
Polynomials with Linear Structure and
Maiorana-McFarland Construction

Pascale Charpin and Sumanta Sarkar
SECRET Project-Team - INRIA Paris-Rocquencourt

Domaine de Voluceau - B.P. 105 - 78153 Le Chesnay Cedex - France

pascale.charpin@inria.fr, sumanta.sarkar@inria.fr

Abstract—We study permutations over the finite fields that
have linear structures. Our main result is to show the relation
between a Maiorana-McFarland function with an affine deriva-
tive and a polynomial with a linear structure.

I. INTRODUCTION

Bent functions with affine derivatives, i.e., derivatives of

degree at most 1, have been studied in [8] and (extensively)

in [2]. In [8], Hou proved that all the 8-variable cubic bent

functions have at least one affine derivative. However, the

existence of 6-variable cubic bent functions which have no

affine derivative was known [13]. So Hou raised the following

question: for which dimensions do there exist cubic bent

functions which have no affine derivative? This question was

resolved in [2] by Canteaut and Charpin. They presented a

class of cubic Maiorana-McFarland bent functions on all even

dimension m (m ≥ 6 and m �= 8) which have no affine

derivative. In this work, we focus on the characterization of

Maiorana-McFarland Boolean functions with affine deriva-

tives. We show that such a function is defined by the existence

of a polynomial with a linear structure. More generally, we

study permutation polynomials over finite fields with linear

structures.

Linear structures have been studied in [3], [4], [7], [9]. In

[9], Lai characterizes the Boolean functions which admit linear

structures. Dubuc [7] characterized linear structures in terms of

the Fourier transform. In [3], Charpin and Kyureghyan studied

the polynomials of the form F (x) = G(x) + γTr(H(x)),
over F2n , which are permutations. This was generalized in

[4], where F (x) ∈ Fpn [x], p is any prime.

In this work, we present a construction of permutations

which have linear structures. These permutations transform

an hyperplane to another hyperplane and have at least one

affine component. We fully characterize the so-called bilinear
polynomials which have linear structures, proving that they

cannot be bijective. Further, we present a class of permutation

polynomials which have linear structures. Then we prove our

main result in Theorem 5, in which we explain the relation

between affine derivatives of a Maiorana-McFarland function

and a polynomial with linear structures. Later we present some

constructions of Maiorana-McFarland bent functions for both

the cases: with affine derivatives and without affine derivatives.

Finally, we indicate that Theorem 5 holds (in another form)

when some resilient functions are considered.

This paper is an extended abstract. Several results are given

without proof or with a shortened proof.

II. PRELIMINARIES

Let F2n be the finite field of 2n elements. For any space

E, the set of nonzero elements of E is denoted by E∗. Any

polynomial F (X) ∈ F2n [X] defines a function F : F2n →
F2n by x �→ F (x), which is called the associated function of
F (X). Through out this work, we identify a polynomial with

its associated function. In particular, a permutation polynomial

over F2n defines a bijective function from F2n to itself.

On the other hand, a so-called linearized polynomial is of

the form

L(x) =
n−1∑
k=1

ckx2k

, ck ∈ F2n . (1)

It defines a linear function L over F2n .

Let F : F2n → F2m . For a ∈ F2n , the function DaF given

by

DaF (x) = F (x) + F (x + a)

is called the derivative of F in the direction of a. Further,

a ∈ F
∗
2n is said to be a linear structure of F if the function

DaF is constant.

By definition, it is clear that if a ∈ F2n is a linear structure

of F : F2n → F2m then

F (x) + F (x + a) = F (0) + F (a), for all x ∈ F2n . (2)

If F (0) + F (a) = c, for some c ∈ F2m , then a is called

c-linear structure.

For any k dividing n, the function Trn
k : F2n −→ F2k is

defined as

Trn
k (x) = x + x2k

+ x22k

+ . . . + x2k(n/k−1)
, x ∈ F2n .

It will be denoted by Tr(x) when k = 1. From now on

we will only consider functions from F2n → F2m for the

cases m = n and m = 1, (i.e., Boolean function). The

following result (also given in [9] with another terminology)

characterizes polynomials with linear structure.

