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1 + Slz + S:z2. However, this polynomial factors into (1 + Slwz) 
(1 + Slo2z), where w = d7 is a primitive third root of unity. So 
the two errors are at locations Slw and S,02. This explains rule 
4) in Algorithm 12. 

Algorithm 12: Compute S,,, Sl, and S, and with these also 
- p5). 7- 5 

1) IF s5 f sg, THEN 

01 = SI, 

s, + s:s, 
s, + s: U,=-. 

2) IF S, = S: and 4, = 1  THEN 

U, = SI 7 

U, = 0. 

3) IF S, = S: and S, = SI = 0 THEN 

(II = U, = 0. 

4) IF S5 = S:, s,, = 0 and S, + 0 THEN 
‘. 

01 = Sl t 

U, = s:. 
The two errors are at locations S,w and Slw2, where w = d7 is a 
primitive third root of unity. 

IV. CONCLUSION 

For a number of binary cyclic codes with e > eBCH,  algebraic 
algorithms are given to find the error locator polynomial. Thus 
for these codes more errors can be corrected algebraically than by 
the Berlekamp-Massey algorithm. In some cases all error pat- 
terns of weight up to e can be decoded, in other cases only error 
patterns of weight up to e’ with eBCH < e’ I e. The correctness of 
three of these algorithms is (partly) based on an exhaustive 
computer search; in all other cases the algebraic proof is given in 
detail. It seems likely that many more cyclic codes can be 
decoded with the methods discussed here. 
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On a Class of Primitive BCH-Codes 

PASCALE CHARPIN 

Abstract - We introduce a special class of primitive BCH codes, the 
rnirirmul BCH (MB) codes. Let C be an MB code of length p”‘ - 1 and 
designed distance d over GF(q), q = pr; then d = uE~L,,q’, where q - a is 
minimal in a certain sense. We prove that an MB code so defined has as 
minimum distance its designed distance. Using the Roos bound, we pro- 
pose a lower bound, sometimes tight, for the minimum distance of the dual 
of an MB code. We describe the subclass of weakly self-dual extended MB 
codes and then characterize some weakly self-dual extended BCH codes. 
Similarly, we prove that the nontrivial extended MB code over GF(4) is 
the smallest extended BCH code which is not an even code. We point out 
that extended MB codes are principal ideals of a modular algebra of type 
Fp. [ F,,.] 

I. INTRODUCTION 

Let p be a prime. A cyclic code of length n = p“ - 1 over a 
field of characteristic p is called primitive. We denote by G the 
Galois field GF( p”’) and by a a primitive n th root of unity in G. 
In this correspondence, all cyclic codes are assumed to be primi- 
tive and to have symbols from K ,  where K is a subfield of G. We 
denote by q the order of the finite field K ;  a BCH code is always 
a narrow-sense BCH code [SI. 

A cyclic code C is a principal ideal in the ring K [ Z ] / (  Z“ - 1). 
If g ( Z )  is the generator polynomial of C then a’ is a zero ofthe 
code C if and only if g(a ’ )  = 0. Thus we say that the set 

{ I E [ 0 ,  n ]  la‘ is a zero of c } (1) 
is the definition set of C. Recall that the BCH code of length n 
and designed distance d over K = GF(q) is the cyclic code with 
definition set 

T( q ,  d ) = 

of q mod n containing I .  

U CI, , CI, is the cyclotomic coset 
I E [ l , d [  ( 2) 

Such a code is denoted by B ( q ,  d ) ,  d E [l, n ] .  
In Section I1 we define a class of BCH codes which we call 

minimal BCH (MB) codes. This terminology is justified by the 
fact that an MB code with designed distance d has, in a certain 
sense, a minimal dimension-see Definition 1 and the proof of 
Lemma 1. In other words MB codes are primitive BCH codes the 
dimension of which follows immediately from the p-ary expan- 
sion of their designed distance. In Theorem 1 we state another 
definition of the class of MB codes; formula (7) shows the values 
of the designed distances of the MB codes and provides an 
overall description. The following corollaries give precise details 
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We then consider together MB codes and extended MB (EMB) 
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algebraic properties that BCH codes cannot have. The extended 
BCH codes are invariant under the affine group; in such a 
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context there are interesting relations between the weights of the 
code (or of its dual) and the weights of the extension (or of its 
dual). When an extended BCH code is an EMB code, some 
properties take a simple form; for example, the definition of the 
dual (see (15)), the weakly self-duality (Theorem 6), and the 
weight-divisibility over GF(4) (Theorem 8). Using the Roos bound 
we state a lower bound for the minimum distance of the dual of 
an MB code; Corollary 5 proves that in some cases this bound is 
exactly the minimum distance. 

We point out that MB codes are interesting BCH codes. We 
prove that studying EMB codes one obtains some weakly self-dual 
BCH codes and all even BCH codes over GF(4) (Corollary 8 and 
Theorem 8). Moreover, an extended BCH code is a principal 
ideal of the group algebra K [ G ]  if and only if it is an MB code 
(Theorem 9). Table 1 presents the parameters of the MB codes of 
length n < SO00 for p E {2,3,5,7,11}. . 

