attackers try to gain
access as a regular user (any user) and then
obtain administrative privileges through the
exploit.

An attacker might attempt to obtain user
passwords through dictionary attacks, social
engineering, or password sniffing. Dictionary at-
tacks take advantage of the fact that many users
use simple English words as their passwords.
Social engineering is a broad term for trying
to “trick” users into divulging their passwords
to the attacker (i.e., an attacker may pretend to
be a system administrator). Password sniffing
is done by “sniffing” network packets between
the user and the remote system. Many users
still use remote access programs that send user
name and password in the clear (i.e., telnet, ftp,
etc.), allowing an attacker to easily obtain pass-
words from sniffed network packets.
Most organizations attempt to protect their web

servers and internal networks with firewalls. Fire-
walls are sophisticated filters installed between
the organization’s network and the Internet. They
allow system administrators to decide which pro-
tocols will pass through the firewall and which pro-
tocols will be dropped. A firewall can be used to
protect a web server by restricting incoming net-
work traffic only to HTTP traffic on port 80.

Many organizations also use intrusion detection
systems to warn them if their network security has
been compromised. Intrusion detection systems
can monitor network traffic looking for patterns
indicating a remote attack or a security breach.
Other systems also monitor files on servers to find
out when an intruder changes them (possibly leav-
ing behind a backdoor).

See entries for firewall, intrusion detection for
more information on these topics.

Security Policy. Every organization should have
a comprehensive security policy. A security policy

clearly states what is allowed and what is not al-
lowed. It can be used as a guide when configuring
systems and services. It should also be considered
when installing or purchasing new services. A se-
curity policy should include the following:
� Who is allowed access (see also access control),

what are the restrictions on that access, and
who authorizes that access.

� Who is responsible for security, for upgrades, for
backups, and for maintenance?

� What type of information is allowed to be pub-
lished on web pages?

� Which external users are allowed access to
pages and data served?

� What kind of evaluation/verification is required
before new pages/information are published on
the web site?

� What should be done in case of security
breach/incident/break-in?

� How can the security policy be updated and who
is authorized to make those changes?
Even a very good security policy is useless if it is

not enforced. A number of tools and methods exist
that help organizations enforce their security pol-
icy. Auditing tools are very important in checking
system’s compliance with the security policy. Such
tools can test system and security settings of dif-
ferent servers as well as software configurations of
desktop machines. Best common practices for se-
curity also include scanning of logs generated by
servers, patching software to the latest versions,
etc. Another emerging tactic is external red teams.
This method involves an external group of security
consultants who evaluate the organization’s secu-
rity policy, test the compliance of different systems
to that policy, and attempt to uncover weaknesses
in the organization’s security defenses.

Minimize Services. Every network service running
on a host can potentially open a security hole that
can be used to compromise the web server and
the data it is serving. To minimize threats to the
web server, it is important to minimize the num-
ber of services running on the host. It is best to
run the web server as a stand-alone process on a
dedicated machine. Some services that should po-
tentially be restricted are: Domain Name Service
(DNS), Mail, Telnet, FTP, etc. Bugs in DNS and
Mail services (i.e., sendmail) can be used to com-
promise the system. These services should be run
on a separate machine. Telnet and FTP protocols
send user names and passwords without encryp-
tion, allowing potential attackers an easy way into
the system. Both should be replaced by secure ac-
cess utilities (i.e., SSH (Secure SHell) and SCP.
(Secure CoPy)).
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Logging. System logs can help to determine that a
server is under attack or that it has been broken
into. They are also invaluable when recovering
from a security incident. They can be used to
determine how the attacker broke in and even help
to track down the perpetrator. Attackers often try
to cover their tracks by modifying the system log
file. Forensic computing attempts to correlate data
from a number of different log files (data sources)
to determine whether a machine has been com-
promised and what parts of the system may have
been modified.

Unix and Windows NT/2000 offer advanced log-
ging options. Events can be written to a single file,
multiple files, or even sent to a different computer
over the network. If security is of high concern, it
is a good idea to set up a separate, very secure, log
server, which receives events from other servers
on the organization’s network.

Application Security

Web servers were designed to display static infor-
mation such as brochures, FAQs, product catalogs,
etc. The need for more dynamic content delivery,
such as user customizable web pages and shopping
cart type applications, required special extensions
to web servers. Web servers must execute special-
ized code every time a page is requested. There are
four primary techniques for creating dynamic web
content:
� CGI and servlets

CGI programs are executables that are indepen-
dent of the main Web server binary. When a re-
mote user requests a URL that points at a CGI
script, the server executes the script and sends
the results back to the requesting browser. CGI
scripts can perform database queries, perform
calculations, and generate other types of dy-
namic content. Servlets are written in Java and
are similar to CGI programs. Servlets are con-
tinuously running (unlike CGI programs which
are started separately for each request), waiting
for requests to be passed from the web server.
Most web servers have modules that support the
servlet API.

� Server plug-ins, loadable modules, etc.
Modern web servers often include API for ex-
tension modules. They are usually written in C
or C++ and are loaded into the web server at
run time. Plug-ins and modules are much faster
than CGI scripts because they don’t require a
new process to be started for each web interac-
tion.

� Embedded scription languages
Languages such as Microsoft’s ASP, PHP,
server-side JavaScript, and mod perl allow

developers to place scripts into web pages. An
interpreter in the web server runs the script
before the resulting page is sent to the web
browser.

� Embedded web server
Some systems do not use an off-the-shelf web
server but rather embed an HTTP server into
the custom web application itself.
The above extension techniques pose serious se-

curity risks and can compromise the security of
a web server or the host on which it is running.
This is because potentially any program can be
run through these extensions. This could include
programs with security problems, programs with
exploitable bugs, programs that give outsiders ac-
cess to the web server host, and programs that
modify or even delete critical system files.

The web administrator (webmaster) has to not
only worry about the security of the web server
and the host on which it is running, but also the
security of every program and script written by
web and content developers.

A number of common CGI security problems
have emerged over the years:
1. Use of interpreters as CGI scripts

This occurs when a powerful interpreter, such
as PERL (practical extraction and report lan-
guage) or TCL (Tool Command Language) inter-
preters, is installed in the common CGI script
directory. This mistake allows anybody on the
Internet to run arbitrary perl, TCL, etc. com-
mands on the server computer.

2. Flawed memory management
The most common problem is the failure to

check the length of input data before copying
it into a fixed length buffer. This leads to the
buffer overflow problem which can be exploited
to execute arbitrary machine code instructions
on the server.

