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Weight Distributions of Cosets 
of Two-Error-Correcting Binary 
BCH Codes, Extended or Not 

Pascale Charpin 

Abstract-Let B be the binary two-error-correcting BCH code 
of length 2" - 1 and let B be the extended code of B. We give 
formal expressions of weight distributions of the cosets of the 
codes B only depending on m. We can then deduce the weight 
distributions of the cosets of B. When m is odd, it is well known 
that there are four distinct weight distributions for the cosets of 
B .  So our main result is about the even case. In a recent paper, 
Camion, Courteau, and Montpetit observe that for the lengths 
15, 63, and 255 there are eight distinct weight tistributions. We 
prove that this property holds for the codes B and B for all 
even m. 

Index Terms-BCH-codes, weight distribution of cosets, 
quadratic boolean functions, group algebra. 

I. INTRODUCTION 
N THIS paper we treat only primitive binary codes. I Thus the length of the codes we consider will be 

either n = 2" - 1 or N = 2", m > 2. The Bose- 
Chaudhuri-Hocquenghem (BCH) codes will be always 
narrow-sense binary BCH-codes. The distance and the 
weight will always be the Hamming distance and the 
Hamming weight. References on coding theory are gener- 
ally to be found in [231. In order to explain the context of 
our work, we first recall some general properties; for more 
details the reader can refer to [18] and [27]. 

Let E be a linear code of length U and minimal 
distance d. Then E is a so-called e-error-correcting code 
with e = [(d - 1)/2]. Let t be the number of distinct 
nonzero weights in the dual E' of E;  t is called the 
extemal distance of the code E,  since t is greater than or 
equal to the couering radius p of the code E .  Recall that 

p = max min { o(x + c)lc E E} L = F i  
X € L  

where w(x) is the weight of the codeword x. The code E is 
said to be perfect if p = e and quasiperfect if p = e + 1. 
The distance matrix of the code E is the 2' X ( U  + 1) 
matrix 9 ( E )  whose (x, j)-entry is 

9 ( x ,  j )  = c a r d ( y  E x + Elw(y) = j } ,  x E E;. 
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It was shown by Delsarte that the distance matrix of a 
code with a given weight distribution is uniquely deter- 
mined by its first t + 1 columns. Moreover, only the U 

distinct rows of S ( E )  that give the distinct weight enu- 
merators of the cosets of E are significant. The weight 
distributions of the cosets of E can be calculated from the 
reduced distance matrix of E,  in fact a U X ( t  + 1) matrix. 
The code E is said to be completely regular if each row of 
9 ( E ) ,  labeled by x, only depends on the minimum weight 
of x + E. Uniformly packed codes were introduced by 
Semakov et al. [26]. Another definition was given by 
Van-Tilborg [27]: the code E is said to be uniformly 
packed if and only if t = e + 1. A more general definition 
was given by Bassalygo et al. in [21. 

Any two-error-correcting BCH code of length 2" - 1 is 
quasiperfect [21], so that its covering radius equals 3. 
Moreover the weight enumerator of its dual is known [22]. 
Its external distance is 3 when m is odd; it is 5 when m is 
even. So when m is odd the two-error-correcting BCH 
codes are uniformly packed and their distance matrices 
are known [2]. When m is even the two-error-correcting 
BCH codes are not uniformly packed nor completely 
regular. 

An application of the theory of partition designs [8], [lo] 
to the study of distance matrices of linear codes is given in 
[9]. The introduction of the combinatorial matrix of the 
code improves significantly the effective computation of 
the distance matrix. Thus Camion, Courteau, and 
Montpetit obtain the distance matrices of the two-error- 
correcting BCH codes of lengths 15, 63, and 255. They 
observe that in these three cases there are eight distinct 
weight distributions. They asked for a theoretical explana- 
tion of their observations, which is the aim of our paper. 
Our main result is that for m even there are eight distinct 
weight distributions for the cosets of any two-error-cor- 
recting extended BCH codes of length 2"; this property 
also holds for the two-error-correcting BCH codes of 
length 2" - 1, m even. Moreover, we give the weight 
distributions of the cosets of all two-error-correcting ex- 
tended BCH codes, for the even and for the odd case. 
Each weight enumerator is given as the MacWilliams 
transform of a polynomial, the coefficients of which only 
depend on m. Simple formulas allow us to obtain the 
weight distributions of the cosets of a two-error-correcting 
BCH code from those of its extension. 
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The paper is organized as follows. In Section 11, we give 
some definitions and properties, considering our point of 
view. We will study the cosets of extended BCH codes; 
these codes are considered in the group algebra d =  
N{G, + } I ,  where K and G are, respectively, the finite 
fields of order 2 and 2". We show how the product in the 
algebra becomes an interesting tool for our purpose. We 
want to optain the weight enumerators of the codes 
E = D U B cor equivalently the weight enumerator of 
E I), where B is the extended BCH-code and D ?ne of its 
cosets. For this reason we present the code B' as a 
union of some special cosets of the Reed-Muller code of 
order 2. 

The powers of the radical P of H are the Reed-Muller 
codes. In Sectiop 111, we study:he weight enumerators of 
the cosets y + B of the code B, for y E Pi \Pi+', in the 
three cases i = 0, 1 and 2 (by convention P o  =d). The 
differences between the three cases are pentially due to 
the different values of the products yB' . We study in 
Section IV the cosets of the BCH-codes themselves. Let 
us denote by B any two-error-correcting BCH-code. We 
show how every weight enumerator of a coset of B can be 
obttined from two distinct weight enumerators of cosets 
of B. In Section V we give all distance matrices. 

The weight enumerators we calculate here are formal 
objects whose coefficients are formal expressions depend- 
ing on the length 2" of the codes. We have needed a 
computer for the calculation and the simplification of 
every formulas given in Tables 111-IX. Some proofs are 
obtained by solving equations involved by the first mo- 
ments of some weight distributions; in particular the coef- 
ficients of distances matrices are obtained in this way. All 
these manipulations were made by means of the symbolic 
computation software Maple. 

A. Main Notation 

a 

a 
a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

The length of the cyclic codes is n = 2" - 1; then 
the length of the extended cyclic codes is N = 2". 
G = GF(2") and K = GF(2); G* = G \ {O). 
a is a primitive root of the finite field G. 
d is the modular algebra N{G, + } I .  
R(i ,  m )  is the Reed-Muller (RM) code of order i and 
length 2". 
PI, j E [l, ml, is the j th power of the radical P of d, 
identified to R ( m  - j ,  m).  
The all-one vector in s! is denoted by 0 and identified 

P l y )  is the syndrome of a given codeword y [see (11) 
and (2311. 
w(x) is the Hamming weight of the codeword x. 
If E is a linear code, its dual is denoted by E' ; the 
usual dot product is denoted by (x,y), where x and y 
are any vectors in the ambient space. 
B is the binary two-error-correcting BCH code of 
1:ngth n. 
B is the extension of B ;  it is a binary extended cyclic 
code of length N.  

to (l;.., 1) E KN. 

yr's and 6,'s are weights of E' , respectively, for m 

a Cy is the linear code B U (y + i?), where y P l?. 
odd and m even [see (!7)1. 

11. PRELIMINARIES 
As usual, a binary cyclic code of length n is an ideal of 

the quotient algebra K I Z l / ( Z n  - 11, where K = GF(2). 
Such an ideal is always principal; the roots of its generator 
polynomial are the zeros of the code. A linear code of 
length n,  dimension k ,  and minimal distance d is said to 
be an [n ,  k ,  d l  code. 

A. The Two-Error-Coirecting BCH Codes, l? and B 

cyclotomic coset of i mod n; 
Let n = 2" - 1 and i E [O,n]; we denote by cZ(i) the 

cZ(i) = {i ,2i  (m0dn) . . . 2 "~ ' i  (modn)}. (1) 

Definition I :  The narrow-sense two-error-correcting 
BCH code is the cyclic code of length n whose zero set is 

U { a L }  I = CZ(1) U C l ( 3 )  
L E I  

where a is a primitive root of GF(2"). This code will be 
denoted by B; it is an [n ,  2" - 2m - 1,5]  code. The dual 
of B, denoted by B ' , is the cyclic code of length n whose 
zero set is 

U {a1}, 

Let E be a, binary linear code of length n. Its extension 
is the code E obtained by adding an overall parity-check: 

I = [O,n - l]\{cZ(n - I),cZ(n - 3)).  
l € l  

( c ~ ; . . ,  c , )  E E (cm, c,,,"', c , )  E B 
n 

where c, = c,. 

If the code E is [n ,  k ,  dl, then the code l? is [ n  + 1, k ,  d'l, 
with d' 2 d. If d is odd, then d' = d + 1. Let H be the 
Rarity check matrix of E ;  thus the parity check matrix of 
E is as follows: 

r = O  

Definition 2: The extended binary two-error-correcting 
BCH code of length N = 2'" is the code 

B = ( x ~ ,  x o ; ~ ~ ,  x , ) J ( x ~ , * . - ,  x,) E B ,  X, = ^ i  i=O 

The code l? is [ N ,  2" - 2m - 1,61. Let us de?ote by 0 
the all-one vector of length N.  The dual of B can be 
defined as follows: 

l ? l =  L U ( 0  + L )  
where L = {(O,x, ... x,)J(x,, x,) E BL). (2)  
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TABLE I 
WEIGHT DISTRIBUTION OF B  ̂' , m ODD 

weights Total number 
of cosets of words 

22m + 2m - 2 

0 1 

The weight distributions of the codes B ' are given in [23, 
p. 452 and 4531. In accoTdance with (2), the weight distri- 
butions of the codes B' are easily obtained; they are 
presented in Tables I and 11. 