11. THE CLASS OF MINIMAL BCH CODES 

Let S be the interval [0, n ] .  Each s E S will be identified with 
6 its p-ary expansion (written as an m-tuple): 

m - 1  

s=(so; . . ,s , , , -1)  s =  c s,p' S,E[O,P-l] .  
1=O 

The p-weight of s is o,,(s) =E:&'s,. We denote by K the partial 
order relation over S :  

k < < t o  k ,  I t , ,  forall i E  [O,m-11, (3) 
and we say that t is an ascendant of k .  

Definition I :  A code B ( q ,  d )  which satisfies I 
m - l  

dimC= n ( p - d , )  ( 4) 
I = o  

is called an MB code. 
The following lemma gives an equivalent formula for (4) which 

will be used for the description of the class of MB codes (for the 
proof of Theorem 1). In the proof of this lemma, we point out 
that a given BCH code that satisfies (5) has minimal dimension 
(in a certain sense); for this reason we say that such a code is a 
minimal BCH code. 

Lemma I: The code B ( q , d )  is an MB code if and only if 
T( q, d )  satisfies 

T ( q , d )  = S * \ { s E S l d < < s }  wi thS*=[ l ,n ] .  ( 5 )  

Proof: The cardinality of T(q ,  d )  is the cardinality of the 
zeros set of the cyclic code B ( q ,  d ) ;  thus dim B ( q ,  d )  = n - 
lT(q, d)l .  Moreover, T(q,  d )  does not contain the ascendants of 
d.  Indeed, s E T(q ,  d )  if and only if there exists a j such that 
q / s  < d .  Suppose that s is an ascendant of d ;  then we have 
d << s, q/d -=sc q / s ,  and finally q/d I qJs < d ,  which contradicts 
(2). Thus we have proved 

dim B( q ,  d )  2 I { s  E Sld << s }  I 
- i e  T ( q , d )  c S * \ { s ~ S l d < < s } .  ( 6)  

If (6) is satisfied with equality, we say that the BCH code B ( q ,  d )  
has minimal dimension. It is clear that 

m - l  

I { s E S l d < s } l =  n ( p - d , ) .  
r = O  

Hence (6) becomes an equality if and only if B( q, d )  satisfies (4). 
Thus we have proved that a BCH code has minimal dimension 
(i.e., satisfies (5)) if and only if it is an MB code. 

Theorem I :  q = p" and m = m'r. For each j E [l,( p - l ) r ] ,  we 
denote by d(  j )  the element of S defined by 

w i t h a ( j ) = m a x { s E [ l , q - l ] ( o , , ( s ) = j } .  (7) 

Let D( 9 )  be the set of the d ( j ) .  Then B( q, d )  is an MB code if 
and only if d E D ( q ) .  

Proof: Note that D( q )  is dependent on m', but the cardinal- 
ity of D( q )  is only dependent on q, thus justifying the notation. 
We shall specify the value of m' when necessary. First it is clear 
that each element d( j )  of D( q )  permits us to define a BCH code 
with designed distance d ( j )  over K .  Indeed, the definition of 
d( j )  implies that q ' d ( j )  = d ( j ) ,  for all 1. We now denote by T 
the definition-set of a code B ( q ,  d ) ;  let T =  { s  E Sld K s } .  

1) Suppose that d = d ( j ) ,  d ( j )  E D(q) .  We have seen that 
T c S*\T. Let s E S*\T; let (so; . - , s , , ~ , - ~ )  be the q-ary expan- 
sion of s (written as an m'-tuple). Similarly, let (do; . -, dm,-  1 )  

be the q-ary expansion of d .  Since s B 7, there exists an i such 
that s, is not an ascendant of a ( j ) .  In accordance with (7) we 
can write a formula giving the p-ary expansion of a( j ) :  

r - 1  

j )  - 1 - -U  + c ( P - l ) P k  ( 8) 
k = r - u  

where U and U are, respectively, the quotient and the remainder 
of j by ( p  - 1)-by convention, if U = 0 then [ r  - U ,  r -11 = O .  
Obviously, u ( j )  IS, if and only if a ( j )  << s,. Hence s, < a( j ) ;  
therefore, q''l'-'-'s < d ( j )  and then s E T. We have proved that 
T satisfies (5); thus B ( q ,  d )  is a MB code. 

2) We suppose now that T satisfies (5). Then d << q'd, for all i. 
However, U!, (q'd)  = U,, ( d )  implies that q'd = d - two distinct 
elements whch have the same p-weight cannot be related by << . 
Then d has the following form: 

a 
m'-1 

d =  aq', a E [ l , q - l ] .  
r = O  

Let j = o,,(u); suppose that a f a ( j )  - a ( j )  is defined by (7). 
Let s = d( j ) ;  then d I s and s is not an ascendant of d.  Since 
B( q, d )  is a BCH code, we have s B T. This contradicts ( 5 ) .  Thus 
we conclude that d E D(q). 