3. Passing unchecked user input to command in-
terpreters

One of the most common CGI scripting bugs
is the failure to validate user input. This is most
serious when unchecked user input is passed
to command interpreter (shell), allowing an at-
tacker to execute arbitrary shell commands on
the server.
Servlets are a popular alternative to CGI scripts

and are believed to be more secure. The use of the
Java language eliminates many memory manage-
ment bugs which have plagued CGI scripts but
other security problems remain the same. Poten-
tial bugs in the servlet module could also open se-
curity holes.

To reduce the risk introduced by web appli-
cations, the programs themselves should be de-
signed to only perform the desired functions. More
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importantly, they should be inspected and veri-
fied to ensure that that is the case. The programs
should run in a restricted environment. If one of
these programs is compromised by an attacker, the
damage will be limited.

Hidden Fields, Cookies

Many web applications use hidden HTML fields
and cookies to store session information. The abil-
ity to store such information on the client makes
programming web applications easier. Unfortu-
nately, many web applications fail to validate in-
formation from hidden fields and cookies. Even
though users aren’t meant to see or modify that
information, malicious users can read and modify
the contents of those fields in an attempt to find
vulnerabilities in the server side of the web appli-
cation. For example, the authors of [6] identified a
number of ecommerce sites that fail to validate the
information in cookies. As a result, small changes
to the cookies can give an attacker access to unau-
thorized information.

A simple way to solve many problems with hid-
den fields and cookies is to use cryptography to
make the stored information more secure. The use
of the right cryptographic techniques can prevent
attackers from reading the information stored in
cookies and hidden fields, and allow server ap-
plications to detect unauthorized modifications to
this information. The data fields should be en-
crypted using a symmetric encryption function
(see symmetric cryptosystem) with a secret key.
Then, an HMAC function of the encrypted string
should be calculated to protect the data from
unauthorized modifications. Because symmetric
encryption functions and HMAC functions (such
as MD5) are very fast, this should not introduce
much overhead to the server.

Databases

Databases help create powerful and flexible
web applications. Many web applications use
databases that are external to the web server.
They can be used to store user preferences, shop-
ping carts, order status, etc. External databases
often store confidential information such as cus-
tomer records and therefore must be protected
from unauthorized access.

CGI scripts implementing the web application
connect to the database through local area net-
work and issue queries. It is important to authen-
ticate the script issuing the query to make sure it
is authorized to access the information.

It is also important to filter and validate SQL
queries before sending them to the database. If a

query contains data from a client, it could contain
special characters that could potentially allow the
attacker to execute arbitrary queries and gain ac-
cess to confidential information.

CONCLUSION: The World Wide Web is here to
stay. Companies use it to enhance their busi-
ness by providing a number of services, including
business-to-business and business-to-consumer e-
commerce. Users use the web to find information,
shop, bank, chat, etc. In the sections above, we
described a number of security issues facing both
web site administrators and users.

Users have to worry about their personal infor-
mation traveling across the Internet, the security
of the browser itself, and the security of numer-
ous plug-ins or applications downloaded and in-
stalled off the web. The World Wide Web presents
many threats to user’s privacy as well. Personal
information can be stolen from servers or it can
be intercepted while traveling across the Inter-
net. User’s web browsing is being tracked and
logged by web servers as well as Internet service
providers (ISPs). Cookies can be used to create an
electronic fingerprint of a person’s online activi-
ties. See privacy for more information on privacy
threats and protection.

Web site administrators, on the other hand,
have to worry about the security of the host on
which the web server is running, the security of
the web server software, and the security of all
web applications running on the server.

This section offers only a small glimpse at the
issues of web security. We recommend a number
of additional resources for readers interested in
learning more on the subject.

A number of books on web security have been
published since the Internet revolution began [8,
10, 12]. These books cover security issues for
users and webmasters in greater detail as well as
present additional information related to web se-
curity. The issue of host security is its own area
and has been studied for years before the web
was invented [7, 9]. These two books present de-
tailed information on securing Unix and Windows
NT/2000 servers on the Internet. Other valuable
security resources are the World Wide Web Secu-
rity FAQ [3] and the CERT Coordination Center
[2]. The CERT web site reports the most recent
security vulnerabilities and fixes.

Lukasz Opyrchal
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WIENER, BONEH–DURFEE,
AND MAY ATTACKS ON THE
RSA PUBLIC KEY
CRYPTOSYSTEM

These cryptanalytic results (see cryptanalysis)
show that the RSA public key encryption scheme
is not secure under certain conditions on the RSA
parameters.

To use RSA one first chooses two large
prime numbers p and q. The public modulus
is N = pq, and p and q are kept secret (see
modular arithmetic). A public exponent e and a se-
cret (private) exponent d are chosen satisfying the
RSA equation ed = 1 mod(N − p− q + 1). Typi-
cally, the secret exponent d is of approximately
the same bit-length as the public modulus N, the
public exponent e has a bit-length no greater than
the bit-length of N, and the primes p and q are
approximately the same bit-length.

Because RSA decryption and signature genera-
tion depend on the length of the secret exponent
d, it is tempting to use a short d to speed up these
operations. However, in 1990, Wiener [1] showed
that if the length of d is less than one-quarter
of the length of N, then there is an efficient at-
tack which computes the secret exponent d from

the public modulus N and public exponent e. This
attack is based on the method of continued frac-
tions (see integer factoring). One of the counter-
measures suggested by Wiener is to use a public
modulus e much larger than N; as e ranges from
N to N1.5, shorter d are required for this attack
to succeed. Once e is greater than N1.5, Wiener’s
attack provides no information about d.

In 2000, Boneh and Durfee [3] showed a heuris-
tic attack which recovers d from e and N when the
length of d is less than 0.292 times the length of
N. The attack uses ideas due to Coppersmith [2]
for finding solutions to polynomial equations us-
ing lattices. As in Wiener’s attack, increasing the
length of e decreases the effectiveness of the at-
tack; the Boneh–Durfee attack works up to e close
to N1.875. The attack works for larger d when e is
chosen to be much shorter than N. The attack also
improves when the lengths of p and q are vastly
different.

In 2000, Durfee and Nguyen [4] showed a sim-
ilar heuristic attack that recovers d from e and
N in a variant of RSA which uses atypical ratios
between the lengths of p and q as well as e and
N. The size of d for which the attack succeeds is
a complicated function of these ratios; see [4] for
details.