Note that the weight of an integer is the Hamming weight

of the 2-adic expression of the integer and the degree of a

polynomial F (x) defined over F2n is the maximum of the

weights of the exponents of x in F (x).
Theorem 1: Let F (x) be a function over the field F2n . We

assume that F (x) has degree at least 2. Then F (x) has a linear
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structure if and only if there is a non-bijective linear function

L(x) over F2n such that

F (x) = G(L(x)) + L1(x), (3)

for some function G : F2n → F2n and some linear function

L1(x) over F2n .

III. PERMUTATIONS WITH LINEAR STRUCTURE

From Theorem 1, we have a precise expression of functions

on F2n which have a linear structure. To have such an

expression is difficult when we impose on such a function

to be bijective. We want to exhibit specific properties of this

kind of functions.

Lemma 1: If F is a permutation of F2n then it cannot have

a 0-linear structure.

Lemma 2: Let F be a bijection over F2n and denote by

F−1 the inverse function of F . Then, a is a b-linear structure

of F if and only if b is an a-linear structure of F−1.

If F is a permutation then x �→ F (x)+ c is also a permuta-

tion for any constant c ∈ F2n . Moreover both functions have

the same subspace of linear structures. Thus we can assume

that F (0) = 0 without any loss of generality.

From now on in this section, F is a permutation on F2n

such that for some a �= 0,

F (0) = 0 and F (x) + F (x + a) = F (a), for all x ∈ F2n .
(4)

To construct such a permutation F by using Theorem 1 is not

immediate. However a direct construction is easy as we show

now. Recall that the hyperplanes of F2n can be described as

the set of the 2n − 1 subspaces of F2n

Hβ = { y | Tr(βy) = 0 }, β ∈ F
∗
2n . (5)

Taking any a ∈ F
∗
2n :

1) Choose a hyperplane Hβ such that Tr(βa) = 1 (a /∈
Hβ).

2) Fix F (0) = 0, set b = F (a), M = F2n \ {0, b}; set

Hβ = {x1, . . . , x2n−1}, with x1 = 0.

3) For any i, from 2 to 2n−1, consider the pair (xi, xi +a),
xi ∈ Hβ ; choose yi = F (xi) in M and set F (xi +a) =
yi + b;

4) on each step i replace: M := M \ {yi, yi + b}.
At the end, for any pair (F (x), F (x + a)), one element will

be in and the other outside of F (Hβ); by construction, F is

a permutation satisfying (4). Now we specify such F and its

image by means of the hyperplanes of F2n as follows.

Theorem 2: Let F be a permutation on F2n with F (0) = 0.

Assume that F has a linear structure a ∈ F
∗
2n . Then, for any

β ∈ F
∗
2n such that Tr(βa) = 1 and for any λ such that

Tr(λF (a)) = 1, there is a permutation Gβ,λ such that

Gβ,λ(F (Hβ)) = Hλ.

Moreover, setting Pβ,λ = Gβ,λ ◦ F ,

• a is a linear structure of the permutation Pβ,λ,

• the derivatives of Pβ,λ satisfy:

– if b ∈ Hβ then DbPβ,λ(x) ∈ Hλ for all x;

– if b �∈ Hβ then DbPβ,λ(x) �∈ Hλ for all x.

• the Boolean function x �→ Tr(λPβ,λ(x)) is affine.

Outline of the proof: The mapping Gβ,λ is of the form

Gβ,λ : y �−→ y + F (a)Tr(βF−1(y) + λy).

IV. FUNCTIONS WITH(OUT) LINEAR STRUCTURE

In this section, we exhibit an infinite class of permutations

with linear structure. We begin with a discussion on the

existence of linear structures. We first indicate a basic result.

Lemma 3: Let F be a function on F2n . Then F has a linear

structure, say a ∈ F
∗
2n , if and only if a is a linear structure

of x �→ λF (x) + L(x), for some λ ∈ F
∗
2n and some affine

function L on F2n .

Let i and j be two integers. We say that j strictly covers
i if i �= j and, in the binary representation of i and j, every

digit of i is less or equal to the corresponding digit of j. In

this case we note i ≺ j.

Theorem 3: Let r and s be integers such that 1 ≤ r, s ≤
2n − 2. Let α ∈ F2n . Then the functions over F2n

F (x) = λ(xr + αxs) + L(x), λ ∈ F
∗
2n , (6)

where L be any affine function, has no linear structure unless

it is affine.

