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Involutions over the Galois field F2n

Pascale Charpin, Sihem Mesnager, Sumanta Sarkar

Abstract—An involution is a permutation such that its inverse
is itself (i.e., cycle length ≤ 2). Due to this property involutions
have been used in many applications including cryptography and
coding theory.

In this paper we provide a systematic study of involutions that
are defined over finite field of characteristic 2. We characterize
the involution property of several classes of polynomials and
propose several constructions. Further we study the number of
fixed points of involutions which is a pertinent question related
to permutations with short cycle. In this paper we mostly have
used combinatorial techniques.

Keywords—Permutation; involution; fixed point; Boolean func-
tion; monomial; linear function; switching construction; block-
cipher.

I. INTRODUCTION

Permutation polynomials have been extensively studied for
their applications in cryptography, coding theory, combina-
torial design, etc. Finding new classes of permutations is a
challenging task. In many situations, both the permutation
polynomial and its compositional inverse are required. For
instance, in block ciphers, a permutation is used as an S-box
to build the confusion layer during the encryption process.
While decrypting the cipher, the compositional inverse of
the S-box comes into the picture. Therefore, if both the
permutation and its compositional inverse are efficient in
terms of implementation, it is advantageous to the designer.
This motivates the use of an involution, a permutation whose
compositional inverse is itself, i.e., the permutation P is such
that P ◦P is the identity. For a practical advantage, it is often
desired to have permutation polynomials which are easy to
implement. One immediate practical advantage of involution
is that the implementation of the inverse does not require
additional resources, which is particularly useful (as part of
a block cipher) in devices with limited resources.

Involutions have been used frequently in block cipher de-
signs, e.g., in AES [1], Khazad, Anubis [2], PRINCE [3]. For
instance, in AES the inverse mapping is used as the S-box,
which is an involution (see a detailed discussion in [12]). In
the block cipher PRINCE [3], an involution was used (denoted
by M ′). Recently, in [6], behaviour of permutations of an
affine equivalent class have been analyzed with respect to some
cryptanalytic attacks, and it is shown that involutions are the
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best candidates against these attacks. It is to be noted that all
the discussions in these references are from a cryptographic
point of view, and it seems that involutions have rarely been
studied in detail as a mathematical object. In [17, Corollary 1]
and [9, Lemma 3] (by using [14]), specific types of involutions
have been discussed very briefly in the broader context of
compositional inverses.

Involutions have been used in coding theory too. For
instance, in Gallager’s PhD thesis [1], where he proposed
LDPC code, used an involution to update check nodes, this
way he obtained low-complexity hardware implementation of
the sum product algorithm which is used for decoding. This
technique is termed as Gallager’s involution transform. In
another direction there have been some works (for example,
[26]) on involution matrices (i.e., on vector space). However,
the maximum distance separable (MDS) property of these
matrices was the main focus there.

So, a more rigorous study of this important class of per-
mutations (over finite fields) is required. At this point we
would like to refer to [10], where we initiated the research on
involutions as a combinatorial object in the class of Dickson
polynomials. To the best of our knowledge there is no other
document in the literature that makes detailed mathematical
study of involutions.

In this paper, our purpose is to give basic tools and con-
structions to use involutions in some context or to develop
the study of specific involutions (existence and properties).
After preliminaries (Section II), Section III is devoted to
monomials and linear involutions. We notably compute the
number of monomial involutions over F2n (Theorem 3.3) and
give some tools to characterize linear involutions. We fully
describe the corpus of binary linear involutions (Theorem
3.16). Sections IV and V deal with the construction of new
classes of involutions. To exchange outputs two by two by
preserving good properties is a usual way. The so-called
switching construction is a more general way. Here we want
to preserve the involution property. We give a necessary and
sufficient condition to obtain a set of new involutions from
one involution using these methods (Theorem 4.1 and 4.11).
Applied to the inverse function, our results lead to a class of
involutions whose properties remain similar to those of the
inverse function x 7→ x−1 (Corollary 4.18). Section VI is
devoted to the study of the set of fixed points of our proposed
constructions.

II. PRELIMINARIES

This paper is on the functions F which are involutions of
some finite field of characteristic 2, denoted by F2n . To any
polynomial of F2n [x] corresponds a function on F2n and we
will generally identify this polynomial with its corresponding
function.
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A. Some background
Let F be a polynomial with coefficients in F2k , for some

nonzero k, We denote by |E| the cardinality of a set E. The
trace function from F2n onto any subfield F2k of F2n is as
follows:

Trn/k(y) = y + y2
k

+ · · ·+ y2
k(n/k−1)

.

The absolute trace function on F2n (i.e., k = 1) is simply
denoted by Tr. For any function F : F2n → F2n the derivative
of F at point a ∈ F∗

2n is the function

x 7→ F (x) + F (x+ a).

This function can be constant for some a. Such a property was
presented in a more general form in [14]:

Definition 2.1: Let n = rk, 1 ≤ k ≤ n. Let f be a function
from F2n to F2k , γ ∈ F∗

2n and let b be a fixed element of F2k .
Then γ is a b-linear translator of f if

f(x) + f(x+ uγ) = ub for all x ∈ F2n and for all u ∈ F2k .

In particular, when k = 1, γ is usually said to be a b-linear
structure of the Boolean function f (where b ∈ F2), that is

f(x) + f(x+ γ) = b for all x ∈ F2n .

B. Involutions, basic properties
Note that an involution is a special permutation, but the

involution property includes the bijectivity as it appears in the
classical definition.

Definition 2.2: Let F be any function over F2n . We say that
F is an involution if

F ◦ F (x) = x, for all x ∈ F2n .

Example 1: The most known involutions over F2n are:
1) The trivial ones: x 7→ x+ a, for any constant a ∈ F2n ;
2) The inverse function x 7→ x−1, for any n;
3) When n = 2m the linear function x 7→ x2

m

;
4) The functions x 7→ x + γf(x) where f : F2n 7→ F2 is

any Boolean function with a 0-linear structure γ (see
[14, Theorem 3]).

It is important to see that an involution F on F2n is a sequence
of pairs. More precisely, F acts by exchanging some elements
of F2n two by two and by fixing the remaining points.

Definition 2.3: Let F be a permutation of F2n . Let t be
a positive integer. A cycle of F is a subset {x1, · · · , xt} of
pairwise distinct elements of F2n such that F (xi) = xi+1 for
1 ≤ i ≤ t − 1 and F (xt) = x1. The cardinality of a cycle is
called its length.

Remark 2.4: Let {x} be a cycle of F of length 1. Then x
is a fixed point of F , that is, F (x) = x.

Proposition 2.5: An involution has no cycle of length ≥ 3.
Proof: Let x1, x2 and x3 be three elements defined

by x3 = F (x2) and x2 = F (x1). Then x3 = F (x2) =
F (F (x1)) = x1 since F is an involution. Therefore, every
cycle is of length ≤ 2 as the cardinality of a cycle {x1, · · · , xt}
must be equal to t.