The cardinality of D(q) is r ( p  - 1): among BCH codes of 
length n over K there are r( p - 1) MB codes. The number of 
MB codes in a class of BCH codes is then only dependent on the 
order of K .  If the length of the considered codes is q - 1, we 
obtain Reed-Solomon codes. 

Corollary 1: Among the Reed-Solomon codes of length p"' - 1, 
there are m( p - 1) MB codes. The minimum distance of such an 
MB code takes one of the values: 

d(  j )  = m a {  s E [1,p"1 -l]lw,,(s) = j } ,  

j E  [ I ,  .t( P -111. 
The MB code which has d( r( p - 1)) as designed distance is a 

trivial cyclic code: its definition set is the interval [ l ,  n - 11. If 
q = 2 then r( p - 1) = 1; hence we have the following. 

Corollary 2: There is only one binary MB code of length 
2"' - 1; this is the cyclic code whose generator polynomial is 

Analyzing (4) with the aid of (7) and (8), we can provide 
C:L;Zl. 

another expression for the dimension of an MB code. 
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TABLE I 
E M B  CODESOF LENGTH N ( N E  p"') OVER GF (4) FOR N <  5000 AND p E (2,3,5,7,11}" 

N y d 6  k N q d  6 k 

16 
64 
64 
64 

256 
256 
256 
256 
512 
512 

1024 
1024 
1024 

4 
4 
8 
8 
4 

16 
16 
16 
8 
8 
4 

32 
32 

10 
42 
36 
54 

170 
i36 
204 
238 
292 
438 
682 
528 
792 

*4 
5 

*8 
4 
6 

*16 
8 
4 

11 
5 
7 

.:32 
16 

4 
8 

16 
4 

16 
64 
16 
4 

64 
8 

32 
256 
64 

1024 
1024 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 
4096 

32 
32 
4 
8 
8 

16 
16 
16 
64 
64 
64 
64 
64 

924 8 16 
990 4 4 

2730 8 64 
2340 14 512 
3510 6 16 
2184 23 512 
3276 11 64 
3822 5 8 
2080 *64 1024 
3120 32 256 
3640 16 64 
3900 8 16 
4030 4 4 

9 
27 
81 
81 
81 
81 

243 
729 
729 

' 4  
13 
40 
30 
60 
70 -.. 

121 
364 
273 

4 
5 
6 

12 
6 
4 
7 
8 

17 

4 
8 

16 
36 
9 
4 

32 
64 

216 

729 
729 
729 
729 
129 
729 
729 

2187 

9 
9 

27 
27 
27 
27 
27 

3 

546 8 27 
637 5 8 
252 36 324 
504 18 81 
588 12 36 
672 6 9 
700 4 4 

1093 9 128 

25 
25 
25 

125 
125 
125 
625 
625 
625 
625 

5 
5 
5 
5 
5 
5 
5 
5 
5 

25 

8 
6 
4 

11 
8 
5 

14 
10 
6 

40 

16 
9 
4 

64 
27 
8 

256 
81 
16 

400 

625 
625 
625 
625 
625 
625 

3125 
3125 
3125 

25 
25 
25 
25 
25 
25 

5 
5 
5 

260 30 225 
390 20 100 
520 10 25 
546 8 16 
572 6 9 
598 4 4 
781 17 1024 

1562 12 243 
2343 7 32 

6 
12 
18 
31 
62 
93 

156 
312 
468 
130 

49 
49 
49 
49 
49 

343 
343 
343 
343 
343 

2401 
2401 
2401 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
I 
7 
7 

8 
16 
24 
32 
40 
57 

114 
171 
228 
285 
400 
800 

1200 

12 
10 
8 
6 
4 

17 
14 
11 
8 
5 

22 
18 
14 

36 
25 
16 
9 
4 

216 
125 
64 
21 

8 
1296 
625 
256 

2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 
2401 

I 
7 

49 
49 
49 
49 
49 
49 
49 
49 
49 
49 
49 

1600 10 81 
2000 6 16 
350 84 1764 
700 70 1225 

1050 56 784 
1400 42 441 
1750 28 196 
2100 14 49 
2150 12 36 
2200 10 25 
2250 8 16 
2300 6 9 
2350 4 4 

133 
266 
399 
532 
665 
798 
931 

1064 
1197 

29 lo00 
26 729 
23 512 
20 343 
17 216 
14 125 
11 64 

8 27 
5 8 

121 
121 
121 
121 
121 
121 
121 
121 
121 

11 
11 
11 
11 
11 
11 
11 
11 
11 

12 
24 
36 
48 
60 
72 
84 
96 

108 

20 
18 
16 
14 
12 
10 
8 
6 
4 

100 
81 
64 
49 
36 
25 
16 
9 
4 

1331 
1331 
1331 
1331 
1331 
1331 
1331 
1331 
1331 

11 
11 
11 
11 
11 
11 
11 
11 
11 

. 