Consider the cosets x + R(1, m), where x is an element 
of R(2, m)  \ R(1, m)  ( R ( i ,  m)  is the Reed-Muller code of 
length 2" and order i). These cosets are in one-to-one 
correspondence with symplectic forms; the rank of a given 
symplectic form uniquely determines the weight distribu- 
tion of>he corresponding coset (see [23, Chapter 151). The 
code B consists of the code R(1, m )  itself and of some 
of its cosets of high rank (more details can be found in 
Section 11-E). When m is odd the rank of any coset equals 
m - 1 and we will say that the cosets are of type (I). 
When m is even the rank equals m or m - 2 and will say 
the cosets are, respectively, of type (11) or (111). 

B. Mac Williams Transform and Cosets of B̂  
In this paragraph we recall some formulas we need 

later for the computation of weight distributions. The 
extended two-error-correcting BCH c9de of length 2" 
over GF(2) will always be denoted by B. 

Theorem I :  ([23, pp. 127-1321) Let E be a linear binary 
code of length U .  We define its weight enumerator: 

W,(X ,Y)  = Z A i X u - i Y i ,  Ai = [ I C  E Elw(c )  = ill 

where IHI denotes the number of elements of some set 
H. Then, the weight enumerator of the dual code E L  is 

I: 

i = O  

Let A> = I(c E E ' I w(c) = ill; denote by k the dimension 
of E . If the weight enumerator of E is known, then the 
A> can be calculated by means of the following identities: 

Let D = y + E be a coset of E ,  where y is not in E.  
Since E is a linear binary code, it is clear that the code 
E U (y + E )  is also linear. If the weight polynomial of its 
dual code and of E' are known, then one can obtain the 
weight enumerator of D. We shall use this method to 
comput? the weight enumerators of the cosets of the 
codes B. 

Lemma I:  Let N = 2", y E K ~ ,  y E B; set cy = B U 
(y + 6). By extending the definition given in Theorem 1 
to nonlinear codes, we denoteAby W y + i ( X ,  Y,> the weight 
enumer%tor of the coset y + B. Then C: c B ' , dimC: 
= dimB'  - 1 = 2m, and 

1 
W , + i ( X , Y )  = F ( 2 W C , +  ( X  + Y ,  x - Y )  

- WfiL (X + Y ,  x - Y ) ) .  ( 5 )  

Proof Recall ;hat dims = N - (2m + 1). By defi- 
nition, we h a y  B c Cy, which yields C$ c B and 
dimc, = dimB + 1 = 2" - 2m. Thus, dimC: = 2" - 
(2" - 2m) = 2m. 

Applying (3),  we have 
1 

22" 
W,Y(X,Y) = -W,$X+ Y , X -  Y ) .  

But, by definition, W c J X , Y )  = W , + i ( X , Y )  + W j ( X , Y ) ,  
which yields 

1 
22m 

W,+E(X,Y)  = -wc: ( X  + Y ,  x - Y )  

1 
-- 2 2 m + l  WjL ( X  + Y ,  x - Y ) .  0 

C. The Codes 5 in the Algebra d = K[G] 
In or -e r  to study the codes Cy, we will consider the 

codes B in the group algebra d = KIIG, +]I, where K = 

GF(2) and G = GF(2"). The main interest of doing so is 
in the use of the multiplication of the algebra as we will 
show in the next paragraph. 

The group algebra d is the set of formal polynomials 

x = c x,Xg, X, E K 
g c  G 

with 0 = E, E GOXg, U = E, XR, 

x + y = x,xg + y g x g  = (x, +y,)xg  
g c  G g c G  g c G  

and 

xy = x,xg y g x g  = c ( c X,YR+JXh (6) 
g c G  g c G  h c G  g c G  

x and y any element in d. A linear code of d is a 
K-subspace of d. Let E be such a code; then its dual 
code is 

E L  = (y ~ d I ( x , y )  = 0, for all x E El 
where (x,y) = c xsyg .  

The algebra d has only one maximal ideal, which is called 
its radical. The radical of d is denoted by P and is 
defined as follows: 

g s G  

P = x €4 xg = 0 = (x E d k 2  = 01. (7) ( g E G  

-. 
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Number Number of words weights 
of cosets in a coset 

2" 2m-1 - 2m 12-1 

2"-1 + 2"/2-' (11) : 2m 
2m-2 y - 1  - 2mP 

(111) : y y - 2  2m-1 + p i 2  
3.2"-' 2"-1 

2m+' - 2 2m-1 
R(1,m) 1 2" 

1 0 
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Total number 
of words 

2m+'(2m - 1)/3 
Zm+'(2"' - 1)/3 
2m-2(2m - 1)/3 
2m-2(2m - 1)/3 

22771-1 + 3.2"-' - 2 

1 
1 

Berman proved in [5] that the powers of the radical of d 
are the Reed-Muller codes. More precisely, we have the 
following. 

Theorem 2: For any j ,  we denote by PI the j th power 
of P;  it is the subspace of d generated by the products 
n i = , x , ,  x, E P. One obtains the decreasing sequence of 
ideals of d: 

{O} = P"+l c P" c * * *  c P2 c P 

(by convention P o  =d). Then we have PI = R ( m  - j ,  m), 
for all j E [l,m]. From a well-known property of the 
RM-codes, we have then ( P I )  = P" . In Section 111, 
we will study the cosets y + B with y E P' \ P"', succes- 
sively for i = 0, 1, and 2. We want now to identify pre- 
cisely the extended cyclic codes in d that we will use 
later. More details on properties of the algebra d and on 
codes of d can be found in [131, [141. 

Proposition I :  Let S = [0, n],  n = 2" - 1. An extended 
cyclic code E in d is uniquely determined by a subset T 
of S such that 0 E T and T is a union of cyclotomic 
cosets of 2 modulo n. Let us define for all s E S and for 
all x E& 

&(x) = xggs  E G. 
S G  

By convention, +&x) = C, E G x g .  Then we have that 

E = {x E ~ I  A(x) = 0, for all s E T }  . 

We say that T is the defining set of the code E. 
Definition 3: 

1) Let s E S;  let Cr=;1~12r, s, E (0, l}, be the binary 
expansion of s. We denote by w2(s)  the 2-weight of 
s; that is 

m-1 
w 2 ( s )  = c 3' .  

r = O  

The RM-code of length 2" and order m - r (i.e., 
the code P') is the extended cyclic code with defin- 
ing-set 

T ( P ' )  = {s E Sl+s(x) = 0 for 0 5 w2(s)  < r } .  (8) 

2) The defining-set o,f the extended two-error-cor- 
recting BCH code B is 

(9) T ( 6 )  = (0, cl(l), c1(3)}. 

3) The defining-set of the dual 6' of fi is 

Remark 1: 

1) By definition, an extended cyclic code is a subspace 
of P. It can be an ideal of d. For instance RM-codes 
and BCH-codes are ideals of &, a K-subspace E of 
d that satisfies P J  c E c Pi-' for some j ,  is an 
ideal of d [131. 

2) It is clear that there is a %ne-to-one correspondence 
between the cosets y + B of the code B and the 
following elements of G3: ~$~(y), i = 0,1,3. IndeedA 
in accordance with (9), the parity check matrix of B 
can be taken to be 

1 . ... 
1 a f f 2  CY3 ... [ ' -  1 f f 3  f f 6  f f 9  ... 

Hence the Jyndrome, say Yb), of y (or of the coset 
containing y) is the value of H y T  [23, ch. 91. It is exactly 

As for codewords of cyclic codes, we can define the 
Mattson-Solomon (MS) polynomial of an extended code- 
word. For any x E P the MS-polynomial of x is the 
following element of G[ 21: 

We recall the well-known property [23, p. 2391: 
Proposition 2: Let a be a primitive root of the finite 

field G. Let x E P. Then for all k E [l, n],  we have 
M X ( a k )  = X,k. Note that M..(o) = &(x) = xo = C g E G * X g .  

D. Multiplication in d 

the product xy satisfies 
Proposition 3: Let x E &  and y E&. Then the weight of 

I 
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Proof: In accordance with (61, we have 

xy = ( x h + g Y g ) X h  
h S G  ~ s G  

= ( (Xhx,y>)Xh.  
h € G  

0, Note that (xy), = (x,y). 
Remark 2: The formula above shows that for !ny y E, B 

and any x E B the product xy is zero. Indeed B and B ' 
are ideals of d, they are invariant under multiplication by 
any xh. 

Proposition 4: Any s E S is identified with its binary 
expansion (sO;** ,sm- , ) .  Then we define a partial order 
on S: 

Vs, t E S :  s + t * V i  E [O, m - 13: si -< t i .  

Let x ~d and y €d. Then 

vs E s: +,(xy) = +;(x)+s-i(y). 
i < s  

Proot 

+s(xy) = c xg c Y h k  + h) ,  
g e G  h e G  

= 5 ( s )  x g g i  yhh"' = +i(x)+s-i(y)  

# 0 (mod 2) is equivalent to 
0 

Lemma2: L e t y E d \ \ , x E \ L \ P m - l a n d D = x +  

i) Assume that y E P 2  \ i. If xy = 0, then ya = 0 for 
all a E D else ya = U for all a E D ,  i.e., either y is 
orthogonal to all elements of D or no element of D 
is orthogonal to y. We will say, respectively, that 
yD = IO} or that yD = {U}. 

ii) Assume that y E d \ P2. Then 

i = O  g € G  h E G  1 < s  

since, by Lucas's theorem, 
i + s [23, p. 4041. 

(9 
p m -  1 

c a r d D  
ca rd{a  E Dl(y,a) = 0) = = 2" 

L 

Pro08 In accordance with (81, (91, and (lo), it is clear 
that 

P 3  c B c P 2  and Pm-'  c \l c P m - 2 .  