Proof: Thanks to Lemma 3, we have to study the function

F (x) = xr + αxs only. If a is a linear structure of F , then

using (2), we must have DaF (x) = ar + αas. However,

DaF (x) = xr + (x + a)r + α(xs + (x + a)s)

= ar + αas +
∑

0<�≺r

ar−�x� + α
∑

0<�≺s

as−�x�.

Thus we must have

P (x) =
∑

0<�≺r

ar−�x�+α
∑

0<�≺s

as−�x� ≡ 0 (mod x2n

+x).

(7)

which is impossible unless P (x) is the null polynomial. Let

Is = {�|0 < � ≺ s} and Ir = {�|0 < � ≺ r}; note that these

sets can be empty.

If Is �= Ir then, P (x) has at least one term corresponding

to an exponent t of the form akxt with k = r − t or αakxt

with k = s − t. Since a �= 0 and α �= 0, it is impossible to

have P (x) = 0 for all x. Note that this case happens notably

for α = 0 (i.e., F is a monomial).

If Is = Ir �= ∅ then r = s and F is a monomial. Finally

Is = Ir = ∅ is the only possibility, meaning that F is linear.

Next we present a result on the associated Boolean function

of a quadratic permutation. Recall that a Boolean function f
on F2n is said to be balanced when the set {x|f(x) = 1} has

cardinality 2n−1.

Theorem 4: Let F (x) be any quadratic polynomial over

F2n . Then F is a permutation if and only if for all λ ∈ F2n ,

the associated Boolean function fλ(x) = Tr(λF (x)) has a

1−linear structure.
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A. Bilinear polynomials
The polynomials of the form L1(x)L2(x), where L1(x) and

L2(x) are two linear polynomials are called bilinear polyno-
mial [10]. In [10], some quadratic permutation polynomials

have been identified in the class of bilinear polynomials of

the form xL(x). Below we characterize bilinear polynomials

with linear structures.
Lemma 4: Let L1(x)L2(x) be a bilinear polynomial. Then

a ∈ F
∗
2n is a linear structure of L1(x)L2(x) if and only if

L2(a)L1(x) + L1(a)L2(x) = 0, for all x ∈ F2n . (8)

Proof: Using (2) we know that a ∈ F
∗
2n is a linear

structure of L1(x)L2(x) if and only if for all x ∈ F2n

L1(x)L2(x) + L1(x + a)L2(x + a) = L1(a)L2(a). (9)

Set P (x) = Da(L1(x)L2(x)). We have

P (x) = L1(x) (L2(x) + L2(x + a)) + L1(a)L2(x + a)
= L2(a)L1(x) + L1(a)L2(x) + L1(a)L2(a).

Hence, (9) holds if and only if (8) holds, completing the proof.

Note that by Theorem 4, we know that quadratic polyno-

mials with linear structures exist, since quadratic permutations

exist. For this special class of bilinear polynomial, we are able

to give a complete result.
Proposition 1: Define the bilinear polynomial F (x) =

L1(x)L2(x). Assume that F is strictly bilinear, i.e., it is of

degree 2.
Then, the linear structures of F are those a ∈ F

∗
2n such that

L1(a) = L2(a) = 0. Consequently, if F is a permutation, it

has no linear structure.
Proof: From Lemma 4, we know that a ∈ F

∗
2n is a linear

structure of F if and only if (8) holds. Clearly, (8) holds when

L1(a) = L2(a) = 0. In the case where L2(a) �= 0, we get

L1(x) = μL2(x), μ =
L1(a)
L2(a)

, for all x ∈ F2n .

This leads to F (x) = μ (L2(x))2, i.e., linear, if L1(a) �= 0
and F (x) is the null polynomial otherwise. On the other hand

taking L1(a) �= 0 (at the beginning) we get a similar result

and both the two cases contradict that F has degree 2.
So, if (8) holds then L2(a) = 0 and, further, L1(a) = 0. In

this case, F cannot be a permutation since F (a) = 0 = F (0),
completing the proof.

Corollary 1: Let F (x) = L1(x)L2(x) + L3(x) be a func-

tion over F2n , where L1 and L2 are linear functions over F2n

and L3 is an affine function over F2n . If L1 or L2 is bijective

then F does not possess any linear structure.
Proof: If a is a linear structure of F then a is a linear

structure of L1L2. From Proposition 1, this is possible if and

only if L1(a) = L2(a) = 0. In this case, L1 and L2 are not

bijective.
So we have proved that any quadratic polynomial of the form

n−1∑
i=1

λix
2i+1 +

n−1∑
j=0

μjx
2j

, λi ∈ F2n , μj ∈ F2n ,

cannot have any linear structure.