"The extended RS codes and the trivial codes are not given. d is the designed distance of 
the M B  code: k is the dimension of the M B  code and of its extension; 6 is the bound of the 
minimum distance of the dual (which is stated in Theorem 5). From Theorem 2, d is the 
minimum distance of the corresponding MB code (i.e., the minimum distance of the EMB 
code is d + 1). The asterisk indicates the minimum distance of the dual (see Corol- 
lary 5). 
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Corollary 3: Let B be an MB code with designed distance 
d ( j )  E D ( q ) .  Let U and U be the quotient and the remainder of j 
by p - 1, respectively. Then 

dim B = (( p - U )  pr-"- ' )  nl' .  ( 9) 
Hence the dimension of an MB code (such Bs B )  is a power of p 
if and only if p - 1 divides j (i.e., the p-ary expansion of d ( j )  is 
composed of 0's or p - 1's); for characteristic 2, the dimension of 
B is always a power of 2. 

Let d = aCy$ ' q r ,  a E [I, q - 11. Then we can construct a cor- 
responding cyclic code C the definition set of which is given by 
(5 ) .  Let T be the definition set in question. That means 

and C is a code over GF(q). 
Conversely, if C is a cyclic code over.GF(q) such that its 

definition set contains [ l ,d ]  and satisfies (lo), then d must 
satisfy q'd = d ,  for all i. Suppose that q = p ;  the definition of 
D( q )  simplifies to 

ni - 1 

4 j )  = j C P I ,  j ~ [ l , p - r ] .  (11) 
r = O  

This means that if K = GF( p )  then only MB codes have minimal 
dimension. 

Co~ollaly 4: If q = p ,  then a cyclic code the definition set of 
which satisfies (10) is a BCH code. 

The following theorem points out that the true minimum 
distance of an MB code is equal to its designed distance. 

Theorem 2: n = q"" - 1; let b = (4"" - 1)/( q - 1). Then a BCH 
code of length n and designed distance d = ab ( a  E [ l ,  q - 11) 
over GF(4) has minimum distance exactly equal to d;  therefore, 
all the MB codes of length n over GF(q) satisfy this property. 

I 

Proof: We have 
b = l + q +  . . . + q n l ' - l  n = b( q -1) 

Then (in the algebra K (  Z ) / (  Z" - l)), 

2'' -- 1 = U( Z )  Q( Z )  

with 

U ( Z )  =zQ-'-l 
and 

Let 

I =  { b,2b ;.., (4 -1 )b)  J = [ l , n ] \ Z .  

Then we have 

Q ( a ' )  = O - i E J .  

Let for each a ,  a E [l ,  q - 11: 
U - 1  

R , ( Z )  =Q(z>  n ( Z - a ' " )  
k = l  

(with RI(  Z )  = Q( Z ) ) .  
Note that the code B(q,  ab) exists for all a, because qab = ab 

modulo n; R ,  ( Z )  is a polynomial over GF( q )  the zeros of which 
are 

a'. l E I b .  26,. . . . abl U J 

Then R,( Z )  E B( q, ba). However, the weight of the correspond- 
ing codeword satisfies 

U - 1  

w ( R , , ( Z ) )  s w ( Q ( Z ) ) w (  k n =1 ( Z - @ ) )  < a b  

( w ( x )  is the weight of the codeword x ) .  Hence the minimum 
distance of B ( q ,  ab) is ab. Therefore, by Theorem 1, the mini- 
mum distance of an MB code equals its designed distance. 

Example I :  p = 2; q = 8; m = 6. There are three MB codes of 
length 63 over GF(8). The dimensions are, respectively, 24, 22, 
and 1. From Theorem 2 the designed distances 

d(1) = (0,0,1,0,0,1) = 36 

4 2 )  = (0,1,1,0,1,1) =54 

d ( 3 )  = ( l , l , l , l , l , l )  =63 (the trivialcode) 

are the true minimum distances of the corresponding MB codes. 
Example 2: q = p = 5 ;  m = 3 .  There are four MB codes of 

length 124 over GF(5). From Corollary 4, they are the only cyclic 
codes with minimal dimension. The elements of D(5) are 

d(1) = (l,l,l) 4 2 )  = (2,2,2) 

4 3 )  = (3 ,3,3)  4 4 )  = (4,4,4). 
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L same minimum distance. 

Each d ( j )  is the true minimum distance of the corresponding 
MB code; the dimensions are respectively 43, 33, 23, and 1. 