Recall that P 2  is the dual code of Pm-' and that P" = 

i) Since y E P 2 ,  then yP"-' is included in Pmi', 
which is the se,t (0). That implies: yx = ya for all a in 
D. Since x E B l the product xy is an element of P" 
and in this case (x,y> = 0 is equivalent to xy = 0. 

ii) The function f :  U E Pm- '  H (y,u> E K is linear. 
By hypothesis y P (Pm- ' ) ' .  Then d im(ke r f )  = 

d im(P"- ' )  - 1 = m, which yields that the number 

IO, 0. 

of U E Pm-l  satisfying (y,u> = 0 equals 2". The 
equality (y, a>  = (y,x> + (y, U>, a E D ,  completes 
the proof. 0 

F. Description of the Codes i 
Evey coset x + P m P 1  contains 2"+' codewords. The 

code B' contains 22m+1 codewords; then it consists of 
2" cosets x + P"- ' ,  where x E Pm-2. In this paragraph 
we will identify such cosets D with the values +,,-,(x). 
Note that +n - ,(D) is the set { +n ,(x)}, since +,,-,(a) = 0 
for all a E Pm- '. We also will characterize the codewords 
of D of a given weight. 

Definition 4: Let p = C Y " - ,  ( a  is a primitive root of 
G ) ;  we denote by C,, the linear code of d whose code- 
words x satisfy &(x) = 0 if s P cl(n - 3). 

The code C, is in fact the irreducible cyclic code, 
defined by the minimal polynomial of p, viewed in d. 
According to (12) we obtain its MS-polynomial 

M , ( Z )  = Tr ( +n,3(x)Z3> for all x E C, (13) 

where Tr is the trace-finctiyz from G to K. By definition 
the code C, is included in B . It contains 2" codewords; 
its nonzero codewords are not in P"- ' ,  since u2(n - 3) 
= m - 2 [see (S)]. Let x and y be nonzero codewords of 
C,. Suppose that ~$,~-,(x) = &,3(y). Since +nn-3  is a 
linear function, that means that +s(x + y) = 0 for allAS, 
which yields x = y. We have then proved that the code B ' 
consists of the 2" cosets x + P"- I ,  where x E C,; more- 
over there is a one-to-one correspondence between the set of 
such cosets D and the 2" values @n- ,(x), x E Cp. A special 
coset is defined by the pripitive idempotent of C,, say 7; 

that is the codeword 7 E B ' satisfying 

+ n ( ~ )  = + n - l ( ~ )  = 0 and + n - 3 ( ~ >  = 1. (14) 

Some cosets are equivalent by the shift; we will denote by 
sh, the j-shift on codewords of d; that is 

sh,: x,Xg * xgXa'g.  (15) 

Some properties of elements of the RM-code of order 2 
(i.e., of P m - 2 )  are used in the proofs of the following 
propositions. We only recall the resutls we need. For 
more details the reader can refer to [23, ch. 151 and to [ l l ,  
ch. I]. 

Let a E P m - 2 ;  then a can be identified to a quadratic 
boolean function fa: 

gE G &,EG 

a = f , ( g ) X g  -i.e., ag =f,(g). 
g e G  

The associated symplectic form of fa is 

9,: ( U ,  U )  E G2 H q a ( u ,  U )  = fa(0) 

+ f a ( u >  +fa<.> + f a ( u  + U )  E K. 

The kemel of Ug is defined as follows: 

Za = { U  E GlVu E G: q a ( u , u >  = 0). 
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i) 

ii) 

The set kYa is a K-subspace of G of dimension m - 2h, 
where 2h is the rank of qa. Let D = a + P m - l ;  then 
'Pa = q,, for all b E D. Moreover, the weight distribution 
of D only depends on h (cf. [23, p. 4411). 

Now we can describe precisely the code I?' : 
Proposition 5: ,Let n = 2" - 1, and let r be defined by 

consists of 2" cosets corresponding to (14). The code B 
the 2" codewords of the code C,. 

When m is odd, I?' consists of Pm-l  and of the n 
cosets of type (I): 

sh j ( r )  + P m - ' ,  j E [O,n[. 

Suppose that m is even and set v = n/3. Let x(l) 
and x ( ~ )  be the elements of C, satisfying, respec- 
tively, +n-3(x(i)) = ai, i = 1 and 2. Then B L  
consists of P"- ', of the v cosets of type (111) 

S h j ( T )  + Pm-1, j E [O, v[ 

of the v cosets of type (11) 

S h j ( X ( 1 ) )  + pm-1, 

Shj(X(2)) + Pm-1, 

j E [O, v[ 

and of the v cosets of type (11) 

j E [O, v[. 

Note that +n ,[ shj(r)] = and that +n - 3[ shj(xci))] = 

Prooj Obviously 3 divides 2" - 1 if and only if m is 
even. Notice that for any x E& and any s E [l,  n - 13 we 
have 

for i = 1 and 2. a - 3 j + r  

+ s [ ~ h j ( ~ ) ]  = Xg(a'g)' = (Y~%$~(X). (16) 

When m is odd, a 3  is a primitive root of G; thus the code 
C, is equivalent to the simplex code and its codewords 
are r and its shifts. Any nonzero codeword has weight 

Suppose that m is even and set s = n - 3 and n = 3v 
in (16). It is clear that for each x E C, the set { s ~ ~ ( x ) } ~  
consists of v distinct elements. Now we must prove that 
the coset r + Pm-l  is a coset of type (111). Using Propo- 
sition 2, (13) and (14) we calculate the associated symplec- 
tic form: 

g t G  

2"- 1 

q T ( u ,  U )  = Tr ( u 3 )  + Tr ( u 3 )  + Tr [ ( U  + d3I 

= Tr(u2u + U U ' )  

= Tr [ u2(u4  + U ) ] .  

Clearly the equation u4 = U has exactly four solutions in 
GF(2"), when m is even. Thus, the dimension of 2YT 
equals 2; therefore the rank of qT is m - 2 as the rank of 
the symplectic forms associated to cosets of type (111) is. 
Then the remaining cosets corresponding to x('), x ( ~ )  and 
their shifts are of type (11) (see Table 11). 

In all cases the values of & n - 3  are deduced from (16). 
0 

Corollary 1: Let N = 2", m even. Set v = (2" - 1)/3. 
Then the weight enumerator of the code Cp is 

i) m = 0 mod 4: W(X, Y) = XN + + 
ii) m + 0 mod 4: W ( X ,  Y )  = X N  + v X ~ - ~ ~ Y ' I  + 

VXN-A4yA4. 

2vXN-'3YA3, where A, = 2m-l - 2"12, A, = 2"-' 
- 2m/2-1 A, = 2"-' + A, = 2"-' + 2"12-1, 
2"12. 

Proofi When m is even, it is well-known that the 
code C, has only two nonzero weights. The weight enu- 
merator can be obtained as a corollary of Theorem 3 of 
[191. 

We recall that a linear binary code is said to be t-divisi- 
ble, t > 1, if the weights of all its words are divisible by t. 
If t is not a power of 2, then such a code is equivalent to a 
degenerate code (in which every symbol is repeated t 
times). 

Since 3 divides n,  it is clear from (13) that C, is 
three-divisible. So we can also deduce the weight enumer- 
ator of C, f;om Table I1 and Proposition 5. Each coset 
composing B ' has only one word in C,, according to 
Proposition 5. It is sufficient to determine, for any weight 
A such that 3 divides A, the number of such cosets. There 
are words of weights A, and A, in the cosets of type 
(III), and words of weights A, and A, in the cosets of 
type (11). When 4 divides m then 3 divides only A, and 
A,; otherwise 3 divides only A, and A,. The number of 
codewords,of weight Ai in C, is equal to the number of 

0 
Proposition 6: Let a E P m - ,  \ Pm-' and D = a + 

Pm-l .  Let A be a weight of D such that A # 2"-' and 
suppose that @(a) = A. We denote by K the dimension of 
the kernel of the symplectic form 'Pa. Then we have 

cosets in B ' containing codewords of weight Ai. 

(Xgalg E G} = (b E D l d b )  = A] 

and the cardinality of the set above is 2"-". Hence, each 
codeword b of D, of weight different from 2"- ' is invari- 
ant under 2" translations (i.e., multiplications by an Xg). 

Proofi Set K = m - 2h. According to Theorem 5 of 
[23, p. 4411, we have 22h = c a r d ( b  E Dlw(b) = A}, where 

. Let U and U in G. By definition, 
qa(u ,u )  = a, + a, + a,  + a,,,,. Furthermore, for any U 

# O  

A = 2"-1 + 2"-h-1 - 

( X u  + 1)a = C U , X ~ + ~  + a , ~ "  
U E G  U t G  

= + a, , )X" 
U € G  

and we have obviously 

card G 

c a r d ( g  E Gla = Xga} 
ca rd (Xga lg  E G} = 

I 
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An element U is in 2Fa if and only if qa (u ,  U )  = 0, for all 
U .  Therefore, U is an element of E, if and only if 

( X u  + 1)a = ( a ,  + u,)x" = ( a ,  + U , ) [ .  
U E C  

Assume that U is in 2Fa. Since w[(Xu + l)a] I 2w(a) then 
(Xu + l)a = 0 (equivalently a ,  = a,) in the equality 
above when w(a) < 2"-'. This result holds for @(a) > 

because Pm-l contains the all-one vector U; that 
means that there exists b E D such that a = b + 0 with 
w(b) < 2"-'. Obviously, (Xu + 1)a = ( X u  + 1)b. 