Example 1: Dobbertin [6] introduced a class of quadratic

permutation polynomials as x2m+1+1 + x3 + x over F22m+1 .

Since x2m+1+1+x3+x = x(x2m+1
+x2)+x, then by Corollary

1, these permutations cannot have any linear structure.

B. A class of permutations with linear structure

In [3], a class of permutation polynomials was presented as

follows.

Proposition 2: [3, Lemma 4] Let L : F2n → F2n be a

linear 2-to-1 mapping with kernel {0, α} and H : F2n → F2n .

If for some γ ∈ F2n the mapping

N(x) = L(x) + γTr(H(x))

is a permutation of F2n , then γ does not belong to the image

set of L. Moreover, for such an element γ the mapping N(x)
is a permutation if and only if α is a 1-linear structure of

Tr(H(x)).
Recall a well-known result that the equation x2 + ax + b = 0
has no solution in F2n if and only if Tr

(
b

a2

) �= 0.

Based on Proposition 2, we are able to construct quadratic

permutation polynomial with linear structure.

Proposition 3: For n odd and the integer i such that 1 ≤
i ≤ n− 1, the quadratic polynomials of the form

N(x) = x(x + 1) + γTr(x2i+1),

where x ∈ F2n and Tr(γ) �= 0, is a quadratic permutation

polynomial over F2n with the linear structure 1.

Proof: Let L(x) = x(x + 1), then L is a 2-to-1 linear

function with kernel {0, 1}. Since Tr(γ) �= 0, it is impossible

to have x2 + x + γ = 0. Hence γ is not in the image set of

L. Now, we have

Tr(x2i+1 + (x + 1)2
i+1) = Tr(x2i

+ x + 1) = Tr(1) = 1,

since n is odd, which shows that 1 is a 1-linear structure of

Tr(x2i+1). Therefore, by Proposition 2, N(x) is a permutation

polynomial over F2n .

Again, we have for any x ∈ F2n :

N(x) + N(x + 1) = L(1) + γTr(1) = 0 + γ = γ.

So, 1 is a linear structure of N(x), completing the proof.

Remark 1: It has been proved in [3] that for any integer s,

0 ≤ s ≤ 2n−2 such that s /∈ {2i, 2i+2j} for all integers i and

j, the Boolean function x �→ Tr(δxs) can never have a linear

structure (for any δ ∈ F2n). Therefore, one cannot construct

any permutation polynomial having degree more than 2 of the

form

N(x) = L(x) + γTr(xs),

where L(x) and γ are as given in Proposition 2.

Moreover such a polynomial N(x) cannot have any linear

structure. Indeed, assume that a is a c-linear structure of N(x).
Then N(x)+N(x+a) = c for all x ∈ F2n . This implies that

L(x) + γTr(xs) + L(x + a) + γTr((x + a)s) = c

L(a) + γ(Tr(xs) + Tr((x + a)s)) = c

Tr(xs) + Tr((x + a)s) = v,
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for all x ∈ F2n , where v = γ−1(c + L(a)), implying that a is

a linear structure of Tr(xs).
However, using Proposition 2 again, we are going to con-

struct permutations of higher degree which have a linear

structure. Observe that if H(x) has a linear structure a then

a is also a linear structure of Tr(H(x)). Moreover, if a is a

1-linear structure of Tr(H(x)), then

N(x) = x(x + a) + γTr(H(x)),

where Tr(γ/a2) �= 0, is a permutation polynomial with the

linear structure a.

Lemma 5: Let s and i be two integers such that 1 ≤ s ≤
2n − 2 and 0 ≤ i ≤ n− 1. Set

H(x) = xs + x2i

(xs + (x + 1)s + 1) .

Then, 1 is a 1-linear structure of H .

Proposition 4: Let n be odd, n ≥ 5 and let k be an odd

integer such that 1 ≤ k ≤ n− 2. Let

s = 1 + 2i1 + · · ·+ 2ik , 1 ≤ i1 < · · · < ik ≤ n− 2,

i.e., 3 ≤ s ≤ 2n−1 − 1. Consider the function

N(x) = x(x + 1) + γTr(H(x)),

where H(x) = xs + x2n−1
(xs + (x + 1)s + 1) and γ ∈ F

∗
2n

satisfies Tr(γ) = 1. Then N(x) is a permutation of degree

k + 1 which has 1 as a γ-linear structure.