To enjoy the computational efficiency of a short
secret exponent without exposure to the Wiener
or Boneh–Durfee attacks, the typical countermea-
sure is to use short secrets for an RSA variant
using the Chinese Remainder Theorem (CRT). In
RSA–CRT, one chooses secrets dp and dq satis-
fying edp = 1 mod(p− 1) and edq = 1 mod(q − 1).
RSA decryption and signature generation times
depend on the lengths of dp and dq . If dp and dq
are chosen to be of short bit-length, the efficiency
gains due to short secrets can be realized without
exposure to the Wiener or Boneh–Durfee attacks.

In 2002, May [5] showed an attack that succeeds
when dp and dq are small, provided that p and
q are chosen to be of substantially different bit
lengths. The ranges for which the attack succeeds
is a complicated function of these bit lengths; see
[5] for details.

Glenn Durfee
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WITNESS HIDING

Witness hiding is a property attributed to an
interactive proof or an interactive argument, sim-
ilar in nature to the zero-knowledge property. If
an interactive proof is zero-knowledge, it is also
witness hiding, but the converse does not neces-
sarily hold. For many applications, witness hiding
protocols are sufficiently secure and more efficient
than zero-knowledge protocols.

Loosely speaking, an interactive proof is witness
hiding if an arbitrarily cheating verifier, after en-
gaging in many executions of the protocol with an
honest prover, is not able to compute a witness
unless the verifier is able to compute one any-
way, without interacting with the prover at all.
In this context, a witness may be thought of as a
private key, corresponding to a public key. If an in-
teractive proof is witness hiding, it is not excluded
that a cheating verifier learns some fraction of the
bits of a witness. However, knowledge of such a
fraction of the bits cannot be feasibly extended
to knowing all of the bits, if the proof is witness
hiding.

Witness hiding protocols were introduced in
[2], followed by practical constructions in [4] and
[1]. Witness hiding protocols are constructed by
means of witness-indistinguishable protocols.
An interactive proof is witness-indistinguishable
if an arbitrarily cheating verifier, after engaging
in many executions of the protocol with an hon-
est prover, is not able to tell which witness the
prover is using. If there is only one possible wit-
ness, then an interactive proof is trivially witness-
indistinguishable. If several witnesses are pos-
sible, the views of the protocol as seen by the
verifier should be indistinguishable—and this
holds even when the verifier knows all possible
witnesses.

Okamoto’s variation of Schnorr’s identification
protocol is an example of a witness hiding protocol
[4]. Let g denote a generator of a cyclic group G
of order p, where p is a large prime number. Let
h denote a random element of G, h �= 1, such that
the discrete logarithm of h with respect to g is not
known to any party.

A key pair is generated by choosing w, x ∈ Zp
uniformly at random, and setting y = gwhx as the
public key and (w, x) as the corresponding private
key (see modular arithmetic and public key en-
cryption). The protocol runs as follows.

The prover chooses u, v ∈ Zp uniformly at ran-
dom, sets a = guhv and sends a to the verifier.
Next, the verifier chooses a challenge c ∈ Zp and
sends c to the prover. The prover computes the re-
sponses r = u + cw mod p, s = v + cx mod p and
sends r, s to the verifier. Finally, the verifier checks
that gr hs = ayc holds.

Note that for each public key y, there are ex-
actly p possible private keys (“witnesses”) (w′, x′)
such that y = gw′

hx′
. However, it can be proved

that whatever a cheating verifier does, when in-
teracting with an honest prover, the verifier is not
able to tell which witness the prover is using—
and this holds even when the verifier knows the
values of the possible witnesses (w′, x′). Therefore,
the protocol is witness-indistinguishable.

To see that the protocol is also witness hid-
ing, one reasons at follows. Suppose, on the con-
trary, that a cheating verifier is able to find a
witness (w′, x′). Since the protocol is witness-
indistinguishable, the probability that the wit-
ness found by the verifier is equal to the witness
used by the prover is 1/p. That is, with very high
probability, we see that the prover and the veri-
fier (viewing these as a combined algorithm) are
able to compute two distinct witnesses (w, x) and
(w′, x′). From y = gwhx and y = gw′

hx′
, it follows

that h = g(w−w′)/(x′−x), implying that the discrete
log of h with respect to g is known. This contra-
dicts the assumption that this discrete log is not
known to any party.

Berry Schoenmakers
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X.509

The X.509 standard (ITU, the International
Telecommunication Union, formerly CCITT) is
the best known Public Key Infrastructure (PKI)
standard for electronic commerce, even though
originally it was developed for applications like au-
thorized reading and writing access to records in
data bases rather than electronic commerce. The
standard defines certification authorities which
issues certificates on users. These certificates are
specified as well as based on the ASN1 syntax with
a number of records, some of which are manda-
tory, whereas others are optional. The original
specification was rather limited in its scope, and
the current commonly used version is version 3.
The Certification Authorities are off-line authori-
ties, each connected to one or several Registration
Authorities, and the certificates are made avail-
able in Directories. The original setting was X.500
distributed databases, and it was anticipated to
have a global setup, where CA’s would identify
each other through so-called certificate paths. In
this way, any two registered users would be able
to access each other’s public keys through an

appropriate certificate path if the same CA did not
certify them. The standard further specifies the
use of blacklists, or revocation lists, which is one
of the weaknesses of the whole setup, as these re-
vocation lists only are updated at discrete points
in time, and a user can never be sure—when he
receives a valid certificate from another user—
whether meanwhile the certificate has been re-
voked even though it appears to be valid.

Another important point often missed in realiza-
tions is that non-repudiation cannot be achieved
unless the architecture offers independent time
stamping. Indeed, if a signed message is accepted
on the basis of a valid digital signature and a valid
certificate, and the involved public key later is re-
voked by its owner, the signed message may not
any longer have any value to the verifier unless
he can prove that he received the valid signature
and certificate before the public key was revoked,
e.g., by obtaining an signature from a time stamp-
ing authority on the hash (see hash function) of
the said message appended with a time stamp at
any point in time before the revocation.

Peter Landrock
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Z
ZERO-KNOWLEDGE

Zero-knowledge is a property attributed to inter-
active proofs, interactive arguments and non-
interactive proofs. Since the soundness property
protects the interest of the verifier, the zero-
knowledge property protects the interest of the
prover. By means of a zero-knowledge proof, the
prover is able to convince the verifier of the validity
of a given statement, without releasing any knowl-
edge beyond the validity of the statement. (Note
that the notion of witness hiding proofs provides
an alternative to the notion of zero-knowledge
proofs.)