Conversely, X"a = a implies au+u = a ,  for all U ,  which 
means 

So we have proved that X"a = a if and only if U E ga. 
Hence 

2"- 1 

U )  = 0, for all U .  

c a r d { g  E Gla =Xga} = card2F' = 2", 

which yields card{Xgalg E GI = 2"-" = 22h, complet- 
ing the proof. 0 

111. WEIGHT DISTRIBUTIONS OF COSETS OF EXTENDED 
TWO-ERRORCORRECTING BCH CODES 

Since they are quasiperfect the two-error-coJrecting 
BCH codes have covering radius equal to 3. Let B be !he 
extensio? of such a code B. The minimum weight of B is 
6 and B is included in PI whose minimum weight is 4. 
Then there are cos_ets of B of minimum weight 4. Let H 
be any coset of B;  we are interested in tbe minimum 
weight of H. It is well known that the code B is invariant 
under the affine permutation group of G [41-[24]; in 
particular it is invariant under the translations (i.e., multi- 
plications by X h ) .  So we can assume that H has at least 
one minimum weight codeword whose support Fontains 0. 
Then if the coset Xo + H is different from B, its mini- 
mum weight cannot be greater than the covering radius of 
B. So it is clear that the covering radius of any two-error- 
correcting extended BCH code equals 4; equivalently the 
minimum weight of any H is less than or equal to 4. 
Another remarkfomes from the fact that the automor- 
phism group of B contains the affine permutations of G: 
all cosets H of minimum weight 1 (respectively, 2) have 
the same weight distribution. 

Not?tion: I? this section we often use the weights of the 
dual B of B, given in Tables I and 11. They are denoted 
as follows: 

odd: y1 = 2"-1 - 2(m-1)/2, y2 = 2"-1, 

y3 = 2"- 1 + 2(" - 1)/2 

m even: 6, = 2m-1 - 2m/2, 6 - 2m-1 - 2m/2-1 
2 -  

6 - 2"-1 + 2m/2-1, 
4 -  

6 - 2"-1 
3 -  

6, = 2"-1 + 2"P .  (17) 

A. Cosetsy + l?, y E P2 \l? 
In this section we study the cosetsAy + B with y E P2 \ 

l?. Since the covering radius of B and the minimum 

weight of P2 both equal 4, such cosets have minimum 
weight 4. By definition of P2 there is a one-to-one corre- 
spondence between these cosets and the syndromes 
[0, 0, +,(y)], (see Definition 3 and RFmark 1). Recall that 
the dimension of P2 equals d imB + m. So there are 
2" - 1 such cosets, i.e., +,(y) ca? take any value in G*. 
We will denote by Cy the code B U (y + B). We want to 
obtain the weight enumerator of the code C i  , for any y. 
We proved in LemmaA2i) that C t  is a union of some 
cosets x + Pm- ', x in B ' . In accordance with this result, 
it is sufficient to determine, for each type [(I) for odd m ,  
(11) and (111) for even m ]  the number of cosets D of 
that type that satisfy yD = (0). It is very simple to do so 
when m is odd; the following lemma will allow us to treat 
the even case. 

Lemma 3: Assume that m is even. Let y E P 2  / l? .  
Denote by V, the number of cosets of type (111) con- 
tained in C: . Then the vaue of V depends on y and there 
are two distinct cases: 

i) If +,(y) = a3k,  k E [0, n/3[,  then V = V, where 
1) If m = 0 (mod4) then V, = (2m-1 - 2"12 - 

2) If m f 0 (mOd4) then V, = (2"-l + 2"12 - 

ii) If +,(y) = aZk+', r E [1,2} and k E [O, n / 3 [ ,  then 
V = V2 where 
1) If m = 0 (mod4) then V2 = (2"-l + 2m/2-1 - 

2) If m f 0 (mod4) then V2 = (2"-l - 2m/2-1 - 

Proofi From Proposition 5, the cosets of type (111) 
are the s ~ , ( T )  + PmP1,  j E [0, n/3[. Since yP"-' = [O}, 
the number of such cosets D satisfying yD = {O} equals 
the number of j such that YS~ , (T)  = 0. Moreover, this last 
equality is equivalent to +,[ysh,(~)] = 0, because 
+,Jysh,(.r)] equals [ysh,(~)], (cf. Proposition 2). Applying 
Proposition 4, we obtain 

0 /3 .  

1)/3. 

0 /3 .  

0 /3 .  

+Jysh,(d] = c +,(Y)+n-r[ Sh,(7)] 
i < n  

= Tr { 4 , ( ~ ) 4 ~ - ~ [ ~ h , ( ~ ) ] ) ,  (18) 

since + s ( ~ )  = 0 unless s is in the cyclotomic coset of 
n - 3. From Proposition 5 ii) we have $ ~ ~ - ~ [ s h , ( ~ ) l  = a-3J. 

i) Since B is invariant under the shift, we can suppose 
that +,(y) = 1. Then formula (18) becomes 

& [ y s h j ( ~ ) ]  = Tr ( a-,') for all j E [0, n / 3 [ .  

Now we use Proposition 2 and (13) in the following 
equalities: 

v, card{Shj(T)lj E [0,n/3[, (bn[[ySh,(T)] = 0) 

= card{shj(T)l j  E [ O , n / 3 [ , T r ( ( ~ - ~ j )  = 0) 

= c a r d { $  E [0,n/3[1M,(aS) = 0) 
(2" - 1) - W ( T )  - - 

3 
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Indeed, M J Z )  = T r ( & , _ , ( ~ ) z ~ )  = Tr(Z3). From Corol- 
lary 1, the weight of 7 is equal to 2"-' + 2"/' when 4 
divides m and is equal to 2"-' - 2"12 otherwise. 

ii) We can suppose that +,,(y) = a', r = 1 or 2. Then 
formula (18) becomes 

&[yshj(.r)] = Tr ( for all j E [0, n/3[. 

Recall that x('), r = 1 or 2, denotes the element of 
C,, which satisfies 4n-3(x(r)) = a' (cf. Proposition 
5). Then, as previously, we obtain the following 
equalities: 

V, = c a r d  {sh,(T)lj E [O, n/3[, &[yshj(.r)] = O} 

= card{sh,(.)lj E [0,n/3[,Tr(a-3'+') = 0) 

= c a r d { $  E [0 ,n /3 [ lMxdas )  = O} 

(2" - 1) - w(x"') 
- - 

3 

Indeed, M,c&) = Tr (+,-,[x"))1Z3) = Tr (a rZ3) .  
The cosets x(') + Pm- l  are of type (11) and from 
Corollary 1, the weight of x(') is equal to 2"-' - 

2 m / 2 - 1  when 4 divides m; it is equal to 2"-' + 
otherwise. 0 

Theorem 3: Set N = 2"; let 6 be the two-error-cor; 
recting extended BCH code o,f length N. Let y E P 2  \B 
and let Cy be the code (y + B )  U B. 

i) If m is odd, all cosets y + 6 have the same weight 
distribution. It is the polynomial W,, given in Table 
VIII. The weight enumerator of C: is 

2m/2-1 

wc: ( X ,  Y )  = X N  + (22"-2 - 2"-')XN- YlYYl 

uniquely determined by the number V of cosets D 
such that yD = (O}. This number V is given by 
Lemma 3: there are two distinct values of V, de- 
noted by V, and V,, depending on the value of 4,(y). 
That means that there are two distinct weight distri- 
butions for the codes C: . 

Let 7 be the number of cosets of type (I I) contained in 
C:. Since the code C: contains Pm- '  and 2"-' - 1 
other cosets, then 7 is equal to 2"-' - 1 - V. The num- 
ber of codewords of a given weight 6, in a coset is known 
(cf. Table 11). Let us denote by A ,  the number of code- 
words of C: of weight k.  We obtain 

A, = A ,  = 1 Asl = 2"-,V A,, = 2"7 

A,3 = 3.2"-"7 + (2"' - 2) As, = A,, 

As, = A,1. 

Indeed, 6,, a,, and 6, are the weights of cosets of type 
(1111, 6, and 6, are the weights of cosets of type (11). 
We must add the codewords of Pm-':  the null vector, the 
all-one vector, and 2"+' - 2 codewords of weight 6,. 

Using Lemma 3 we can give in Table I11 the precise 
value of A, ,  depending on m,. We deduce the weight 
distribution of the cosets y + B by applying formula (5): 
there are two distinct distributions depending, respec- 

0 

Corollary 2: Notation is tkat of Theorem 3; m is even. 
Recall that any coset y + B has minimum weight 4. Let 
A y  b t  the number of codewords of weight 4 in the coset 
y + B .  Then 

tively, on V, and 0, (which only depend on m). 

A ,  = 2"-,V where V is given by Lemma 3. 

+(22"-' + 2" - 2)XN-YZyYZ Proofi We apply formula (4); knowing the weight 
enumerator of the code C: , we want to obtain a coeffi- 
cient of the weight enumerator of Cy. The parameters are 
here U = N = 2" and j = 2" - 4. We have also 

k - j = dim(Cy) - j  = (2" - 2m) - (2" - 4) 

+(22m-2 - 2"-l)XN-Y3YY3 + YN. 
(19) 

ii) If m is even, there are ~o distinct weight distribu- 
tions for the cosets y + B. They are the polynomials 
wiz) and Wd3), given in Table IX. These distributions 
depend on the divisibility of m by 4. They are 

= 4 - 2 m  

which implies 2,-J = 16/22m. Now we write the j th  mo- 
obtained from the weight enumerators of the codes 
C i  we give in Table 111. 

i) When m is odd, the code B 
Proofi 

consists of Pm-' and 

Since the code C: is a hyperplane of 6',  the 
number of cosets D such that yD = {O} equals 2"- ' 
- 1 and does not depend on y. Thus, with Table I, 
we obtain immediately the weight enumerator (19). 
We $educe the weight distribution of any coset 
y + B by applying formula (5). 

consists of P m - l ,  of 2v cosets of type (11) and of v 
cosets of type (111). Let D be any coset of type 
(1111. The weight enumerator of the code C: is 

of 2" - 1 cosets D of type (I). Clearly, Y P " ~  = {Ol. 

ii) Assume that m is even and set v = n/3. Then 6 

ment: 

2" - 6i 16 

yields, using a computer, 

+ -[3.2"-'V 16 + (2"" - ,)I( 2" - 6, ) 
2," 

16 
22m 

+-2"7 
i s{2 ,4}  
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(replacing by 2"- - 1 - V). Note that the number of 
codewords of weight 4 in Cy is the same as th,e number of 
codewords of weigh: 4 in the coset y + B,  since the 

0 
Remark 3: The result above shows that the two weight 

distributions we announced in Theorem 3 are distinct. 
Indeed, in accordance with Lemma 3, it is impossible to 
have 0, = V,. 