Proof: Using lemma 5, we have

Tr(H(x)) + Tr(H(x + 1)) = Tr(1) = 1,

for all x ∈ F2n . Thus by Proposition 2, N is a permutation.

Moreover

N(x) + N(x + 1) = 0 + γTr(H(x) + H(x + 1)) = γ.

Now we look at the degree of N . It is clear that

H(x) = xs +
∑

r �=0, r≺s

xr+2n−1
.

Note that in H(x), the exponents s and r + 2n−1, where r =
s − 2i for some i ∈ {0, i1, . . . , ik}, only have the maximum

weight, i.e., k+1. In total there are k+2 exponents of weight

k +1. Among these k +2 exponents, if two exponents belong

to the same cyclotomic coset, then they cancel each other in

Tr(H(x)). Since k is odd and so is k + 2, therefore, at least

one exponent will not be canceled out in Tr(H(x)) by some

other exponent. Thus the degree of Tr(H(x)) is also equal to

k + 1 and hence the degree of N(x) is equal to k + 1 (the

weight of s).

V. MAIORANA-MCFARLAND BENT FUNCTIONS WITHOUT

AFFINE DERIVATIVE

In [8], Hou proved that all the 8-variable cubic Boolean bent

functions have at least one affine derivative. In [2], Canteaut

and Charpin presented a family of n-variables, n ≥ 6 and

n �= 8 cubic bent functions which have no affine derivative.

Those functions belong to the Maiorana-McFarland class

which was extensively studied by Dillon [5, pp. 90-95]. This

class is usually called the class M of bent functions. Using

our previous results, we propose a more general approach.

Boolean functions of class M are functions of the form

f : (x, y) ∈ F2t × F2t �→ Trt
1 (xπ(y) + h(y)) (10)

where π is a function over F2t and h is any function on F2t .

Lemma 6: Let n = 2t. Let us consider a Boolean function

f defined by (10). Then, f is a bent function if and only if π
is a bijection. In this case, f is said to belong to the class M
of bent functions.

Theorem 5: Let n = 2t. Let π be a function over F2t of

degree �, 1 < � ≤ t − 1. Let f be a function given by (10)

where the degree of h is less than or equal to 2. Then f has

no affine derivative if and only if π does not have any linear

structure. In this case, if π is a bijection then f is a bent

function without affine derivative.

Proof: Note that, since the degree of h is less than or

equal to �, the degree of f is exactly � + 1. Take a, b ∈ F2t .

Then

D(a,b)f(x, y) = Trt
1(xπ(y) + (x + a)π(y + b)

+ h(y) + h(y + b))
= Trt

1(aπ(y + b)) + Trt
1(x(π(y)

+ π(y + b)) + h(y) + h(y + b)).

It is clear that the degree of D(a,b)f is at most �. If a �= 0, then

the term aπ(y + b) asserts that D(a,b)f is of degree exactly �.

In this case, D(a,b)f is not affine.

Let us now investigate for the case a = 0. In this case,

D(0,b)f(x, y) = Trt
1 (x(π(y) + π(y + b)) + h(y) + h(y + b)) .

Since � > 1 and any derivative of h is affine or constant,

D(0,b)f is affine if and only if the function y �→ π(y)+π(y+b)
is constant, i.e., b is a linear structure of π.

When π is a permutation, f is a bent function belonging to

M (see Lemma 6).

By Theorem 5, we are able to construct bent functions

of any degree d, 3 ≤ d ≤ t on F2n (n = 2t) which have

affine derivatives. For example, we obtain the following result

directly from Proposition 4.

Corollary 2: Let n = 2t with t odd. Let N be defined as in

Proposition 4. Then f(x, y) = Trt
1(xN(y)) is a bent function

of degree d = k + 2 whose derivative at the point 1 is affine.

On the other hand we can state some general results such

as the following which generalizes [2, Lemma 1].