Proposition 2.6: Let F be a permutation of F2n . Then F2n

is the union of cycles of F . In particular, if F is an involution
then F2n is the union of cycles of F with length ≤ 2.
Let Vn be the set of involutions on F2n . Then Vn is not a group
for the composition of applications (see the next lemma). But,
Vn contains the identity (I(x) = x for all x), which is the
identity element for the operation ◦. If F is an involution then
F−1 = F so that

F−1 ◦ F (x) = F ◦ F (x) = I(x);

F is its own inverse.
Lemma 2.7: Let F,G be both in Vn. Then the inverse of

F ◦ G is G ◦ F . Consequently F ◦ G ∈ Vn if and only if
F ◦G = G ◦ F .

Proof: If F and G are involutions then for all x

G ◦ F ◦ F ◦G(x) = G (F ◦ F (G(x))) = G(G(x)) = x.

Now F ◦ G ∈ Vn if and only if (F ◦ G)−1 = F ◦ G. But
(F ◦G)−1 = G ◦ F , completing the proof.

Example 2: Let G(x) = x2
m

, where m = 2n. It is easy
to check that for any involution F ∈ F2m [x], F ◦ G is an
involution. For instance, if F (x) = x−1, then F ◦ G(x) =(
x2

m)−1
=
(
x−1

)2m
.

Involutions are conserved through some composition.
Lemma 2.8: Let F be an involution on F2n and let G be

any permutation. Then G−1 ◦ F ◦G is an involution.
Proof: Simply, G−1 ◦ F ◦G is its own inverse:(
G−1 ◦ F ◦G

)−1
= G−1 ◦ F−1 ◦G = G−1 ◦ F ◦G.

Let F (x) =
∑

i∈I λix
i be any polynomial of F2n [x] where I

denotes the set of nonzero terms of F . The degree of F is the
maximal integer value in I .

Lemma 2.9: Let F ∈ F2n [x]. Denote by d(F ) the degree
of F . If F is an involution, which is not the identity, then its
degree satisfies d(F ) ≥ ⌈2n/2⌉.

Proof: Assume that F is an involution such that d(F ) > 1.
Set δ = d(F ). If δ < 2n/2 then F ◦ F (x) has a nonzero term
λxδ

2

where δ2 ≤ (2n/2 − 1)2. Moreover, any other nonzero
term has an exponent less than (and not equal to ) δ2. Thus
F ◦ F cannot be the identity.

Remark 2.10: Now consider the algebraic degree of a given
involution F , that is the maximal Hamming weight of the 2-
adic expansions of exponents:

deg(F ) = max
i∈I

{ wt(i) }, wt(i) =
n−1∑
j=0

ij , where i =
n−1∑
j=0

ij2
j .

We will see later that there are many involutions with algebraic
degree one (linear). Also note that F = x+ Tr(x2

k+1), is an
involution over F2n if and only if Tr(1) = 0, where deg(F ) =
2. Hence the lower bound of deg(F ) for a nonlinear involution
F is 2.

Definition 2.11: Let Q be a permutation of F2n and let E ⊊
F2n . Then E is stable under Q if Q(E) = E.
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III. SOME SPECIAL CLASSES OF INVOLUTIONS

A. Monomials
Generally, the compositional inverse of a monomial permu-

tation has a complicated form [15]. In this part we discuss
about monomial involutions, which are easily identified.

Proposition 3.1: Let Q(x) = λxd is a polynomial over F2n ,
then Q(x) is an involution if and only if

λd+1 = 1 and
d2 = 1 (mod 2n − 1). (1)

Proof: We have Q(Q(x)) = λd+1xd
2

. Hence λd+1xd
2

=
x if and only if λd+1 = 1 and xd

2

= x (mod x2
n

+ x), that
is d2 = 1 (mod 2n − 1).

We see that the involutions of the form x 7→ xd are fully
characterized by (1). First we characterize these monomial
involutions when 2n − 1 is prime, i.e., is a Mersenne prime.

Proposition 3.2: Let n > 1 be a positive integer such that
2n − 1 is prime. Then the only monomial involution of the
form x 7→ xd on F2n are the identity x 7→ x and the inverse
function x 7→ x−1.

Proof: As 2n − 1 is a prime number, then, equation (1)
clearly has two solutions : d = ±1 (mod 2n−1). Now assume
that 1 < d < 2n − 2. We have: d2 = 1 (mod 2n − 1) if and
only if 2n− 1 divides (d+1)(d− 1). Note that the odd prime
2n − 1, must be a factor either of d+ 1 or of d− 1, but that
is a contradiction.

The next question that strikes in this regard is : what happens
when 2n − 1 is a composite number. This is equivalent to
characterize d such that d2 = 1 (mod p) for all prime factors
p of 2n−1. This seems to be hard to characterize, and so is to
exhibit all the monomial involutions in that case. Nevertheless,
we are able to provide the number of such involutions.

Theorem 3.3: The number of monomial involutions on F2n

equals 2s where s is the number of the prime factors in the
prime decomposition of 2n − 1.

Proof: Given a positive integer p, let us denote by ρ(p),
the number of square roots of unity modulo p, that is, the
number of solutions of the congruence equation : x2 = 1
(mod p). Let us first show that

ρ(pq) = ρ(p)ρ(q), when p and q are coprime. (2)

To this end, note that according to Chinese’s Remainder
Theorem, Z/(pq)Z is isomorphic to Z/pZ × Z/qZ via the
isomorphism

ψ : x ∈ Z/(pq)Z 7→ (x (mod p), x (mod q)).

By construction, in Z/pZ×Z/qZ, (a, b)2 = (c, d) is equivalent
to a2 = c and b2 = d so that ψ(x2) = (x2 (mod p), x2

(mod q)), proving (2).
Now, one has ρ(pα) = 2 for any odd prime number p and

positive integer α. Indeed, suppose that x2 = 1 (mod pα).
Then

x2 − 1 = (x+ 1)(x− 1) = 0 (mod pα)

and this is equivalent to

x+ 1 = 0 (mod pα) or x− 1 = 0 (mod pα),

that is x = ±1 mod pα. Since 2n − 1 is an odd number, we
can write

2n − 1 =
s∏

i=1

pαi
i , pi ∈Mn

where αi’s are positive integers. Then

ρ(2n − 1) =
s∏

i=1

ρ(pαi
i ) = 2s.

B. Dickson polynomials
Dickson polynomials Dk ∈ F2[x] are recursively defined by

D0(x) = 0 and D1(x) = x;
Dk+2(x) = xDk+1(x) +Dk(x).

(3)

We have the following fundamental result concerning Dick-
son polynomials that are permutations.