B. Cosetsy + L?, y E p \p2  
Now we will study the cose:s y + L? y in P \T2; C y  still 

denotes the code B U (y + B) .  Let H = y + B. Since the 
minimum weight of P is 2, there are cosets H of mini- 
mum weight 2; such a coset has only one codeword of 
weight 2. All codewords of weight 2 are in P \ P 2 ;  then 
there are 2"-'(2" - 1) cosets H of minimum weight 2. 
The syndromes of the cosets H are the 

minimum weight of B is 6. 

There are 2"(2" - 1) cosets H and finally there are also 
2"- '(2" - 1) cosets H of minimum weight 4. 

We want to obtain the weight enumerator of C t  ; we 
know from Lemma 2 that C: contains e5actly one-half of 
the elements of x + Pm- l ,  for any x E B' \Pm-I .  Then 
we must describe, for any x, the set of elements of 
x + P"- contained in C: , i.e., orthogonal to y. So, for a 
given y, this set depends on x. However some properties 
appear which reduce the problem. By applying the follow- 
ing lemma, we will obtain a very simple expression of the 
weight enumerator of C i  . 

Lemma4: Let y E P \ P 2 , x  E L?'\P"-' and set D = 

x + Pm-l. Let h be a weight of D such that h # 2"-' 
and suppose that w(x) = A. We denote by D,, the number 
of codewords of D of weight A. Set 

D,, = c a r d { a  E Dlw(a) = h and (y,a) = 0). 

Then D,, E {0,1/2DA, D,,), and D,, = DZm-,,. Moreover, if 
there are only two nonzero weights in D ,  i.e., D is of type 

1433 

~ 

(11) and its weights are 6, and a,, then we have 

Proofi We denote by U the set {0,2"- ', 2"}, which is 
the set of the weights of P"- '. Since yx E P"- ', we have 
dyx) E U. The value of w(yx) equals the number of 
g E G such that (y,Xgx) = 1 (cf. Proposition 3). Let K 

be the dimension of the kernel of the symplectic form 
associated to D. From Proposition 6, the set of the Xgx, 
g E G, equals the set of the codewords of D of weight A; 
moreover Xgx =,x for 2" elements g, i.e., D,, = 2 m - K .  
Hence, we have 

b,, = 2-" c a r d { g  E Gl(y, X g x )  = O} 

= 2-"[2" - w(yx)]. 

Since w(yx) E U, we can deduce that D,, can only take 
one of the three values: 0,1/2DA or D,,. 

Since w(y) is even then (y, 0 )  = 0. That implies that for 
all a E D ,  (y,a) is equal to (y,a + 0 )  (recall that 0 E 

1. That means that there are in D as much elements 
of weight h as of weight 2" - h orthogonal to y. Then, 
D,, = D2m_,,. 

Assume now that D has only two Yeights, 6, and S,. 
Since 6, = 2" - 6,, we have clearly D8, = DS4. One-half 
of the elemects of D is orthogonal to y; thus the property 

0 2" = D8, + D6, completes the propf. 
Theorem 4: Set N = 2"; let B be the two-error-cor- 

recting extended BCH cote  of 1:ngth N .  Let y E P \ P2;  
let Cy be the code (y + B )  U B apd denote by d(y) the 
minimum weight of the coset y + B .  

ThFre are two distinct weight distributions for the cosets 
y + B. The first one corresponds to cosets of minimum 
weight 2; the second one corresponds to cosets of mini- 
mum weight 4. The weight enumerators of the codes C t  
are given in Table IV. When m is odd and d(y) = 4, we 
note that the weight enumerator of C t  equal: the poly- 
nomial we obtained previously, when y E P2 \ B. [cf. The- 
orem Xi).] 

p m -  1 
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TABLE IV 
THE Two DISTINC~ WEIGHT DISTRIBUTIONS OF THE CODES 

C+ , y E P \ P*; THE MINIMUM WEIGHT OF C, is DENOTED BY d y ) .  

22m-2 - 2771-1 

22m-2 22m-2 - 2m-1 

Weight 1)  m even , d(y) = 2 1 m even , d ( y )  = 4 
0 II 1 I 1 

2m-3(2m + 2)/3 

22m-2 + 2m-1 - 2  

277-3(2m t 2113 

2,(2* - 1)/3 

2m(2m - 1)/3 

1 

2m-3(2771 - 4) /3  

22m-2 + 2 m - 2  

2m-3(2m - 4113 

2"(2" - 1) /3  

2"'(2"' - 1) /3  

1 

When m is odd, the weight distributions of the cosets 
are, respectively, denoted by W, and W, and given in 
Table VIII. When m is even they are denoted by W2 and 
WJ') and given in Table IX. 

Proofi Notation is that of Lemma 3. In all cases we 
denote by D any coset x + P m - l ,  x E B' \PmP1,  and by 
A,  the number of codewords of weight j in C; . 

1) Assume that m is odd; so the cosets D are all of 
type (I). Recall that the three weights of D are the 
y,'s, i E [1,3], with y2 = 2"-' and y1 = 2" - y,. 

First, Ayl = AY3,  since fiyl = fiy3, for all D (from 
Lemma 4). Let us denote A by I .  Since the number of 
elements of C: equals 2"mT1AY2 is easily deduced. We 
obtain 

A ,  = A ,  = 1, Ayl  = A y 3  = I ,  

Ayz 22m - A  - A  - 2 = 22m - 2 1  - 2. YI Y 3  

Now we apply formula (4) with E = C$ , U = N ,  j = 2" 
- 2 and k - j = 2 - 2m; the Al/'s are the coefficients of 
the weight enumerator of Cy.  Since Ab = 1 and A; = 0 
we have 

[where the yi7s are given by (1711. Hence 

2m(2m - 1) A - 22-2m ,- ( 2 
(2m-1 + 2 ( m - 1 ) / 2  - 1)(2m-1 + 2(m-1)/2)1 

2 
+ 

(2"- - 1)2"- 1(22" - 21 - 2) + 
2 

) I )  

(2m-1 - 2(m-1)/2 - 1)(2m-' - 2(m-1)/2 
+ 

2 

+ 2l-"I. - 2"- 1 (2" - 1) = 1 - 2"-1 

Thus, the value of I is uniquely determined by that of A;. 
If d(y) = 2 then A; = 1 implies I = 22m-2. If d(y) = 4, 

then A; = 0 implies I = 22m-2 - 2"-' . Replacing I by 
its value, we obtain Table IV ( m  odd). When d(y) = 4 we 
recognize the polynomial (19). This result was forseeable 
because of the combinatorial properties of the code B in 
the odd case; all its cosets of minimum weight 3 have the 
same weight distribution. However, we show here that 
these cosets correspond to strongly different objects. 

2) Assume that m is even. The code h L  contains 
2(2" - 1)/3 cosets D of type (11). These cosets 
have two weights, 6, 2nd 6,. It comes immediately 
from Lemma 4 that DS2 and D6, both equal 2"-l, 
for all D. Hence, for any code C: we have 

AsZ = As, = 2m(2m - 1)/3. 

Furthermore, the code B' contains (2m - 1)/3 
cosets D of type (111); such cosets have three 
weights, denoted by 6,, S,, and 6,. These weights 
are different from 6, and 6,; moreover, 6, = 2"- 
and 6, = 2" - 6,. Then we proceed as in l), when 
we treat cosets of type (I). We have immediately 
A ,  = A ,  = 1 and AsI =Ass; we denote by I .  
Now we can deduce Ad3: 

A6, = 2'" - 2As1 - 2AaZ - 2 

= 2" ( ___ 2m3+ 2 ,  - 21 - 2. 

Let J = 2" - 2; the j th  equality of (4) is 

2" - 6, 
(2:: 2 )  + A ;  = &[( + ?( 2 )A6,] 

[where 6, is given by (1711. Solving it we obtain A;: 
2"-1 - 2 

A' - 22-"1 - 
3 .  2 -  

If d(y) = 2, then A\ = 1 implies I = (22"-3 + 2"-2)/3. 
If d ( y )  = 4, then A\ = 0 implies I = (22"-3 - 2"-l)/3. 
Then we complete Table IV (m even). 

For any m we obtain the expressions of the weight 
enumerators W,,s(X, Y ) ,  by means of formula (5). 0 

If a coset y + B has minimum weight 2, it has only one 
word of weight 2. If it has minimum weight 4, the number 
of its minimum weight codewords equals that of the 
corresponding code Cy.  We can determine this number in 
the same manner as we did in Section 111-A (see Corollary 
2). We present the result in the following corollary; note 
that A, does not depend on y in this case. 

Corollary 3: Not$on is that of Theorem 4. Assume 
that the coset y + B has minimum weight 4 and denote by 
A, the number of codewords of weight 4 in this coset. 
Then 

(2m-:- l i  
m odd - A,  = 2m-2  

"-2  - 
m even - A y  = 2m-'( 

l ) .  
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Remark 4: When y E P 2  \h and m is even, we found 
other cosets of minimum weight 4. From Corollary 2, we 
know that the number of minimum weight codewords of 
these cosets equals 2"-*V. Note that it is impossible to 
have 

unless m = 2. Hence, we have clearly three distinct weight 
distributions for the cosets of minimum weight 4. 