111. SOME PROPERTIES OF MB CODES 
AND EXTENDED MB CODES 

We now consider together the cyclic code and its extension; 
the extension is the usual one: each codeword is extended by 
adding an overall parity check, numbered 00. Let C be a cyclic 
code with definition set T; the extension of C,  denoted by C,, is 
the K-subspace of K N ,  N = pnl: 

n - 1  

c = ( c, 9 CO 9 .  . ., c,,- I ) IC, + c c, = 0 
r = O  

I n - 1  

and c , ( ~ ' ) ' = O , V S E T  . (12) 

We say that T, = T U ( 0 )  is the definition set of C,. Recall some 
properties of extended cyclic codes [I], [3]-[7]. 

r = O  

1) dimC, = dimC. 
2) C, is invariant under the doubly transitive affine group of 

permutation of G (is an affine-invariant code) if and only if T,  
satisfies 

3)  If c, is affine-invariant, then its minimum distance is d + 1 
if and only if the minimum distance of C is d;  hence Theorem 2 
also gives the minimum distance of thepxtended M8 codes. 

4) The definition set o,f the dual C, of C, is equal to the 
definition set of the dual C of C. That is, 

Nevertheless, and,.c, are distinct codes. From (12) it is clear 
that a codeword of C is a codeworfd of C, (with c, = 0). Suppose 
that Cc, is affine-invariapt; then C, is also affine-invariant. Then 
eachcodeword c of C,  can be transformed into a codeword 
C'E C, such that cj, = 0 and w(c) = w(c'). Thus we have proved 
the following. 

Lemma 2: If C,, is affine-invariant, then eo and c^ have the 
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It is well-known that extended BCH codes are affine-invariant; 
thus a dual of an extended BCH code is also affine-invariant. 
Henceforth we consider only extended cyclic codes that are 
affine-invariant. We denote by B,(q, d )  the extension of the code 
B( q, d ) ;  an extended MB code is called an EMB code. Extending 
BCH codes one produces weakly self-dual codes or even codes 
over GF(4) or ideals of a modular algebra; all these properties 
take a simple form when the considered BCH code is an MB 
code, as we shall show later. 

A .  On EMB Codes Duality 

definition set of its dual is the set 
Theorem 3: Consider an EMB code B,(q, d ) ,  d E D(q) ;  the 

t , ( q , d )  = { s E S l s < < n - d } .  (15) 
Proof: According to ( 5 )  and (14), we have 

s E si;,( q , d )  * n -s E T , ( q , d )  - d  -=x n -s * s  -=x n - d ,  

completing the proof. 

Let b(q) be the set of the n - d ( j ) ,  d ( j )  E D(q) ;  Theorem 3 
means that e,ach dual of an EMB code is uniquely defined by one 
element of D(q) ,  In accordance Yith (7) and (8), we can define 
the elements of D ( q )  as follows: D ( q )  is the set of the t ( k )  E S ,  
k E [0, r( p - l ) ] ,  such that 

4 

n1' - 1 

t ( k )  = b ( k )  c 4' 
r = o  

with h ( k )  = m i n ( s ~ [ l , q - l ] l o , ( s )  = k } .  (16) 

Using the Roos bound [ l l ] ,  we can give a lower bound for the 
minimum distance of the dual of an MB code; it follows from 
Lemma 2 that this bound is available for the dual of the exten- 
sion of the MB code. Theorem 4 is the theorem of Roos (adapted 
to our notation). A simpler proof of this theorem has recently 
been given by Van Lint and Wilson [12]. Corollary 5 presents a 
class of MB codes for which this bound is the minimum distance 
of their duals. 

Let M c S ;  M is called a consecutive set of length k ,  if there 
is some a, which is relatively prime with n ,  such that 

I 

M = { as (modn)ls E [ l ,  k ] } .  (17) 

If MI c S and M, c S ,  then we can define 

MI + M2 = { s, + s2 (mod n) Is, E Ml, s2 E M2 } . (18) 

Theorem 4 (Roos Bound): Let T be the definition set for a 
cyclic code with minimum distance d,. Let M c S be such that 
there exists a consecutive set M containing M with I /MI+ 
d ,  -2 .  Then the cyclic code with definition set T +  M has 
minimum distance d 2 I MI+ d ,  - 1. 

Theorem 5: Let t E b( q),  t = t ( k ) ,  and b ( k )  be defined by 
(16). Let T = { s  E Sls < < I } ,  and let U be the cyclic code of 
length q"' - 1 over GF( q ) ,  the definition set of which is T. Then 
the minimum distance 6 of U satisfies 

8 2 m ' b ( k ) + 2 .  (19) 

In other words, let 6 be the minimum distance of the dual of 
B( q, n - t )  (or of B,( q, n - t ) ) ;  then S satisfies (19). 

Proof: We suppose that t is such that U is not a trivial code. 
We suppose also that m ' > l ;  indeed if m'=1, the considered 
codes are Reed-Solomon (RS) codes and t = b ( k ) ;  in this case 
the dual of B,(  q, n - t )  is Be( q, t + 1 )  the minimum distance of 

which is t + 2  (in (19) S equals the bound). Let 

M ) =  { o , q f , 2 q f , . . . , b ( k ) q ' } ,  Z E [ O , ~ ' - I ] .  