In other words, from executing a zero-
knowledge protocol with an honest prover, the ver-
ifier should learn nothing beyond the validity of
the statement. This is captured by stating that
whatever the verifier ‘sees’ when interacting with
the prover by means of the zero-knowledge proto-
col can be efficiently simulated by the verifier itself.
It is crucial to note that the zero-knowledge condi-
tion should be satisfied even if the verifier deviates
from the protocol in arbitrary ways.

As a simple example, consider the following pro-
tocol. Let g denote a generator of a cyclic group G
of order p, where p is a large prime number. A key
pair is generated by choosing x ∈ Zp uniformly at
random, and setting y = gx as the public key and x
as the corresponding private key (see also modular
arithmetic and public key cryptography). The pro-
tocol for proving knowledge of x on common input
y runs as follows.

The prover chooses u ∈ Zp uniformly at random,
sets a = gu and sends a to the verifier. Next, the
verifier chooses a challenge c ∈ {0, 1} uniformly at
random and sends c to the prover. The prover com-
putes the response r = u + cx mod p and sends
it to the verifier. Finally, the verifier checks that
gr = ayc holds.

The zero-knowledge property follows from the
fact that the outputs of the following two prob-
abilistic polynomial-time algorithms are identi-
cally distributed, where V∗ denotes an arbitrarily
cheating verifier. It is assumed that V∗ is given as
a rewindable black-box. A triple (a, c, r ) is called
a conversation, as it consists of the messages ex-
changed during a run of the protocol.

Real conversations
Input: private key x
Output: conversation (a, c, r )
1. Choose random u ∈ Zp
2. Set a = gu

3. Send a to V∗

4. Receive c ∈ {0, 1} from V∗

5. Set r = u + cx mod p
6. Output (a, c, r )

Simulated conversations
Input: public key y
Output: conversation (a, c, r )
1. Choose random c ∈ {0, 1}, r ∈ Zp
2. Set a = gr y−c

3. Send a to V∗

4. Receive c′ ∈ {0, 1} from V∗

5. If c �= c′ rewind V∗ to point prior to accepting a
and go to step 1

6. Output (a, c, r )

At step 5 of the simulation, the probability that
c = c′ is exactly 1/2, since c ∈ {0, 1} is chosen uni-
formly at random. Hence, on average two itera-
tions are required to generate a simulated tran-
script (a, c, r ).

The conclusion is that no matter what algorithm
(or “strategy”) a cheating verifier V∗ follows in try-
ing to extract useful information from the prover,
the same algorithm can be used to generate iden-
tically distributed conversations without needing
the cooperation of the prover. Whereas the real
conversations are generated using the private key
x as input, the simulated conversations are gener-
ated using only the public key y as input.

In general, the distributions of the real con-
versations and the simulated conversations do
not need to be identical. Perfect zero-knowledge
means that the distributions are indeed identi-
cal. Almost-perfect or statistical zero-knowledge
means that the distributions are statistically in-
distinguishable (i.e., the statistical distance be-
tween the distributions is negligible). Similarly,
computational zero-knowledge (see also computa-
tional complexity) means that the distributions
are polynomially indistinguishable (i.e., cannot be
efficiently distinguished).

By engaging in a zero-knowledge protocol mul-
tiple times, a cheating verifier may collect many
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valid conversations. In general, the simulation for
a single run of a protocol can be easily extended
to a simulation for multiple runs of the protocol as
long as the runs are sequential, that is, the second
run starts only after the first run is finished, and so
on. In other words, the zero-knowledge property is
preserved under sequential composition. However,
parallel composition, where a prover is engaged in
several runs of a protocol at the same time, in gen-
eral, does not preserve the zero-knowledge prop-
erty; running the above simulation k times in par-
allel does not result in an efficient simulation as
the chances that c = c′ holds at step 5 for all runs
at the same time will be only 2−k.

The concept of zero-knowledge was introduced
by Goldwasser et al. in the early eighties (journal
version appeared in [6]). In [7] it was subsequently
proved that a zero-knowledge interactive proof ex-
ists for every language in NP. Non-interactive zero-
knowledge proofs were introduced in [1, 2]. There
are many varieties of zero-knowledge proofs, see
[8] for an overview. Examples of some advanced
notions are concurrent zero-knowledge [4, 5] and
resettable zero-knowledge [3].

Berry Schoenmakers
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feedback function/polynomial, 355, 356,

415
feedback shift register, 415
Feige-Fiat-Shamir signature scheme,

222
Feistel cipher, 221
Fermat liar, 472, 473
Fermat primality test, 221, 293, 484
Fermat prime, 483
Fermat’s little theorem, 221, 292, 472
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Fiat–Naor construction, 58
Fiat-Shamir identification protocol

and Feige Fiat-Shamir
signature scheme, 222

FIB, 303, 305
field, 222, 227
field polynomial, 223
filter generator, 223
filtering (packets), 231
fingerprinting, 101, 161, 225–26
fingerprinting code, 226
finite field, 223, 227
FIPS, 129, 227–30, 268, 386, 487, 566,

626
firewall, 230–33
Fischlin scheme, 547
fixed-base comb method, 234
fixed-base Euclidean method, 235
fixed-base exponentiation, 210, 233
fixed-base windowing method, 233
fixed-exponent exponentiation, 210,

235
fixed point attack, 259
flat namespace, 273
flexible RSA assumption, 546
flip-flop metastability source, 511, 512
flooding DoS attack, 143
flow, 300
focused ion beam, 303, 305
forgery, 237
forgery attack, 361, 362
Fortezza, 586
forward mixing, 368
forward secrecy, 245
forward security, 251, 613
fragmentation, 384
frame, 519
frame counter, 519
frame number, 1
frequency matching, 114
freshness, 245, 407
Frobenius map, 187
Frobenius-Grantham primality test,

473, 474
FSR, 415
Fujiwara-Okamoto transformation, 276,

278
full-domain hash method, 502, 528
full-knowledge prenetration test, 456
full positive difference set, 224
function field, 577
fundamental theorem of arithmetic, 470