C. Cosets y + 6, y E&\ P 
In this section we study cosets y, + fi suck that y is in 

&\ P ;  C y  still denotes the code B U (y + B). By defini- 
tion, the radical P of a? contains all codewords of even 
weight. Hence,& y has an odd weight; therefore every 
codeword y + B has an odd weight. The syndromes of 
such cosets are 

Y(Y) = [ I ,  +l(Y), +3(y)l 

where the +c(y)i i E 11,3), take any value in G. Let H be 
any coset y + B ;  there are 2'" cosets H. Clearly, there 
are cosets H of minimum weight 1. Suppose that w(y) = 1, 
which means y = X g ,  for some g. Then +,(y> = g'. So the 
syndromes of the cosets of minimum weight 1 are (1, g, g 3 ) ,  
g E G. The remaining cosets H have minimum weight 3. 
Finally there are 2" cosets of minimum weight 1 and 
2m(2m - 1) cosets of minimum weight 3. 

We want to obtain the weight enumerator of any code 
C ; ,  y €&\Pi Let D = x + Pm-' be a coset of Pm-' 
contained in B' . From Lemma 2, we are in the same 
situation as in Section 111-B: one-half of the elements of 
D are orthogonal to y. We must determine the number of 
such elements of a given weight, for every D.  As in 
Section 111-B, we first present some properties that will 
reduce the problem. 

Lemma 5: Let y E&\P and x E B 1 ;  set D = x + 
. Let A be a weight of D. We denote by DA the 

6,, = c a r d ( a  E Dlw(a> = A and (y, a) = 0). 

Then, bA = DA - 62m-A. That means that the co$e C: 
contains exactly one-half of the codewords of B' of 
weight 2"-'. 

Suppose now that A # 2"-' and x 6 P m p l .  Let K be 
the dimension of the kernel of the symplectic form associ- 
ated to D. Assuming that y is a minimum weight code- 
word in C y ,  we have 

p m -  1 

number of codewords of D of weight A. Set 

if w(y) = 1 then DA = 2-"(2" - A) 

if w(y) = 3 then DA E (2-KA,2p"(2" - A)}. 

Pro08 

1) We have (y,O) = 1, since the weight of y is odd. 
That means 

(y,a + 0) = (y,a) + 1, for all a E D,  

which implies 

fiA = c a r d  {a E D( w(a) = 2" - A and (y, a)  = 1) 

= D2,-, - D2m-A. 

Moreover, the cosets D satisfy DA =-D2m-A. When A = 

t$e formula above implies 20,  = DA, for any D. 
Since B' is a union of some coset? D we can conclude 
that one-half of the codewords of B of weight 2"-' is 
contained in C: . 

2) Note that a coset y + l? of minimum weight 1 does 
not contain codewords of weight 3. Suppose now 
that A # 2"-l, x 6C Pm- l  and w(x) = A. From 
Proposition 6, we have 

{a E Dlw(a) = A) = {Xgxlg E GI 

2"- 1 

and 
DA = 2m-".  

Then 

DA = c a r d ( X g x l g  E G and (y, X g x )  = 0) .  

Applying Proposition 3, we obtain 

1 

2 fiA = c a r d { g  E Gl(y, X g x )  = 0) 

= 2-"[2" - w(yx)l. (20) 

If w(y) = 1 then w(yx) = w(x) = A. We suppose now that 
w(y) = 3. We can always rewrite y as follows: 

= x g 1  + x g z  + xgi = x g 1 + g z + g ,  

= X g l + g 2 + g i  + 7 where 7 E P 2  \ B. 

+(XR1 + xgz + xgz + x g l + g Z + g ? )  

(21) 

Note that g,, g,, and g, are three distinct elements of G. 
Since the support of 7 is an affine subspace of G of 
dimension 2, 7 is clearly a minimum weight codeword of 
P 2  (Le., of the Reed-Muller code of order m - 2). More- 
over, x E pmp2 implies E P m  involving y~ E (0, U}. 
Hence, 

w(yx> = w(x@I@)x  + yx) E (w(x),  2" - w(x)) , 
with +,(y) = g, + g, + g,. Using (20) we can conclude 

yX = 0 - DA = 2-"(2" - A) 

yX = 0 * DA = 2-"A. (22) 

Recall that yX = 0 is equivalent to YD = (0) (see Lemma 
2 (i)). 0 

Theorem 5: Set N = 2". Let B be the hvo-error-cor- 
recting extended BCH code pf 1e;gth N. Let y Ed\ P 
and let Cy be the coce (y + B )  U B. 

i) If m is odd there are y o  distinct weight distribu- 
tions for the cosets y + B:  the weight distribution of 
the cosets of minimum weight 1 and the weight 
distribution of the cosets of minimum weight 3. 



1436 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 5, SEPTEMBER 1994 

0 
61 
62 

63 
64 
b6 

TABLE V 
THE Two DISTINCT WEIGHT DISTRIBUTIONS OF C$ , m ODD 

AND y E .cd \ P ;  d(y) IS THE MINIMUM WEIGHT OF THE COSET y + 8. 

1 
((2" - 1)/3)(2m-3 t 2"/'-') 

((2"' - 1)/3)(2"' + 2"/') 

((2"' - 1)/3)(2" - 2"/') 
22"'-2 + 3.2"-' - 1 

((2" - 1\/3\(277-3 - 2m/2-2) These distributions are given in Table VI11 as poly- 
nomials W, and W,. The weight enumerators of the 
corresponding codes Cy are given in Table V. 

ii) When m is even there are t t ree  distinct weight 
distributions for the cosets y + B. All cosets of mini- 
mum weight 1 have the same weight distribution. 
There are two distinct weight distributions for the 
cosets whose minimum weight is 3. These three 
distributions are given in Table IX as polynomials 
W,, W:'), and Wi2). The weight enumerators of the 
corresponding codes C,, are given in Tables VI and 
VII. 

Proofi In all cases, we denote by A,  the number of 
codewords of C: of weight A and ,by d(y) the minimum 
weight of C,, (i.e., of the coset y + B). Notation is that of 
Lemma 5 and y e  use Tables I and I1 for the weight 
distribution of B' . The values A, ,  A,, and A 2 m - 1  do 
not depend on y. Obviously, A ,  = 1 and we obtain imme- 
diately Azm-  I from Lemma 5: 

1 
2 

Azm-l = - ca rd{a  E i ' Iw(a> = 2"-'}. 

Furthermore, y has always an odd weight; then (y, 0) = 1, 
which yields A ,  = 0. 

i) Assume that m is odd. In this case A 2 m - 1  = 22m-1 
+ 2"-' - 1. Suppose now that A E {yl,y3}. The 
code 6' consists of 2" - 1 cosets D = x + P m - l  
of type (1) whose associated symplectic forms have 
kernel of dimension K = 1. We suppose that w(x) = 

A and apply Lemma 5. 
1) If d(y) = 1 then 

2" - A 
A,  = (2" - 110, = (2" - l > y .  

L 

2) If d(y) = 3 then y = 7 + X ' ,  where 7 is an ele- 
ment of P 2  and 8 = +,(y) [see (2111. We know 
that yX = 0 for 2"-l - 1 cosets D and that yX 
equals 0 for the 2"-' remaining cosets D (see 
part 1 of the proof of Theorem 4). Then from 
Lemma 5 and (22): 

- - 2m-1(2m-l - 1) + A/2. 

Replacing A by its value, we complete Table V. 

ii) Suppose that m is even. Thus A2,,-1 = 22m-2 + 
3.2"-2 - 1. From now on A is in {a,, a,, a,, as}. The 
code consists of 2(2" - 1)/3 cosets D of type 

TABLE VI 
THE WEIGHT DISTRIBUTION OF C: WHEN m IS EVEN, y E .d \ P 2  

AND THE MINIMUM WEIGHT OF THE COSET y + 6 IS 1 
I Weight 11 number of words I 

(11) and of (2" - 1)/3 cosets of type (III), which 
contain all codewords of weight A. The dimension K 

of the kernel of associated symplectic forms is here: 

cosets of type (11) 3 K = 0, 

cosets of type (111) 3 K = 2, 

A E {a,, 8,) 

A E {a l ,  a5}. 
We apply Lemma 5. 

1) If d(y) = 1 then 

2(2" - 1) 
A E {a2, 8,) - A ,  = 3 r5, 

2(2" - 1) 
3 

- - (2'" - A) 

2) When d(y) = 3, we get as in i): y = 7 + X'.  We 
proved in Section 111-A that there are V cosets D of 
type (111) [respectively, F cosets of type (1111 satis- 
fying 7D = (0) (see part 2 of the proof of Theorem 
4). Hence, we obtain from Lemma 5 and (22): 

A ~ { 8 , , 6 , }  *A,=T(2"  - A )  

A 

4 

2" - 1 + -  
3 

* A ,  = v- A E { a l ,  2 " - A  4 i -.I- 
where the values of V are given by Lemma 3 and F = 

2"-1 - 1 - V. There are two distinct values for V de- 
pending on the values of +,(y). Thus we obtain two 
distinct weight distributions for the codes C: , replacing 
A and V by their values. 

In all cases, m odd or even, the polynomials W,,+g(X, Y )  
given in Tables VI11 and IX are obtained by applying 
formula (5). 