The definition of b ( k )  implies that s E [0, b ( k ) ]  if and only if 
s -=K b ( k ) .  Indeed, the p-ary expansion of b ( k )  is ( p  - 1 , .  . ., 
p - l , u , O , . . . , O )  (replacing a ( j )  by q - 1 - a ( j )  in (8)). This 
observation and the definition of T imply 

m'-1 m ' - 1  

T =  { s,Is, E M )  = M ) .  
r = O  1 r = O  

Since a''' is a primitive nth root of unity in G ,  M, is a consecu- 
tive set of length b ( k )  + 1.  We denote by y the cyclic code the 
definition set of which is C;=,M,; let d, be the minimum 
distance of q. Since dn+ = S and Urn,,- = U we shall prove 
(19) by induction on i E [0, m'- 11. 

Clearly, d,, 2 h( k )  + 2. By Theorem 4, we have 

d , > I M , I + d , - , - l ,  i E [ l , r n ' - l ] .  

Then 

d ,  2 ( b (  k )  + 1 )  +( b( k )  + 2 )  - 1  = 2b( k )  + 2  
Suppose now that we have proved (19) for i - 1.  Then 

d, 2 ( b( k )  + 1 )  + d , _  - 1 2 ( b( k )  + 1 )  + (&( k )  + 2) - I 

2 ( i  + l ) h (  k )  + 2 .  

We obtain (19) for i = m'- 1 .  Note that T is the definition set of 
the dual of the MB code B ( q ,  n - t ) ;  from Lemma 2, S is also 
the minimum distance of the dual of B,(q, n - t ) .  

Example 3: p = 2, q = 4, m'= 3. Then 

D ( 4 ) = { ( 0  1 0 1 0 1 ) , ( 1  1 1 1 1 1 ) )  

b ( 4 ) = { ( 0  0 0 0 0 0 ) , ( 1  0 1 0 1 0 ) )  

= { d ( l ) ? d ( 2 ) )  

= { t ( O ) , t ( l ) } .  

Consider the dual of B(4, d(1)  = 42); with the notation of Theo- 
rem 5 we have t = t ( l ) ,  b(1) = 1  and 

T =  {0,1,4,5,16,17,20,21} 6 2 3 + 2 = 5  

Corolluty 5: m = 2r and q = 2'. Let d = 2r-*(1 + q ) .  Then the 
dual of the MB code B ( q ,  d )  (or of the EMB code B,(q, d ) )  has 
minimum distance q. 

Proof Let hIbe the dual of B,(q ,d) ,  and let ? !e the 
definition set of B. Let 8 be the minimum distance of B. We 
have m'= 2 and, by (7) and (16), d = d(1) and n - d = (2r-1 - 
l ) ( l + q ) = t ( r - 1 ) .  Then m ' b ( r - l ) + 2 = 2 ( 2 ' - ' - 1 ) + 2 = q ;  
from Theorem 5, S 2 q. Thus the proof of the theorem amounts 
to finding a codeword of B the weight of which is q., 

Let a = q - 1 and c = (4"" - l ) / ( q  - 1); then n = ac and 

+ I )  Z l 1 - 1 = ( Z  - 1 ) ( z ~ ( ~ - 1 ) + z z ' ( u - 2 ) +  ... 
= ( Z  - l ) h ( Z ) .  

Since ? = { s ~ S I s - = ~ ( 2 ' - ~ - 1 ) ( 1 + q ) } ,  S E ?  if and only if 
s = s1 + s2q with s, E [0,2' - - I ]  and s2 E [0,2'-' - 11. Note that 
q - 1 divides s if and only if q - 1 divides s1 + s2.  However, 
q = 2', and thus s1 + s2 < q - 1. Hence q - 1 cannot divide s. 
However (a')< = 1 if and only if s = 0 or 9: - 1 divides s. From 
the remark above, such an s cannot be in T\{O}. Thus we have 
proved that 

s E f \{O} + h(  a') = 0. (20) 
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Let h ,  be the todeword obtained by extending h ( Z ) .  From (12) 
and (20) h,, E B. Moreover, the weight of h ,  is a + 1 = q. 

code B,(q ,  d (  j ) ) ;  the symbols U and T ar,e defined in Corollary 
7 and its proof. From the definition of R and R (see ( 5 )  and 

Example 4: m = 8, q = 24, d = 2317 =136. Hence m'= 2 and 
n=255. Let B be the BCH code of length 255 and designed 
distance 136; B has minimum distance 136; the extension Be of 
B has minimum distance 137 (from Theorem 2). The dual of B 
and the dual of B ,  have minimum distance 16 (from Corollary 5). 