G

Galois field, 227
gap, 239
gap Diffie-Hellman assumption, 582
gap Diffie-Hellman group, 276, 613
Gaussian integer method, 288
gcd, 243
GCDH assumption, 247
G-DES, 518
Geffe generator, 486
general exponentiation, 210
general knapsack scheme, 336
general NFS, 430, 431, 432

general purpose primality test, 437, 438
generalized Feistel, 221
generalized inversion attack, 307
generalized Mersenne number, 239
generalized Mersenne prime, 239
generator, 240
generator matrix, 124
generator polynomial, 125
generic, 514
Gennaro-Halevi-Rabin scheme, 546, 547
geometry of numbers, 345
GHS attack, 188
Givierge’s maxim, 371
GKE, 244–48
global deduction, 43
glue logic design, 305
GMR signature, 240
GNFS, 430, 431, 432
GNU Privacy Guard, 466, 468
GOC PKI, 557
Golay code, 125
Gold sequence, 375
Goldwasser–Micali encryption

scheme, 241
Golomb ruler, 224
Golomb’s randomness postulates,

242, 487
Goppa codes, 375, 376, 377, 378
GOST, 242
GPS, 410, 411
Graham-Shamir scheme, 335, 337
greatest common divisor, 243
grille, 601
group, 243
group axioms, 243
Group Computational Diffie-Hellman

assumption, 247
group key agreement, 244–48
group key distribution, 244
group manager, 645
group names, 594
group of units, 524
group session key, 248
group signature, 250–51
GSM, 1
Guillou-Quisquater signature scheme,

274

H

Hadamard transform, 54
Hagelin, 117
half-trace, 193
halving, 192
Hamiltonian graph, 481
Hamming distance, 53, 124, 416
Hamming weight, 53, 124
handshake, 548
hard core bit, 253
Hardware Security Module, 254
hash function, 256–64
hash rate, 261
hash127, 14
hash-and-sign, 616
Hasse’s theorem, 185
HAVAL, 261
HELIX, 18

Hellmann’s time-memory trade-off, 646
HEMP, 504
Hermite-Korkine-Zolotarev lattice

reduction, 346
hidden fields, 665
hider, 580
hierarchical namespace, 273
high order DPA, 171
history variable, 419
HMAC, 14, 267, 366, 410, 411
holocryptic, 323
homomorphic secret sharing, 609
homomorphism, 268
homophone, 202
honest-but-curious adversary, 399
host security, 662
HSM, 254
HTTP, 230
HTTPS, secure HTTP, 268
hyperelliptic cryptosystems, 577
hypertext transfer protocol, 230

I

IACBC, 15
IAPM, 13, 15
IBE, 273, 280–81
IBIP, 177
IBS, 273, 276
ICC, 218
ICE-CAR, 557
ID, 299–301
IDEA, 271
ideal, 125
ideal SSS, 545
ideally secure hash function, 258
identifiable parent property, 226
identification, 203, 272
identifier, 282
identity, 244, 476, 524
identity based cryptosystems,

273–78
identity based encryption, 280–81
identity based scheme, 222
identity based signature, 273, 274, 276
identity escrow scheme, 251
identity management, 282–85
identity provider, 285
identity theft, 285
identity uniqueness, 272
identity verification protocol, 285
IDS, 300
IEEE P1363, 556
IEEE P802, 556
IEFT, 596
IEMP, 505
IETF, 71, 313, 619
IKE, 310, 312
imbalance, 353
impersonation attack, 21, 286
impossible cryptanalysis, 150
impossible differential attack, 286
improved Davies attack, 132
incremental hash function, 264
IND, 559
IND-CCA2, 108, 109
independent key, 290
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independent subkeys, 133
index of coincidence, 115
index-calculus method, 166, 187,

287–89
indirect payment systems, 175
indistinguishability of encryptions, 559
individual conversion operation, 145,

642
individual key, 324
inferential power analysis, 573
Information Based Indicia Program,

177
information hiding, 159, 161
information integrity, 21
information leakage, 571
information symbols, 124
Information Technology Security

Evaluation Criteria, 552
information theoretic security, 551
information theory, 289–90
Ingemarsson-Tang-Wong protocol, 246
ingress filtering, 231, 233
inhibit any policy extension, 635
inhibit any policy indicator, 636
initial policy set, 635
initial state, 355
initial value, 258, 386
in-line TTP, 71, 97
inner CBC, 389
inner modes, 389
inside out attack, 56
insider secure, 580
integer factoring, 290–96
integral attack, 405
integrity, 21, 109, 310, 361
integrity-aware cipher block chaining,

15
integrity-aware parallelizable mode, 15
interactive argument, 297
interactive proof, 297
interactive VSS, 646
interleaved modes, 389
interleaved sliding window

exponentiation, 584
internal collision attack, 364
International Telecommunication

Union, 669
internet engineering task force, 71, 313
internet key exchange, 310
internet protocol, 230, 310
internet security association and key

management protocol, 310
interpolation attack, 298
intrusion detection, 299–301, 663
intrusion detection system, 299
invariance under decimation, 373
invasive attack, 301–7
inverse, 244
inverse Fourier relation, 54
inversion attack, 307–8
inversion in finite fields, 308–9
invisibility, 145, 641
involution, 130, 221
IP, 230, 310
IPA, 573
IPES, 271, 309
IPsec, 310–13, 362, 554

irreducible polynomial, 313
ISAKMP, 310, 312
ISO, 86, 87, 200, 201, 268, 361, 530, 619
isolog, 113
isomorph, 113
issuer, 181, 313, 594, 595
ITA, 313–16
iterated attacks, 43
iterated cipher, 41
iterated hash function, 258
iterated Merkle-Hellman scheme, 334,

337
iterative cipher, 480, 586
Itoh-Tsujii inversion algorithm,

313–16
ITSEC, 552
ITU, 459, 669
IV (initial value), 258, 386

J

Jacobi Sum Test, 474
Jacobi symbol, 317
Java, 659
JavaScript, 661
JCP, 557
Jenning generator, 350

K

KA, 319–21
Kahn’s maxim, 372
Kappa test, 115
Karatsuba algorithm, 319–21, 401,

402
Kasiski’s method, 115
KASUMI, 322
KASUMI/MISTY1, 322
KCDSA, 195
KDC, 328, 637
KEM, 411
Kerberos authentication protocol,

323, 407
Kerckhoff ’s maxim, 42, 371
key, 160, 323–25, 568
key agreement, 325
key alphabet, 323
key authentication, 326
key confirmation, 326
key-dependent S-boxes, 133
key directive, 324
key distribution center, 328, 637
key encapsulation mechanism, 411
key encryption key, 326
key escrow, 327
key establishment protocol, 482
key exchange protocol, 326, 482
key generation algorithm, 158, 160,

163, 362, 488
key graph, 137
key group, 324
key management, 328–32
key mixing, 129
key negotiation, 324
key phrase, 323
key ranking, 152, 353
key recovery, 327

key recovery attack, 363
key revocation, 56, 278
key schedule algorithm, 41
key schedule attacks, 45
key space, 568
key stream, 539
key symmetric cryptosystem, 325
key text, 119, 323
key token, 621
key translation, 99
key transport, 326
KeyNote system, 463
key-whitening, 46
Khufu, 287, 383
kleptography, 106
KN cipher, 298
knapsack cryptographic schemes,