Corollaty 4: Notaiion is that of Theorem 5. When d(y) 
= 1 the coset y + B has only one codeword of weight 1. 
Suppose that d(y) = 3 and let A,, befi the number of 
codewords of weight 3 in the coset y + B. Then 

m even 3 A,, = V 
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TABLE VI1 
THE TWO DISTINCT WEIGHT DISTRIBUTIONS OF THE CODES C: , m EVEN, y E& \ 6, WHEN THE MINIMUM WEIGHT 

OF THE COSET y 4- is 3. THESE DISTRIBUTIONS DEPEND ON THE VALUE OF m (4 DIVIDES M or Not). 

(22m - 2m/2)/3 - 2m-1 

(2'"' - Zm-' t 2"/')/3 
22"-2 + 3.2"'-' - 1 22m-2 

(2'"' - 2m+1 + 2"'/')/3 

(pm-3 - ;?m/2-2)/3 + 277-3 
(22m - 2m+' - 2m/2)/3 

p m - 2  + 3.2-2 - 1 

(pm-3 - 2"/2-2)/3 - 277-3 
(22m - 2"-1 - 2"/2)/3 

22m-2 + 3.2-2 - 1 
(2'"' t 2"'/')/3 - Zm-' 

(22m-3 + 2m-3 + 2m/2-2)/3 (22m-3 - 5.2"-3 + 2m/2-2 

TABLE VI11 
THE FOUR DISTINCT WEIGHT DISTRIBUTIONS OF COSETS OF THE TWO-ERROR-CORRECTING EXTENDED BCH 

CODES OF LENGTH 2", m ODD. SEE EXPLANATIONS IN SECTION 1II-D 

TABLE IX 
THE SEVEN DISTINCT WEIGHT DISTRIBUTIONS OF COSETS OF THE TWO-ERROR-CORRECTING EXTENDED BCH CODES 

OF LENGTH 2"', m EVEN. SEE EXPLANATIONS IN SECTION 111-D 

Proof We proceed as in the proof of Corollary 2. We 
solve here the (2" - 31th moment of the weight distribu- 
tion of Cy' ; we obtain A;, which is in fact A y .  Note that 

U 

D. Conclusion 
Theorem 6: Let be the binary extended two-error- 

correcting BCH code of length 2". 

1) When m is odd ther: are five distinct weight*distri- 
butions for the cosets of B. Except for the code B itself 
their minimum weights are respectively 1, 2, 3, and 4. 

2) When m is even there %re eight distinct weigh; 
distributions for the cosets of B. Except for the code B 
itself their minimum weights are respectively 1, 2, two 
times 3, and three times 4. 

A y  depends on y only when m is even. 

Proof The theorem summarizes the results previ- 
ously stated in Theorems 3, 4, and 5. Remarks 3 and 4 

Remark 5: We recalled in the introduction that when m 
is odd the code B is completely regular,Note that the 
same proeerty holds for its extension B. Indeed each 
coset of B is such that its weight distribution only de- 
pends on its minimum weight. We are not surprised by 
this result which was proved in a more general context in 
[6, p. 2581. 

B, are 
given in Table VI11 when m is odd and in Table IX when 
m is even. In these tables each row is related with each 
set of cosets having the same weight distribution. Each 
weight distribution was calculated with formula (5 )  in 

complete the proof. 0 

The weight distributions of the cosets y + B", y 
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which the polynomials Wc; and WhLfiaare expressed with 
the weight enumerators of the codes B and C t  (for the 
related y). The minimum weight of the cosets is denoted 
by d(y). The length of the_ codes is N = 2". The weight 
enumerator of the code B itself is omitted (since it was 
given in Tables I and 11). 

and of the codes C ' 
is (0, N ,  y,, y 2 ,  y 3 }  [see the values of these weights in (17$]. 
The table gives the coefficients Ai (where j is a weight of 
B I), which appear in the following formula: 

Table 8: The set of weights of 6 

. ( X  - Y)" + A N ( X  - Y I N  . 1 

distributions of the cosets of B by means of those of B. 
At the end we will be able to prove the conjecture of 
Camion, Courteau, and Montpetit on the number of dis- 
tinct weight distributions of the cosets of B, when m is 
even [91. 

Let H be any coset of 6. If H is a subset of P 
(respectively, of d \ PI then every element of H has an 
even (respectively, an odd) weight; we will say that H is 
an even weight coset (respectively an odd weight coset). Set 
9 = K" [where K = GF(2)I. Each codeword y* of 9 is 
extended to a codeword y of P ,  by definition of the 
extension (see Section 11-A). This correspondence is one- 
to-one. We will write y* = C g E G * y g X g  and y = 

CgEGygXg,  where G* = G\{O} and yo = CgtGyg.  We 
then define the syndrome of y* as 

Ther? are four distinct weight enumerators W,+,:(X,Y), 
y P B. They are denoted by y(? ,Y),  where I is the 
minimum weight of the cose: y + B. 

and of the codes C$ are 
0, N and ai, i E [1,51 [see the values of these weights in 
(1711. The !able gives the coefficients A; (where j is a 
weight of B I), which appear in the following formula: 

Clearly, d+(y*) = &(Y), for i > 0. There are 'i2" cosets 
for the code B. 

Lemma 6: Let H be any even weight coset of 6 and let 
(0, A, E*.) its syndrome. Then there is exactly one odd 
weight coset H' whose syndrome is (1, A, p)  and exactly 
one coset H* of B whose syndrome is ( A ,  E*.). We express 
as follows the weight enumerators of H ,  H', and H*,  
respectively, 

Table 9: The weights of B 

" \  
N N 

V ( Z )  = 2 AJ', V(Z) = Z A i Z ' ,  
i = O  r = O  

c 

+ C A , $ X  + Y)N-61(X - Y)s '  
i =  1 

1 +A,(X - Y ) N  

where y 6. The Vi are given by Lemma 3. The value of 
V depends on the corresponding value of 4,(y), which is 
also given in the table. When d(y) = 3, y and 7 are 
defined by (21). Recall that a is a primitive root of 
GF(2"). 

There are seven distinct weight enumerators 
W,+h(X,Y). In the table, they are denoted by when 
they are weight enumerators of cosets of minimum weight 
i, i E [1,2]. When there are 1 weight enumerators for 
cosets of minimum weight i ,  they are denoted by U/;('), 
t E [l,ZI. 

IV. WEIGHT DISTRIBUTIONS OF COSETS 
OF TWO-ERRORCORRECTING BCH CODES 

Recall that the two-error-correcting BCH code of length 
= 2" - 1 is denoted by B. In the previous section we 

gave the weight distributio?s of the cosets of the extended 
code B (i.e., of the code B). In this section we will state 
the relations which permit us to calculate the weight 

n 

V * ( Z )  = ATZ'. 
i = O  

(24) 

where the coefficient of 2' is the number of codewords of 
weight i .  Then, V*(Z) is uniquely determined from V(Z) 
and V'(Z> by means of the formulas: 

k E [O,(N - 2)/2]: A*,k+, =A;,+, - A;k (25) 

and A: = A,. 
Proof Since the extension is a linear mapping there 

is a one-to-one correspondence between a coset H* = y,* 
+ B and its extension as an even weight coset H = y + B,  
where y is the extended codeword y*. According to (11) 
and (23) we have immediately the equalities between the 
respective syndromes. Now set H' = X o  + H ;  H' is an 
odd weight coset whose syndrome equals [l,  +,(y), &(y)l. 
We will say that the subset of G corresponding to the 
nonzero symbols of any codeword x is the support of x. To 
extend an odd weight codeword of 9 consists in adding 0 
in its support. A codeword with even weight is extended to 
a codeword of same weight. Thus the first formula of (25) 

r 
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is obvious, since writing 

we obtain immediately the coefficients of V ( Z )  from 
those of V*(Z):  A ,  =A*, ,  A ,  =A*,,  and A,, =A*, , - ,  
+ A*,,. Moreover, since H’ = X o  + H ,  we have for every 
k E [ l , ( N  - 2)/2]: 

A;,,,  = c a r d { X O  + cIc E H ,  w ( X o  + c) = 2k + 1) 

= card {c E HI w(c) = 2k and 0 65 supp (c)) 

+ card{c  E Hlw(c) = 2k + 2and0 E supp (c)) 

= card{c* E H*Iw(c*) = 2k} 

+ card{c* E H*(w(c*)  = 2k + 1) 

= AT, + ATkt 1 

completing the proof. 0 
Theorem 7: Let B be the binary two-error-correcting 

BCH code of length 2* - 1. 

1) When m is odd there are four distinct weight distri- 
butions for the cosets of B. Except for the code B itself, 
their minimum weights are respectively 1, 2, and 3. 

2) When m is even there are eight distinct weight 
distributions for the cosets of B. Except for the code B 
itself, their minimum weights are respectively 1, two times 
2, and four times 3. 

Proof Notations is that of Lemma 6. Let H* be any 
coset of B,  H the extension of H* and H’ = X o  + H. 
We denote by d ( H * ) ,  d ( H )  and d(H’)  the minimum 
weight of H * ,  H ,  and H’. If d ( H * )  = A, then d ( H )  = h 
or A + 1 depending on whether A is even or not. Further- 
more d ( H ’ )  = A + 1 or A depending on whether A is even 
or not. Since few cases must be examined it is easy to 
determine from H* and d ( H * )  the possible H and H’. 

1) Assume m is odd. The result is well known [27]; so 
we only give the procedure for the effective compu- 
tation of coset: enumerators. Weight distributions of 
the cosets of B are given in Table VI11 as polynomi- 
als w. In order to obtain the polynomial V* we 
indicate the corresponding polynomials V’ and V we 
need for the use of formulas (25). 

2 I wz I w3 

2) From nowpn m is even. Weight distributions of the 
cosets of B are given in Table IX as polynomials 

or w(t). The possible weight distributions V * ,  by 
means of V’ and I/ are below summarized. 