Theorem 3.4: [18] The Dickson polynomial Dk ∈ F2[x] is
a permutation on F2m if and only if gcd(k, 22m − 1) = 1.
It is shown in [10] that there exist Dickson polynomials that are
involutions. The main result is given by the following theorem.

Theorem 3.5: [10] Consider the polynomials Dk, 1 ≤ k ≤
2n − 1, n = 2m with m ≥ 2, such that gcd(k, 2n − 1) = 1.
Let S be the set of all square roots of 1 modulo 2n−1 defined
by

S = { u | 1 ≤ u ≤ 2n − 2, u2 = 1 (mod 2n − 1) }.

Then Dk is an involution on F2m if and only if
• k ∈ S, when m is odd;
• k ∈ S ∪ 2m/2S if m is even.

C. Linear involutions
First of all, note that linear involutions exist (one trivial

example would be the function x 7→ x2
m

on F2n , for
n = 2m). In this section we propose a detailed study of linear
involutions. The following simple lemma is particularly useful
for polynomials of F2[x], when we try to check the involution
property of multinomial linear functions.

Lemma 3.6: Let I be any subset of {0, 1, . . . , n − 1} and
Q(x) =

∑
i∈I aix

2i where ai ∈ F∗
2n . Then

Q ◦Q(x) =
∑
i∈I

a2
i+1

i x2
2i

+
∑

(i,j), i<j

(aia
2i

j + a2
j

i aj)x
2i+j

,

where (i, j) ∈ I × I .
Proof: This is directly obtained by expanding Q ◦Q:

Q ◦Q(x) =
∑
i∈I

ai (Q(x))
2i

=
∑
i∈I

ai

∑
j∈I

a2
i

j x
2i+j

 .

We now give further generalization using a result on the
compositional inverse of a linear permutation from [24]. An
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explicit form of the compositional inverse of a linear permu-
tation (in general form) is provided there. We state the result
for the field F2n .

Suppose Q(x) =
∑n−1

i=0 aix
2i is a linear permutation. It is

known that Q(x) is a permutation polynomial if and only if
the matrix

DQ =


a0 a1 . . . an−1

a2n−1 a20 . . . a2n−2
...

...
...

...
a2

n−1

1 a2
n−1

2 . . . a2
n−1

0


is nonsingular [19]. The matrix DQ is called the associate
Dickson matrix of Q.

Theorem 3.7: [24, Theorem 4.8] Let Q(x) =
∑n−1

i=0 aix
2i

be a linear permutation over F2n and ai denote the (i, 0)-th
cofactor of DQ, i.e., the determinant of DQ is

det(DQ) = a0a0 +
n−1∑
i=1

a2
i

n−iai.

Then the compositional inverse of Q(x) is given by

Q−1(x) =
1

det(DQ)

n−1∑
i=0

aix
2i . (4)

Using Theorem 3.7, we can derive a necessary and sufficient
condition on the coefficients of the linear involutions.

Proposition 3.8: The linear polynomial Q(x) =∑n−1
i=0 aix

2i is an involution over F2n if and only if

ai = det(DQ)ai , for all i = 0, . . . , n− 1. (5)

Proof: Since Q is an involution, then Q−1 = Q, i.e.,

1

det(DQ)

n−1∑
i=0

aix
2i =

n−1∑
i=0

aix
2i .

Comparing the coefficients of both sides,

ai = det(DQ)ai , for all i = 0, . . . , n− 1.

Using this result we can derive an interesting necessary
condition for involutions which can help identify some classes
of linear functions which are not involutions (see Proposition
3.14 later).

Proposition 3.9: Suppose Q(x) =
∑n−1

i=0 aix
2i is an invo-

lution over F2n , then

a20 +
n−1∑
i=1

aia
2i

n−i = 1. (6)

Proof: From (5), we have

a0a0 = det(DQ)a
2
0 for i = 0,

and

a2
i

n−iai = det(DQ)aia
2i

n−i for all i = 1, . . . , n− 1.

Summing all these equations we get

a0a0 +
n−1∑
i=1

a2
i

n−iai = det(DQ)

(
a20 +

n−1∑
i=1

aia
2i

n−i

)
,

that is,

det(DQ) = det(DQ)

(
a20 +

n−1∑
i=1

aia
2i

n−i

)
.

Therefore,

a20 +
n−1∑
i=1

aia
2i

n−i = 1.

Example 3: Suppose Q(x) =
∑n−1

i=0 aix
2i is a linear poly-

nomial over F2n , such that ai = 0 for all i ∈ {0} ∪
{0, 1, . . . , ⌈n+1

2 ⌉}. Then Q cannot be an involution, since for
such ai’s, Condition (6) does not hold.
In the following, we start with the linear monomials and move
to more general results afterwards. According to Proposition
3.1, we directly have:

Proposition 3.10: Let Q(x) = λx2
i

, where 0 < i < n and
λ ∈ F∗

2n , then
• For even n, Q is an involution if and only if i = n

2 and
λ2

i+1 = 1.
• For odd n, Q is not an involution.

Next we consider linear binomials.
Proposition 3.11: Let Q(x) = ax2

i

+ bx2
j

, a ∈ F∗
2n and

b ∈ F∗
2n , where i < j < n. Then we have:

• For odd n, Q can never be an involution.
• For even n, n = 2m, Q is an involution if and only if

j = i+m and either

i = 0 and a2 + b2
m+1 = 1.

or m is even,

i =
m

2
, ab2

i

+ a2
j

b = 1 and a2
i+1 + b2

j+1 = 0.

Proof: Using Lemma 3.6, we obtain:

Q ◦Q(x) = a2
i+1x2

2i

+ b2
j+1x2

2j

+ x2
i+j
(
ab2

i

+ a2
j

b
)
.

The exponents e of x belong to the set {2i, i + j, 2j} (recall
that i ̸= j) satisfying the inequality 0 ≤ e < 2n − 2. Hence,
to get Q ◦ Q(x) = x, two of the three exponents have to be
removed. We thus study the different cases:
• 2i = 2j (mod n) implies 2j = 2i + n which is

impossible for odd n. On the other hand if n = 2m
then j = i+m.

• 2j = j + i (mod n) implies 2j = n + i + j, that is
j = n + i which is impossible. The case 2i = j + i
(mod n) implies i = n+ j which is impossible too.

Thus Q is an involution only when j = i +m (n even) and
in this case

Q ◦Q(x) = x2
2i
(
a2

i+1 + b2
j+1
)
+ x2

i+j
(
ab2

i

+ a2
j

b
)
.
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Further, 2i = n only when i = 0. In this case, Q ◦Q(x) = x
for all x if and only if a2+b2

m+1 = 1 (which implies a ∈ F2m

and then ab+ a2
m

b = 0). Otherwise we must have i+ j = n,
providing 2i = m since j = m+ i.
We deduce directly two classes of binomial linear involutions.