B. Weukb Self-Dual EMB Codes 

A linear code which is contained in its dual is called weakly 
self-Cual (WSD). Let U be a cyclic code with definition set T. 
Let T be thepefinition set of the dual of U. Then U is WSD if 
and only if T c T. Thus a narrow-sens! BCH cpde cannot be 
WSD because for such a code zero is in T\T. However extended 
BCH codes (and therefore EMB codes) are possible WSD codes, 
as we shall show. Moreover, we exhibit (in Corollary 7 )  a part of 
WSD extended BCH codes. Further, we point out that in some 
cases all WSD extended BCH codes are described. 

Theorem 6: An EMB code with designed distance d is WSD if 

Proof: Let B be an EMB code, and let R be the definition 
:et of B. From (5)  and (15), it is obvious that the condition 
R c R is equivalent to n - d < d. 

and only if d > n /2 .  
4 

Corollary 6: EMB codes over GF(2') are WSD. 

Proof: q = 2'. For a given length n ,  the designed distance of 
the largest EMB code is 

m'-1 

I d ( 1 )  =2'- '  4'. 
r = O  

(See (7)  and (8).) Clearly, d(1) > n/2 .  

Remark: If m'=1, then n = q - 1 and extended BCH codes 
are extended RS codes. Then the dual of Be( q, d )  is the extended 
RS code B,(q ,  n - d + 1). We have d(1) = 2r-1 = q/2 ,  and thus 
n - d(1)  + 1 = d(1). Hence B,(q, d(1)) is the self-dual extended 
RS code. 

Corollary 7: Let j E [l ,  r ( p  - l)] be defined by: J =1 if p = 2 
and j = U , ( (  q - 1)/2) + 1 otherwise; let X = d(  J ) .  Let U be the 
extended BCH code B , ( q ,  d ) .  Then 

1)  if d I n - A ,  then U is not WSD; 
2) if n - X < d I X ,  then U can be WSD; 
3) if d > A ,  then U is WSD. 

Proof: Let T be the definition set of U. D ( q )  is defined by 
(7) in Theorem 1. Note that 

X = m i n { d ( ~ )  E D ( q ) l d ( j )  > ( n / 2 ) )  
( A  is the designed distance of the largest WSD EMB code). If 
p = 2, then X = d(1) (from Corollary 6). 

Since A > n / 2 ,  we have d I n - X < A .  Thus n - X E f\T, 
and U cannot be WSD. 

This follows immediately from Theorem 6. 

1)  

2) See Example 5. 
3) 

(15)) we can say that (21) yields k\R = { d ( j ) } .  Thus if d > d ( j ) ,  
then R is-strictly contained in ?-therefore, T is strictly con- 
tained in R with d ( j )  65 T; hence T c R c T. We have d > d ( j )  - U is WSD. 

By (7),  (21) is satisfied if and only if a ( / )  = ( q  - 1)/2. Hence 
q cannot be even. Suppose that p > 2  with q=p'.  Let b =  

(( q - 11/21 ; then 

~- q - 1  r - l p - 1  P -1  
- r = O  c 2 p i + P = r -  2 

Clearly, a( p )  = ( q  - 1) /2  if and only if r = 1. Therefore we have 
proved the following. 

Corollary 8: For p > 2 and n = p"' - 1, an extended BCH code 
of length p"' over GF(p) is WSD if and only if its designed 
distance d satisfies d > n / 2  (i.e., if and only if it is strictly 
contained in the EMB code whose designed distance is n/2) .  

C. Even EMB Codes nnd Even BCH Codes over GF(4) 

In this section K = GF(4). The length of the codes is 2"' with 
m = 2m'. A code U with weights divisible by two is called an 
even code. There is only one non-trivial EMB code over GF(4). 
This is B = B,,(4, d(1)) with 

nz' - 1 

d ( 1 )  = 2  4 ' = ( 0 , 1 , 0 , 1 ; . ~ , 0 , 1 ) ;  (22) 
r = O  

then 
n1'- 1 

n - d ( 1 )  = t ( l )  = 4 '=(1 ,0 ,1 ,0; . . ,1 ,0) .  (23) 

We shall prove that B is the smallest noneven BCH code. The 
proof of Theorem 8 uses the following result due to MacWilliams 
et al. [9]. 

Theorem 7 (91: Let U be a linear code of length N over K.  Let 
the operation of conjugation be defined as follows. If x E K ,  then 
X =XI. Let 

r = O  

e 

and let l? be the dual of U. Then 

(24) U is an even code - 0 c 0. 
Theorem 8: An extended BCH code is an even code over 

GF(4) if and only if its designed distance d satisfies d > d(1)  
(i.e., if and only if it is strictly contained in the only nontrivial 
EMB code). 

Proof: Let U be an extended BCH code with designed 
distance d. Let T be the definition set of U. Let I be the 
permutation on the elements of the interval S = [0, n ] :  

I :  i ~ S + 2 i  (modn).  