We will now explain these results and prove that the eight 
weight distributions are distinct. All cosets H* of mini- 
mum weight 1 have the same weight distribution; only W, 
(respectively, W,) corresponds to even (respectively odd) 
weight cosets of minimum weight 2 (respectively, 1). It is 
more complicated when H* has minimum weight 2 or 3. 

For the following it is necessary to recall that a code- 
word 7 of weight 4 in P 2  / B has as its support an affine 
subspace of dimension 2 of G. A subspace of dimension 2 
of G and its cosets are supports of codewords of a same 
coset of and then correspond to the same syndrome, 
because B contains the RM-code of order m - 3 (i.e., the 
code P 3 .  These syndromes are the triples (O,!, p), p E G*. 
Now let H‘ be an odd weight coset of B of minimum 
weight 3. Let y E H’ such that w(y) = 3. According to 
(21) we have: y = 7 + X e  where 7 is an element of P 2  of 
weight 4 and 0 = q5,(y). Thus q5,(y) equals q53(7) + 0 3 .  

Suppose that d ( H * )  = 2. Thus, d ( H )  = 2 and d(H’)  
= 3. Hence, V is the polynomial W,. With the notation 
above the weight distribution of H’ is either WJ’) or Wjz) 
depending on whether q5,(7) is or is not a cube (see Table 
IX). Since d ( H )  = 2 there exists only one codeword or 
weight 2 in H ,  let Xg + X h .  Thus, there is only one 
codeword y in H’ such that w(y) = 3 and 0 E supp (y); it 
is y = X o  + Xg + X h .  Hence, 

(26) 

Conversely, every codeword Xg + X h ,  with g f k # 0, 
uniquely determines an H and its corresponding H*. In 
accordance with the reminder above, that means that 
q5,(7) can have any value p in G*. Hence both equalities, 
V’ = Wj’) or V’ = Wiz) ,  occur. From Corollary 4 we 
know that the coefficient A; of V’ equals V. Applying 
(25) we obtain A: = A ;  - A ;  = V - 1, which indicates 
that the two weight distributions are distinct (as are 
distinct the two possible values of V). 

From now on d ( H * )  = 3. Thus, d ( H )  = 4 and d ( H ’ )  
= 3. Note that a codeword y of H’ of weight 3 cannot 
have 0 in its support. Then we have here 

y = Xgl + Xg2 + Xg3 and supp (7) = g,, g 2 ,  g,, g l ]  

where the gl’s  are any nonzero distinct elements of G. 
If E;’= ,g, = 0 then H c P 2 ,  in which case the syndrome 

of H is any syndrome (0, 0, p), p E G*. Moreover +,(7) 
= q5,(y). Thus, either V =  WJ’) and I/’ = Wj’) ( p  is a 
cube) or V = Wd3) and V’ = Wj’). Assume that E:= g, # 
0; so V = WJ’) and the support of 7 is any coset of any 

supp(7) = { O , g , h ,  g + h ) ,  g + k f 0. 

3 

{ 1=1 
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subspace of dimension 2 of G. Then V' can be either Wj') 
or Wiz) and both equalities occur. 

In all cases we obtain A: = A ;  - A: = V. According 
to Corollaries 3 and 2 we know A ,  which, from (29,  is 
equal to A: + A:. Thus, 

V=WJ2) or WJ3) 3 A: = V(2"-, - 1). 

For a same value of V (VI or V,, see Lemma 3) the two 
values above are distinct; indeed the equality V = 2(2"-' 
- 1)/3 is impossible unless m = 2. That means that the 
four weight distributions corresponding to d(H* ) = 3 are 
distinct. 0 

V. DISTANCE MATRICES OF TWO-ERROR-CORRECTING 
BCH CODES 

We willpenote by 9 the distance matrix of th: code B 
and by 9 the distance matrix of the code 9. These 
matrices, which uniquely determine the weight distribu- 
tions of cosets, will have U rows and t + 1 columns, U 
being the number of distinct weight distributions of cosets 
and t the external distance of the code [181. Each row of 
the distance matrix corresponds in fact to each coset 
weight distribution. Since we detercined all weight distri- 
butions of cosets of codes B and B in previous sections2 
we are now able to express coefficients of 9 and of 9 
essentially by means of identities (4) with respect to the 
approprkate code Cy. Recall that the covering radius of B 
and of B equals, respectively, 3 and 4. 

When m is odd, it is well-known that the code B is 
uniformly packed with parameters h = (2"-' - 4)/3 and 
p = (2m-1 - 1)/3. So, the distance matrix of B is the 

4 x 4 following matrix [21 [271: 
r l  o o 01 

Extending B we obtain the code l? whos: external dis- 
tance t equals 4. As well as B, the code B is completely 
regular and its covering radius equals jts external dis- 
tance. This last property implies that B is a uniformly 
packed code in the sense of [3] while it does not satisfy 
the condition t = e + 1 (the necessary and sufficient con- 
dition for an e-error-correcting code to be uniformly 
packed in the usual sense). 

Corollary 5: The distance matrix of the extended two- 
error-correcting BCH code of length 2", m odd, is the 
5 X 5 following matrix: 

1 0 0 0 0  

& =  I:.:: 0 0 1 0 v1 :I 
o o o o v ,  

where p = (2"-' - 1)/3, v 1  = (2"-' - 2)p et v2 = 

P. 
Proofi The values of v2 and p are, respectively, 

given by Corollaries 3 and 4. We obtain v1 by solving the 
(2" - 4)th identity of (4), applied to the code Cy, yhose 
dual weight distribution is given in Table IV. Since B has 
minimum weight 6, the number of codewords of weight 4 
in Cy equajs the number of codewords of weight 4 in the 

From now on we treat ;he even case. The external 
distances of codes B and B are respectively equal to 5 
and 6. 

2"- 2 

coset y + B. 0 

Corollary 6: Set N = 2", m even. 

i) The distance matrix & of the extended two-error-correcting BCH code of length N is the 8 X 7 following matrix: 

1 0 0 0  

0 1 0 0  

0 0 1  0 

o 0 o v 1  

o o o v 2  

0 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 

0 
1 

- (N - 1) (N  - 4)2 
120 

1 
24 
- ( N  - 412 0 

1 
-(N - 4)(N2 - N - 300,) 
120 
1 
-(A' - 4)(N2 - N - 30V2) 
120 

0 

0 

1 
24 
- N ( N  - 4) 0 

-NVl 0 

-NV2 0 

1 

4 
1 
4 

1 
-N(N - 1) (N  - 4)' 
720 

0 

-(N - 4)(N3 - 11N2 + 42N - 92) 

0 

0 

-N(N - 4)(N2 - 11N + 40) 

1 

720 

1 

720 
1 

-N(N - 4)(N2 - N - 60Vl) 
720 
1 

-N(N - 4)(N2 - N - 60V2) 
720 
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ii) The distance matrix 9 of the two-error-correcting BCH code of length N - 1 is the 8 X 6 following matrix: 

& =  

1 1 0 0  0 

- 
1 0 0 0  0 0 A 
0 1 0 0  0 A 0 
0 0 1 0 P l 0 P 2  
o o o p ,  0 v ,  0 
o o o p ,  0 U ,  0 
0 0 0 0  €1 0 71 

0 0 0 0  E ,  0 7 2  

0 0 0 0  €3 0 73 

0 

1 
24 

0 1 0  0 -(N - 4), 

0 0 1 v , - 1  - ( N - 4 ) 2 - v , + 1  

0 0 1 v, -1 - ( N - 4 ) 2 - v 2 + l  

1 
24 
1 

24 
1 

24 
1 

24 

-N(N  - 4) - v, 

-N(N - 4) - v2 

0 0 0  v, 

0 0 0  v, 

0 0 0  v, -V,(N - 4) 
1 
4 
1 

0 0 0  0, 4V2(N - 4) 

where the values V, or V, of V are given by Lemma 3. 

1 

120 
1 
-(N - 6)(N - 412 
120 

-(N - 1) (N  - 412 

1 
- (N - 4)(N2 - 6 N  - 30Vl + 20) + V, - 1 
120 
1 

- (N - 4)(N2 - 6 N  - 30V2 + 20) + 0, - 1 
120 

1 
-(N - 4)(N2 - 6 N  - 30Vl) + V1 
120 
1 
-(N - 4)(N2 - 6 N  - 3Ov2) + V2 120 

1 
-(N - 4)(N2 - N - 60Vl) 
120 
1 
-(N - 4)(N2 - N - 60V2) 
120 

Proofi (i) Table IX involves the form of 9 below. By using results of Section IV, we can express the matrix 93’ 

9= 

Corollaries 2, 3, and 4 provide, respectively, the values of 
E ,  apd c3, el, pl, and p 2 .  For the remaining coefficients 
of 99, we use formulas (4) with respect to codes Cy, whose 
dual weight distributions are given in Tables 111, IV, VI, 
and VIII. We must firstAcompute the number A of code- 
words of weight 6 in B. Indeed we have not the same 
situation as in the odd case, because we neFd the number 
of codewords of weight 6 in a coset y + B; this number 
equals the number of codewords of weight 6 in the corre- 

0 sponding code Cy minus A. 

VI. CONCLUSION 
In this paper we treat the problem of weight distribu- 

tions of cosets of the two-error-correcting BCH codes. It 
is clear for us that it is possible to treat other codes by 
means of the tools we use here. This is quite evident for 
the codes whose dual weight distributions are given in [23, 
p. 450 and 4531. The extensions of these codes have duals 
which are special subcodes of the RM-code of order 2, 
with dimensions less than or equal to the dimension of 
the duals of two-error-correcting extended BCH-codes. 
Moreover these duals can be described in the same way as 

we describe the codes B’ (cf. Section 11-E). Further- 
more, some properties we have presented can be placed in 
a more general context, to give information on weight 
distributions of cosets of other codes [16]. 
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