Corollary 3.12: Let n = 2m and F (x) = ax+ bx2
m

. Then
F is an involution on F2n for all nonzero a, b such that a2 =
b2

m+1 + 1.
Corollary 3.13: Let n = 4k and F (x) = ax2

k

+ bx2
3k

. Let
G be the cyclic subgroup of F∗

2n of order 2k+1. Then F is an
involution on F2n for all a, b of G \ {1} such that a+ b ∈ G.

Proof: Note that k+n/2 = 3k. Since a, b ∈ G and 2k+1

divides 23k+1, we have a2
k+1+ b2

3k+1 = 1+1 = 0. Further,
since a and b are in F22k , we have

ab2
k

+ ba2
3k

= ab2
k

+ a2
k

b = (a+ b)2
k+1 = 1.

The class of trinomial linear involutions seems a little more
complicated than monomials and binomials. We would like
to emphasize that our tools are efficient to treat involution
property of linear involutions, and here we apply them for a
class of trinomial linear involutions.

Proposition 3.14: Let Q(x) = a0x+ aix
2i + ajx

2j , where
0 < i < j and a0, ai and aj are all in F∗

2n . Then we have:
(i) If Q is an involution and j ̸= n− i then a0 = 1.
(ii) Assume that j = n − i and a0 = 1. If aia2

i

n−i +

a2
n−i

i an−i ̸= 0 then Q is not an involution.
(iii) Suppose n = 2ki, and Q(x) = x + aix

2i +
an−ix

2n−i

where both ai and an−i belong to the
subfield F2i of F2n .Then Q is an involution if and
only if n = 4i and ai = an−i.

Proof: Statements (i) and (ii) are directly obtained from
(6).

We are going to prove (iii). As both ai and an−i belong to
the subfield F2i , so a2

i

n−i = an−i and a2
n−i

i = ai. Also, in the
expression of Q(Q(x)) given by Lemma 3.6, one may note
that the coefficients aia2

i

j + a2
j

i aj equal to 0 whenever i = 0
and a0 = 1. So we get

Q(Q(x)) = x+ a2ix
22i

+ a2n−ix
22(n−i)

+ (aian−i + an−iai)x
n

= x+ a2ix
22i + a2n−ix

22(n−i)

,

where we must have 2i = 2n−2i (mod n), that is 2i = n−2i
(assuming i < n − i). This implies a2i + a2n−i = 0, i.e., ai =
an−i, completing the proof.

Now we study binary linear involutions.
Proposition 3.15: Let Q(x) =

∑
i∈I x

2i with |I| > 1. Then
Q cannot be an involution on F2n when n is odd. When n is
even, Q is an involution on F2n if and only if∑

i∈I

x2
2i

= x (mod x2
n

+ x). (7)

Proof: By using the expression given in Lemma 3.6, we
get (7), since ai = 1 for all i. Clearly 2j = 2i (mod n) is
impossible for odd n unless i = j.

Thus, for even n it is easy to construct linear involutions having
binary coefficients. Actually we are able to give the whole
expression of such involutions. Also, Equation (7) allows us to
count the number of linear polynomials in F2[x] which induce
involutions of F2n .

Theorem 3.16: Let n = 2m. Denote by In the number of
linear involutions over F2n of the following form

Q(x) =
n−1∑
i=0

aix
2i , where ai ∈ F2.

Then

In = 2×
m−1∑
τ=0

(
m− 1
τ

)
.

Moreover any such involution Q is defined by a subset J of
{1, . . . ,m− 1} and its expression is as follows

Q(x) = x2
e

+
∑
i∈J

x2
i

+
∑
i∈J

x2
m+i

, e ∈ {0,m}.

Proof: Let I = {i ∈ [0, n−1] | ai = 1}. Proposition 3.15
tells that

Q(x) induces an involution if and only if
∑
i∈I

x2
2i

= x.

We assume that Q is an involution. We first observe that the
integers of the form 2i are pairwise distinct. Thus they have
to be removed by pairs in such a way that for any i ∈ I , with
0 < i < m, there is j ∈ I such that 2i = 2j (mod n), that is
j = i+m.

Note that for any such pair (i, j) we must have 0 < i <
m < j. Indeed only one i ∈ I has to satisfy 2i = n mod n,
i.e., either i = 0 or i = m.

We consider all involutions Q over F2n having a fixed
number of terms, say s. Set |I| = s and τ = (s − 1)/2 for
s ≥ 3. Clearly s must be odd since Q(1) ̸= 0. If s = 1 then
Q(x) ∈ {x, x2m} and τ = 0 by convention. For τ > 0 fixed,
to describe all the involutions we have to choose τ elements,
providing all s− 1 = 2× τ elements as follows:

0 < i1 < · · · < iτ < m giving jk, k = 1 . . . τ, jk = ik+m.
(8)

There are
(
m− 1
τ

)
such choices of τ pairs (ik, jk) such

that 2ik = 2jk modulo n. Further, each choice allows to
construct two involutions by adding either x or x2

m

. This
completes the proof on the value of In. The exact expression
of the involution Q is directly deduced from (8).
We already have seen that linear monomial involutions and
linear binomial involutions do not exist over F2n , when n is
odd. However, linear involutions with higher number of terms
for odd n do exist. The simplest case is x 7→ x + γTr(x)
where Tr(γ) = 0 (these functions are involutions for any n).
We will give a more general result by Corollary 4.7 later; see
also Corollary 4.20.
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IV. INVOLUTION FROM ANOTHER INVOLUTION

A. Exchanging values of a pair of inputs
Recently, Yu, Wang and Li have proposed some new per-

mutations with low differential uniformity [27]. These are
obtained by exchanging two values of a given permutation.
We first show that it is easy to construct an involution from
another involution by using this method.

Theorem 4.1: Let F : F2n → F2n be an involution. Let α
and β be two nonzero distinct elements of F2n . Define G :
F2n → F2n as follows:

G(x) =

{
F (x) for all x ̸∈ {α, β}
F (α) if x = β
F (β) if x = α.

Then G is an involution if and only if {α, β} is stable under
F .

Proof: Note that obviously G is a permutation whenever
F is a permutation. We assume that F is an involution. Let π
be the transposition1 of F2n that swaps α and β. Note that a
transposition is an involution. Now, G = F ◦ π. According to
Lemma 2.7, G is an involution over F2n if and only if F and
π commute over F2n . Observe that π(x) ̸= x if and only if
x ∈ {α, β}.

Hence, if G is an involution then G(x) = F (π(x)) =
π(F (x)) with

π(F (x)) ̸= F (x) ⇐⇒ F (x) ∈ {α, β},

But, by definition, G(x) ̸= F (x) for x ∈ {α, β} only. Thus
{α, β} is stable under F .

Conversely, if {α, β} is stable under F , then F2n \ {α, β}
is also stable under F . Furthermore, the restriction of F to
{α, β} is either π or the identity map and therefore commutes
with π. Next, the restriction of π to F2n \ {α, β} being the
identity map, it commutes with F over F2n \ {α, β}.