Let s E S and let U be a codeword of an extended cyclic code. 
Using the notation of (12), we have 

Example 5: In Example 1, we had X = d(1) = 36. Thus n - X 
= (1  101  10)  = 27. If d = 31, then U is WSD while B,(8:28) is 
not WSD. Indeed n - 28 = 35 = q28 (mod n); hence 35 E T\T. r = O  

Suppose that m' and q satisfy 
This equality proves that a" a z:ro of U if and only if a' is a 
zero of U. On the other hand, ,U c U means that a' is a zero of U ,  
for all U E U and for all s E T. We can say equivalently: 2s is in 

3j9 j E [ l  r(  p - '11 such that d(  j )  = n / 2 .  (21)  
Thus n - d( j )  = d(  j ) .  Let R be the definition set of the EMB 
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T for all s E f. By (24) we have proved 

U is an even code tf I (  f) c T.  (25 )  
Let R be the definition set of B. From (5), (15), and (16), we 

have 

I ( k )  = { s E S J s < < 2 t ( l ) }  I ( k ) I R =  {2t( l )}  

because d(1) = 2t(l). Then we can deduce from (25) that B is 
not even; therefore, if d I d(l), U cannot be even. 

Suppose now that d > d(1). Then-U is strictly contained in f ,  
R is strictly contained in T, and T is strictAy contained in R .  
Since d(1) E T, then I ( t ( 1 ) )  G I(T). Thus I(T) c R c T and we 
have proved that U is an even code. ’. 

Remark: Results of Corollary 8 and Theorem 8 involve that 
Table I shows the even extended BCH codes when q = 4 and the 
WSD extended BCH codes when q = p ( p  > 2), for N < 5000. 
Indeed, Table I gives the designed distance of the smallest BCH 
code which does not satisfy the property. 

IV. 

a polynomial 

EMB CODES AS IDEALS IN A MODULA~ ALGEBRA 
4 

Let A be the modular group algebra K [ G ] .  An element of A is 

x =  x , X g ,  x g  E K 
g = G  

The operations of the algebra A are usual polynomial addition 
and multiplication: XyX” = Xq+/’ and xg X g  + yg Xg = ( xg + 

An extended cyclic code is an ideal of A if and only if it is an 
affine-invariant code. In this context, the EMB codes have inter- 
esting properties; using the algebraic tools that we have intro- 
duced, one can easily obtain the description of these special 
ideals. Our aim in this correspondence is not to explain this 
aspect of EMB codes. Nevertheless, we want to give the principal 
result with a short proof (the reader can find more details in [3], 

Theorem 9: An MB code is a BCH code the extension of which 

Yr 1 X‘. 

I 

[SI, and [61). 

is a principal ideal of the algebra A .  

T. Let F be the set of minimal elements of S\T; that is, 
Proof: Let U be an extended BCH code with definition set 

F = { s E S\Tl if t << s, then s = t or t E T 1 
We say that F is the border of U. We have proved that U is a 
principal ideal of A if and only if F has one and only one 
element [5]. By definition (see (5)) it is clear that the border of an 
EMB code is {d} ,  where d is its designed distance. Then an 
EMB code is a principal ideal of A .  

Let d be the designed distance of U. Obviously if F has only 
one element, then F =  { d};  therefore, S \ T  is the set of the 
ascendant of d. By Lemma 1, U is an EMB code. 

Corollary 9: Let B be an EMB code with designed distance d 
(the minimum distance of B is d + 1). Let x be a codeword of B 
with minimum weight. Then x is a generator of the principal 
A-ideal B. 

Proof: Let P be the radical of the algebra A .  Let a be a 
generator of the principal ideal B. Then the generators of B are 
the Xu, X E A \ P. We have proved that the ideals product PB is 

an extended cyclic code with minimum distance strictly greater 
than d + 1 (see [5] and [6]). Then a codeword of B which has 
weight d + 1, is a generator of B. 
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On a New Binary [22,13,5] Code 
ZHI CHEN. PINGZHI FAN, AND FAN JIN 

If all codewords in a code C have the same weight, then C is 
called a constant weight code. Let A ( n ,  d, w )  be the maximum 
number of codewords in any binary code of length n, constant 
weight w, and minimum distance d.  

With the help of a VAX-11 computer, we have found a new 
binary [22,13,5] quasi-perfect code with generator matrix G = 
[ 11 PT], where 

P =  

0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 0 0 1 1 1 0 0 0 0 0 1  
0 0 1 1 0 0 1 0 0 1 1 1 0  
0 1 0 1 0 1 0 0 1 0 1 1 1  
0 1 1 0 1 0 0 1 0 1 0 1 1  
1 0 0 1 0 1 1 0 1 1 0 1 0  
1 0 1 0  1 1 1  1 0  1 l , o  1 

‘ 1  1 0  1 1  0 0 1 0  1 1  1 0  
11 1 1 0 0 0 1  1 1 0 1 1  1 

In Table I, we give the weight distributions [A,(u), 
A,(u); . ., A,,(u)] of the coset codes C + U ,  for vectors U. 

Obviously, our code is not equivalent to Wagner’s code [l]. 
Four lower bounds for constant weight codes can be derived 
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