333–40
knapsack problem, 263, 333
knowledge extractor, 481
known plaintext attack, 42, 114, 342
known related key, 518
Knuth-Schroeppel function, 494
Koblitz curve, 170, 187, 192

L

L3 lattice reduction, 346
label, 579
Lagarias and Odlyzko attack, 336, 337
Lagrange interpolation formula, 298
Lagrange’s theorem, 537, 598
lambda representation, 194
language, 481
Latin alphabet, 9
Latin square, 115
lattice, 335, 336, 337, 345
lattice-based cryptography, 347–48
lattice reduction, 335, 336, 338,

346–47
lattice sieve, 432
lattice sieving, 432
law of quadratic reciprosity, 317
Layered Subset Difference, 58
lchop, 386
lcm, 349
LDAP, 553
least common multiple, 349
left-to-right exponentiation, 32, 33, 520,

583, 588, 639
legal structures, 285
Legendre symbol, 349
Lehmer’s Euclidean algorithm, 205
length, 652
Lenstra-Lenstra-Lovász lattice

reduction, 346
lexicographical knapsacks, 336
LFSR, 355–58
license, 99
licensee, 463
linear approximations, 351
linear characteristic, 152, 352
linear code, 124
linear complexity, 29, 139, 349
linear complexity profile, 349
linear congruential generator, 350
linear consistency attack, 350
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linear cryptanalysis, 44
linear cryptanalysis for block

ciphers, 351–53
linear cryptanalysis for stream

ciphers, 354
linear feedback shift register,

355–58
linear hull, 352
linear probability, 351
linear sieve, 291, 295
linear SSS, 545
linear structure, 55
linear substitution, 601
linear syndrome attack, 358
linking, 617
list decoding, 152
LKH, 58
LLL latice reduction algorithm, 335,

346, 347, 569
L-notation, 358
local deduction, 43
local DoS attack, 143
local policy, 463
Local Registration Authority, 330, 518
logical key hierarchy scheme, 58
longevity, 283, 285
long-lived broadcast encryption, 57
low density knapsack, 336
LRA, 330, 518
LSD, 58
Luby-Rackoff cipher, 358
LUC, 599
Lucas-Lehmer primality test, 474
Lucas probable prime test, 473
Lucifer, 129, 480, 656

M

MAA, 361, 366
MAC, 6, 13, 200, 201, 230
MAC algorithms, 361–67
MAC guessing attack, 364
MacDES, 65, 365
MAC-then-Encrypt, 13
MAC-verification attack, 362
main mode IPsec, 312
malicious adversary, 399
malleable, 418
malleable encryption scheme, 180
mandatory access control, 6
man-in-the-middle attack, 368
manipulation, 458
Manipulation Detection Code (MDC),

256
mark copyrighted content, 99
marking assumption, 225
MARS, 368
MASH functions (Modular

Arithmetic Secure Hash), 263,
370

master copy control, 99
master key, 370
matching ciphertext attack, 43, 387,

389
matching module, 35
Matsui, 351, 352
Mattson–Solomon polynomial, 127

Maurer’s method, 371, 474
Maurer’s universal statistical test, 487
Maxim Number One, 371
maxims, 371
maximum correlation, 55
maximum distance separable code, 126
maximum-length linear sequence,

372–75
maximum order complexity, 415
May attack, 666
McEliece public key cryptosystem,

375–78
McGrew-Sherman OFT protocol, 248
MD2 hash function, 260
MD4-MD5, 378
MD5 hash function, 378
MDC hash function, 256
MDC-2 and MDC-4, 379
MDS code, 126
MDx-family, 260
MDx-MAC, 366
media access control, 230
meet-in-the-middle attack, 258, 381
member pseudonym, 483
membership test, 656
memory size, 224, 307
merchant CA, 564
Merkle tree, 618
Merkle-Damgard strengthening, 136,

258, 260, 565
Merkle–Hellman dominance, 334
Merkle–Hellman transformation, 334
Merkle–Hellman trapdoor, 333
Merkle’s meta-method, 257
Mersenne number, 381, 474
Mersenne prime, 381
message authentication code, 21, 200,

361, 362, 363
message authenticaton algorithm, 361,

366
message-encrypting key, 324
message length attack, 384
message recovery, 158
METI, 119, 121
Meyer-Schilling hash functions, 262
microprobing, 590
Miller-Rabin probabilistic

primality test, 291, 382, 436,
437

million message attack, 550
MIME, 591, 658
minimal polynomial, 125, 382
minimum distance, 124
Minkowski lattice reduction, 346
Minkowski’s first theorem, 346, 569
MIPS-year, 383
miss-in-the-middle attack, 383
MISTY1, 322, 410, 411
misuse, 299
mix networks, 383
mixed alphabet, 10
Miyaguchi-Preneel hash function, 261
mobile code, 658, 659, 661
modes, 12
modes of operation of a block

cipher, 386–90
modification, 458

modular addition, 392
modular arithmetic, 391–93, 434, 435
modular exponentiation, 221, 392, 396
modular inverse, 392
modular multiplication, 392
modular root, 394
modulus, 391, 392, 394
MONDEX-scheme, 181, 362, 394
monitoring, 458
monographic substitution, 601
monomial, 517, 518
monotone, 7, 544
monotone signature, 238
MonPro algorithm, 395
Montgomery arithmetic, 394–97
Montgomery exponentiation, 396
Montgomery multiplication, 397
Montgomery product, 395
Montgomery reduction, 395
Montgomery representation, 395
Montgomery squaring, 396, 397
Moore’s law, 398
Morrison-Brillhart method, 293
MPHPT, 119, 121
MPQS, 493
MQV key agreement scheme, 189
m-resilient, 55, 105
m-sequence, 372
MtE, 13
multicast encryption, 538
multi-exponentiation, 584
multigram property, 373
multipartite substitution, 601
multiparty computation, 398–400
multiple anagramming, 116
multiple bits DPA, 171
multiple encryption, 381, 401, 598
multiple polynomial quadratic sieve,

493
multiplication problem, 92, 96, 401
multiplicative group, 227, 244, 524
multiplicative inverse, 392
multiplicative knapsack, 333
multiplicative secret sharing, 607
multi-precision multiplication,

401–4
multi-precision squaring, 404
multi-set attack, 405
multi-signature, 250, 612
mutual identity verification protocol,