Remark 4.2: One can directly obtain the expression of G
from Theorem 4.1. Indeed, set γ = β+α.Then G(x) = F (x)+
γf(x), where f is a Boolean function which is 0 everywhere
except at α and β.

Remark 4.3: If {α, β} is stable under F , then only two
cases can occur :

(i) F (α) = β, or equivalently F (β) = α; in this case
α and β are fixed points of G.

(ii) F (β) = β and F (α) = α, i.e., α and β are two
fixed points of F but are not fixed points of G.

Remark 4.4: Recently, in a lot of papers, the inverse func-
tion has been modified and some cryptographic properties of
the derived functions have been studied (see, for instance, [9],
[16], [17], [27]). By doing this, the involution property of the
inverse function is destroyed in the new function. However,
by Theorem 4.1, we exhibit a mapping which preserves the
involution property. More precisely, Remark 4.3 shows that we
can reduce a pair of fixed points of an involution and hence
reduce the total number of fixed points in a new involution.

1A transposition is an exchange of two elements of an ordered list with all
others staying the same; it is therefore a permutation of two elements.

B. Using subfields of F2n

In this subsection we study involutions of the form

x 7→ G(x) + γf(x), γ ∈ F∗
2n

where G is an involution and f is a function from F2n to
a subfield of F2n . We begin by recalling those involutions
introduced in [14]. The simplest one is given in Example 1,
but a more general definition could give other examples.

We start by giving an instance of a theorem of [14]. Recall
that a F2k -linear function on F2n (n = rk) is of the type

L : F2n 7→ F2n , L(x) =
r−1∑
i=0

λix
2ki

, λi ∈ F2n .

Also recall linear translators from Definition 2.1 in Section
II.

Theorem 4.5: [14, Theorem 1] Let n = rk, k > 1. Let L
be a F2k -linear permutation on F2n . Let f be a function from
F2n onto F2k , h : F2k → F2k , γ ∈ F∗

2n and let b be a fixed
element of F2k .

Assume that γ is a b-linear translator of f . Then

F (x) = L(x) + L(γ)h(f(x))

permutes F2n if and only if g : u 7→ u+ bh(u) permutes F2k .
This theorem allows us to construct more involutions, notably
linear involutions as we show now.

Corollary 4.6: The hypotheses are those of Theorem 4.5
with b = 0. Set K(x) = x+ γh(f(x)). Then the function

F : F2n 7→ F2n , F (x) = L(x) + L(γ)h(f(x))

is a permutation on F2n . Moreover K is an involution over
F2n ; further, if L is an involution which commutes with K
then F is an involution too.

Proof: If b = 0 then g is the identity in Theorem 4.5 so
that F is bijective. And we have

K ◦K(x) = K(x+ γh(f(x)))

= x+ γh(f(x)) + γh(f(x+ γh(f(x))))

= x+ γh(f(x)) + γh(f(x)) = x

as γ is a 0-translator of f . Since L is F2k -linear, we have:
F = L ◦ K so that F−1 = K ◦ L−1. According to Lemma
2.7, when L is an involution, F is an involution whenever
K ◦ L = L ◦K.
We now give two interesting instances of the previous corol-
lary. We first present a class of linear involutions over F2n , for
any n and later give a specific class (for n = 2m).

Corollary 4.7: Let n = rk where k > 1 and r > 1. Let
γ ∈ F∗

2n and the mapping over F2n :

Q : x 7→ x+ γTrn/k(x).

Then Q is an involution if and only if Trn/k(γ) = 0.
Proof: According to Corollary 4.6, Q is an involution if

and only if γ is a 0-linear translator of x 7→ Trn/k(x). That
is

Trn/k(x) + Trn/k(x+ γu) = Trn/k(γu) = uTrn/k(γ) = 0,
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for all u ∈ F2k , completing the proof.
Corollary 4.8: Let n = 2m. Let h be any mapping from

F2m to itself then the mappings F from F2n to itself defined
by

F (x) = h(Trn/m(x)) + xe, e ∈ {1, 2m}, (9)

are involutions of F2n .
Proof: One can apply Corollary 4.6 with L(x) = xe and

γ = 1 to prove that F is an involution. First, observe that 1 is
a 0-linear translator of Trn/m since

Trn/m(x) + Trn/m(x+ u) = 0, for all u ∈ F2m .

One then deduces from Corollary 4.6 that F is an involution
since L commutes with K : x 7→ x+ h(Trn/m(x)) :

K(xe) = xe + h(Trn/m(xe)) =
(
x+ h(Trn/m(x))

)e
= (K(x))

e
.

The bijectivity of functions F , given by (10) in the next
example, has been recently discussed in several papers. It is
easy to prove that F is a permutation when δ ∈ F2m ; we
indicate that such F is an involution, since it is an instance of
(9). When δ ̸∈ F2m proofs are not so simple [22].

Example 4: Let s be any integer and δ ∈ F2m . Taking
h(y) = (y + δ)s yields to the involutions

F (x) = (x2
m

+ x+ δ)s + xe, e ∈ {1, 2m}. (10)

C. Switching constructions
Here we consider the following functions over F2n :

Q(x) = G(x)+γf(x) where

{
G is an involution
γ ∈ F∗

2n

f is any Boolean function.
(11)

Such a construction of Q from G is called the switching
construction. We first recall the conditions for Q to be a
permutation.

Theorem 4.9: [7], [8] Let Q be defined by (11), where G
is a permutation only. Then Q is a permutation over F2n if
and only if γ is a 0-linear structure of f ◦ G−1, where G−1

denotes the compositional inverse function of G. Moreover, in
this case,

Q−1 = G−1 ◦H where H(x) = x+ γf(G−1(x)). (12)

In the following, one can identify the involutions of the shape
(11).

Lemma 4.10: Let Q be defined by (11). If Q is an involution
then f ◦G = f .

Proof: We use the notation of Theorem 4.9 in the proof.
If Q is an involution then Q−1 = Q. So, from (12) and since
G is an involution too

Q(x) = G(x) + γf(x) = Q−1(x) = G ◦H(x)

= G (x+ γf(G(x))) .

If f(x) = 0 then G
(
x + γf(G(x))

)
= G(x) yielding that

x+γf(G(x)) = x, since G is a permutation. Thus f(G(x)) =

0. If f(x) = 1 then G(x) + γ = G (x+ γf(G(x))) and one
necessarily has f(G(x)) ̸= 0.

Theorem 4.11: Let Q be defined by (11). Then Q is an
involution if and only if

(i) γ is a 0-linear structure of f ,
(ii) f ◦G = f and
(iii) H ◦G = G ◦H where H(x) = x+ γf(x).