Corollary 3: Let n = 2t. Let r and s be integers such that

1 ≤ r, s ≤ 2n − 2. Let α ∈ F2n . Assume that y �→ yr has

degree � > 1 and h is any function of degree at most 2. Then

the function

f : (x, y) ∈ F2t × F2t �→ Trt
1 (x(yr + αys) + h(y))

does not have any affine derivative. In particular, any function

f : (x, y) �→ Trt
1

(
xy2i+1

)
with t

gcd(t,i) odd,

is a bent function without affine derivatives.
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Proof: By Theorem 3, we know that the function y �→
yr +αys has no linear structure. Hence we can apply Theorem

5. In particular, we get the class of cubic bent functions

without any affine derivative introduced in [2]. Note that 2i+1
is coprime to 2t − 1 (i.e., y �→ y2i+1 is a permutation) if and

only if t/ gcd(t, i) is odd (see for instance [12, Lemma 11.1]).

Theorem 5 also has a surprising consequence. By Hou’s

result [8], we know that all the cubic bent functions of 8
variables have at least one affine derivative. In particular this

property holds for bent functions of the form (10) for t = 4
and π is a permutation on F24 . Thus we have:

Corollary 4: Any quadratic permutation over F24 has at

least one linear structure.

In [2, Section IV], it was proved that a bent function has an

affine derivative if and only if its dual has an affine derivative.

The dual of a bent function f of the class M given by (10)

is known to be as follows:

f̃ : (x, y) �→ Trt
1

(
yπ−1(x) + h(π−1(x))

)

(where π is a permutation). Let f be a bent function, defined as

in Theorem 5. If π has no linear structure then f has no affine

derivative. Thanks to Lemma 2, π−1 has no linear structure

too; further f̃ has no affine derivative. So we prove, by another

way, an instance of the result given in [2].

VI. CRYPTOGRAPHIC RELEVANCE

So far we have considered functions over the finite field

F2n . Let F
n
2 denote the vector space of 2n binary n-tuples.

The vector space F
n
2 can easily be identified to the field

F2n . This is done by choosing a basis {α1, . . . , αn} of the

vector space F2n over F2. Then an element x ∈ F2n can

be described as
∑n

i=1 xiαi, i.e., we can identify x to the n-

tuple (x1, . . . , xn) ∈ F
n
2 where each xi belongs to F2. The

number of nonzero xi’s is the Hamming weight of x denoted

by wt(x) and any Boolean function f : F
n
2 → F2 is an n-

variable Boolean function.

There are several cryptosystems in which Boolean functions

are used. For example, in some LFSR based stream ciphers, a

Boolean function is used to combine the outputs of several

LFSRs. For secure design purpose, it is required that the

output of the Boolean function should not have correlation

with a subset of input variables. Otherwise, one can mount the

correlation attack [14] by exploiting the statistical dependence

between the input variables and the output of the Boolean

function. Therefore in order to resist this attack it is required

that the Boolean function remains balanced if some input

bits are kept constant. From this requirement, the concept of

resiliency comes.

A Boolean function g : F
n
2 → F2 is k-resilient if and only

if

Wg(λ) =
∑
z∈F

n
2

(−1)f(z)+λ·z = 0

for all λ ∈ F
n
2 such that wt(λ) ≤ k, where λ · z denotes the

usual dot product over F
n
2 .

There are several constructions of resilient functions. There

is one construction, introduced in [1, Proposition 4.2], which is

quite similar to the Maiorana-McFarland construction of bent

functions.

Proposition 5: [1] Let k be an integer such that 0 ≤ k ≤
n − r − 2. Let G : F

r
2 → F

n−r
2 be any function such that

wt(G(y)) ≥ k + 1 for all y ∈ F
r
2. Then the Boolean function

f : F
n−r
2 × F

r
2 → F2 given by

f(x, y) =< x,G(y) >n−r +H(y)

is a k-resilient function of n variables, where H : F
r
2 → F

n−r
2

is any function and < ·, · >n−r is the dot product on F
n−r
2 .

Noting the similarity between the construction of resilient

function in Proposition 5 and the construction of Maiorana-

McFarland bent functions, we can easily extend Theorem 5 in

the case of resilient functions as follows.

Theorem 6: Let G : F
r
2 → F

n−r
2 be any function of degree

�, 1 < � ≤ r − 1 such that wt(G(x)) ≥ k + 1 for all x ∈ F
r
2.

Then the k-resilient function of degree more than 2

f : F
n−r
2 × F2r → F2 given by f(x, y) =< x ·G(y) >n−r

does not possess any affine derivative if and only if G does

not have any linear structure.
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