285

N

NAF, 193, 194, 584
name, 593
name constraints extension, 635
naming authority, 273
Naor–Yung double encryption

paradigm, 109
narrow-sense envelope, 226
National Bureau of Standards, 129
NBS, 129
near prime, 239
nearest vector problem, 79
Needham-Schroeder protocols, 407
need-to-know principle, 6
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NEMA, 116
NESSIE project, 408–12
New European Schemes for Signature,

Integrity and Encryption, 408–12
NFS, 430–33
Niederreiter encryption scheme,

413
NIST, 88, 228, 566, 586
NIZK, 418
NL, 105
NLFSR, 415
non-adjavent form, 193, 194, 584
non-blind watermarking, 655
nonce, 73
non-coincidence exhaustion, 115
non-commutative, 244
non-cyclic, 244
non-interactive proofs, 414, 419
non-interactive zero-knowledge proofs,

672
non-invasive attack, 591
non-linear feedback shift register,

415
non-linearity of Boolean functions,

416
nonlinearity order, 53
non-malleability, 417, 560
non-multiplicativity, 528
nonperiodic key, 323
non-repudiation, 71, 97, 214, 420–24
non-secret key encryption, 424–26
non-singular Boolean function, 139
non-singular LFSR, 356
non-transferable, 641
non-transferable credentials, 110
non-transferable signature, 146
normal base, 313
normal-legacy, 408
normal profile, 299
NP, 94
NP-complete, 94
n-residue, 395
NTRU, 348, 427
null, 601
null cipher, 118
number field, 430
number field sieve, 166, 288, 296,

430–33
number theory, 433–39
Nyberg-Rueppel signature scheme,

440

O

OAEP: Optimal Asymmetric
Encryption Padding, 108, 443,
534

oblivious transfer, 399, 445
observer, 181
OCB, 12, 15, 16
OCSP, 70, 459
odd-characteristic extension, 211, 227
OEF, 448–50
OFB, 386, 387
off-line authentication, 197, 198
off-line CAM, 197, 198
offline credentials, 110

off-line electronic payment, 176
off-line electronic postage, 177
offset codebook, 12, 15, 16
OFT protocol, 248
OMA, 200
OMAC, 64, 365
omega-notation, 447
one-more forgery, 37, 38, 74, 238
one-time blind signature, 38
one-time key, 324
one-time pad, 324
one-time password, 446
one-to-one, 333
one-way accumulator, 618
one-way function, 94, 446, 485, 625
one-way function tree protocol, 248
One-Way Hash Function (OWHF), 257
one-way permutation, 446
onion routing, 384
on-line authentication method, 197, 200
on-line CAM, 197, 200
on-line certificate status protocol, 70,

459
online credentials, 110
online electronic payment, 176
on-line electronic postage, 177
online mutual authentication, 200
O-notation, 447
opaque, 489, 490
open code, 118
Open PGP, 555
Optimal asymmetric Encryption

Padding, 443, 534
optimal authentication scheme, 21
optimal extension fields, 448–50
optimistic contract signing, 97
oracle, 560
orange book, 552
order, 357, 393, 450
OT, 445
OTP, 324
outer modes, 389
out-of-phase autocorrelation, 27
output feedback, 387
output transformation, 63, 263, 364
outsider secure, 580
overspender detection, 450
overspending prevention, 450
OWHF, 257

P

P3P, 479
packet, 519
padding, 200, 202, 384, 565
PAG, 422
Paillier assumption, 108
Paillier encryption and signature

schemes, 453
pairings over elliptic curves, 276
PAP, 24, 26
parallel composition, 672
parallelized collision search, 165
parity check matrix, 124, 126
parity check polynomial, 126
parity check symbols, 127
Parseval’s relation, 54

partial-domain one-wayness, 444
partial preimage resistance, 257
partial signature, 612
partition number, 531
partitioning cryptanalysis, 353
passive adversary, 399
passive attacks, 161
passive cryptanalysis, 113, 568
passive eavesdropper, 169, 568
passive penetration test, 456
password, 285, 453–55
pastry dough mixing, 601
pattern finding, 115
pay later, 176
pay now, 176
payment authorization, 174, 176
payment card, 455, 564
PC, 481, 482
PCR, 139
PDP, 24, 25, 26, 27
PEM, Privacy Enhanced Mail, 455
penetration, 458
penetration testing, 456
PEP, 24
perfect, 544, 567
perfect cryptosystem, 290
perfect forward secrecy / PFS, 457
perfect threshold scheme, 567, 609
perfect zero knowledge, 671
perfectly secure steganography, 161
period of a polynomial, 357, 373, 561
period of a sequence, 27
periodic key, 323
permission, 461, 462
permitted subtrees, 636
permutation, 129, 130, 358, 599
permutation matrix, 601
person pseudonym, 483
personal agent trust, 181
personal identification number

(PIN), 458
personalization, 283
PES, 271
PFS, 457
PGP, 466
phase noise source, 512
physical attacks, 458
physical security, 458, 662
piling-up lemma, 351
PIN, 458
PIN verification, 200
PKCS, 443, 459, 528, 530
PKG, 273
PKI, 459, 488
PKI Assessment Guidelines, 422
PKIX - Public Key Infrastructure

(X.509), 69, 459, 553
plaintext, 119, 568
plaintext awareness, 560
plaintext ciphertext compromise, 113
plaintext plaintext compromise, 113
platform for privacy preferences project,

479
playback control, 99
Playfair cipher, 460
plug-ins, 658
PMAC, 16, 366, 460
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PN-sequence, 483
Pohlig-Hellman algorithm, 164
point addition, 185
point at infinity, 184
point doubling, 185
point multiplication, 191, 193
point of sale, 66
policy, 25, 26, 461
Policy Administration Point, 26
policy constraint, 634
policy control, 283
Policy Decision Point, 24, 25, 26, 27
Policy Enforcement Point, 24
policy mapping, 634
policy mapping inhibit indicator, 635
Pollard’s Kangaroo method, 166
Pollard’s lambda method, 167
Pollard’s p-1 method, 292
Pollard’s rho method, 165, 292
polyalphabetic encryption, 323
polyalphabetic substitution, 323
Polybios square encryption, 464
polygraphic substitution, 601
polynomial basis representation, 211
polynomial complexity, 465
polynomial function, 464, 465
polynomial security, 93
polynomial time, 464
polyphony, 202
Pontifex, 593
Porta encryption, 465
Porta table, 465
POS, 66
postal security device, 178
power analysis, 572, 573
power trace, 152
PP, 87, 229
pre-charged dual rail logic, 575
predecessor attack, 385
predictable sequence, 350
preimage resistance, 257, 465
pre-pay, 176
preperiod, 415
Pretty Good Privacy, 466
PRIMALITY problem, 93
primality proving algorithm, 470,