Proof: Suppose that Q is an involution. Then, according
to Lemma 4.10, f◦G = f . Furthermore, according to Theorem
4.9 and since G−1 = G, γ is a 0-linear structure of f ◦ G−1

which is equal to f . The third assertion follows from Q−1 = Q
and G−1 = G. Replacing this f ◦G−1 = f ◦G = f in (12),
we get Q = G ◦H which equals H ◦G by Lemma 2.7.

Conversely, suppose that (i) to (iii) hold. From the first
assertion of Theorem 4.9, we get that Q is a permutation.
Note that (ii) implies Q = H ◦G. From (12) and (iii), we get
that

Q−1 = G−1 ◦H = G ◦H = Q = H ◦G,

proving that H is involutive, which completes the proof.
Remark 4.12: The conditions, (i) to (iii), of Theorem 4.11

are quite strong. However these conditions are actually held
for some f and G and they can be used to construct such in-
volution Q, as we will see later. In accordance with Definition
2.3, condition (i) and (ii) can be explained better. Condition
(ii) means that f is constant on any pair (x,G(x)). Moreover
(i) means that f(x) = f(x + γ) for all x. This implies that
any pair (x, x+γ) is either in the support of f or outside this
support. Condition (iii) is the fact that the two involutions H
and G are commutative and this is clear from Lemma 2.7.

1) More on the added Boolean function: According to
Remark 4.12, the Boolean function f has to satisfy strong
properties in order to obtain an involution Q from an involution
G. In this subsection, we investigate the support of such f , i.e.,
the set Supp(f) = {x ∈ F2n : f(x) = 1}. More precisely, we
try to get explicit description of the support of those f which
provides an involution.

Corollary 4.14 (of Theorem 4.11) later leads to a better
understanding of the function f when Q is an involution. But
we first consider the composition of Q and G.

Corollary 4.13: Let Q be defined by (11). If Q is an
involution then Q and G commute. More precisely: Q ◦G =
G ◦Q = H , with H(x) = x+ γf(x).

Proof: We have Q(x) = G(x) + γf(x) where G is an
involution. Assuming that Q is an involution, we use Theorem
4.11. Notably, from (iii), we have H ◦G(x) = G ◦H(x), for
all x ∈ F2n . Thus Q ◦ G = H ◦ G ◦ G = H and G ◦ Q =
G ◦G ◦H = H , proving Q ◦G = G ◦Q.

Corollary 4.14: Assume that Q, defined by (11), is an
involution. Denote by Supp(f) the support of f . Define for
any x ∈ F2n

Ux = {x, G(x), x+ γ, G(x+ γ)}.

Then:
• For any x ∈ Supp(f), Ux ⊂ Supp(f) and we have

G(x) +G(x+ γ) = γ. (13)
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Consequently Ux is stable under Q.
• If x ∈ Supp(f) is a fixed point of G then x + γ is a

fixed point of G too, i.e., Ux = {x, x + γ}. Moreover
Q(x) = x+ γ and Q(x+ γ) = x.

Proof: We assume that x ∈ Supp(f). Then x + γ ∈
Supp(f) as f(x) = f(x+γ) for all x. Since f ◦G = f , G(x)
and G(x + γ) are in Supp(f) too so that Ux is a subset of
Supp(f).

Now, G ◦H = H ◦G (from Theorem 4.11), implies

Q(x) = H ◦G(x) = G(x) + γ = G ◦H(x) = G(x+ γ).

Thus, using (13) and Corollary 4.13, it is easy to check for
x ∈ Supp(f):

Q(x) = G(x) + γf(x) = G(x) + γ = G(x+ γ)

Q(x+ γ) = G(x+ γ) + γf(x+ γ) = G(x) + γ + γ = G(x)

Q(G(x)) = G(G(x)) + γf(G(x)) = x+ γf(x) = x+ γ

Q(G(x+γ)) = G(G(x+γ))+γf(G(x+γ)) = x+γ+γ = x.

We conclude that Q(Ux) = Ux for any x ∈ Supp(f).
Let x ∈ Supp(f) such that G(x) = x. Thus Q(x) = x+ γ.

By using (13) we get directly G(x+ γ) = x+ γ and, further,

Q(x) = x+ γ and Q(x+ γ) = x+ γ + γ = x.

Remark 4.15: The set Ux has cardinality 2, when x ∈
Supp(f) is a fixed point of G. In this case, Q exchanges the
two values G(x) = x and G(x+γ) = x+γ and then removes
two fixed points of G. When x ∈ Supp(f) is not a fixed
point of G, it could happen that G(x) = x+ γ, implying that
Ux = {x, x+γ}. In this case Q(x) = x and Q(x+γ) = x+γ,
i.e., Q adds two fixed points to the set of fixed points of G
(see Theorem 4.1).

2) Some constructions: Theorem 4.11 has interesting con-
sequences, allowing us to construct new involutions with
good properties. In this subsection, we exhibit involutions Q
from specific involutions G (as given by (11)). According to
Corollary 4.14, we are able to present a general construction.

Theorem 4.16: Let Q be given by (11) where γ and G
satisfy:

there is an x ∈ F2n such that G(x) +G(x+ γ) = γ. (14)

Moreover f is such that Supp(f) = Ux. Then Q is an
involution.

Proof: Recall that Ux = {x, G(x), x + γ, G(x + γ)}.
Further, according to (14), we have:

Ux = {x, G(x), x+ γ, G(x) + γ}.

Hence, Ux is stable under the transformation x ∈ F2n 7→ x+γ.
Clearly, f(x+ γ) = f(x) for every x ∈ F2n proving that the
Condition (i) of Theorem 4.11 holds. Now, to prove that Q is
an involution, we have to prove that Conditions (ii) and (iii)
of Theorem 4.11 are also satisfied.

Since G(Ux) = Ux, one has f(G(y)) = 1 if y ∈ Ux and
f(G(y)) = 0 if y ̸∈ Ux proving (ii). Let H(y) = y + γf(y).
Then

G(H(y)) = G(y + γf(y)) = G(y) + γf(y)

for every y ∈ F2n because of (14). Since f(y) = f(G(y)), we
have proved (iii), i.e., G ◦H = H ◦G.

Example 5: Let n = 9 and G(y) = yd with d = 218.
Since 218 × 218 = 1 modulo 511, G is an involution over
F29 . We choose γ ∈ F⋆

29 in the image of the map R : y 7→
yd + (y+ γ)d. Further we take x such that R(x) = γ. We get
Ux = {x, xd, x+ γ, (x+ γ)d}. Let f be defined by f(y) = 1
if and only if y ∈ Ux. Then y 7→ yd + γf(y) is an involution.
Recall that there is a bound on the degree of monomial invo-
lutions, which is directly derived from Lemma 2.9: assuming
that Q is an involution, with Q(x) = xs+γf(x) where x 7→ xs

is an involution. According to Lemma 2.9, s ≥ 2n/2 for even
n and s ≥ 2(n+1)/2 for odd n.