472
primality test, 470
prime certificate, 68
prime field, 227
prime field anomalous curve, 187
prime generation, 470, 472, 474
prime number, 470–75
prime number theorem, 436, 471
prime-order field, 227, 393
priming key character, 323
primitive cyclic code, 124
primitive element, 476
primitive polynomial, 126, 373, 476
primitive root, 240
principal ideal, 125
principal ideal ring, 125
privacy, 11, 12, 282, 284, 285, 476
Privacy Enhanced Mail, 455
privacy enhancing technologies, 478
private key cryptosystem, 324, 603
private key generator, 273

private watermarking, 655
privilege, 25, 282, 479
privilege management, 479
PRNG, 485, 486, 487
proactive group signature, 455
proactive password, 455
proactive threshold cryptography, 609
proactive threshold signature, 612
probabilistic algorithm, 94
probabilistic primality test, 480
probabilistic public-key

encryption, 480
Probabilistic Signature-Encryption

Padding, 582
probabilistic signature scheme, 530, 534
probabilistic SSS, 545
probable prime, 470, 472, 480, 485
product cipher, superencryption,

202, 480
proof of knowledge vs proof of

membership, 481
proofs of membership, 481
propagation characteristics of

Boolean functions, 55, 481
propagation criterion, 481
proposed encryption standard, 271
protection, 2
protection profile, 87, 229
protocol, 482
Proton, 362, 482
provable prime, 472
provable security, 12
prover, 297, 593
provisioning, 283
proxy encryption, 488
proxy signatures, 490
PSAM, 66
PSD, 178
PSEC-KEM, 411
PSEP, 582
pseudo-Hadamard transform, 638
pseudo Mersenne prime, 482
pseudo-noise sequence, 483
pseudonym, 476, 477, 483
pseudonymity, 10
pseudoprime, 472, 484
pseudo-random function, 146, 485
pseudo-random number generator,

485
pseudo-random permutation, 358, 359
pseudo-random sequence, 242
PSS, 530, 534
PSS-R, 530, 581
public key based protocol, 222
public key certificate, 67
public key cryptography, 487
public key cryptography standards, 459
Public Key Infrastructure, 488
public key proxy encryption, 488
public key proxy signatures, 490
public key stegosystem, 163
public key watermarking, 656
public watermarking, 655
publicly verifiable secret sharing, 646
purchase secure application module,

66
pure circulating register, 139

pure cryptosystem, 119
purse, 394

Q

Q-matrix, 30
QS, 493–95
quadratic complexity, 139
quadratic Frobenius test, 437
quadratic non-residue, 493
quadratic reciprocity law, 317
quadratic residue, 493
Quadratic Residuosity Problem,

493
quadratic sieve, 295, 438, 493–95
quantum cryptography, 495–98
quartet, 149
quaternary alphabet, 9
quick mode IPsec, 312

R

RA, 518
Rabin cryptosystem, 501
Rabin digital signature scheme, 502
Rabin-Miller test, 291, 436, 437
Rabin’s primality test, 473, 474, 475
RACE project, 408, 409
radio frequency attacks, 503
rainbow tables, 615
ramp scheme, 545
random bit generation (hardware),

509
random key, 324
random oracle model, 514
random preimage attack, 259
random sequence, 323
random squares method, 294
randomized algorithm, 94, 95
randomness postulates of Golomb, 242
randomness source, 511
rank metric, 376
rational points, 186
RC2, 515, 518
RC4, 515
RC5, 515
RC6, 516
rchop, 386, 387
reactive defense password, 455
receipt-free problem, 180
receiver deniable encryption, 142
recipient anonymity, 517
recipient unobservability, 517
record layer, 548
rectangle attack, 56, 62, 150
reduced, 346
reducible polynomial, 313
reduction, 93, 94
reductionist, 443
redundancy, 290
Reed-Muller codes, 517
Reed–Solomon code, 125
Registration Authority, 518
re-keying, 245, 247
related key attack, 518
relationship anonymity, 88
relationship pseudonym, 484
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relatively prime, 519
relay attack, 519
reliability, 174, 176, 245, 606
relying party, 67, 594
remote DoS attack, 143
repeated key, 323
replay attack, 80, 312, 329, 519
repository, 283, 617
representation (lambda), 194
request for comment, 455, 459
resettable zero-knowledge, 672
residue class, 206, 391
resilience, 612
resiliency order, 83, 105
resilient, 55, 105
response, 519
resynchronization attack, 519
retail MAC, 64, 65, 365
reversed alphabet, 10
revocable credentials, 110
revocation scheme, 56, 57, 278, 669
RF attack, 503
RFC, 366, 455, 459
right, 462, 520
right-to-left exponentiation, 33, 520,

583, 588, 640
rights management, 520
Rijndael, 520–24
ring, 524
ring homomorphism, 268
RIPE, 408, 409, 411
RIPEMD family, 260, 366, 524
risk, 629
risk management, 200
RMAC, 65, 366
robust, 612, 655
Rohrbach’s maxim, 371
role hierarchy, 5
root CA, 564
rotor, 116
round, 245, 480
round function, 41, 258
rounds complexity, 245
RP, 67, 594
RS code, 125
RSA assumption, 532, 534, 537
RSA-CRT, 666
RSA cryptosystem, 527, 528, 537
RSA digital signature scheme, 527
RSA factoring challenge, 531
RSA-KEM, 411
RSA number, 531
RSA problem, 532, 537
RSA-PSS, 410
RSA public-key encryption, 536
Rule Book, 52
run, 539
run property, 373
running-key, 323, 539
running time, 92

S

SA, 311, 312
SAC, 55
SAEP+, 444
safe prime, 541

safeguard selection, 629
SAFER, 518, 627
sally, 462
salt, 541
SAML, 479
SAN, 602
SASAS, 405
Satoh’s algorithm, 190
saturation attack, 405, 639
SBEMP, 504
scalable GKE, 245
scalar multiplication, 191, 244, 608
scanning electron microscope, 302
Schnorr digital signature scheme,

541
Schnorr Identification, 542
Schoof ’s algorithm, 190
SDA, 198
SDMI, 656
SDSI, 593
SDSI names, 593, 594
SEAL, 543
second preimage resistance, 257,

543
secrecy, 118
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