Proposition 4.17: Let Q be given by (11) where G(x) = xs,
s > 1, then s ≥ ⌈2n/2⌉.

In the following, we present some specific constructions of
involutions. Note that Q is obviously an involution when f is
the null function.

Corollary 4.18: Let Q be given by (11) with G(x) = x−1

and f is not the null function. Then Q is an involution if and
only if either of the following conditions holds:

(a) γ ̸= 1, with Tr(γ−1) = 0, and f is 0 everywhere
except at the roots of equation x2 + γx+ 1 = 0.

(b) γ = 1 and one of (b.1), (b.2) holds
(b.1) If n is odd then f(x) = 0,

∀x ∈ F2n \ {0, 1} and f(0) = f(1) = 1.
(b.2) if n is even then f(x) = 0 unless either

x ∈ {0, 1} or x ∈ {y, y + 1} where
y2 + y + 1 = 0 or x ∈ {0, 1, y, y + 1}.

In the case (a), Q has 4 fixed points. In the case (b), Q has 0
fixed point (case (b.1)) and, respectively, 0, 4, 2 fixed points
(case (b.2)).

Proof: Assume that Q is an involution. We use Corollary
4.14 to determine γ and the support of f . Note that the function
x 7→ x−1 has only two fixed points: 0 and 1.

Let x ∈ Supp(f) providing

Ux = {x, x−1, x+ γ, (x+ γ)−1}.

From (13), we get:

y−1 + (y + γ)−1 = γ where y ∈ Ux. (15)

Note that if γ = 1, y ∈ {0, 1}. Assuming that γ ̸= 1, (15)
becomes

y2 + γy + 1 = 0,

which has solutions if and only if Tr(γ−1) = 0.
This means that for such a γ, which is not in {0, 1}, there

are only two elements in Supp(f), a pair (y, y−1) with y−1 =
y + γ.

Now take γ = 1. If n is odd then y2 + y + 1 = 0 has
no roots in F2n , since Tr(1) = 1, so that Supp(f) = {0, 1}.
When n is even, the equation y2 + y + 1 = 0 has two roots,
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say y and y + 1 = y−1. Thus either Supp(f) = {0, 1} or
Supp(f) = {y, y + 1} or Supp(f) = {0, 1, y, y + 1}.

Conversely, assume that f satisfies (a) or (b), i.e., (b.1) or
(b.2). It is clear that in all cases, the involution G is modified
by exchanging the values of some pairs of inputs. Actually we
use Theorem 4.1. Only one pair (y, y−1) is concerned in (a):

Q(y) = y−1 + γ = y and Q(y−1) = y + γ = y−1

and Q(x) = x−1 for all x ̸= y. It is the case (i) of Theorem 4.1
where two fixed points are added. The case (b.1) is when the
two fixed points of x 7→ x−1 are removed by doing Q(0) = 1
and Q(1) = 0. The case (b.2) is similar to (b.1) and (a) (when
two pairs are concerned), respectively.

Remark 4.19: The differential uniformity of Q (when
G(x) = x−1) is known not to be more than 6 (see [9, Section
4.2]). When only two outputs are exchanged, the differential
uniformity is studied in [27] for even n.
When G is a linear involution, many constructions are possible.

Corollary 4.20: Let Q be given by (11) with G(x) being a
linear involution. Then Q is an involution if and only if

(i) γ is a 0-linear structure of f .
(ii) f ◦G = f ,
(iii) G(γ) = γ.

Proof: The conditions (i) and (ii) are the same as (i) and
(ii) of Theorem 4.11. The condition (iii) becomes, using (13),
G(z) +G(γ) +G(z) = γ, which is G(γ) = γ.

Remark 4.21: Let n = 2m. When we apply Corollary 4.20
with G : x 7→ x2

m

, condition (iii) becomes γ2
m

= γ, that is
γ ∈ F∗

2m .

V. PIECE BY PIECE CONSTRUCTION OF INVOLUTIONS

Basically, if E is stable under an involution Q of F2n

then Q|E and QF2n\E are involutions of, respectively, E
and F2n \ E. That suggests the following way to construct
involutions from involutions of lower dimensions. Let n be a
positive integer and m|n. Let Q be an involution of F2n \F2m

and let F be an involution of F2m . Then

H(x) =

{
F (x) if x ∈ F2m

Q(x) if x ∈ F2n \ F2m
(16)

is an involution of F2n . Simple examples of involutions of
F2n \ F2m are the identity function, the inverse function and
x 7→ x2

m

when n = 2m. Another example is given below.
This kind of construction allows us to provide an involution
with a given number of fixed points.

Proposition 5.1: Let n = 2m. Let b ∈ F2m \ {0, 1}. Let F
be an involution of F2m . Define

H(x) =

{
F (x) if x ∈ F2m

(x+bx2m)
b+1 if x ∈ F2n \ F2m .

Then H is an involution of F2n having the same number of
fixed points as F .

Proof: Consider, for b ̸∈ {0, 1}

Q(x) =

(
x+ bx2

m)
b+ 1

, x ∈ F2n .

Note that Q(x) ∈ F2m if and only if x + bx2
m

= x2
m

+ bx,
that is x ∈ F2m . Next, using Corollary 3.12, it is easy to check
that Q is an involution of F2n , so is of F2n \ F2m .

Furthermore, Q has no fixed points in F2n \ F2m since
Q(x) = x if and only if either x = 0 or x+ bx2

m

= x+ bx,
that is x ∈ F2m .

VI. FIXED POINTS OF INVOLUTIONS

The number of fixed points of a permutation (in particu-
lar, involution) is an important cryptographic criteria. In this
context, one may read [25]: The graphs obtained by some
experimental results indicate a strong correlation between the
cryptographic properties and the number of fixed points and
suggest that the S-boxes should be chosen to contain few fixed
points.

A random permutation of F2n has O(1) of fixed points,
while a random involution of F2n has 2n/2+O(1) fixed points
[5] (see [13, VIII.42]). Therefore, a permutation (involution)
with no fixed points or more than O(1) fixed points can be
distinguished from the random permutation, and thus can be
attacked (see [5]). The so-called “reflection ciphers” depend
on involutions, however, these involutions should be chosen
carefully, as [4] pointed out that such involutions should
have no fixed points. In [21], an attack against such ciphers
was presented that exploited the set of fixed points of the
involutions.

A. General properties
According to Proposition 2.6, it is clear that an involution

over F2n has an even number of fixed points. Using this we
have the following result.

Proposition 6.1: Let F be an involution of F2n . Then the
function x 7→ F (x) + x cannot be a permutation.

Proof: Set G(x) = F (x) + x and assume that G is a
permutation. Thus, there is only one y such that G(y) = 0. So
y is a fixed point of F and it is the only one fixed point, this
contradicts the fact that F has even number of fixed points.
Thus, we see that an involution F over F2n cannot be a so-
called complete permutation, i.e., F and x 7→ F (x)+x are both
bijective [20]. A complete mapping is called orthomorphism
in cryptology and appears in the design of some block ciphers
[23].

The construction of involutions by adding a constant to a
given involution is also linked with its fixed points.

Lemma 6.2: Let F be a permutation over F2n such that
F (0) = 0; consider the permutations defined by Ga(x) =
F (x) + a where a ∈ F2n .

If Ga is an involution then a is a fixed point of F . When F
is a linear involution, the number of involutions Ga is exactly
the number of fixed points of F .

Proof: First, we have for any a and for all x ∈ F2n

Ga(Ga(x)) = Ga (F (x) + a) = F (F (x) + a) + a.

If Ga is an involution then Ga(Ga(a)) = a which means
F (a) = a. Now suppose that F is a linear involution. Then

Ga(Ga(x)) = F (F (x)) + F (a) + a = x+ F (a) + a,
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proving that Ga is an involution if and only if a is a fixed
point of F .

To have control of the number of fixed points is important
for applications in cryptology. Let a ∈ F∗

2n and Pa : x 7→
x+ a. Then Pa is an involution over F2n which has no fixed
point. Moreover, for any permutation P , P−1 ◦ Pa ◦ P is an
involution without any fixed point. The more general property
is as follows.

Proposition 6.3: Suppose M is an involution over F2n

having τ fixed point. and P is a permutation over F2n . Then

F = P−1 ◦M ◦ P,
is an involution having τ fixed point.
It is to be noted that the ENIGMA cipher and PRINCE block
cipher [3] are of the form of F .

B. Fixed point of some special classes of involutions
We start with monomial involutions.
Proposition 6.4: Suppose that Q : x 7→ xd is an involution,

then the nonzero fixed points of Q form a cyclic subgroup of
F∗
2n of order τ with τ = gcd(d− 1, 2n − 1).

Proof: Recall that d2 = 1 (mod 2n − 1), since Q is an
involution. From xd+x = 0 we have x(xd−1+1) = 0, so the
set of nonzero fixed points is the set of x such that xd−1 = 1.

This is an interesting tool which gives us the control of
choosing the number of fixed points of involutions.

In particular, if n = km and τ = 2m − 1, the set of fixed
points of Q is F2m . Consider the function H , constructed by
(16), where F is an involution which has ρ fixed points in
F2m , and take Q(x) = xd. Clearly H has ρ fixed points too.

Restricting to the case of linear involutions, the number of
fixed points can be easily lower bounded.

Lemma 6.5: [21, Lemma 1] Let Q be a linear involution
over F2n . Then the number of fixed points of Q is greater
than or equal to 2n/2.
According to Theorem 3.16, we are able to construct linear
involutions over F2n , where n = 2m, which have exactly 2m

fixed points. We prove below that starting from a linear per-
mutation over F2m (with coefficients in F2) one can construct
a linear involution whose set of fixed points is F2m .

Theorem 6.6: Consider any involution Q(x) =
∑n−1

i=0 aix
2i

of F2n , where ai’s are in F2. Let J be the subset of {1, . . . ,m−
1} defining Q (according to Theorem 3.16). Denote by Fix(Q)
the set of fixed points of Q. Define two functions over F2m

Qe(y) = ξy +
∑
i∈J

y2
i

, y ∈ F2m , e ∈ {0,m},

where ξ = 1 if e = m and ξ = 0 if e = 0. Thus
Fix(Q) = F2m ∪ Ker(Qe), where e is either 0 or m.
Consequently, Fix(Q) = F2m if and only if Qe permutes
F2m .

Proof: Recall that x ∈ Fix(Q) if and only if Q(x)+x =
0. In Theorem 3.16, we have proved that the expression of
such Q is:

Q(x) = x2
e

+
∑
i∈J

(x+ x2
m

)2
i

, e ∈ {0,m}.

Thus F2m ⊆ Fix(Q) for each value of e. Now define the
function f from F2n to F2m as f(x) = x+ x2

m

. Thus we get
two functions, Qe with e ∈ {0,m}, over F2m :

Q0(y) =
∑
i∈J

y2
i

, y ∈ F2m , Q0(f(x)) = Q(x) + x for e = 0,

and

Qm(y) = y +
∑
i∈J

y2
i

, y ∈ F2m , Qm(f(x)) = Q(x) + x,

for e = m. Thus, x ̸∈ F2m is a fixed point of Q if and
only if f(x) is in the kernel of Q0 (respectively. Qm). Hence
Fix(Q) = F2m if and only if Q0 (respectively. Qm) permutes
F2m .

Let Q = H ◦ G where G is an involution and H : x 7→
x+γf(x). Recall that Q = G◦H = H ◦G and Q◦G = G◦H
(Corollary 4.13). Then, we have the following obvious result.

Proposition 6.7: An input x is a fixed point of Q if and only
if f(x) = 0 and G(x) = x or f(x) = 1 and G(x) = x+ γ.

Remark 6.8: Proposition 6.7 says that G and Q can have a
different fixed point only if f(x) = 1. Indeed, when f(x) = 0,
any fixed point of G is a fixed point of Q. However, when
f(x) = 1,
• if G(x) = x then x is not a fixed point of Q,
• if G(x) = x+ γ then x is a fixed point of Q,
• if G(x) ̸∈ {x, x+ γ} then x is not a fixed point of Q.
Therefore, setting M = #{x ∈ F2n | Q(x) = x}, we have

M = #
(
{x ∈ F2n | G(x) = x} ∩ Supp(f + 1)

)
+#

(
{x ∈ F2n | G(x) = x+ γ} ∩ Supp(f

)
.

Proposition 6.9: Let G and Q be two involutions having
the relation Q(x) = G(x) + γf(x). Then, x is a fixed point
of G if and only if Q(x) is a fixed point of G. Similarly, x is
a fixed point of Q if and only if G(x) is a fixed point of Q.

Proof: Suppose that x is a fixed point of G then Q(x)
is a fixed point of G too, since G(Q(x)) = Q(G(x)) =
Q(x) (Corollary 4.14). Conversely suppose that x is such
that Q(x) is a fixed point of G. Then G(Q(x)) = Q(x).
Since G(Q(x)) = Q(G(x)), Q(G(x)) = Q(x) proving that
G(x) = x since Q is bijective. This proves that Q permutes
the set of fixed point of G.

To prove the second assertion, it suffices to observe that the
roles of G and Q can be exchanged in the previous lines.

VII. CONCLUSIONS

In this paper, we have presented some general results on
involutions over F2n . We have proposed several constructions
providing new involutions, and presented results on the number
of fixed points of involutions which has cryptographic interest.
All these results give further insight into involutions that can
be useful in bringing new constructions of involutions having
good cryptographic properties such as high nonlinearity, low
differential uniformity, etc. Thus, our work leads to many open
problems which will interest a large community.
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